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TURBULENCE FROM THE DISTRIBUTION

FUNCTION POINT OF VIEW

J. R. Herring

Laboratory for Theoretical Studies

ABSTRACT

Two recent approaches to the statistical theory of turbulence based on the

distribution function approach, the "Generalized random phase approximation"

[S. F. Edwards, J. Fluid Mech. 18, 239 (1964)] and the "Self-Consistent Field

Approximation" [J. R. Herring, Phys. Fluids 8, 2106 (1966)], are described and

compared, These procedures are viewed as alternate ways of expanding the

flows probability distribution about its own univariate distribution. The "Gen-

eralized random phase approximation" models the single-mode-turbulence dy-

namics by a Fokker-Planck equation, while the self-consistent field procedure

uses a similar, but more general formula. Both procedur6- have as ingredients,

the simultaneous time correlation coefficients and "eddy" relaxation frequen-

cies. Their second order results differ only in the equations determining these

eddy relaxation frequencies. The procedures are formally similar to (but

simpler than) the direct interaction approach.

The accuracy of these procedures is assessed by comparing their predic-

tions for the energy spectra of some simple model systems with exact numeri-

cal results. Results are also presented for moderate Reynolds number turbu-

lence, and these are compared to similar results for the direct interaction

approximation.

Finally, we discuss the failure of these theories to predict a proper

•	 Kolmogorov inertial range spectrum. The difficulty lies with the Green's func-

tion (or relaxation frequency) equations; a suggestion for eliminating this flaw

is made.
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TURBULENCE FROM THE DISTRIBUTION

FUNCTION POINT OF VIEW

I. INTRODUCTION

The statistical theory of turbulence may be concisely formulated in +arms of

the distribution function of the velocity field P(v, t), defined to be the probability

that at time t the velocity field at all spacial points (r p r 2 , r 3 , • • . , r n , ...) is

within a small neighborhood d.Q - dv 1 dv 2 • • • dv n • • • of (v (r 1 ) , v( r 2 ), .. .

v( r,, ) ...), A knowledge of P enables one to compute any desired moment of the

velocity field. For example, the energy spectrum is found from

(v(ri) v( X 2)) - Nr l , r 2 , t)	 -	 dQv(r l ) v(r 2 ) p(... v ...	 t)

To simplify the notion, we dispense with the vector indices of V'.  We also

enumerate the continuum of spatial points as if they were discrete in order to

stress the physical notations of the method. The Navier-Stokes equations imply

an equation of evolution for P which is a statement of conservation of probability in

the phase space dil = ( v l, v2 , • • .). Abbreviating the Navier-Stokes equations

by v (x) = F (v (x)) , the equation for P is

aP	 ^
'^'^ = a (F, (v(r , ), v(r 2 ) ,	 •) P(t) dr

•	 1

1

00

(1)



The hierarchy of moment equations is recovered from (1) by multiplying it by

suitable products of v and integrating over &i.

We discuss here two recent approaches to the statistical theory of turbulence

which use Equation (1) as their :starting point. These sire the generalized random

phase approximation (GRD) (S. P. Edwards, 1964) and the self consistent field

approximation (SCF) (J. R. Herring, 1965, 1966). The starting point of these pro-

cedures differ from that of the more familiar moment approaches in that an

approximate solution to (1) for P is first found, and from this solution an equation

for the energy spectrum is worked out.

Both these approaches (the S.C.F. and the G.R.P. approximations) treat

by different techniques stationary turbulence (driven by some negative viscosities

or by random stirring forces) and time dependent turbulence. Stationary turbulence

is treated by putting aP/a t = 0, and then seeking an approximate solution for (1).

Time dependent turbulence is treated by introducing relaxation operators which

represent the effects of aP/a t. The equations for the time dependent case con-

tain integrals over the history of the turbulence, whereas for the stationary case

no such complications occur. For the S.C.F. procedure the time dependent

results do not reduce to the stationary state case in the limit of large times.

The moment equations obtained from the time dependent S.C.F. method are

closely related to the direct interaction (DI) equations of Kraichnan (1959). The

main difference between the two methods is that the S.C. F. method involves no

nonsimultaneous time moments. It therefore represents a simplification over

the latter.
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We begin with a discussion of the tinic dependent S.C.F. method, which is

presented as a generalization of the quasi-normal approximation. There follows

a comparison of this method with the direct interaction approximation for the

case of the decay of ar. initial turbulent field. The S.C.F. and G.R.P. approxi-

mations are then compared for the case of stationary turbulence driven by a

random stirring force. Finally we discuss the failure of these methods to yield

a Kolmogorov inertial range spectrum; for the S.C.F. method a suggestion for

removing this flaw is made.

