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ANALYSIS AND EVALUATION
of a
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NOVEL INERTIAL NAVIGATION SYSTEM

By Edmund J. Koenke
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SUMMARY

A novel inertial navigation system referred
to in the literature as the RAMP inertial naviga-
tor is analyzed and then compared to a conventional
local vertical navigation system. The main attrac-
tion of this system is that it is capable of indi-
cating the vertical using only gyros as sensors.
The theory of the system mechanization is developed
from first principles and methods for calculation of
the system loop gains are presented. First, a
single-axis system is considered and then the analy-
sis is generalized to a three-axis system. The analy-
ses performed indicate that error propagation for
the novel system and the conventional system are
identical for identical error sources. It is also
shown that the RAMP base motion isolation system pro-
vides a better gyro environment than that used in a
conventional system since the level gyros are not re-
quired in the gimbal servo loops. Reports of flight
tests of this system corroborate these conclusions.
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Massachusetts Institute of Technology, on May 24, 1969,in partial
fulfillment of the requirements for the degree of Master of
Science.




I. INTRODUCTION

In 1959 K. J. Astrom and N. F. Hector (ref. 1) published a
report discussing a technique for indication of the vertical with
a pendulum by electromechanically synthesizing a large moment of
inertia. Since then (refs. 2,3), additional papers have been pub-
lished with a report on methods of using the principle discussed
in reference 1 to mechanize a local vertical navigator. This sys-
tem was built by the Swedish Phillips Co. Ltd. and flight tested.
Results of the flight tests appear in reference 3 which was pub-
lished in 1968.

The system called the RAMP (Rate and Acceleration Measuring
Pendulum) system is also discussed briefly in reference 4. It
consists of three gyros only (i.e., no accelerometers).Reference 3
reports a high degree of navigation accuracy using fire control
quality gyros. As a result of these data, this work has as its
prime objective to explain how high navigational accuracy can be
obtained with low quality sensors. To this end, a complete analy-
sis of the system is performed. First, a method of vertical indi-
cation, discussed in reference 1, is presented. A single-axis
mechanization of the system is then analyzed and compared with a
conventional (gyro and accelerometer) single-axis local vertical
navigator. As a prelude to a three-axis mechanization and analy-
sis, a base motion isolation system is also presented. Comparison
of a three-axis mechanization with a conventional three-axis local
vertical navigator is then made.

The numerical calculations and approximations used in this
analysis are identical to those used in reference 5 and are pre-
sented below:

Vehicle Motion Data

rimax = rxmax = 0.5qg

fmax = 100 ft/sec

Lmax = imax = 1.6 x 102 rad/sec
fmax = 29




System Design Data
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SL, = §A = 10 min = 2.9 x 10 - rad
max max
. _ . _ _ _6
SLmax = Skmax = aLmast = 3.6 x 10 rad/sec
T ped 5 = 2 = _9
éLmax éxmax 6Lmast 4.5 x 10 rad/sec
ST, = 6% = 6L__ w3 = 5.6 x 1072 rad/sec
max max max s
sh = 2000 ft
max
sh = 6h_ __w_ = 2.5 ft/sec
max maXx S

In addition, all terms with magnitudes less than 2x10_5g

were considered negligible for the purposes of the analyses con-
ducted in this work.

The primary conclusion resulting from these analyses is that
the error-propagation mechanism for both the RAMP navigator and
for a conventional navigator are identical for identical error
sources. The question of high-accuracy navigation with fire con-
trol quality gyros is answered by the hypothesis that the gyros,
although of low gquality, are stable over the flight time, but may
exhibit large shifts from warm-up to warm-up, thus necessitating
recalibration before each flight. An alternative hypothesis con-
tends that if the gyros are sensitive to float motions, then
better performance will be achieved in the RAMP system because of
its superior base motion isolation system.

NOMENCLATURE
Ag Gyro float angle
Cg Gyro damping coefficient
Cg Transformation matrix from frame i to frame j
Cv Correction to the vertical
D Deviation of the normal
e Ellipticity of Earth
F Sum of forces on pendulum bob

F (p) Pendulum feedback gain
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Specific force in the instrumented frame

G Gravitational field vector

g Local gravity vector

HS Gyro spin angular momentum

H Angular momentum vector

h Altitude

[T] Inertia matrix

Tom Inertia of controlled member about rotational axis
Ig Gyro moment of inertia

Ip Moment of inertia of pendulum about its rotational axis
Kl Gain

Ké Gyro spring constant

KT’Kg Gyro loop gains

k2 Radius of gyration

L Latitude (geographic)

L, Latitude (computed)

Lg Latitude (geocentric)

L Longitude (Earth referenced)

