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ELASTIC SCATTERING OF ZERO ENERGY"

POSITRONS BY HETIUM ATOMS

S. K. Houston

and

B. L. Moiseiwitsch

ABSTRACT

Kohn's variational method is used to calculate the scattering length for

collisions between zero energy positrons and helium atoms in their ground state.

The trial function used depends on several exponential parameters and up to

twenty linear parameters and includes explicitly correlation between the posi-

tronand the electrons of the atom. The trial function also depends on the ground

state wave function tkn of the helium atom and we have attempted calculations

using six different approximations to '!Jo .The calculations all seemto diverge

except when a Hartree Fork approximation to 00 is used, although with a three

term Hylleraas 40 we get the value -0.592N for the scattering length.

We have also calculated the effective electron number Ze f f which gives the

rate of annihilation of positrons in helium. An error in a previous paper by

Houston (1968) is corrected.
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ELASTIC SCATTERING OF ZERO ENERGY

POSITRONS BY HELIUM ATOMS

1. Introduction

In a recent paper, Houston and Moiseiwitsch (1968) have calculated the

scattering length for elastic collisions between zero energy positrons and

helium atoms using Kohn's variational method. The trial scattering wave

function used allowed explicitly for correlation between the incident positron

and the target electrons. It contained up to twenty linear parameters and three

adjustable exponential parameters. However the representation used for the

helium atom ground state wave function was the analytic Hartree-Fork wave

function of Green et al. (1954) and this did not allow explicitly for correlation

between the atomic electrons. It is the purpose of the present paper to investi-

gate the use of different helium atom ground state wave functions, which allow

for interelectronic correlation in varying degrees, in a variational calculation

of the scattering length.

It
	

Now it is well known that Kohn's variational method gives an upper bound

to the scattering length when there are no composite bound states of the inci-

dent particle and the target atom (Spruch and Rosenberg, 1960), provided that

the exact target wave function is used. We cannot of course do this for helium,

but we have shown below that Kohn's variational method in this case should

still yield a good approximation to the scattering length, which will probably be

an upper bound, provided that the helium ground state wave function used is

fairly accurate.
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Calculations of the scattering length for elastic collisions between positron

and helium atoms have also Ix-en performed by Kestner at al. (1965) using a

pseudopotential model, by Hashino (1961) using the method of polarizod orbitals

and by Drachman (1968) who has used a first order adiabatic correlation trial

function in both variational and non-variational calculations.

In addition to the scattering length calculations, the positron annihilation

rate in helium has been calculated using the scattering wave functions obtained

in two of the different cases examined. These vah.es a.re compared with recent

theoretical and experimental results.

2. Variational " Method

We want to derive Kohn's variational principle for the scattering length

for the case where the helium atom ground state wave function has been derived

using the variational principle for bound states.

Let us suppose that q,a denotes the exact ground state wave function of the

target atom, having exact eigenergy E0 , and that the trial scattering wave

function TT for the entire system has the asymptotic form

IYT ', 
aT ^ 

rl ^ 
rl

for large radial distances r l, of the incident positron from the atomic nucleus.

a  is an adjustable parameter representing the scattering length. Then Kohn's

variational approximation to the scattering length is

2



I 2m
n - a f r —V	 T	

'r 

h2
I

tlT (11 - EO)YTd-i (2)

where H is the total 11amiltonian for the whole system and the integration Is

over all the spatial coordinates of the positron and atomic electrons. The trial

scattering function `Pr will contain aT and probably other adjustable parameters

Ci (i --, 1, n), and the optimum values of these parameters are obtained from

the n + 1 Kohn variational equations

a	 a

aT 
0	 V ^: 0
	

(3)

Furthermore, since there are no composite bound states of the system of

positron and helium atom (Gertler et al., 1968) we have

R<a	
(4)

where a is the exact scattering length (Spruch and Rosenberg, 1960).

Let us now consider the case where the target ground state wave function

and energy are determined using the Rayleigh-Ritz variational method for

bound states.