II. TIME DEPENDENT THEORY

Instead of (1) we use an equivalent Fourier mode distribution P (x 1, x 22 ... ;

t) where x i denotes collectively the real and imaginary part of the complex

Fourier transform of v(x, t) ,

v(k) - J e lk ' ` v(r, t) dr ,

Then if the equations of motion for x i are denoted by x i " F i ( x I, ... x N ) the

equation for P is,

aP	 a
at -	 caxi (Fi P)	 (2)

i
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The explicit form of F is,

"k i2 X i + IT, Miikix x k ,

The advantage of the Fourier mode description lies in the fact that for homo-

geneous turbulence (v(k) v(k' )) -- 0 unless k - k'	 0, whereas \(v(x l ) v(x2))

/ 0 for any x i and x 2 . To compute the energy spectrum (I v(k ) I 
)2 

we only need

the single mode distribution function !, -'( X j ), defined by,

r) (x i , t)	 dXI ... dXi -I (IX +I ... P .

If the turbulence force were Gaussianly random,

P	 r)(x.) .
i

This product form holds only for Fourier modes.

We seek a valid approximation for the single mode distribution P. The final

equations obtained here heuristically may 91so be obtained as the leading terms

F i

of a formal perturbation series (Herring 1965). However, such a formalism

seems of limited value since the perturbation series probably diverges. We

start with an equation which is the distribution function equivalent of the

4
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gwtisi-nurnial approxiniation for nionionts. it is,

t	 7

0)(it	 dx <V(X) G (X, X", t, t )V(X )), (X i l . t	 co
()

where,	 Vii,

°	
k,	 2 	 _ X1i dX1

	

V	 Mijk i)X X j Xk
i,j,k

and,

.2( t - t  )
^exp {,,,k i2 (t - t' )} h x i e 

v  
11	 \

^Gi° .

In (3), the angular brackets applied to an operator 0 have the following meaning;

(0`i	 dxl ... dxi_1 dxi+1 ...011 P(x j, t)

j# i

5
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The standard moment quabi-nornizil approximation follows from (.)) by multipli-

cation by x , 2 and integrating; .ik-e • dx , . It icy,

^fk 2	
MIik	 F' ^^^ ( t , t' ; 1 h1^^ k 	(t') r k (t ` )itt 2	 L Lf,

t M jik ` '^i (t#) " j ( t I ) i M k-.-j `l'i (t')"k(t')] (it'

where,

0 k	 pX {` ( t - t') (k 12 + 1<J2 } kk2)

Equation (3) is very close to the Fokker-Planck equation; to obtain the latter,

one has only to update the time arguments of the P's from t' to t. This updating

would be justified if the time :kale of G. is infinitely rapid compared to that of P.

Such a modification would prevent the lk i spectrum from evolving negative values

as has been found by (Ogura (1963)). Since, however the time scale of G o is

nominally the same as that of P, there remains the question of how to modify (3)

so as to obtain a valid approximation.

The trouble with (3) is that at large Reynolds numbers it does not provide

a way whereby the initial form of P ceases to influence its behavior at large

times. This lack of 'memory loss' is reflected in the fact that the form of Go

6



corresponds to phase :,pace trajecto ries which re main statistically sharp (Wang

the (entire interval ( t ^ t ' ) . On the other hand, the actual tra j(, ctories have

complicated meandering;` caused h IN, the turhLiJcncv forces. An ensemble .kverag(,

over such meandering;s would produce a smoothed G, which for fixed 'c„ diffuses

to zero as ( t - t' ) increases. 'rhe proposal for improving; (3) is to include

memory loss effects by replacing; G o by the exact G.

There remains the task of determining; G. This is clone in the approxima-

tion that the interactions are individually fc*Mble, so that G may be, a.pprox; mated

by its product-mode-form;

 
11
1 1 G.	 G.

'i
dx 1 ... dx i _ 1 dx i + I ... G ,	 (5)

An approximation for G ► may be found by appreciating the fact that it is a single

mode distribution function which is statistically sharp at t "- t ' : Hence, Gi

satisfies (3) with G replacing Go:

( 
c3

at .} 
P i0) Gi ( t ' t^ ) 	b(X^ _ x i	 b(t	 t')

t

+	 dt 11 (VG( t, t ) V) i G i ( t ", t ' ) - (6)
0
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t

The momcrnt ^. ; is then deterinined from the modified farm of (:),) and

Defining,

c; fit, t'1	 x dx	 d  ` G(x	 x	 t

there fellows from (5) and (G)

t

[fit	 z' k i 2 ) p'i (t, t ' )	 ^(t - t ` ) 'f	 (it/"Mi;k IM jik `` " i {t/ )	 k (t, t")
c'

{. 
M ki; '/` k (tI ) g i (t ' t"" )] g i ( t"I t' ) • (7)

The equation for 1L is found to be identical to (4) with g as given by (7) re- 	
r

placing go.