MAPP Externally applied torgue

MCM Command torque to controlled member
ﬁﬁ Torque motor commands

Mé Sum of torgues on pendulum pivot

m Mass of pendulum

R Magnitude of r

r Position vector
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CMp

iCM

Radius of curvature in meridian plane

Radius of curvature in comeridian plane
Time constants

Gyro time constant

Accelerometer uncertainty

Uncertainty in MCM
Uncertainty in Mp

Gyro uncertainties in angular velocity

Natural fregquency of controlled member servo loop

Gyro command angular velocity

Angular velocity about gyro input axis

Angular velocity of pendulum w.r. to inertial reference
Angular velocity about the gyro output axis

Schuler frequency

Angular velocity about the gyro spin reference axis
Acceleration of pendulum pivot

Deflection of the vertical

Error in altitude

Latitude error

Longitude error (Earth referenced)

Longitude error (celestial)

Single axis position error

Single axis velocity error

Angle between controlled member and pendulum

Angle between controlled member and inertial reference




eivC Computed angle between vertical and inertial reference

eiv Angle between vertical and inertial reference
eip Angle between pendulum and inertial reference
vp Angle between pendulum and vertical

A Longitude (celestial)

o Distance from pendulum pivot to pendulum bob
02 Variance of (u)M

M p

2 .

Ow Variance of (u)Wg
9,6,V Gimbal angles
Wy o Earth angular velocity

Subscripts and superscripts

b body frame n navigational frame

c inertial frame max maximum

i inertial frame CM controlled member

e Earth frame v vertical

Operators

§ variational operator P heaviside operator
S Laplace operator

IT. INDICATION OF THE VERTICAL
WITH A PENDULUM

Indication of the vertical is essentially the only require-
ment for navigating over the surface of the Earth, since both
latitude and longitude are implicit in the determination of the
direction of the local vertical with respect to an Earth-centered
inertial coordinate frame. This is illustrated in Figure 1.

Note that precise altitude information is not contained in
the knowledge of the vertical and must be separately determined
if it is necessary. Methods of vertical indication with a pen-
dulum are discussed in references 1, 4, 5, 6, 7, 8 and 9 and will
be repeated in this study since this is the basic principle under-
lying the mechanization of the RAMP navigator.

Begin with a consideration of a simple pendulum, constrained
to move in one plane, and with the pivot of the pendulum accelerated




over the surface of a spherical, non rotating Earth. Such a de-
vice is illustrated in Figure 2.

From basic geometry, it is seen that

eiv + evp = eip (1)

The rotational motion of the pendulum bob about the pendulum
pivot is described by the equation for rigid-body rotational mo-
tion from basic mechanics, namely:

pin = MD- (2)

From Figure 2 it is readily observed that

M =9 xF 3
D p X (3)

Also, it is easily verified that if a small angle Oyp is
assumed, then the vectors G, aé, pl are approximated by

-G cos 0,
i iv
G- ={0 (5)
-G sin eiv
—Ré. sin 9.
i iv iv
o =4{(0
p - (6)
Reiv cos eiv
s -0 Ccos eip
=1o (7)

~-p sin eip
Again, recall from the mechanics of a rigid body that
i

E‘p = [I] Wip (8)

where




LOCAL
VERTICAL

Figure 1.- Geometric relation of the vertical
to latitude and Tongitude

PIVOT

PENDULUM
BOB

i

Figure 2.- Simple pendulum geometry




o= | -6, (9)

and where it is assumed that
Ixx 0

I . (10)
YY

il

(1]
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Substitution of Egs. (3) through (10) into Eq. (2) yields
the ideal equation of motion of the pendulum about its pivot which
is given by

Ipevp + mpGeVp = (mpR—Ip) eiv (11)

where
I =1 _ = mp? (12)

Examination of Eq. (11l) reveals that if the pendulum motion
is to be insensitive to the acceleration of the pendulum pivot,
then the coefficient of the acceleration term must be set to zero.
Thus:

mpR = I . 13
o D (13)

This is the standard Schuler tuning condition and combination
of Egs. (12) and (13) reveals that in order to achieve Schuler
tuning for a simple pendulum that

p = R. (14)

This is, of course, impossible; therefore,consider a physical
pendulum instead of a simple pendulum. In this case,

I = mk? (15)
p

where k2 is the radius of gyration.




Substitution of Eg. (15) into Eqg. (13) reveals that the
Schuler tuning requirement for a physical pendulum is given by

o = k%/R (16)

which, for reasonable values of k (i.e., k = 1 ft), results in a
value of p = 15x10~7 cm which is of atomic dimensions. Thus it
appears that construction of a Schuler-tuned pendulum is impossible.