Suppose T is the exact scattering wave function for zero energy positrons

off hel'ium atoms. Then the integral

ii

it
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t	 'f l it (H	 E )̂ ) 11 1 .1 A	 ()

where the Integration Is as In (2) above. Now q) has the asymptotic form

a - r
tit i vkoo

as *, , , ^, and so a small change in of has the asymptotic form

tit I I, I	 N	 1) 'i

	

:' 0,110 ) ^ , '10	 (7)

Also if HO Is the Hamiltonian for the helium atom, then

EO	 f 1^0 ^ 1110 d"'	 (8)

where the Integration is over the spatial coordinates of the atomic electrons

only. Now the Rayleigh-Ritz theorem tell-q us that a first order change In q,O

produces a second order change in EO , that is, since

's T.,- 0 F 0	 (9)

4



we have

fh4,OHO^,1,O d-,' 2la _ ,•,	
0
	

(10)

where 62 EO is of the second order of smallness.

Now let us consider small variations in T caused by changes in ti, . We

have

51 ^-	 ( T + 8 "F ) ( H - EO - b u EO ) (T + Ob T) (IT

--	 T(H - EO )Td^r
 f

	
(l1)

We are supposing that(', + ^ ,V) contains an approximation to ko which has been

obtained using the Rayleigh-Ritz theorem, and so we must include the srriall

change in the energy,

Expanding (11) we have

61 =	 8T (11 - E O) 
qJ d T + fT(Yi -- EO ) b T d -r

(1L)

+	 6 xF(I1-E O ) 8TdT- 6 2 EO f (q,+8y)2 d r,

5



`rhe last term to an addition to the usual Kohn expression which to derived

assuming that #6 and F. are exact. A

Now, using Green's theorem, we have

f
tit' ('11 .- EO ') '^ q, d -r

	

f
W 01 - EO ) T (1	 (13)

Y1
2
	ty % 

ottl - 

IV 	 (is I &T,

21m f	 0III	 2n,

where the integration dS, Js over a large sphere in r 1 spaces n,, being a unit

vector normal to this sphere.

When we Insert the asymptotic forms (6) and (7) of T and ', %F , the right

hand side of (13) becomes

A2
H -- EO ) Y d	 4 -ir 

2m 

6 a 

I	

b 00 d	 (14)

Now

(H - E O ) ql : 0
	

(15)

since T is an exact solution, and

f 2
O^ d	 1	 (16)
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so we wan write

2

2m f
(L"^)

+ f6Y(11 -E O ) kSYdT - ^2 F 	-j-.

If we let

XT --X ,[  d X

for X - T , 00 , Ea and a, in turn, we have

a - a  + I 2m . I	
(H -- E) ^I^ T d'r

	

4n .r12	 OT

f	 f TT (H - Eo ) W d r + 62 Eo qj 2 d

where

	A 	 `jo `jo T d T' .

If we neglect the second order terms (to this order 6=1) then we have the

usual Kohn variational approximation a v as given by (2).

(18)

(19)

(20)



The first of the second order terns

f
: ) T(11 - E0	 ,q,(F.	 (21)

is a positive definite (or zero) number and if the other second order term were

not there;, then the neglect of (21) would lead to the upper bound a-av • But

the integral in the second term

r4	
IFT d T
	 (22)

is infinite ant so we may not even get a good approximation to a. However, we

can show that for large; r1 , the two second order terms cancel out,

-	 K	 I:U ) + 'I^ d r i, S 2 T.,	 ( T + 6 qj) 2 tI r

	

a+- r 1	 2
ci -r l 6 00 ( Ho w- Fo ) S 0o d.r

r1

a+aa --r	
\2

F

f	 f
S 0,I Ho 6 

YOU 
d'r

	

	
dr, 1rl

as r1

2

F	
a+ b a- r 	

d^ 1 f(S0,)2d^r,	 (23)
r1

where the integration dT, is over the coordinates of the positron and

d r = d-,-, (1-r' , Now we can choose( qo + SLPo ) such that

(24)

( p + bgO)2 d 'r '	 1

8

i
ci



and, using (16), we have

2	
45040(1-r +
	 ( x,4)2 Ir 	0	 (25)

Now

ED =	 ik,, HO tk^ dam'

and so

6 2
E 0 	 ( (ko + fi 4lo ) E10 (Po + b LPo ) d-' — f qn ;io 06 d r'

2 Ep 	^O S`kn d-r ' + 8 2Eo

giving

r

o 6^o dr	 0
	

(26)

Hence for large t i the second order terms in the variational approximation (19)

cancel out.

This implies that for most good choices of IPo we shall get a good approxi-

mation to the exact scattering length.

