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COLLECTIVE MOTIONS OF A ONE-DIMENSIONAL
SELF-GRAVITATING SYSTEM

By Frank Hohl and Janet W. Campbell
Langley Research Center

SUMMARY

A one-dimensional computer model for a collisionless, self-gravitating system is
used to investigate the mixing phase during which a stellar system approaches a quasi-
equilibrium state. The results of the calculations are compared with the theory of the
mixing phase proposed by Lynden-Bell. Previous investigations have shown that for
simple (uniform phase density) initial conditions the quasi-equilibrium state, which is
reached after several crossing times, is close to the distribution predicted by Lynden-
Bell. In the present paper more complicated initial conditions (two-phase density sys-
tems) are used to test the Lynden-Bell theory. For most systems investigated, the final
state is close to the Lynden-Bell distribution. One exception is noted.

INTRODUCTION

In considering the evolution of stellar systems, the two fundamental time scales of
interest are the crossing time 7, and the thermalization time 7p. The crossing time
is associated with the collective motions of the stellar system and the thermalization
time is associated with the binary interactions (collisions) of the individual stars. The
crossing period is

27

Tc =
V4nGp

where G is the gravitational constant and p is the mass density. The mixing phase
during which a collisionless system tends to approach a quasi-equilibrium state is of the
order of T.. For the systems considered in the present report, the thermalization time
is much larger than the crossing time, 7, > 7¢. Thus, the mixing phase is well sepa-
rated from the thermalization phenomena.

Recently, Lynden-Bell (ref. 1) proposed a theory of the mixing phase during which a
collisionless stellar system approaches a quasi-equilibrium state. By using a new type
of statistics related to Fermi-Dirac statistics, he derived a final or quasi-equilibrium
distribution. In the present paper, computer experiments with a one-dimensional sheet




model (refs. 2 to 4) are performed to determine how closely a collisionless self-
gravitating system will approach the Lynden-Bell distribution. The case for the most
simple initial conditions (uniform phase density) has previously been investigated (ref. 5).
These results showed that from 80 percent to 96 percent of the stars in the system
approached the Lynden-Bell distribution. Similar results for the uniform initial phase
density case were obtained by Cohen and Lecar (ref. 6). Hénon (ref. 7) used a model of
concentric spherical mass shells to test the Lynden-Bell theory for the simple uniform-
phase-density case and also obtained essentially the same results. It was found previ-
ously (ref. 8) that for the case of a plasma, an initially uniform phase-density system
will approach the Lynden-Bell distribution.

For the simple case of an initially uniform phase-density distribution, the final
state of the system is close to the distribution predicted by Lynden-Bell. It is of interest
to determine whether more complicated initial distributions also approach the Lynden-
Bell distribution.

The present investigation includes initial conditions having two different phase
densities. Also, effects of the presence of different mass groups are investigated.

SYMBOLS
E gravitational field
f(x,v) distribution function, phase space density
F(e) energy distribution function
G gravitational constant
m mass or mass per unit area
N total number of stars in system
P potential energy
T kinetic energy
t time
v velocity




X position coordinate

B 1/8 corresponds to a "temperature"

€ total energy per unit mass

n initial phase density

" "Fermi energy"

Te crossing time

Te0 crossing time at t =0

Ty thermalization time

© gravitational potential

() averaged quantity

Subscripts:

i,j summation indices

1,2 describes two different phase-density regions
STATISTICS

The equations describing a one-dimensional collisionless system are the collision-
less Boltzmann equation

of 8t _ dg of _
ot £ axav_o 1

and the Poisson equation
v2¢ = 471G g fdv (2)

The most probable final state for a system described by equations (1) and (2) was recently
discussed by Lynden-Bell (ref. 1). He assumes the phase space to be divided into a large




number of elements of phase f;. He then argues that because of the large number of
equivalent elements and the violeat changes in the mean field, any distinct distribution

of elements of phase is equally likely to occur subject to the conditions that the total
energy and the number of elements of phase with a given initial density are conserved.
The elements of phase f; are distinguishable. According to equation (1), the elements
of phase cannot overlap and, therefore, follow an exclusion principle. Such a phase fluid
should obey a fourth type of statistics which, in general, is different from that of Maxwell-
Boltzmann, Bose-Einstein, and Fermi-Dirac. By evaluating the most probable distribu-
tion of elements of phase, Lynden-Bell obtains the coarse-grained (macroscopic) distri-
bution

