NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS USING OBRECHKOFF CORRECTOR FORMULAS

by Joseph S. Rosen

George C. Marshall Space Flight Center
Marshall, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • NOVEMBER 1969
In this report we are concerned with the solution of differential equations by predictor-corrector formulas which give high-order accuracy. The corrector formulas are obtained from an extension of Obrechkoff's formula. These formulas are characterized by the fact that they contain higher derivatives of the unknown function $y(x)$, and if their derivatives are readily determinable, fewer terms are needed for a given order as compared to other multistep methods which do not involve derivatives. Corresponding to these corrector formulas, certain new predictor, or extrapolation, formulas are suggested. These formulas also make use of the derivatives used in the corrector formulas.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THE EXTENDED FORMULA OF OBERCHKOFF</td>
<td>2</td>
</tr>
<tr>
<td>PREDICTOR FORMULAS</td>
<td>4</td>
</tr>
<tr>
<td>RECURRENCE FORMULAS FOR DERIVATIVES</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>11</td>
</tr>
</tbody>
</table>
NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS USING OBRECHKOFF CORRECTOR FORMULAS

SUMMARY

In this report we are concerned with the solution of differential equations by predictor-corrector formulas which give high-order accuracy. The corrector formulas are obtained from an extension of Obrechkoff's formula. These formulas are characterized by the fact that they contain higher derivatives of the unknown function $y(x)$, and if their derivatives are readily determinable, fewer terms are needed for a given order as compared to other multistep methods which do not involve derivatives. Corresponding to these corrector formulas, certain new predictor, or extrapolation, formulas are suggested. These formulas also make use of the derivatives used in the corrector formulas. 1

INTRODUCTION

A class of predictor-corrector formulas of higher-order accuracy for the initial value problem $y' = F(x,y)$ is presented here. The corrector formulas are based on results in a recent article [1] which gives an extension of a formula associated with the name of Obrechkoff [2]. The Obrechkoff formulas are characterized by the fact that they involve the higher derivatives of the unknown function $y(x)$. Corrector formulas with this property are not peculiar to the Obrechkoff formulas alone; less advantageously, corrector formulas can be obtained, for instance, by using the Euler-Maclaurin sum formula which also may be expressed in a form that involves the higher derivatives [2].

The great advantage in using Obrechkoff formulas is that generally correspondingly fewer terms are needed for a given order as compared to other formulas used in multistep methods which do not involve derivatives. This advantage is beneficial only if it is relatively easy to determine some of the higher-order derivatives. In some classes of problems this may be done by obtaining recursive formulas for the derivatives. For instance, this is

1. This work was done at the Computer Sciences Corporation under Contract NAS8-18405 for the NASA Computer Center.
the basis of the one-step method that Fehlberg [3] developed in which he combined a power series expansion for the solution with a Runge-Kutta process.

We should also remember another advantage characteristic of multistep predictor-corrector methods; that is, the difference between prediction and correction gives a reasonable estimate of the local truncation error which can be used for automatic step-size control.

THE EXTENDED FORMULA OF OBRECHKOFF

Let \(r, m, n \) be nonnegative integers, \(r \leq m \). Let \(f(x) \in C^{m+n}[a,b] \) and suppose \(f^{(m+n+1)}(x) \) exists and is \(R \)-integrable in \([a, b]\), then for every \(x \) in \([a, b]\) we have

\[
f(x) - f(a) = \sum_{j=1}^{m} \frac{A_j}{j!} (x-a)^j f^{(j)}(a) \]

\[- \sum_{j=r+1}^{r+n} \frac{(-1)^j B_j}{j!} (x-a)^j f^{(j)}(a) + R(m, n, r),
\]

where

\[
A_j = \sum_{k=0}^{r} \binom{n+r}{k} \binom{m-r}{j-k} \binom{m+n}{j}, \quad 1 \leq j \leq m,
\]

\[
B_j = \frac{(-1)^r \binom{n+r}{j} \binom{j-1}{r}}{\binom{m+n}{j}}, \quad r+1 \leq j \leq r+n,
\]

and

\[
R(m, n, r) = \frac{(-1)^n \binom{m+n}{r} \frac{(x-a)^{m+n+1}}{(m+n+1)!} f^{(m+n+1)}(\xi)}{\binom{m+n}{m-r}}
\]

for some \(\xi, a < \xi < x \).
If we set \(y = f(x) \), \(a = x_n \), and \(x = x_{n+1} \) so that \(x - a = h \), then if \(y_s = f(x_s) \), equation (1) becomes

\[
y_{n+1} - y_n = \sum_{j=1}^{m} A_j \frac{h^j}{j!} y^{(j)}_n - \sum_{j=r+1}^{r+n} (-)^j B_j \frac{h^j}{j!} y^{(j)}_{n+1} + R(m,n,r)
\]

where \(A_j \), \(B_j \), and \(R \) are given by equations (2), (3), and (4).