3. Details of the wave function

The trial scattering wave functions used were similar to that used by

Houston and Moiseiwitsch (1968) and were of the form

9r ,.



tit  (r l . r2 , r3 ) - ,t, ( r 1 , r 2 , r 12 , r 3 , r13) ^;SOT ( r 2 , r 3 )	 (27)

where the suffix 1 refers to thJ- positron, and 2 and 3 to the atomic electrons.

is given by

a.T. ( ^, ,^ C- 6r ,)  - r l

r l' rz' r12' r3, r 13)
r1

S

+ 
_a r i	 -13 r2

a^	 ^	 Xj ( r l , r2, r12

in l

- /3r
+	 3 Xi ( r l , r3 , r13)

where

Xi (rl , r 2 , r 12 ) = r r 2m r 1 2 (t, m, n, > 0) .	 (25)

Our calculations were performed for S = 4, 10, and, in several cases, 20,

corresponding to the inclusion of all terms satisfying t, m, n, _< 1, 2, 3

respectively.

^Por (r2 ,r3 ) is the ground state wave function for the helium atom and we

used the following six approximations:

10
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I	 I term Hylleraas
	

N e^ z 1 S	 (30a)

II	 2 term Hylleraas
	

N ey 
z 1s

t 1 + c 1 u)	 (30b)

III 3 term Hylleraas
	

Neer Z' S (X + C  U + C 2 t 2 )	 (30c)

where s= r 2 + r 3 , t = r 2 — r 3 , u=r23 .

-,
IV	 Hartree-Fock	 N	 Z,lr1 + cie z a

r ,) C e7 z l r 2 + cie-Z2r	
(30d)

VModi f ied Hartree-Fock	 N C e^ zir ^ + C ie. z2ri	 (e-zi r2 + 
Cie- zar2)

X (1 + c2 r 23 )	 (30e)

VI	 Hylleraas-Ecka; r t	 N ( e- 
Z , r , -z 2 r2 + e-z2 r1`zIr 2 /

	 (30f)

The details of these six wave functions are given in Table I.

Also given in Table I are the ground state energies EOT obtained with these

wave functions, and values of

0	 qo `lbO T 
d -r

where SOT is the trial ground state wave function and 00 is the twenty term

ground state wave function of Hart and Herzberg (1957) . This 0 0 is so much

more exact than any of the above six that the values of ^ given in Table I are

a very good approximation to the A defined by equation (20).

11



4.	 Scattering Results

'fable II gives the values of the variational approximations to the scattering

length obtained using the approximations (30) to r' j in conjunction with (27).

Table III gives the values of the exponential parameters o a, r appropriate

to each case.

ften the very simple Hylleraas ground state wave function I was used,

the minimum value of 0.061 a, was obtained for the scattering length with

S n-  for the values of 4 and a given. The parameter f3 was fixed at 0.0

because it was found that the calculation was unstable for non-zero values of

giving large negative values for a v . With the same values of 	 a and16, S

was increased to 10 and this resulted in the value -8.397a o for ay . . This is

obviously too large in absolute value and so we conclude that wave function I

is inadequate for this type of variational calculation. It is worth noting that

the value of d for this wave function is the worst of the six values obtained.

In the two term Hylleraas wave function, 11, we picked the same values of

,^ , a and 13 that were "best" for I and we noted .a similar behaviour in the values

obtained for a v . There is a marked improvement in the value obtained with

S = 10, but it is still too large and negative: even though a considerably better

value for 0 is obtained.

However with the three term Hylleraas wave function, III, we have obtained

our "best" overall value for the scattering length. The values of b, a and /3

were those which gave the best value for a„ at the S = 4 stage, This was

-0.186ao and when S was increased to 20, keeping the same values for S , a and

a, we obtained -0.592ao for the scattering length. However, as can be seen

12
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from Table II, it is not obvious that a v is converging for this trial function

as S is increased and so it may happen that a v will become large and negative

after a few more terms, as happened for functions I and II. Nevertheless this

value of -0,592a, is in good agreement with those calculated by Drachman

(1968) who gets -0.659ap using a non-variational method and -0.51lap using a

variational bound method, with Kestner et al. (1965) who get -0,575a, , and with

Hashino (1966) who obtained -0.546a o . It is worth noting that the value obtained

for 0 with wave function III is the best we have calculated and only differs from

unity by 10- 4.