In reference 1, Astrom and Hector suggest the application of
an external torque about the pendulous axis in order to achieve a
Schuler-tuned pendulum. This can be illustrated by rewriting
Eg. (3) as

Mp =0 X F+ M, (17)

where

=
Il
2 O

APP P (18)

This results in a modification of Eg. (11) such that the
motion of the pendulum about its pivot is given by

Ipevp + mpGevp = (mpR—Ip) eiv + Mp (19)

Next it is noted that if Mp is chosen as

Mp = —Kleip, (20)

then Eq. (19) is further modified to

0@ s

(Ip+Kl) evp + mpG@vp = (mpR—Ip—Kl) 6. - (21)

Schuler tuning of this externally torgued pendulum is thus achieved
by setting

10



Substitution of Eg. (22) into Eg. (21) results in the famil-
iar pendulum equation:

+ w_ 0 =0 (23)

where w. is the natural frequency of the system commonly called
the Schuler frequency and is given by

Wy = VG/R . (24)

The question of physical realizability, however, must still
be resolved for this situation, since Kj must indeed be large.
Also, the problem of measuring gy, must be solved. This is dis-
cussed in Section III.

A signal flow diagram for the externally torqued, Schuler-
tuned pendulum is presented in Figure 3, since it is the basic
building block for the system signal flow diagrams to be pre-
sented in later chapters.

PWiy

— 3 MpR ~ I

Figure 3.- Schuler-tuned pendulum
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ITI. MEASUREMENT OF ANGULAR ACCELERATION
WITH A SINGLE~-DEGREE-OF-FREEDOM GYRO

The prime requirement for Schuler-tuning a pendulum accord-
ing to the method proposed by Astrom and Hector (ref. 1) and des-
cribed in the previous section is the ability to measure angular
acceleration. One method would be to differentiate the output
signal of a rate gyro. However, this is undesirable because of
noise considerations and also because a more convenient technique
(described below) is available.

The basic equation describing the performance of a single-
degree-of-freedom gyroscope is derived in reference 6 and is
given by

W AW + (25)

2 ' = -
[Igp +Cgp+Kg] Ag = H cvp2gVsra

S[WIA_

+ (u)Wg] - Igpwoa.

If the error terms AgWgra and IgpWoa are neglected for the
moment, a simplified bloc% diagram o% the gyro equation can be
constructed as is illustrated in Figure 4.

Next, suppose that Wpyp is made proportional to the float
angle Ag as well as to its integral such that

K + K_/p
=9 I
Wenp = E Ag- (26)

The signal flow diagram for this type of gyro is presented as Fig-
ure 5 and the gyro transfer function is given by

Ag Hs
. (27)

p W+ (WW_) - 3 2 :
A I p +C _p“+ (K _+K + K
g gP TCgP TR HKI)P T

12




Figure 4.- Basic gyro signal flow

(U) Wg
+
Wrq + . Hs Ag o
2 1
. IgP +CgP+Kg
WceMD
(K, + K1 )
g P P
Hg

Figure 5.- Gyro signal flow with feedback
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One should note from Eq. (27) that the use of proportional
plus integral control in the feedback loop has made the gyro out-
put angle A, proportional to the input angular acceleration, and
in steady state one obtains:

A H

d = 5, (28)
p(WIA+ (U)Wg) KT

sSS

that is, the steady-state response to a step angular acceleration
is a constant, as seen in Eg. (28), and to a step angular velo-
city is zero. Further, if one looks at the transfer function re-
lating Wgp and W one sees that

CMD '’
WiM? = - zgp " K . (29)
W_.+(u)w
IA I p +C p“+ (K'4+K + K
g gP TCgP H(RIFK )P p

If (u)Wg = 0 and Wy is a step, then the output angle Ag is
zero and the steady-state value of Wpyp is given by

(W) =W (30)

CMD TA

ss
which shows that in steady state the command angular velocity is
equal to the input angular velocity.

Now, if the input angular velocity is éi , then the command
angular velocity is a measure of the velocity of the pendulum
with respect to inertial space. Further, if the pendulum, is
Schuler-tuned, then

eip = O3y (31)

and the command angular velocity of the gyro is a measure of the
velocity of the vertical with respect to inertial space. Indica-
tion of the vertical could thus be obtained by integration of
this signal.