For \(r = 0 \), equation (5) reduces to the formula of Obrechkoff, thus:

\[
y_{n+1} - y_n = \sum_{j=1}^{m} A_j \frac{h^j}{j!} y^{(j)}_n - \sum_{j=1}^{n} (-)^j B_j \frac{h^j}{j!} y^{(j)}_{n+1} + R(m,n)
\]

where

\[
A_j = \frac{m! \cdot (m+n-j)!}{(m+n)! \cdot (m-j)!}, \quad 1 \leq j \leq m
\]

\[
B_j = \frac{n! \cdot (m+n-j)!}{(n-j)! \cdot (m+n)!}, \quad 1 \leq j \leq n
\]

and

\[
R_{m,n} = (-1)^n \frac{m! \cdot n!}{(m+n)! \cdot (m+n+1)!} h^{m+n+1} y^{(m+n+1)}(\xi),
\]

where \(x_n < \xi < x_{n+1} \).

Whereas Taylor's expansion gives \(f(x_{n+1}) \) in terms of \(f^{(\nu)}(x_n) \), \(\nu = 0, 1, \ldots, m \), the above formula of Obrechkoff gives \(f(x_{n+1}) \) in terms of \(f^{(\nu)}(x_n) \), \(0 \leq \nu \leq m \), and \(f^{(\nu)}(x_{n+1}) \), \(1 \leq \nu \leq n \). Thus, the formula of Obrechkoff may be looked upon as a two-point Taylor type expression of \(f(x_{n+1}) \) [4, 5] using the values of the function and its \(m \) derivatives at \(x_m \) and its first \(n \) derivatives at \(x_{n+1} \). As a matter of fact, when \(n = 0 \), Obrechkoff's formula, equation (6), reduces to the usual Taylor expansion.
The special case where \(m = n \) in equation (6) deserves consideration. From equations (7) and (8), we get

\[
A_j = B_j = \frac{m!}{2m!} \frac{(2m - j)!}{(m - j)!}
\]

so that by equation (6)

\[
y_{n+1} - y_n = \frac{m!}{(2m)!} \sum_{j=1}^{m} \frac{(2m - j)!}{(m - j)!} \frac{h^j}{j!} \left[y_n^{(j)} - (-)^j y_n^{(j)} \right] + R,
\]

whereby equation (9)

\[
R = (-1)^m \frac{(m!)^2}{(2m)! (2m + 1)!} h^{2m+1} y^{(2m+1)}(\xi), \quad x_n < \xi < x_{n+1}
\]

For \(m = 2 \) and \(3 \), as examples, equation (11) gives

\[
y_{n+1} - y_n = \frac{h}{2} (y_{n+1}' + y_n') - \frac{h^2}{12} (y_{n+1}'' - y_n'') + \frac{h^5}{720} y^{(iv)}(\xi)
\]

and

\[
y_{n+1} - y_n = \frac{h}{2} (y_{n+1}' + y_n') - \frac{h^2}{10} (y_{n+1}'' - y_n'') + \frac{h^3}{120} (y_{n+1}''' + y_n''')
\]

\[- \frac{h^7}{100,800} y^{(vii)}(\xi)
\]

With appropriate predictor formulas these may be used as corrector formulas. For the application of equations (13) and (14) as predictor formulas in an n-body program see Reference 6.

PREDICTOR FORMULAS

Corresponding to each corrector formula we must find an appropriate predictor, or extrapolation, formula. Thus, as an example, in the corrector
formula (13) for y_{s+1}', the unknown quantities y_{s+1}' and y_{s+1}'' appear on the right and must be estimated from an appropriate extrapolation formula. Thus, in connection with this corrector formula (13), we can use

$$y_{s+1} = y_{s-1} + 2h y_{s-1}' + \frac{2h^2}{3} (2y_s' + y_{s-1}'') + \frac{2h^5}{45} y^v (\xi)$$ \hspace{1cm} (15)$$

which we shall derive in order to illustrate how we can find predictor formulas to correspond to any Obrechkoff corrector formula. With the approximate value of y_{s+1}, from equation (15), we form $y'(x_{s+1}) = F(x_{s+1}, y_{s+1})$ and then use $y'' = dF/dx = F + F_y F$, etc. We can, of course, use recurrence formula where these are feasible [3]. For closer approximations, successive iterations between equations (14) and (15) may be made.