The results for the Hartree Fock wave function, IV, have been reported

previously (Houston and Moiseiwitsch, 1968). In this case the values of

and,a are those which are "best" for S = 10. Furthermore as S is increased,

the values for the scattering length seem to be converging. In the case of the

Modified Hartree Fock wave function, V, we only calculated one value for 
aV

using the same values for b , a an 	 as were used for wave function IV. Further-

A I	 more we only took S = 10. The value obtained for a V was not as good as the,..

corresponding value obtained using the Hartree Fock function and so this choice

for the exponential parameters was a very poor one. Had we optimized these, we

should have gotten an improvement over IV. However this calculation took a

long time and we did not proceed with it.

Finally the Hylleraas Eckart wave function VI produced values for av which

were disappointing in that they seemed to be converging until S was about 17

when they suddenly became large and negative, in a similar way to I and II,

although not to such an extent. In this case it was also found that the parameter

13
k
1
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could not 
be 

varied from 0.0 and the values for 0 an& r are those -which were

11 1)(nit" for S^ 4.

So it seems that with the type of scattering wave functions given by (27),

the only reliable form	 is 	 the Hartree rock representation.

Certainly a better value for the scattering length Is obtained using the three

term Hylleraas wave function ITI, but It is not clear that the values obtained

are converging with increasing S as they seem to be doing when wave function

IV is used.

5. Positron Annihilation

The rate of annihilation of positrons in helium gas is given by the express-

ion

A	 r, 2 c 	 Za e f f

(Ferell, 1956) where r. Is the classical electron radius (2 2 ,tI 2 f 'Na Is the

number density of atoms in the target gas and Zef f is an effective election

number given by

Ze f f ': f d-r IT(r, # r 2 , r A 
2

(31)

>1 [,-- ( r
1 - 

r 2 )  + 8(r 
1 - 

r 
A	

-

Z, ff Is a measure of the probability that the positron and an atomic electron

are at the same point in space.

14



We have used the total scattering wave function (27) with two of the

different forms of ko to calculate Z 4. ff *

With the Hartree Pock function IV we got the value 3.28 for Ze 
f , 

and with

the three term I-Tylleraas function 
III 

we get 3.21. These values are for the

scattering wave functions obtained with S = 20. The results are presented In

Table IV along with the values for Z, r f obtained using the wave functions

with S = 4 and 8 = I.O. Houston (1968) has previously calculated Z e, f f using

the Hartree Fock form of q,0 but there was an error in his computer program

and the published value of 4.61 is wrong.

Drachman (1968) obtains the value 3.66 for Ze f f for zero energy incident

positrons and there may be compared with the recent experimental value of

of 3.628 :4: 0.041 obtained by Lee et al. (1969) for positrons wit7i thermal

energies. Other experimental values are 3.2 (Daniel and Stump, 1959), 3.25 -1

0.22 (Duff and Heymann, 1962), 2.46 (0smon, 1965), 3.84 (Tao and Kelly, 1969),

and 3.680 A: 0.025 (Leung and Paul, 1969).

We see that our two values are very close to each other and are also in

good agreement with experiment showing that our scattering wave functions

are a fairly good approximation to the exact total wave function.

15
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TA13LE I

The values of the parameters 1n q,,

Ref. N !i Z2 e1 c2 Ed

I (1) 1.52061.3 1.6875 -5.69531 0.99300

13 (1) 1.390139 1.3495 0.3658 -5 78224 0.99707

HI (1) 1.330518 1.81552 0.29048 0.13134 -5..80486 0.99990

IV (11) 0.701.220 1.45580 2.91160 0.6 -5.72334 0.99598

V (M) 0.421074 1.571 2.5136 0.91 0.3507 -5.79613 0.90923

VT (1v) 0.709001 2.1832 1.1.880 -5.75132 0.99739

(i) Hylleraas (1929)
(ii) Green et al.(1954)

(iii) Green at al.(1958)
(irr) Shull and L8wdin(1956)
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IVA BLE 11A.X'L

Scattering Lengths*

S=4 10 20

0.061 -8.397

TT 0.052 -3.000

III -0.186 -0.330 -0.592

IV -0.176 -0.309 -0.398

V -0.143 -0.253

VI -0.163 -0.380 -1.341

*in units of co

'0



TAB LE III

The Exponential Parameters in IF 

00

I 2.0 0.5 0.0

II 2.0 0.5 0.0

III 3.0 0.4 -0.4

IV 4.0 0.4 -0.15

V 4.0 0.4 -0.15

VI 3.0 0.35 0.0

20



TABLE IV

Effective Electron Number Z e ff

0
S = 4 10 20

III

IV

1.86

2.06

2.39

2.48

3.21

3.28
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