1y = A - ]
i 1+ z exp[-ﬁj(e - N'j):]

J

(3)

where the summation occurs because initially there are elements of phase with different
densities nj-

For the special case where the initial f has a constant value 7 over certain
regions of phase space and is zero outside these regions (water-bag distribution), the
distribution reduces to

£y = 0 (4)
(0 1+ expl—p(e - u):t

where' € is the total energy of a star and the two constants g and u are determined
by the conservation of energy and area in phase space. The distribution given by equa-
tion (4) is formally identical with the Fermi-Dirac distribution. The parameter pu
corresponds to the Fermi energy, whereas the parameter 1/8 corresponds to a
"temperature' and is a measure of the excitation above the minimum energy state corre-
sponding to 1/8 = 0. This minimum-energy state is discussed by Hohl and Feix (refs. 4
and 9) for the case of a one-dimensional system and in this paper is referred to as the
stationary state,

Equation (4) can be written in the form

Ble - p) = loge<n—§_i<%> (5)

so that a plot of loger )/ (77 -(f ))] as a function of energy should give a straight line.
For a highly nondegenerate system such as that investigated by Buneman (ref. 2) (f )<« 7,
and the distribution given by equation (4) will approach a Maxwellian. On the other hand,
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a distribution near the stationary state of a single contour water-bag distribution (refs. 4
to 6) corresponds to a low-temperature (1/8 = 0) Fermi distribution. For the case of a
system with two different initial-phase densities 7y and 79, the following relationships
hold (appendix I of ref. 1)

eXp[—Bl(E - Ml)]

by § (©
(f1) n 14+ eXp[‘Bl(E - ‘ul),l + exp[—Bz(E - uz)]
and
(f2) =y rolrale - va) ")
1+ exp[—Bl(e - ul)_j + eXP[_"ﬁz(E - U«Z)J
or
f
B1(e - mq) = loge <<f11>> (12) ®
-5 )
and
1
Pa(e - M) = loge ) <<f12>> (£9 )\ ®)
nle - G- S
THE MODEL

A one-dimensional sheet model (refs. 2 to 4) was used for the computer simulation
of the mixing phase of collisionless systems. Consider a system of N mass sheets with
ordered sheet positions xy,X,X3,...,Xy suchthat xj =xj,1. The gravitational field E;

acting on a sheet at Xj is obtained from the net mass to the left of 43 that is,

N
Ej = 27G z mj sgn(x]- - Xi) (10)
i=1

where mj is the mass per unit area of the sheet at x; and

sng(x) = -1 (x >0)
sgn(x) = 0 (x =0) (11)
sgn(x) = 1 (x<0)




The velocity and position of the sheets are advanced stepwise in time by using the time-
centered finite-difference equations

v(t + %§> = v(t - _62_t> + OtE(x,t) (12)
and
x(t + ot) = x(t) + étv(t + %) (13)

The process of ordering the sheets, calculating the field, and advancing velocities and
position by a small time step 6t is repeated until the desired evolution of the system is
achieved.

RESULTS AND DISCUSSION

The Lynden-Bell theory of violent relaxation (ref. 1) does not account for any
effects due to the presence of different mass groups. It is therefore important to ensure
that no mass segregation occurs when different mass groups are present. The effect of
the presence of two different mass groups was determined by repeating some of the calcu-
lations presented in reference 5, but by representing the upper stream (positive velocity
stars) by 2000 mass sheets each of mass 1 (per unit area) and the lower stream by
1000 mass sheets each of mass 2. The resulting evolution of the system in phase space
is shown in figure 1. The time is shown in crossing periods 7,3 calculated for the
initial density. The initial distribution is equivalent to that of the system shown in fig-

ure 1 of reference 5. The evolution of the system shown in figure 5 of reference 5 was
also repeated by replacing the upper stream by 2000 stars of mass 1/2 and the lower
stream by 1000 stars of mass 1. Figure 2 shows the resulting evolution in phase space.
The evolution displayed in figures 1 and 2 is practically identical to that shown in fig-
ures 1 and 5 of reference 5. Also, when loge[(f>/(n - (f))] is plotted separately for
the light and heavy stars, a practically identical distribution is obtained for both cases.
Each one of the plots of loge[(f>/(n - (f))J gives the same variations as the corre-
sponding plot presented in reference 5 for the same initial phase-density system. Thus,
the final distribution when two different mass groups are present is the same as that for
the case when all sheets are of equal mass.