To obtain equation (15) we will use the method of undetermined coefficients. We anticipate the form of the desired formula using undetermined coefficients and then impose appropriate conditions on the formula which lead to a system of linear equations in the solvable coefficients. Thus, we start with

$$y_{s+1} - y_{s-1} = \int_{x_{s-h}}^{x_s+h} y'(x) \, dx = h(\alpha_0 y'_s + \alpha_1 y'_{s-1})$$

$$+ h^2(\beta_0 y''_s + \beta_1 y''_{s-1}) + R$$ \hspace{1cm} (16)$$

and it is our purpose to obtain the coefficients and remainder in equation (15).

We suppose that the remainder R is zero when $y = x^n$, $n = 0, 1, 2, 3,$ and 4 (hence, when $y(x)$ is a polynomial of degree ≤ 4). A simplification without a loss in generality follows if we take $x_0 = 0$ and $h = 1$. We get

$$\alpha_0 + \alpha_1 = 2$$
$$\alpha_1 - (\beta_0 + \beta_1) = 0$$
$$3\alpha_1 - 6\beta_1 = 2$$
$$\alpha_1 - 3\beta_1 = 0$$ \hspace{1cm} (17)$$

5
An interpolation formula [7] is of interest here because, like the
corrector formulas of Obrechkoff, it will give predictor formulas not only
involving the functional values but as many derivatives as may be desired.
When no derivatives are used, the formula reduces to the well-known Lagrange
formula. The formulas are given by the following:

Let \(f(x) \), together with its first \(m+n+1 \) derivatives, be continuous in
an interval containing \(x_0, x_1, \ldots, x_n \), where \(x_i \neq x_j \). We define

\[
\begin{align*}
 c_i &= \frac{(m+n-i)!m!}{(m+n)!(m-i)!} \\
 S_k &= f(x_k) + \sum_{i=1}^{m} c_i \frac{f^{(i)}(x_k)}{(x_k-x_i)^i}, \quad k = 0, 1, 2, \ldots, n. \\
 R_k &= (-1)^n \frac{m!n!(x-x_k)^{m+n+1}}{(m+n)!(m+1)!} f^{(m+n+1)}(\theta_k),
\end{align*}
\]

where \(\theta_k \) lies somewhere between \(x \) and \(x_k \).

\[
R = \sum_{i=0}^{n} \prod_{j \neq i} \frac{x_j - x}{x_j - x_i} R_i.
\] \hspace{1cm} (20)

Under the conditions stated

\[
f(x) = \sum_{i=0}^{n} \prod_{j \neq i} \frac{x_j - x}{x_j - x_i} S_i + R.
\] \hspace{1cm} (21)

The interpolation formula is obtained by using the right member of equation (21)
with \(R \) omitted, which is the error due to using the formula.

It should be observed that the \(S_k \) as defined by equation (18) need not
all contain the same number of derivatives. Thus, \(S_0 \) could contain \(m_0 \)
derivatives, \(S_1 \) include \(m_1 \) derivatives, etc. However, this generalization
does not affect the form of equation (21).
Finally we wish to explain that in actual practice, it is usually possible to estimate the accuracy of the formula by computing one or two of the R_1 as indicated by the coefficients in equation (20).

If we assume equal intervals h between x_0, x_1, \ldots, x_n and also that $x = x_{n+1}$, the above formulas are considerably simplified and are useful to our purposes.

A few examples will be given as illustrations. For instance, a fifth-order, three-point formula is obtained if we take $x = x_3$ and $n = m = 2$. Then

$$y_{n+1} = (y_{n-2} - 3y_{n-1} + 3y_n) + \frac{1}{2} h (3y_{n-2}' - 6y_{n-1}' + 3y_n') + \frac{1}{4} h^2 (3y_{n-2}'' - 4y_{n-1}'' + y_n'') + R$$

where we have set $y = f(x)$ and

$$R = R_0 - 3R_1 + 3R_2$$

and

$$R_k = \frac{1}{5.4} (x_3 - x_k)^5 y^{(v)}(\theta_k), \quad k = 0, 1, 2$$

when θ_k lies between x_3 and x_k.