It is apparent then that it is worthwhile to pursue this
analysis further. To this end, consider the dynamic situation
inferred by Eq. (29). One immediately notes a lag between input
and output which should be kept small if the signal is to be used
for vertical indication. Thus, the time constant of the lag term
given by

14




T = Kg/KT (32)

should be kept much less than unity. Alternatively, this con-
straint can be written as

Kg/KT << 1. (33)

It should be possible to satisfy Eg. (33) since both Ky and
Kr are arbitrary gains and are to be chosen to make the loop res-
pond as desired. One desirable and mandatory feature of this
loop is that it be stable. Application of the Routh Stability
Criteria results in the requirement that

K' + K I
g 9., 9. (34)
K C
T g

In the event that a single-axis integrating gyro is used to

measure angular acceleration, Eq. (34) can be modified
K /K, >t 35
g/T g (
since, for an integrating gyro, Ké = 0 and
Ig
T = ==. (36)
C .
g g
Combining the requirements of Egs. (33) and (35) results in

bounding the ratio of the feedback gains, i.e.:

T < K /K, << 1.
g < Kg/Kq (37)
It is seen that Eq. (37) can be satisfied by choosing a
single-degree-of-freedom gyro with a time constant of about 10~2
second which can be accomplished since, for heavily damped gyros,
Tg”~ 10-3 second and, for lightly damped gyros, Tg ~ 10-1 second.

From a gyro design point of view, it is desirable that the
float angle Ag be kept small as well as the angular velocity Ag.

A frequency analysis of the transfer function relating A
and Wra shows that for the vehicle motions assumed in Section™I
the maximum float-angle displacement (assuming that the pendulum
tracks the vertical perfectly) is on the order of 10 urad, while
the float angular velocity is on the order of 5x10-2urad/sec.

15




Thus, it appears that a single-degree-of-freedom gyro, with
appropriate feedback torguing, can be used for measuring angular
acceleration about the input axis.

This result, coupled with the requirement of Section II for
Schuler-tuning a pendulum, leads to the mechanization of a Schuler-
tuned pendulum or single-axis, vertical-indicating system as dis-
cussed in the next section.

Iv. MECHANIZATION OF A SCHULER~-TUNED PENDULUM

In Section II it was shown that a physical pendulum could be
Schuler~tuned, provided that a torque which was proportional to
the angular acceleration of the pendulum bob with respect to in-
ertial space could be applied about the pendulum axis. In Section
IT it was shown that a single-degree-of-freedom gyro could be used
to measure angular acceleration about its input axis by using pro-
portional plus integral control in a feedback loop around the
gyro (i.e., signal generator to torgue generator). By combining
these two concepts, it is possible to configure a single-axis
Schuler-tuned pendulum as suggested by Astrom and Hector (ref.l).
The mechanization of this type of pendulum is illustrated in
Figure 6. A functional block diagram of the system is presented
as Figure 7 and a signal flow diagram as Figure 8.

Note in Figure 8 the presence of a gyro-reaction torque
Hs(pAg) which occurs because of the angular velocity of the float
about” the output axis.

The basic design problem associated with the indicated mech-
anization of the single-axis, Schuler-tuned pendulum is to choose
the feedback gain F(p) appropriately, such that the system is
indeed Schuler-tuned. With reference to Figure 8 and with the
uncertainties (u)MY and (u)Wg, disregarded, the following rela-
tions can be immediately written

= 38
Mp [H_p+F (p) ] Ag (38)
(H_/C )
- s’ g _r
25 = plrgorly Mip™oup) 29)
W. =W._+ W (40)
ip iv vp
Wewp = (1/H ) (Kg+KTp) Ag (41)

*Base motion coupling is assumed to be small and is treated as an
uncertainty torque.

16




PENDULUM
TORQUER

PENDULOUS
MASS

BASE PLATE

Figure 6.- Mechanization of a
Schuler-tuned pendulum

SPECHFIC PRV INDICATED
——— &~
FORCE PENDULUM ACCELERATION

INDICATED GYRO
TORQUE F—1
VELOCITY FEEDBACK

PENDULUM
TORQUE
FEEDBACK

Figure 7.- Single-axis func-
tional block diagram

(U)Wg
RPwyw | | . _Lp P Hg/Cg Ag
(Kg +Ky/P) -
Hs
F(p)+ HgP

Figure 8.- Flow diagram of single-axis signal
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_ _ 2
va = p[mpR Ip) pWiV+Mp]/[Ipp +mpR] (42)

evp = va/p. (43)

Corkination of Eqgs. (38) through (43) yields the transfer
function relating (6yp), the angle between the pendulum and the
vertical, and (pWjy), the angular acceleration of the vertical
relative to inertial space.