In figure 3 the percent kinetic-energy difference given by

%Z miviz(light stars) - %Z miviz(heavy stars)
! ! X 100 (14)

—;-Z miviz(light stars) + %Z miviz(heavy stars)
i i



is plotted as a function of time for the two systems shown in figures 1 and 2. It can be
seen that in spite of the large fluctuations, there is no apparent systematic increase in
the kinetic energy of the light stars; that is, no equipartition of energy occurs on a time
scale T,. These results are to be expected since Hohl and Broaddus (ref. 10) have found
that the thermalization or relaxation effects for the one-dimensional model occur on a
time scale

Tp N2'rC (15)

where N is the number of mass sheets in the system. Thus, during the process of
violent relaxation as simulated by the one-dimensional model, purely collective inter-
actions of the stars cause the system to approach its quasi-equilibrium state.

The evolution in phase space of the first two-phase-density systems investigated is
shown in figure 4. Initially, the central region of the system bounded by x = *187.5 and
v = +375 contains 1008 stars of mass 1. The two outer regions bounded by x = +187.5,
x = *375, and v =+375 each contain 1008 stars of mass 1. Therefore, the initial den-
sity in the central region defined by f; is one-half that of the two outer regions defined
by f9.

To compare the final state of the system with the distribution given by equations (6)
and (7), the phase space is divided into a number of cells. Each mass sheet represents a
point in a cell in phase space. The average number of mass sheets per cell and the
corresponding energy € = %rnv2 + m¢ are determined by averaging over several dis-
tributions near the final time t =47.77.9 as shown in figure 4. These calculations are
done separately for stars corresponding to f3 andto f9. The cell size chosen was
such that initially, the phase densities (mass per cell) corresponding to f{ and fg
were 71 =20.16 and n9 =40.32.

Figure 5 shows the variation of the distributions (f1), (fg), and (f) =(fy + f9)
as a function of energy. Also shown as inserts in the same figure are Fi, Fg,and F
which are the distributions of the mass per energy interval corresponding to (f1), (f3),
and (f), respectively. The normalizations

(raxav=1
(fyaxav=1
[ty axav =1




and

ng€=3x104
§F1d5=3x104

3 x 104

(S
|
[\]
&
1

are used throughout the present paper. The dots shown in figure 5 are the numerical
results obtained from the computer calculations. The solid curves represent the Lynden-
Bell distribution which gives the best fit to the numerical data; that is, the quantity

2
}:[fi(theory) - fj (numericalﬂ is minimized. For high energies the value of (f) is

tloo large and in obtaining the fit the high-energy bump in the distribution was neglected.
This high-energy bump in the distribution was also obtained by Hénon in his spherical
shell model (ref. 7). Lynden-Bell (ref. 11) suggests that this deviation occurs because
the high-energy stars have a large period and remain outside the main system for a
longer time than the low-energy stars. When the high-energy stars return to the center
of the system, the system has nearly reached a steady state and the mechanism for phase
mixing would no longer be effective. The values of the constants g1, Bg, w1, and pug
corresponding to the "best' fit shown in figure 5 are also given in figure 5. One of the
difficulties of the Lynden-Bell distribution is that the parameters of the final state cannot
be calculated in advance. Nevertheless, the results presented in figure 5 show that the
final state can be closely approximated by the Lynden-Bell distribution. The dip in (f3)
obtained from the numerical results can be explained in terms of the initial distribution.
Initially, the central part has a low phase density and as the system evolves, the outer
higher phase density tries to displace the lower central density. Since the two-phase
densities cannot pass through each other (exclusion principle), some portions of the
lighter region are trapped near the center of the system, and thereby stars corresponding
to the heavier phase density are prevented from occupying this region. The result is a
lower phase density in the central region as shown in figure 5. In the previous investiga-
tion (ref. 5) of single-phase density systems, equation (5) was used for comparing the
computer results with the Lynden-Bell distribution. An attempt was made to use equa-
tions (8) and (9) for the present two-phase density cases. However, the numerically
obtained deviations from the Lynden-Bell distribution for small energies (as shown in
fig. b) caused large variations in the logarithmic terms and the results were misleading.
For this reason equations (6) and (7) are used.




