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VARIAT'ON OF PARAMETERS FOR LONG PERIODIC TERMS
IN PREDICTING LIFETIMES OF VENUS ORBITERS

Bernard Kaufman

 ABSTRACT

A very rapid variation of parameters method has been programmed to de-
termine lifetimes of satellites in orbit about Venus. The perturbing function con-
tains only the gravitational potential of the sun. The solar potential is expanded
in atrigonometric series and then averaged over not only the period of the satel-
lite but also over the period of Venus. The equation for variation of eccentricity
uses only the singly averaged function so as to include medium period effects,

however, for inclination and argument of pericenter the doubly averaged function
is used.

It appears from the results of several sample cases that not only is this
method considerably faster than a numerical integration solution of the three
body problem (less than 15 seconds as opposed to one hour of machine time for
an orbit study of 500 days) but is also highly accurate. Although this method

contains only third body terms it should be very useful in first approximation
studies.
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VARIATION OF PARAMETERS FOR LONG PERIODIC TERMS
IN PREDICTING LIFETIMES OF VENUS ORBITERS

INTRODUCTION

One of the determining factors in considering a Venus orbiter is the length
of time the satellite will remain above the dense atmosphere of the planet. The
orbit must be chosen so as to allow a sufficient lifetime to conduet the required
scientific experiments, but also to meet stringent quarantine conditions that
have been imposed for Venus.

In the present study, the atmosphere and oblateness of Venus is not con-
sidered in the equations of motion. It is assumed that the gravitational attrac-
tion of the sun is the only disturbing force acting on the satellite and inhati if the
closest approach of the orbit is below a certain limit, atmospheric drag will
cause the satellite to impact within a short time period. The radius of closest
approach (periapsis 'p) is defined as

rp:a(l-e) (1)

where a is the semi major axis and e is the eccentricity of the orbit. It will be
shown later that under long period perturbations due to the gravitational presence
of a third body, the initial value of the semi major axis remains constant. There-
fore by choosing a limiting value for T equation (1) may be solved for a so-
called critical value, e_,, of the eccentricity. A value of e larger than e__ then
will be an impact orbit.

The above outlined problem can of course be easily solved using a precision
integration trajectory program to solve either Cowell's or Encke's equations of
motion, However, past experience has shown that for small orbits, the computer
time is prohibitive. This report investigates a variation of parameters solution
that is intended to yield accurate but fast results.

The Solar Potential Function: R,

With reference to Figure A the solar potential Ré may be defined as
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where
g=t -1
and
p2=( -2 =r'"?+r?-2rr'cosS
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2
p? =12 (l+_r -_2_r_cosS)

Then equation (2) becomes
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In this equation we may assume that r/r’ << 1 and expand the square to include
only terms of order 2, We then obtain

M 2 2
R'®=_GJ 1_l(r_-.2_rcoss> +1<4Lcos25) -L cocS
r' 2 \pr2 4 8 \ 2 r'

or

2
m 2 2.
RL=2® Qp (3 ) L )
! 2 2 rr! 2

In the usual form of the equations of motion the gradient of the above equation
would yield the disturbing function. However, the gradient is taken with respect
to the state of the satellite and the first term of equation (4) contains only ele-
ments of the sun. Therefore we have

-9

T'

and we can redefine the solar potential as

or f (5)

Lettirg u, = n'?a'3 wheren’ is the mean motion of the sun and a'3 is the
semi-major axis we can write equation (5) as

' ’ 3
R@:.azznz (i)2 (3'—) (3cos?S -1]. (6)

T

R




Now

cosS=_T =-7°.7¢ (7
and

r° -Pcos 6 +Qsin 6 (8)

where ¢ is the true anomaly and

—

cos lcosw-sin{lsinwcos i

ol
1]

sinf{lcos w +cos {lsinwcos i

sinisinw

(9)

-cos {lsinw-sin{lcos wcos i

-sinf{lsinw 4+ cos {lcos wcos i

ol
"

sin i cos w

P is a unit vector in the satellite's orbital plane from the center of Venus to
pericenter, 6 is a unit vector in the orbit plane perpendicular to P in the direc-
tion of satellite motion. The position of the sun in Venus' orbit plane may be
written as

cos QG

o

r® = |sin( (10)
0

Appendix A describes a venus centered coordinate system where the fundamental
plane is Venus' orbital plane and also develops the transformation from the
ecliptic plane to the new plane.
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Equation (7) may now be written as

cosS=F T cos 8+ (Q 7% sinb

denoting
P-T°=qa
(11)
Q-7°=4
then
cos Szacos 6 +Bsiné (12)

where it should be pointed out that « and 2 are independent cf . Substituting
equation (12) into equation (6)