This results in

2. 3, 2, Bg  Bp) Hg 2
Ipp +mpG Tgp +p~+ . p+ =1 & Hsp+F(p) P va
g g g
K K H
3, 2 T S
= mpR—Ip Tgp +p 63 pt+ ol + E~<£Sp+F(p)) pwiv'
g g g

Recall from Section II that Schuler-tuning was achieved by
making the pendulum motion independent of the angular acceleration
of the pivot. Applying the same concept to Eg. (44) results in
the requirement that

(44)

Cy 3.2 %5 K
= - 2 - s = | - H 45
F(p) i mpR Ip T4P +p + Cg p+ Cg H_p (45)

If Eq. (45) could be mechanized as the feedback gain, this
would result in the motion of the pendulum with respect to the
vertical being described by

G K K
mpR <p2+ §)<Tgp3+p2+ =2 pt C—T> 8yp = O (46)
g g

This is easily seen by the substitution of Eg. (45) into
Eg. (44). Consider that the gyro gains K; and Kp must be chosen
as previously indicated for loop stability, such that the loop is

fast compared to input and Schuler frequencies. If this is done,
then Eg. (46) reduces, for low frequencies, to the familiar re-
lation:

2
(p + %)evp _ (47)

18




Also, applying the same considerations to Eg. (45) and neg-
lecting gyro reaction torque, one obtains the relation

K

F(p) = - ﬁz-(mpR—Ip) (48)
s

which also applies for low freguencies.

Before proceeding with the approximation to F(p) given by

Eqg. (48), it is instructive to proceed with the ideal feedback
gain given by Eqg. (45) to investigate the signals Agr WCMD and
M, when the gyro and pendulum torgquer uncertainties, (u)Wg and
(u)Mp, are non—-zero. Again referring to Figure 8, and using
Eg. (45), one can establish the following relations:
2
H_p [(I p +mpG) [ (WW_J+p[ (u)M ]]
_ S P q p
Ag = G (P) W, 5 (49)
g2 MpR (p~+G/R)
2
(K_p+K.,) (I p +mpG) [(WIW_ ] + p[(w)M_]
g2 (P )Y MR (p°4G/R)
(I_p®+mpG) [ (W)W_] + pl()M_]
M= - (meR-T ) p (W, + P > g P (51)
P moR (p“+G/R)
K K
= 3 2. .9 T 52
G,(p) = TP +p7+ g + 5 (52)
g g
Examining Egs. (49) through (52) for low-frequency response re-
veals that
G2(P)= KT/Cg (53)
and

19




Hs %[(u)wg] + p [(u)Mp]/mpR
A & o P W. +
g° K iv (p2+G/R) (54)
'
G
. cu . = L(u)wg] + p[(u)Mp]/moR
CMD iv (p2+G/R) (55)
G
B [(u)wq] +p [(u)Mp:'/mpR s
M_= =(mpR-I_)p{W._ + .
p o) iv (p2+G/R)

Thus, all signals Ag, Wemp, and Mp contain the required sig-
nal Wiy and are corrupteg by gyro and pendulum torquer uncertain-
ties in the same way. However, the most appropriate equation to

use for obtaining the signal Wiy is WcMD, since there is no inte-
gration or proportionality constant involved in the relation (55)
However, it should be emphasized again that in the dynamic situa-
tion a lag between WeMp and Wiv 1s involved, as was seen in Sec-

tion III, and the gyro gains, Kg and KT, must be chosen such that
this lag is small.

This analysis is appropriate at low frequencies and, when
perfect compensation (as given by Eg. (45)) is assumed, can be
mechanized. In an actual situation, however, Eg. (45) cannot be
mechanized and an imperfect compensator must be implemented and
analyzed. The imperfect compensator which is immediately suggested
is the low-frequency approximation of the perfect compensator
given by Eg. (48). 1In this case, a constant gain which can be
easily implemented is called for. As a second choice, one might
consider a lead lag compensator such as '

X

o _ T Tlp+l
p) = - = (mpR'—Ip) '{';5:1‘ . . (57)
S

By appropriate choice of 17 and Ty, this compensator could
be used to extend the bandwidth of the system beyond that which
could be obtained by use of Eg. (48). Before choosing either of
these forms, first consider the frequency characteristics of the
perfect compensator in terms of typical sensor parameters and in-
put motions. f

Consider a single degree of freedom gyro with the following
characteristics.

20




H /C, = 10

T = 1072 sec

m = 500 gm

p = 2 cm
* . 2
Ip = 8000 gm-cm
_ 5 2
H = 2x10~ gm=-cm”/sec
L = length = 10 cm
D = diameter = 6 cm.