The evolution of the kinetic energy for the system shown in figure 4 is given in
figure 6, Initially, the total potential energy P is nearly 10 times the total kinetic
energy T. However, after a short time, the virial theorem is satisfied (if the average
is taken over the oscillation in the energies) and 2T = P.

The evolution in phase space for the next case is shown in figure 7. Initially, the
region bounded by x =0, x = -250, and v = £312.5 contains 1000 stars of mass 1.6, and
the region bounded by x =0, x =250, and v =+312.5 contains 1000 stars of mass 0.4.
Thus, the left-hand region corresponding to f9 has an initial phase density four times
as large as the right-hand region which corresponds to fj. Also, the heavy stars are
represented by small rectangles and the light stars by small circles. It can be seen that
most of the high-energy stars are light stars. The corresponding distribution functions
obtained near t =47.77,q are shown in figure 8. For this case the "best" fit was
obtained by including all the high~energy bumps. The total distribution (f) and also
(f9) are fairly well represented by the Lynden-Bell distribution. However, the two
peaks in (f1) are probably caused again by a combination of trapping between regions
of (f1) and by nonmixing of high-energy stars. The evolution of the kinetic energy for
the same system is shown in figure 9. Initially, the potential energy is four times the
kinetic energy but the energies quickly reach the point where they oscillate around
P =2T.

The next case investigated is one where a region of heavy phase density completely
encloses a region of low phase density. The evolution in phase space for this system is
shown in figure 10. The central rectangle defined by x = 177 and v = *177 contains
1000 stars each of mass 0.5. The outer region exterior to the central rectangle and
enclosed by x = 4250 and v =+250 contains 1000 stars each of mass 1.5. The two
regions have equal areas so that the outer region corresponding to fg has a phase den-
sity which is three times as large as the phase density in the central region which corre-
sponds to fj. Figure 10 shows that nearly all the high-energy stars are heavy stars
represented by small rectangles (corresponding to fz). This result was to be expected
since stars from the inner regions (corresponding to fl) cannot penetrate the outer
region f9. Thus, again the light region is trapped near the center of the system.
Another point to note is illustrated by the stage of the evolution at t = 3.27,¢ in fig-
ure 10. It can be seen that parts of the outer region have condensed into two clusters
which displace some of the lighter regions away from the central part of the system.
However, these displaced regions are still trapped inside regions of f9. Figure 11
shows a comparison of the distribution functions of this system with the Lynden-Bell
distribution after the system has reached the quasi-equilibrium state. The results are
essentially the same as those for the previous two cases; that is, most of the stars follow
the Liynden-Bell distribution. The variation of the kinetic energy for the system is shown




in figure 12. Initially, the potential energy of the system is almost four times as large
as the total kinetic energy.

The final system investigated is shown in figure 13. The top and the bottom rec-
tangle are defined by x = £83.3, v = #83.3, and v =250 and each of the two rectangles
contains 506 stars of mass 0.4 represented by a circle. The right and left rectangles
are defined by x = £83.3, x = #250, and v = £83.3 and each of the two rectangles con-
tains 506 stars of mass 1.6 represented by a small rectangle. The region of phase space
covered by the right and left rectangle corresponds to f9 and has a phase density four
times as large as the top and bottom rectangles which correspond to fj. Compared with
the previous three cases, the system has a rather large initial ratio of potential to kinetic
energy; the initial potential energy is 23 times as large as the total initial kinetic enexrgy.
Figure 14 shows the final distribution functions for the system obtained near t =47.77..
The variation of the kinetic energy for this system is shown in figure 15. For this sys-
tem it is not possible to obtain any reasonable fit of the numerical results with the Lynden-
Bell distribution. The relaxation is certainly very violent as required by the Lynden-Bell
theory.

However, from the dynamics of the system as displayed in figure 13 it can be seen
that the final state of the system is rather purely mixed. Initially the two heavy-phase
density rectangles tend to fall toward the center of the system and most of the stars
corresponding to the low-phase-density regions are displayed toward higher energies.