2 e \3
) (a_) [(3(a?2cos?8 +2apPBsinbcos b +B2sin? §) - 1]

which after some manipulations may be written as
a?n'? [r\?2 [a' .
Re ) (_ ) o
2 a et

Since we are mainly interested in long period terms it would be advantageous
to eliminate any dependence of the above disturbing function on the mean
anomaly ©. This is done by means of the averaging process where the equation
is integrated over the period of the satellite. The details of this process may
be found in reference 1 and only the results are presented here. Equation (13)

centains three terms which are dependent on the anomaly and the averages of
these terms are:

[(%az + %ﬁ’ = 1) + %(a2 -B%)cos 20 + 3afsin 29] (13)




1 (7 % 3
r -
é‘?f () at=1:3e (14)
0

2m
1 r \? " 5¢?
EJ’ (5) coszoat-2 (15)

0
sz
27

0

Substituting the above equations into equation (13) we obtain

a?n'? fa'\3 3 3 5 3e? 2 15 e2
R. -2 s (_f-' _:2_1) 1 4 ad - B2y 22°¢
! 5 <,—' 7% * 5 +-3 + (a 34) 7 (17)

a result which is considerably easier to use than is equation (13).

” ¢ 2 . )
(—) sin 26 d4 =0 (16)

a

Variation of Parameters

The development of equations for the method of variation of parameters may
be found in any good textbook on celestial mechanics and therefore will only be
listed here. For completeness all six equations will be listed although it will be
shown that not all of them are needed.

<
da_2 2R
dt na o1
de (1-e?) Ry /i _ o2 R,
dt L,dz f’i Cnaz da
d_i _ csc 1 [”R‘.. cos i :iRs]
dt nnz /1 - t‘2 oY) dw
— ’ (18)
d. 1 - oR, cos i R,
dt ena? %¢ pa?/l1-e?sini °i
dQ 1 oR,
dt a2/1 el gini °F
a4 2 ')R; 1-02 :jR

— ] - — —

d¢ na Jda 2 Jde J




Variaiion in Eccentricity: Long and Medium Period Terms

The first of the above equations yields anextremely useful result. Since we
have elliminated any dependence of R upon 4 we have

=0 (19)

which means that there are no long term or secular variations in the semi major
axis. This means we need only to compt.e the variations in eccentricity in order
to obtain a time history of periapsis. We therefore need to look at the second

of equations {26) and note that again

IR NS

: OR it

; 34

and therefore

H de  /1-e? °Rs (20)
S dt  Lea? O

g With reference to equation (17) we may write

f

¥ 9 9 oR

: Ro _%Ro2a Ko 3 @1)
: Jdw da dw 9f8 dw

S

recalling the definitions of a, 3, P a.nd(_)' we have

da al_s . ?,o

dw dw
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and from equation (9) we have

dP =
P
Therefore
ii:(_j . ?'o :/? (22)
Similarly we finc
AR
L.l - 23)
dw
Then equation (21) becomes
OR, SR,  OR,
= R 2
Y TRy i (24)

(9%
=
©
o
N
-~
]

_'_\13 (32) (1 +4e?)

\r /
(25)
oR_ 2 12 t\s3
—2= a_?“_ _/a_\ (38) (1 -e?)
)
Substituting {25) into (24) and then into (22 ¢e obtain, after some algebraic
manipulations:
r\3
-J—i: -1 ~¢e? -15-7: ncapf (?-—> (20)
rl
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The above equation represents the variation in eccentricity due to the
gravitational presence of the Sun. In the case of Venus, we have a near circular
orbit for the sun and therefore we may simplify equation (26) further by setting

al

1.

rl

Equation (26) also indicates that in order to completely solve the equation
we also need a time variation of 0, « and i which appear ina and 3. Before
developing these equations we will make a further simplification of R, which
will reduce the system to one of only 3 coupled equations.