For use with Obrechkoff corrector formulas we would probably prefer a two-point predictor formula (though this is not necessary) in which case we take $n = 1$. Thus, for $x = x_2$ and $n = m = 1$, we get the third-order interpolation formula

$$y_{n+1} = (-y_{n-1} + 2y_n) + h (-y_{n-1}' + \frac{1}{2} y_n') + R$$

where

$$R = -R_0 + 2R_1$$
and
\[R_k = \frac{-\left(x_2 - x_k\right)^3}{12} y''(\theta_k), \quad k = 0, 1 \]

where \(\theta_k \) lies between \(x_2 \) and \(x_k \).

For \(x = x_3 \) and \(n = 1, m = 3 \), we get the fifth-order corrector formula

\[
y_{n+1} = (-y_{n-1} + 2y_n) + \frac{1}{2} h (-y_{n-1} + 2y_n') + \frac{1}{2} h^2 (-y_{n-1} + 2y_n'') \\
+ \frac{1}{3} h^3 (-y_{n-1}'' + 2y_n''') + R \quad (24)
\]

where
\[R = -R_0 + 2R_1 \]

and
\[R_k = -\frac{(x_2 - x_k)^5}{480} y^v(\theta_k), \quad k = 0, 1 \]

where \(\theta_k \) lies between \(x_2 \) and \(x_k \), so that

\[
R = h^5 \left[\frac{1}{15} f^v(\theta_0) - \frac{1}{240} f^v(\theta_1) \right], \quad x_0 < \theta_0 < x_2 \\
x_1 < \theta_1 < x_2 \quad (25)
\]

RECURRENCE FORMULAS FOR DERIVATIVES

As an example of the use of recurrence formulas for the higher derivatives of our differential equation, we will give an illustration using the Kepler problem:

\[\ddot{x} = \left(-\frac{k}{r^3}\right)x \quad (26) \]
\[\dot{y} = \left(-\frac{k}{r^3} \right) y \quad (27) \]

where

\[r^2 = x^2 + y^2 \quad (28) \]

Make the substitution:

\[u = -\frac{k}{r^3} \quad (29) \]

And we obtain the following set of equations:

\[\dot{x} = u \cdot x \quad (30) \]

\[\dot{y} = u \cdot y \quad (31) \]

\[r^2 = x^2 + y^2 \quad (32) \]

\[\dot{r} + 3i u = 0 \quad (33) \]

where equation (33) is obtained by differentiating equation (29) with respect to \(t \).

We now introduce the following power series expansions:

\[x = \sum_{n=0}^{\infty} X_n (t - t_0)^n \quad (34) \]

\[y = \sum_{n=0}^{\infty} Y_n (t - t_0)^n \quad (35) \]

\[u = \sum_{n=0}^{\infty} U_n (t - t_0)^n \quad (36) \]

\[r = \sum_{n=0}^{\infty} R_n (t - t_0)^n \quad (37) \]
where the coefficients are \(X_n = \frac{1}{n!} \frac{dx^n}{dt^n} \), etc.

Introducing equations (34) and (36) into equation (30) and equating like powers of \((t - t_0)\) on both sides, we get a recurrence formula for the coefficients of equation (34). Proceeding in this way, we get the following set of recurrence formulas

\[
X_{n+2} = \frac{1}{(n+1)(n+2)} \left(\sum_{k=0}^{n} U_k X_{n-k} \right)
\]

\[
Y_{n+2} = \frac{1}{(n+1)(n+2)} \left(\sum_{k=0}^{n} U_k Y_{n-k} \right)
\]

\[
R_n = \frac{1}{2R_0} \left(\sum_{k=0}^{n} X_k X_{n-k} + \sum_{k=0}^{n} Y_k Y_{n-k} - \sum_{k=1}^{n-1} R_k R_{n-k} \right)
\]

\[
U_{n+1} = -\frac{1}{(n+1)R_0} \left(\sum_{k=1}^{n} k U_k R_{n+1-k} + 3 \sum_{R=1}^{n+1} k R_k U_{n+1-k} \right)
\]

A similar, but somewhat more complex, example may be found in Reference 3.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, September 3, 1969
129-04-21-00-62
REFERENCES

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546