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INTEGRATION OF THE RELATIVISTIC EQUATIONS OF

MOTION OF AN ARTIFICIAL EARTH SATELLITE
by
Abolghassem Ghaffari
ABSTRACT

The Lindstedt perturbation method is applied to the
motion of an artificial earth satellite which moves along
a geodesic of the Schwarzschild metric of general rela-
tivity., The purpose of this analysis is to determine the
extent to which general relativistic effects are detectable

in range measurements of earth orbiting spacecraft.
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SUMMARY

The Lindstedt perturbation method is applied to the
motion of an artificial earth satellite which moves along
a geodesic of the Schwarzschild metric of general rela-
tivity theory. It is shown that both the amplitude and the
frequency of the first approximate solution obtained is
affected by the nonlinearity of the relativistic term ap-
pearing in the equations of motion, The approximate
periodic soluticn is compared with the solution for the
motion of an artificial earth 24 hours synchronous satel-
lite orbit (Application Technclogy Satellite 3) in a New-
tonian force field. Assuming that the cooxdinate time and
the initial conditions were the same in both systems, it is
deduced that the maximum of the magnitude of the radial
deviation in both systems is of order 1.6 cm after half

orbit period and then too small to be detected,
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INTEGRATION OF THE RELATIVISTIC EQUATIONS OF

MOTION OF AN ARTIFICIAL EARTH SATELLITE*

1. Introduction. In the theory of general relativity, the external gravitational

field of a spherically symmetric massive body M, whose center lies at r = 0, is
represented by the static Schwarzschild metric

2 . 2m) , 2 1 2m\-! . 2( 2 . o; (,2>
ds m<l--;—>dt - — [( -T) dr? + r? {d6? + sin2 g dy?)]. (1)

c?

An exact soluticn, for such a metric, of a set of discrete bodies is possible
only when one of the bodies is of finite mass whereas the rest are of infinitesimal

small mass [1]7

If the massive body is taken to be the Earth, then an artificial earth satel-
lite may be considered as an infinitesimal test particle whose gravitational field

can be neglected.

The complete solution for the relativistic effects of the combined fields of
the Earth and the Sun on an artificial earth satellite is complex. The metric
must involve both the principal masses, and the Earth is orbiting the Sun, the

field is no longer static. It is well known [2] that in general the motion of a

*Some results of this paper have been presented at the Sixth Semi-Annual Astrodynamic Conference
held at Goddard Space Flight Center, Greenbelt, Maryland on November 7 and 8, 1967.

TFigures in brackets indicate the literature references at the end of this paper.




isatellite can be derived with a great deal of precision by considering the effects

of the Earth and the Sun separately.

The relativistic effects of solar gravitation have been calculated by

Corinaldesi and Papapetrou [3] and Papapetrou -],

The use of artificial carth satellites seems more suitable than solar orbiting
satellites for testing the effects of general rclativity for the Sun has many

planets and their mutual attractions are significant,

For convenience we suppose the earth gravitational field is spherically sym-
metric, and the Sun's gravitational effect on an artificial earth satellite is negli-
gible. Bearing in mind the above mentioned assumptions, one knows that the motion
of an artificial earth satellite is given by the equations of the ordinary geodesice of

the Schwarzschild metric [1, 6] which in simplified form is

1\2
d‘
ry _.,m 1 c? 1

:i-c-,i:- r r h
or
(%Y - 2mud - u? 4 2:3’ u- @)
where

m:..q.M;, h:rzgi,
02 ds



r is the distance of the satellite from the center of the Farth, M is the mass of
the Earth, v is the specd of satellite and ¢ indicates the local speed of light,
h and .- are constante of integration, the angle / is the true anomaly and G

is the gravitational constant.,

2, Integration of the Equations of Motion

The classical equation (2) has been investigated and discussed completely in
most stardard texts on celestial mechanics and goneral relativity 15, 6, 7, 8 and 9],
The rigorous integration of (2) leads to the Weirstrass clliptic function v (¢, g5, 83)

which satisfies the differential equation

do) 2
(3{-;) *40% - gy 0 - By

where g, and g3 are constants, However, in practice an approximate integration

of (2) gives us the advance of the perigee.

The solution of equation (2) with reference to the Sunas a central body, and a
planet as the test particle gave the perihilion advances in 100 years of the planets
Mercury (43%03), Venus (8)'64), Earth (3.'84) and Mars (1'35), predicted by

Einstein's law of gravitation.