By substitution of these values into Eg. (45), one obtains:

10 2.3

110 2p3+p2+0.5x107%

4

F(p) = - 6.4x10 Kgp+o.5x10' Kpl -

- 2x10p (58)

It is desirable to choose the value of Ky such that the gyro-
reaction torgue can be neglected or, at most, treated as part of
the uncertainty torque (u)Mp. To this end, choose

Kg~ 2x10° dyne-cm. (59)

With this choice of Kg and recalling that for stability and
small lag between Wiy and WcmD

K

g
T < 5= << 1,
g KT

an appropriate choice of Ky appears to be

K ~ 1x10° dyne-cm/sec. (60)

* 3
Note that Ip was calculated from the formulas for a right

circular cylinder,i.e.:

21




Substitution of Egs. (59) and (60) into Eq. (58) appears to
be

F(p) = - 6.4x10° [p +100p>+10,000p+500,000]

which can be rewritten as

F(p) = - 6.4x108(p+65)(p2+35p+7725). (61)

Thus, the first-order term has a break point at 65 rad/sec
and the second-order term has a natural frequency of 88 rad/sec
and a damping ratio of 7 = 0.2. These frequencies are well above
the Schuler frequency (1.24x10-3 rad/sec) and the nominal velocity
of the vertical relative to inertial space (Wiy~1.6x10-4 rad/sec).
As a result of these calculations, it is appropriate to choose as
the feedback gain

=

F(p) = - EE (mpR-I ),
S

which, on the basis of the above frequency analysis, should be
accurate for frequencies up to about 10 Hz. Also note that gyro
reaction torque can, in fact, be neglected on a numerical basis.

Based on the above conclusions, the signal flow diagram pre-
sented as Figure 9 applies and can be used to analyze the signals
Ag, Wemp and Mp.

From Figure 9 it is readily established that

0 - (mpR—Ip) . Mp+(u)Mp (62)
vp G, (p) G, (p)
K
= T - (63)
Mp ol (mpR Ip) Ag
A - (HS/Cg) P (wip+(u)wg) (64)
g G, (p)
- 6
Wip = Wiy + PO (65)
G,(p) =1I p2 + mpG
1 pt (66)
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=
=

3

2
tp TPt o (67)

G =
2(p) Tgp . Cg

O"

Manipulation of Egs. (62) through (67) results in the equa-
tion ‘

[CgG2(p)Gl(p)+KTp2(mpR—Ip)]Aq = Hs{él(p)p[(u)wg] +

2
+ 7 (WM 141G, (p)+ (mpR-T ) ]pwiv}. (68)

From Eg. (66), and the numerical values previously used, it
is seen that the natural frequency of this undamped oscillator is
approximately 12 rad/sec. However, it was previously shown that
G2 (p) has frequencies on the order of 65 to 88 rad/sec so that
the product G1Gy is well approximated by

KT

Substitution of Egq. (68) into Eg. (69) results in

2 .
H (I_p +mpG) [ ()W _T1+p[ (u)M ]
Ag== ——-S— p{Wiv-F b g p }. (70)

mpG(p2+G/R)

Similarly, it can be shown that

2
(I_p"+mpG) [ (uw)W _1+p[ (u)M_]

M = -(mpR-I )p {W._ -+
P P {'lv mpG(p2+G/R)

and that
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2
K (I_p 4+mpG) [ (W)W _I+p[ (u)M_]
g P g p
W u——p+9{w.+ . (72)
CMD (KT v moR (p2+G/R) }

K

As previously shown, Eg;~2x10—2 sec and %ﬂﬁ 12 rad/sec, while
- T - p

d(LQQ~1424xlO 3 rad/sec and Wiy = 1.6x10 4 rad/sec. Thus, for

frequencies of about 1 Hz the signals Agq, Mp, and Wcmp are well

approximated by

G
RL (W, 1+p[ (@M1 /moR

W = W, + (73)
M
CMD iv (p2+G/R)
Hs
& - - 5
Mp (mpR Ip) P up + (75)
which are identical with Egs. (54), (55), and (56). For reasons

cited previously it is appropriate then to use the Wgyp signal
for navigation purposes. To this end, define

_ 76
%ive = Wemp (76)

6. =W (77)

ive cmup/P -

The errors 66 and 66 and then defined by

. =6, + &6 (78)
1vC iv

6. =06, + &6, (79)
1vC iv

Appropriate manipulation of Egs. (73) and (76) through Eg. (79)
results in
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+ - hay
(p“+G/R g [WW ]+ e P
[ ()W _] [ (u)M_]
2 = G g p
(p"+G/R) 66 = R 5 + ) (81)
Finally, the offset angle between the pendulum and the
vertical can be shown to be described by
2 (WM, (82)
(p“+G/R) evps ToR -p[(u)Wg].

This is accomplished by making the same approximations as
were used to arrive at Egs. (80) and (81).

In conclusion, it is seen that a constant feedback gain is
appropriate for Schuler-tuning the single-axis system, and that
with this gain the system will track motions up to about 1 Hz.
It was also seen that gyro reaction torque could be neglected.
It should also be noted that a perfect pendulum suspension was
assumed in the above analyses and that any coupling of base
motion into pendulum motion via imperfect suspension was small
and would be treated as an uncertainty torque.