In fact, up to a time t = 4.07.q, the system rotates (in phase space) like a binary system
with the heavy-phase-density regions continually approaching each other. At the same
time, the low-phase-density regions are being pushed to higher energies. At t = 8.07.,
the two heavy regions have merged and occupy the central region of the system. Only
very few of the stars corresponding to the initial-low-phase-density regions are near the
center of the system. This state of the system corresponds, of course, to the distribu-
tions shown in figure 14. These results indicate that if the final state is to be described
by the Lynden-Bell distribution, the evolution of the system must proceed with sufficient
interpenetration of regions of different phase density.

For the single-phase-density case, the stationary state is always stable and is
described by a zero-temperature (1/8 = 0) Fermi-Dirac distribution. In studying the
evolution of such single-phase-density systems, it was found (refs. 4 and 9) that within
the limitations of energy conservation, the system approaches the stationary state. Since
the Lynden-Bell distribution reduces to the Fermi-Dirac distribution for this simple case,
one would expect the final state of the system to be approximated by the Lynden-Bell dis-
tribution. Consider now the case of a multiphase density system (refs. 9 and 12). A
stable stationary two-phase-density system is described by
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f1(e) =y (0=¢ =p)

f1(e) =0 (e > p)
and

fa(e) =y (lil <€= uz)

fo(e) =0 (e <y € > MZ)

where 7y >79. Interms of Fermi-Dirac distribution, f; and fg can be written as

. exp[-y(e - py)]
e exp[—Bl(e - u.l)]

fy(e) = (16)

and

exp[-fa(e - po))  exp[-By(e - k1]
1+ exp[—ﬁz(e - “22 = 1+ exp[—ﬁl(e - N«lﬂ

fo(e) = ng amn

where 1/[31 =0 and 1/32 ~ (. Equations (16) and (17) give a better approximation of
the final state of the system shown in figures 13 and 14 than the Lynden-Bell distribution.

CONCLUDING REMARKS

Since the motion of "stars' in the two-dimensional phase space is always bounded,
the collisionless, one-dimensional model is well suited for a check of the Lynden-Bell
theory. It was found that no mass segregation occurs when two different mass groups
are present.

Most of the calculations with two different initial phase densities give results in
good agreement with the Lynden-Bell distribution. The small deviations in these cases
can be explained by considering the dynamics of the stars. For one case investigated,
however, the final state of the two phase densities cannot even be approximated by the
Lynden-Bell distribution. Since the Lynden-Bell distribution is obtained without actually
considering the dynamics of the stars, it is surprising that for most of the systems
investigated, the final state does correspond to a Lynden-Bell distribution. One of the
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disadvantages of the Lynden-Bell distribution is that the parameters of the final state
cannot be calculated in advance.

Langley Research Center,

10.

11.

12.

12

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 19, 1969.
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by a small rectangle.
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density in the outer regions corresponds to ny = 40.32.




Numerical results
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Figure 5.- Comparison of final distribution with the Lynden-Bell distribution for the system shown in figure 4.
Inserts show the energy distribution.
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Figure 8.- Comparison of the final distribution with the Lynden-Bell distribution for the system shown in figure 7.
Inserts show the energy distribution.
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Figure 9.- Evolution of the kinetic energy for the system shown in figure 7. (a) Total kinetic energy corresponding to (f1> and
(b) Total kinetic energy corresponding to <f2>.
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Figure 10.- Evolution of a two-phase-density system in phase space. The outer region has a phase density three times as
large as that of the inner region,
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Figure 11.- Comparison of the final distribution with the Lynden-Bell distribution for the system shown in figure 10,
Inserts show the energy distribution.
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Figure 12.- Evolution of the kinetic energy for the system shown in figure 10. (a) Kinetic energy corresponding
to <f1> and (b) Kinetic energy corresponding to {f2).
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Figure 13.- Evolution of a two-phase-density system in phase space. The left and right rectangles have a phase density
four times as large as the top and bottom rectangles.
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Numerical results
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Figure 14.- Comparison

of the final distribution with the Lynden-Bell distribution for the system shown in figure 13,

Inserts show the energy distribution.
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Figure 15.- Evolution of the kinetic energy for the system shown in figure 13, (a) Kinetic energy corresponding
to <f1> and (b) Kinetic energy corresponding to <f2>.
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