Medivm Period Terms of R "

Lorell and Anderson (Reference 2) have made a further approximation by
averaging over the period of the third body about the central body. In our case
this would mean elimirating dependence upon (1, defined earlier as the longitude
of the sun measured in Venus' orbital plane. Froui equation (17) and the defini-
tions of a and 8 we need only consider the two terms

3 2 3.,
= =0 =1
2a +2/3 (27

and

a? - 52 (28)

we cousider first (27)
a? + B2 = cos? () cos? Qg + sin? Q cos? i cos? f,

+sin? Qsin? Q, + cos?Qcos? i sin? Q,

+2sin{lcos Osin Qo cos Q,3

-2sinQcos Qcos? i sit il_cos
® ®

3
5

‘:*ﬁri"‘vké@i?m;:" il

P




=1-sin?Q_cos 2Qsin? i +sin?i [-%—sin 20 8in 28, - sin? a‘z}

=1-22 21 [1-cos 20cos 20,] + 201 [sin 20sin 2&24
1 sin?i sin?i o
=== cos 2 (0, - )
Therefore
3 S 1 3 . - 3
50.2 +3,32 1 :?_15“12 1 +251n2 icos2(,-0 (29)

In a similar manner we find that

a? - 32 :%sin2 i cos 2w + cos? (;—) cos 2 (Q, -w-0Q)

(30)
+sin* (%) cos 2 (Qy +o=-0)

when we carry out the averaging process we find that all terms containing (i,
may be dropped. We may therefore redefine equation (17) as

2 2
R@:a2 n'? [(%—gsf i) <1 +3Te> +15% (s.n? i cos 2w)] (31)

'

a -
where we have let — =1
r
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Variation in Eccentricity: Long Periodic Terms Only.

With the new definition of R_ above we return now to the second of equations
(18) and calculate againde /dt. Again we need only calculate R /3w

2 12 .2 2

e‘“sin‘1isin 2w (32)

—~ a?n'?e?5in?i sin 2@]

ena? 8
or
2
-(:l—izl—ifﬂ—e(l-ez)l/2 sin? i sin 2w (33)
n

This equation is considerably simpler than the previous ecuation (26) and it
is noted that the dependence upon (2 has been eliminated. However, the depend-

ence upon i and » is still present and we must now develop the equations for
these terms.

Variation in Inclination and Argument of Periapsis

Using the new definition of R, above we return now to the third of equations
(18)

di 1 [31‘ . 3Ro]
—— 0 - COS 1
dt na? ‘/1 —e2sini o0 dw

We observe immediately that

i
o

a result that was not true before the elimination of medium period terms. Also
from equation (32)




——=-23%2n'2¢e25in?isin2w

e~ —— —_sinicosisin22w

H 8 n /1_e2

or

_— e — —— ————sin 21 sin 2w (34)

The eguation for the variation in argument ofperiapsis requires JR_/de and
OR_/9d1i.
(C]

3R
— =-a?n'2e [3 (%--g—sin2 i) + %(sin2 icos 2w)]

OR_ 2
—2 -a2n'2 [-%sinicosi (1+32e )+-182e2 (sin i cos i cos 2w)]

Substituting these into the fourth of equations (18)

2 2\1/2 2 a2
_E_(_i)_ [—%coszi (1+ie_) +1_85.e2 cos? i cos 2w]
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=07 a-ery2d3_ 354025 (3-5c0s 20)
n 4 8

+icos2i+_9_e2coszi_§ezcos"icoszw
Ya-e 8a-eH B a-eh

n

2 2\1/2
R ) {i_-%sinz i (5sin?w-1)

3n’?
4 n

and finally

2 cos?

. 2 2.
L2 i +ie cos 1(Ssin2w-1)
- 4 a-eY

= = (1 - a?)t/2 {1 -5sin?isinfw+sin?i

2p-e2 e?sin

1 -5e?sin 2i_sm2i-5e2sm2is‘m2w}

(1 - e?) (1-e?)

2

2 Sy
: e? _e*sgin?i . 2. . 2.
(1 - e?)1/2 {Ssxnzw [______-s1n2 1] +14+sin?i

l1-e

l1-e e?sin?i-sin?i
+ +
1-e2 1-e?

dw 3n'? 1/2 5 .. 2w(e2—sin2 i) 35
_T_E_;.(l-e’) {1+2sm _ﬁ)__ (35)

Equations (33), (34) and (35) represent a system of three equations ine, i
and » only and it is now possible to solve for a time history of the eccentricity
without having to solve for £ or Q. Actually one may use equation (26) instead
of equation (33) by merely holding ) constant at( = Qo . In the computer program,
equation (26) was utilized instead of (33). The results will not differ significantly.
It is to be noted that the above three equations are identical to those given by
Lorrel and Anderson in reference 2.

13




Results

Figures 1 through 5 show comparisons between the above outlined method
and a precision n body Encke integration program. As can be seen from these
graphs there are no significant differences between the results obtained. How-
ever, it must be pointed out that the n body program took approximately one hour
to integrate the orbit for 500 days and the variation of parameters method took

less than 15 seconds.