A complete discussion of equation (2) has been given by J, Chazy [5],

and McVittie [6] discussed and solved equation (2) by a different method.




Differentiating Eq. (2) with respect to the true anomaly ; and setting

m c¢2/h? - 1/p, we get

d 2\! 1 ”
— U e b 3MUZ, (3)
2 )

provided du/c/ has only i.:olated zeros, i.e., eliminating the circular orbital

solutions,

In the Newtonian law of gravitation the right-iiand sides of (2) and (3) are
quadratic and linear in u respectively, The presence of corrective terms 2 mu®

in (2) and 3 mu? in (3) is due to the Einstein's law of gravitation.

Equation (3) was first derived by A. Eddington [7] and using a method
of successive approximation he obtained, in ignoring the smail term
3 mu?, as a first approximation a Keplerian orbit, then substituting the first
approximation in the small term 3 mu? he arrived at the second approximation
with a secular term which presents the resonance case. P, Bergmann [9]
also considered equation (3) and applying Fourier Series procedure he ob-
tained the perihilion advances of the planets without giving the explicit expres-

sions of planets orbits.

The purposes of this paper are:
1, Integration of equation (3) by the classical Lindstedt method, and obtain

a first approximate periodic solution of (3) starting from the perigee.
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2. Comparison of the approximate periodic solution with the solution for
the motion of an artificial earth satellite in & Newtonian force field,

3. In order to have a numerical estimate of the comparison the central body
is taken to be the Earth, and the test particle bheing identified with a
long life earth synchronous satellite such as the Application Technology

satellite 3.

The advantages of equation (3) over equation (2) are twofold:

a. Though equation (3) is of the second order, nevertheless it is nonlinear
in u only, whereas equation (2) is nonlinear in both u and du/dy and its
integration leads to the Weierstrass elliptic functions.

b. We are primarily concerned with the periodic solution and its behavior
of periodicity. The left~hand side of equation (3) suggests clearly the
application of classical and modern approximation methods for derivation

of approximations to periodic solutions.

3. Application of the Lindstedt Method. T.et us assume that we wish to find an

approximate periodic sclution of Eq. (3) starting from the perigee i.e., satisfying

the initial conditions:

1 d
u(o) = ;e. (ﬁ)ozo' 4)

In order to find such a solution and investigate the perturbation in the basic

frequency arising from the presence of the relativistic term on the right~hand side




of equation (3), and also eliminate the secular term, we apply [10)] the Lindstedt

method to equat.on (3).

The Lindstedt method consists primarily of changing the independent variable
¢ to another independent variable o such that the determination of the available¢:
unknown coefficients enables us to eliminate gradually the secular terms in the
subsequent approximations., As the frequency is altered it is of advantage [11]

to replace the independent variable ¢ by a new independent variable a through

the rejation:

p=a(l+cyercye?, L), (5)

where ¢, c, . . . . . are unknown coefficients and ¢ is an arbitrary small positive
parameter. The smallness of the gravitational radius m enables us to

suppose € = 3m, and then the equation (3) becomes

2
.C_i..l.l.+(l+c1€+c2€2..,)2 <u-..];--€u2):0

da? p
or
2 2c
-c-l--2-+u-l+e (-—-—f+2c1u~u2>+0(62)=0. 6)
da? P P

Now let us write the solution of (6) in a power series with respect to the smalil

parameter €:

(]

u(e,a):z efu_(a), (7)

n=0
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and limit ourselves to the first order approximatioa such that
1 :uo e Uy 40('2) . (8)
Using the equations (6) and (7), one finds that the leading term u, is a solu~

tion of the unperturbed equation

d?y 1
——-—9. o+ “o T -y (9)
da? P
and u, satisfies
12u 2 2 \2
‘ l+ulfs 2+e” ‘1 +_2__‘_’ (lmclp)cos“J,..L_.cos 2a.. (10)
do.? 2p? P p? 2p2

The unknown coefficient c, is to be determined such that no secular term appears

in the solution of (10), Hence we chose ¢ , 80 that

C, ==, (11)

and therefore equation (10) assumes the form

d?y

g 21+u1;-...2_1..2.(32 -24e2 cos 2a) (12)
od E

which has the solution

e? -2

: - (1 =cos 2a) (13)
2p

-

v/



satis{ying the initial conditions

(hll
u, (0) 0, o . =0, ~ (14)

Therefore the first order approximate periodic solution of (3), satisfying the

initial condition (4), is

1 +ecosa 3m(e? - 2)
1-~cos 2a)+ ;2
5 1 252 ( s 2a)+ 0(e*), (15)

u = ug toeuy +0(e?)y

where

- ‘,t’ - ¢] . 2l — 1_'-‘3_'_“. of; & 2
a”1+c16... 1.{(,‘.1(;+O(€)M( P ¢+ 0Ce?) . (16)

We can deduce that the nonlinearity shown by the relativistic term in (3) affects

not only the amplitude of the solution but also the frequency.