V. BASE MOTION ISOLATION OF A
SCHULER~-TUNED PENDULUM

In the previous section, coupling of the base angular motion
with the pendulum motion was mentioned a number of times. This
phenomenon could easily occur in the RAMP system if the pendulum
suspension were not perfectly frictionless. In reality, the sus-
pension is not frictionless, but can be built almost frictionless,
particularly if the motion of the pendulum is kept small with
respect to the base plate. This can be accomplished by employing
a base-motion isolation system which would also cause the base
plate to track the vertical approximately. Several additional
advantages also accrue from base-motion isolation for the
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single-axis case and most certainly when looking forward to a
mechanization of a local vertical, North-pointing navigator.
Among these advantages are:

1. The pendulum motion is kept small with respect to the base
plate which simplifies construction of the suspension and aids in
the pendulum torquer design (i.e., it is a null operating device).

2. Isolation from angular motion of the vehicle which helps
prevent coupling of this motion into the pendulum is provided.

3. It allows for the mechanization of a North=-pointing local
vertical navigator.

To accomplish base-motion isolation in the single-axis case,
a signal generator is mounted on the pendulus axis and a torque
motor to drive the base plate is provided. Figure 10 illustrates
how this system might be mechanized.

In this manner, the base plate is slaved to the local verti-
cal without using the gyros, as is done in a conventional local
vertical navigator. It is important to note in this mechaniza-
tion that a nearly frictionless suspension of the gyro to the
platform is required and that any friction in this suspension will
contribute error to the system in the form of an interference
torque. A signal flow diagram of this system is presented as
Figure 11.

The subscripts CM refer to the controlled member which is
defined to be the base-plate and pendulum assembly (see Figure
10). In this analysis, it is assumed that the base plate portion
of the controlled member is designed such that the C.G. of the
controlled member assembly is aligned with the pivot point of the
base plate. Thus, no torques caused by vehicle acceleration will
be exerted directly on the controlled member. The only torques
which will be felt by the controlled member then will be those
exerted on the pendulum pivot. These will be transferred to the
controlled member pivot in the form of reaction torques. With
these considerations, and from Figure 11, the equation describing
the motion of the controlled member is written as

2 = =
IomP eiCM = mpRpW, mpGevp + (Mp+(u)Mp) + (MCM+(u)MCM) (83)
where (u)Mcy includes effects of gyro-reaction torque, uncertainty

in any applied torque Mcm, friction in the suspension, and the
like. Also, note that

M (84)

em = Fom (P Bepp:
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The prime objective at this point is to design the feedback
gain Fcm(p) such that the angle Ocmp between the pendulum and the
controlled member is driven to zero resulting in the desired situa-
tion that

eiCM = eip' (85)

To design the gain FcM(p), begin by assuming that the uncer-
tainties (u)Mp, () McMm » (u)Wg, as well as the initial angle evp(O),
are zero.

This assumption results in

va =0 (86)

ip = %y (87)

One also obtains the relation

Mp = —(mpR—Ip) pWiv‘ (88)

Let

FCM = K (89)

so that substitution of Egs. (84) through (89) into Eg. (83)
yields

= I p 6. + K6 . (90)
p
But:
6. + B = 0.,_, (91)

so that Eg. (90) can be rewritten as

_ (ICM—Ip) P,
8 = . (92)
CMv T 2 + K

cmP

From Eg. (92) it is obvious that it is impossible to drive
6cmy identically to zero; however, it is possible to make Ocmv
fairly insensitive to input motions and to place its natural fre-
guency high compared to Schuler frequency. This can be accomplished
by choosing
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2

K = IWoy (93)
where Wem is large.
Substitution of Eg. (93) into Eg. (92) results in
: (T~ I)
2, .2 _ “cM Tp
(P™+Wey) Ocopy = 3 PW; (94)
CM
which, for an impulse pWiV, yields an average value
eCMv = 0, (95)
and, for a step pWiV, yields an average value
(Tom~ L)
By, = b (96)
CMv T W2
CM'CM
This is certainly small since
I - I
§T = —E¥—~——E— << 1 (97)
CM
and ICM is large.
The transfer function relating 6, and 0., is easily de-
. . 1CM iv
rived by noting that
%iem T femv T Pive (98)
so that
2, 2.2
Oiem  (PHa Wy
= (99)
8. 2, .2
iv (P™+Weyy)
where
2 _
a” = ICM/Ip > 1. (100)
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Equation (99) reveals that for low frequencies

6.
e1CM - 062 (101)
iv

. 2 . .
and, since 0o~ is close to unity,

0 (102)

icm * 6:i.v

for input frequencies close to the first break frequency Wgym. Note
from these considerations the importance of the requirement that
T s T
CM P

If the gain Fpy 1s found to produce undesirably high frequen-
cies in the controlled member, then a lower frequency could be
used but should be chosen well above the Schuler frequency, i.e.,
above