Equ,itions (4) and (7) may be formally obtained from the D.I. equations by

discarding the q)(t , t') equations, replacing them with

g ( t, t' ) o ( tI, t' ) .

III. COMPARISON OF THE S.C.F. AND D.I. APPROXIMATIONS

The S.C.F. approximation is similar to but simpler than the D.I. approxi-

mation. In an initial value problem, the amount of numerical labor in a S.C.F.

computation is less than half that necessary for the cqui-vaient D.I. computation.

All

8



•

It is therefore of interet*.t to inquire as to the relative accuracy of the two methods.

Such a comparison has already been made for some simple three and five mode

inviscid models (Herring, 1960'). There it	 concluded that the S.C.F. pro-

cedure haul the same qu<clitative heNivior as the D.Y. approximation. Typically,

both procedures predicted the asymptotic state to be approached by way of

spurious damped oscillations. The sire of the excursions was slightly larger for

the S.C.F. than the D.I. approximation, but this type of error tended to decrease

with increasing number of modes.

Results for the two methods for the complete Navier-Stokes equations is pre-

sented in Figures 1, 2, and :3. These curves are for the decay of isotropic turbu-

lence, whose initial energy spectrum is,

E(k, 0)	 16	 k s exp - 2rk 
a	

k^ -° 4.75683 .
0 0

This spectrum was used by Ogura in his study of the quasi-normal approximation

and also by Kraichnan (1964). Our results for the D.I. method differ a bit from

Kraichnan's because of slightly different numerical procedures in the two cases.

The main difference is that in -the present calculation, linear k-steps are used i:n

the wave number discretization instead of logarithmic steps. Also, we have aver-

aged the geometrical A(k, k', k") and B(k, k', k") coefficients over the discretizing

k -volume instead of using their midpoint value, as done by Kraichnan.

9
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The evolved energy spectra, shown in Figure 1 (for t .76) indicates the

two methods to be in close agreement over the entire energy containing range

of k. The D.I. approach gives a slightly higher transfer rate out of the energy

containing region, and hence slightly more energy at larger k. This fact is also

brought out in Figure 2, which compares predictions for the skewness factor,

)

3
3/2

S( t)	 ^f)X 	 (\ C^ X\	 C

for the two methods. Figure (3) compares the D.I. value of Ok (t I t') with the

S.C.F. value of V4 (t' I t') g k (t I t'), for k near the peak of the energy curve,

and for t - 1.76. The agreement in this case is not so close; the S.C.F. method

predicts a quicker memory loss of the initial state. The g k for the two methods

are graphically the same for all k < k 
max = 40.

The procedures were also comparr-i for the other spectra investigated in

Kraichnan 1964 article (spectra C and D). Agreement in these cases was better

than could be distinguished by present graphical accuracy.

IV. STATIONARY TURBULENCE

Stationary turbulence is treatable by the method of the preceding section

as the asymptotic limit of a flow field driven by either a stationary random 	 z
95

force or by some negative viscosities, which simulate production of turbulentt.;

by shear instabilities. In the t -•00 limit, all statistical quantities in (4) and (7)

become functions of (t -- t') alone. The resulting equations may be solved by

10
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iteration. An alternate approach to the .stationary problem is to first discard

P in (1), and then develop an approximation to solve the time independent P equa-

tion. The second alternative is attractive in that the ensuing analysis involves

no integrals over the flow's past. The final equations are thus simpler, and

easier to solve than the t +'Ai limit of (4) and (7) .

This second approach has been developed by two related techniques in the

papers of S. F. Edwards (1964) and the present author J. R. Herring (1965).

These stationary methods use l i.nstead of Green's functions relaxation operators,

which are related to time integrals of the former. These operators determine

the single mode distribution function P,, through an equation X,, P t, _= 0, which

is analogous to a stationary state Boltzmann equation.

The form of X 11 is determined by a perturbation procedure, whose leading

term for P is IIP n . The difference between the S.C. F. and G.R. P. method is that

the latter explicitly takes a Fokker-Planck for.-n for X,, whereas the former

attempts to determine its form self-consistently using information from the

perturbation series.