Figures 1through3 are of similar size orbits with only the inclinations being
changed. The apparent secular variation in eccentricity appears in all three
graphs, however for an inclination of 5°, this variation is very small. Figures
4 and 5 show trajectories that impact the planet after 500 and 217 days respec-
tively. Impact is defined as that point where the Venusian atmosphere will
drastically alter the orbit such that virtual impact will shortly occur. For this

study an altitude of 200 km was used for impact.

Figure 6 through 9 ~.re for orbits with periapses of 6575 km and apoapses of
46025 km. Here the j.rameters that were varied are inclination and argument of
pericenter. All four of these orbits impact in less than one terrestial year.

Figures 10 through 14 represent an orbit with periapsis radius of 7550 km
and apoapsis radius of 46050 km. Again the parameters that were varied are
inclination and argument of pericenter. The first three of these orbits have not
yet impacted after 800 days but all indications are that they will. The last two

will impact within a very short time after 800 days.
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APPENDIX A

TRANSFORMATION FROM ECLIPTIC TO VENUS' ORBITAL PLANE

Definea:

Q2

Zeci

ORBIT OF SATELLITE

eci

Figure A-1-Venus Coordinate System

inclination of Venus' orbital plane to ecliptic

right azcension of ascending node of Venus' orbit upon the ecliptic




1 = right ascension of ascending node of satellite orbit upon ecliptic
w__ = argument of periapsis of satellite orbit referenced to ecliptic

N = ascending node of satellite referenced to ecliptic

Q-g = right ascension of ascending node of satellite orbit upon orbital
plare of Venus

Wy = argument of periapsis of satellite orbit referenced to orbital plane
of Venus

No = ascending ncde of satellite referenced to orbital plane of Venus.

Let ?; be the Venus centered position of the Sun in mean ecliptic and equir.ux

of Date Jan. 1, 1972 at O"'.

cos Q’O cos ¢,
T = |sinfly cosg¢; (A1)

sin ¢y

i

where at the above date

Qf, = 175°2756: Qg = 762427751766

-
o~
"

3°3542; ig = 3394354251

Let
T=x, (ig) 2,.; Q) (A2)

denote a rotation first about the z axis of the ecliptic through the angle (., fol-
lowed by a rotation about the new x axis of the ecliptic through the angle i,. T

is then the transformation matrix from the eclipiic plane tu the orbital plane of
Venus with the x axis in the direction of the ascending node of Venus' orbit upcn
the ecliptic and the Y axis 90° in the direction of planetary motion.
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Then ?s o » the position of the Sun in Venus' orbital plane at the above date,

is
cos Q'é
FS@ =TxS = | sinfl (A3)
0
also

. » sin Q:a
I, (1972) = tan

cos Q"c

To obtain (I ~at any time t we must have then
L, =0 (1972) + 1.6 At (A4)

where At is days from Jan. 1, O"*- 1972, Equation (A4) is needed if the form of
the disturbing function in equation (17) is used.

The orbital elements of the satellite referenced to Venus' orbital plane may
now be found as follows:

The position ' of the satellite referenced to the ecliptic is

-0 A
re=P'cos6+Q'sinf

where

Fcos Qse cos w . - sin st sinw,, cos i,

P' = | sin Qse cosw, +cosfl  sinw, cos i,
| sin iss sinwse

(A5)

[ cos Qse sinw,, - sin Qs€ cos w,, cos i,

6' =|-sinQ_ sinw, +cosQ_, cosw, cosi
L sin ise cos w,

31




SR TR

and ¢ is the true anomaly of the satellite. Then T"°, the position of the satellite
referenced to Venus' orbital plane is

T°=Tr2=(TP')cos 6 +(TQ")sinb
Letting TP' = P; TOQ' =0
?°:f’cos€+6sin9 (A6)

where P and Q are defined as above in (A5) with the appropriate change in nota-
tion to signify that the reference plane is now the orbital plane of Venus. Using
the notation

Pl
P= P2
B/
/Ql\
Q=1 g,
\e,
R,
and PxQ=R- .
R3
we have
-1 P3
wSQ = Tan Q—3 (A7)
iSQ =cos™! (P, @, -P, Q) =cos™! (Ry) (A8)
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Finally we write the full exi.ansion for

cos QQ sin QQ 0
T=[-sinQgcos ig cos {lg cos ig sin iy (A10)
sin QQ sin ig - cos QQsin iQ cos ig
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