Formulas (15) and (16) show that the change in the frequency depends upon
the amplitude a and the eccentricity e of the Keplerian orbit and also of the
parameter ¢ = 3 m, a property which belongs to the periodic solutions of all non-

linear autonomous differential equations.

The period of the approximate periodic solution of (9) is egual to 27, that
is to say, the orbits are closed. The period of the exact solution of (3) diifers
from 27 by a small amount &, which is the difference between the angles ur two

succeeding perigees, given by

e e e ek ke



> = 27 - 271 = 2w (l + 9—"-1)- 2 = Omn . __ Gmw rad. per revol. (17)
P P a(l-e?)

Therefore the precession of the perigee of satellite orhit obtained by this method

amounts to 6m7/p radians per revolution, which is in good agreement with the

precession predicted by Einstein's theory of general relativity as well as with

gravitational theories of Whitehead [12] and Birkhoff [13].

4, Comparison with Newtonian IFForce Field and Numerical Analysis

Now let a second artificial earth satellite with the same characteristics
features as the first one, move in a planar elliptic orbit according to Newtonian
law of motion. If ry and ¢ are the classical polar coordinates of the second
satellite in orbital plane, and u, = 1/rN , the classical Newtonian equation of

motion is

ALY 18)

where the true anomaly ¢ is measured from the perigee and

p=a(l-e?)

is the semi-latus rectum, a and e are the semi-major axis and the eccentricity

of the Newtonian orbit respectively, We assume both satellites start from the

perigee, i.e., they satisfy both the initial conditiois:




(ry)o = (TR 7
(Updy = (U & (19)

(urloo = (“é)o J

where u, and u, stand for relativistic and Newtonian solutions respectively.

We are now in a position to compare the approximate periodic relativistic

solution (15) with the classical Newtonian solution (18) by forming the difference

Au:uN-uR=.e. [cos¢>-cos (1 --?-nl) <f1]
P

P
, . (20)
_3n(e? - 2) [I-N,sz (1-3_@.) d] .
2p? p

The difference Au is a function of the Keplerian orbital elements and the gravi-
tational radius m of the central body. As the primary body is taken to be the
Earth, then m = 0,443 cm and the parameters a and e are constant for one re-
volution. Therefore, the difference Au (¢) is a function of the true anomaly ¢

only for one revolution.,

In order to have a numerical estimate of Au (¢), formula (20) was applied to
the case of the Earth as the central body and the Application Technology Satellite

3 with the elements:

)
il

6.6109161 X R

0.0001703684

o
il

10

g



-

as a test particle, R = 6,371 x 10® cm is the mean radius of the Earth, The
results are plotted and shown in Table 1 and Figure 1 in the range 0= ; = 180°
and the function ‘/\u(v: ), being a continuous function of ;, begins to increasc
again after 180°,

Now setting

'R " Ty *"’:“'N<1+'g">’ (21)

'y

where o denotes the relativistic correction in radial deviation in both systems,

one finds that

(22)

Table 1 and Figure 1 show that, in case of Application Technology Satellite 3,
the relativistic correction to equation (3) is too small to be detected and the
maximum value of Au ~ 1.5 X 10°'? is obtained for ¢ = 89°59'59'148792708,

correct to the nine decimal places given in the seconds. Therefore the maximum

of the radial deviation in both systems'is of the order
onrd (1.5x10719) = (4 x 109 cm)? (1.5 x 10719) A, 1.6 cm,  (23)

and then too small to be detected, However, it is important to separate the
relaiivistic effects from those due to the other causes, such as the oblateness

of the Earth, magnetic fields, and the influence of high-altitude winds, etec.
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Figure 1-Radial Component of Range Perturbation
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Application of the averaging method of Bogoliubov-Mitropolsky [14],
which leads to a different approximate solution, and its comparison with the
golution (15) should follow later.
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