Both these methods have a degree of a , bitrariness traceable to the fact

that the perturbation methods use as a smallness parameter the Reynolds num-

ber, R, to order the terms of the series in presumed order of decreasing mag-

nitude. The order-mg is plausable at small R, but can be correct at large R only

if the turbulence force in its effect on P is very nearly Gaussian. At large R

consecutive terms of the series are nominally of the same size so that at best

the series is asymptotic.

11



R

The stationary S.C.F. approximation may be obtained as a modification of

the time dependent method of Section II by putting G( t) : exp (_ 7]n t) then in-

tegrating (4) and (7) over t from 0 to X , with the result

Ln

n
	(2M^Pq P q 4 4MnP q MPnq ndq) 

^^ + 7%F + q	 (9)

1^ n	 vn - 4 TMn P q M P nq 0t] 7)P + 71 q	 (10)

The G.R.P. approximation yields results identical to (9) and (10) except that the

denominator of (10) is replaced by 
(77n 

+ 7J  "?L).  In both methods 
_^ n 

is the

smallest non-zero eigenvalue of -.C n . In order to maintain the assumed station-

arity, (10) should either have some negative v n 's or a term representing a driv-

ing force should be added to it.

Equations (9) and (10) are not identical to the stationary state form of (4)

and (7). It is not apparent which approximation is better. Equations (4) and (7)

appear more easily interpretable in physical terms. On the other hand, they may

erroneously treat historical effects of which the stationary method makes no

mention. In this connection it is interesting to recall that the quasi-normal

approximation (which may be regarded as the zeroth order term of the present

method) is known to fail for large Reynolds numbers in its time dependent

fcrm, whereas its stationary form (obtained from (9) and (10) by replacing 77 n by

v n ) has no obvious non-physical behavior.

12



A comparison of the stationary methods is given in Figure (4). We include

in this comparison the stationary quasi-normal approximation. Here we show

the energy spectrum for the case in which the turbulence is maintained by a

•	 white noise stirring force, whose spectral shape is k2 E(k , 0), where E(k , 0) is

given by (8). Values of the integral scale Reynolds number, R y , are given in the

figure. The S.C.F. and G.R.P. approximations give comparable results. The

G.R.P. method has slightly more energy transferred to higher wave numbers,

which is consistent with the fact that it has a smaller eddy viscosity coef-

ficient. The quasi-normal approximation, which has no eddy viscosity has a

much larger transfer rate than either of the other methods.

V. CONCLUDING COMMENTS

Finally we must point out a defect these approximations share with the di-

rect interaction method; that is, their failure to correctly predict the Kolgomorov

spectrum at large Reynolds numbers. As is well known (Kraichnan, 1964) all these

theories predict a - 3/2 instead of a - 5/3 inertial range. The trouble arises from

an incorrect treatment of the interactions of very large and small wave numbers.

Suppose a bit of energy 8E is added to the extremely low wave number end of the

spectrum. Since this addition represents an almost uniform translation velocity

•	 added randomly to members of the ensemble, it should not modify the large

wave number energy spectrum. This follows from the Galilean covariance of

the Navier-Stokes equations. Yet such an addition does modify the predictions

13



made by (9) and (10), because (10) now has an extra term NW K/ (ri + r)) added to

the large k-equations. The energy Equation (9) is changed only be..,ause of the

^ r, change; if %, is unmodified the ^E terms in (9) cancel.

These difficulties result from an inappropriate mixture of ingredients to

treat large Reynolds numbers flows. The theories use amplitude Green's func-

tions (or relaxation frequencies) to evolve the energy spectrum -not an amplitude

but a second order moment. There is nothing obviously wrong with the amplitude

Greens function equations; in fact they predict reasonable results. It is only

their use in energy equations that is here questioned.

The difficulty may be avoided by using a theory whose basic ingredients

contain intensity Green's functions in place of the amplitude Green's functions.

At present, we are investigating a theory produced by modifying the S.C.F. pro-

cedure along the following lines. First, return to x-space formalism where it is

easier to keep track of Galilean invariance. Then instead of using a perturbation

Green's function use the exact one for the simple case of zero viscosity. In this

case the exact Greens function simply evolves the trajectories of particles con-

vected with the fluid. Next, make the diffusion approximation in phase space, to

get an equation analogous to (3). Then approximate the Green ' s function equation

with a soluble one. This turns out to be closer to an intensity equation than an

amplitude equation. Finally, reintroduce viscous effects additively.

An alternate approach is to abandon a deductive determination of 77 n en-

tirely, using instead some principle for its determination. This approach has

been recently pursued by Edwards and McComb (1969), who adapt an information

14
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6

theoretic approach for choosing those 7)n which extremalize the entropy

s	 dQP In P

consistent with the constraint of conservation of energy by nonlinear interactions.

15
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