2
K=10 ICMWS' (103)

It can also be shown that use of Eg. (93), including the
effects of the uncertainties, results in

(u)M (u)M
1 P CM
0. = 0, + - pl(u)W_13+ ———=— (104)
iCM iv (p2+G/R) { mpR gﬁ} ICngM
(u)M (u)M
p— 1 { P _ P[(U)Wg]} - .__.___g_@. (105)
(p“+G/R) mpR TemYem
M
By ™ 0 eu — (106)
b
Temem

which reveals that the dominant mode in the system is the Schuler
mode. A signal flow diagram of the complete single-axis, vertical-
indicating system, including a method for measuring the angle be-
tween the base and the vertical, is presented as Figure 12.

Before moving on to an error analysis of this system, one
important consideration must be emphasized. In a conventional
local vertical navigator, friction in the gimbal will cause base
motion to be sensed directly by the gyro while in the RAMP system
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friction in the gimbal will cause the platform not to track the
vertical exactly, but coupling into the sensor will occur only

if friction in the pendulum suspension also exists. This gives
the RAMP system an advantage in that base motion coupling should
be less than in a conventional system. This fact could result in
a more stable operation of the gyros in the RAMP system than those
in a conventional system.

VI. SINGLE-AXIS ERROR ANALYSIS
AND EVALUATION

A major portion of the single~axis system error analysis has
already been performed in the preceding sections of this work.
For example, it has been shown, for frequencies of interest, that
the errors in computer position and velocity are given by

[(wM ]
2, GY .24 _G p
(p + §> 80 = gLWW I + P 45 (107)
and
[(w)wW_1 [ (u)M_]
2, G _ G g p
(p + ﬁ) §6 = g —5— + ToR . (108)

It has also been shown that the error angle between the pen-
dulum and the vertical is given by

[ (WM ]
(p2+ %) Oyp = “PLOWW ] + —2B= (109)

and that the inability of the platform to track the vertical is
described by

(u)M (uyM
2, G _ _ P _ CM
CcM CM

Finally the error in slaving the platform to the pendulum was
derived as

-(u)M
0 = CM (111)
CMp I W2

cemWem
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In a conventional local vertical navigator (ref. 5), the
errors in computed position and velocity are given by

2 G © _ G pl(u)f]
<? + E) 66 = glwW ] + Biogi=rt (112)
[ (W)W_]
2, G _ G g (u) £ .
(p + -ﬁ) §6 = & 5 + = (113)

where (u)f is the uncertainty in measured specific force due to
the accelerometer and (u)Wy is the uncertainty in measured an-
gular velocity due to the gyro.

By comparison of the RAMP error equations and the conven-
tional local vertical navigator equations, one notes that gyro
errors propagate identically in both systems. The comparison be-
tween accelerometer errors and pendulum torquer errors reveals
that

(u)M

Evaluation of the RAMP system is thus reduced to a compari-
son of accelerometer errors and torquer errors adjusted by ap-
propriate proportionality constants. For purposes of this evalua-
tion, therefore, consider that

. (115)

With values for riyay from Section I and mp from Section IV,
it is easily established that

M| = 500,000 dyne-cm.
P max

and

| £ =0.5g

uax|
in horizontal directions.

It is also easily seen that
(u)M

(Wil - P (116)
fvax MoMax
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so that, for equivalent performance, a 100-ppm accelerometer cor-
responds to a 100-ppm torquer. Thus, comparison of the two sys-
tems shows that identical error propagation will occur if identi-
cal gyros are used and if equivalent accelerometers and torquers
are used. Of course, this assumes that these are the dominant
error sources in the system which, to date, appears to be a valid
assumption since, in general, gyro drift, accelerometer bias, and
accelerometer scale factor are the dominant system errors in in-
ertial navigators.

Currently, the state-of-the-art for accelerometers is on the
order of 20 to 50 ppm. For a torque generator required to pro-
duce 500,000 dyne-cm, the state-of-the-art is on the order of
50 ppm which is comparable.

In a conventional local vertical navigator, the correction
to the vertical (ref. 5) is given by

(?2+ %) c, = -plwmn ] + L. (117)

By comparison of Egs. (109) and (117) and by recalling
Eqg. (114), it is seen that

=> C ; (118)
vp v

that is, the angle between the pendulum and the vertical in the
RAMP system is equal to the correction to the vertical in a con-
ventional system.

It will be recalled that the effect of the gyro reaction tor-
gue was included as part of the uncertainty torque (u)Mp. It is
worthwhile at this point to evaluate the magnitude of this un-
certainty and to compare it to the inherent physical torquer un-
certainties. Denoting this uncertainty by (u)Tg, one can write
that

(w)Ty = Hpa : (119)

and, since

Hs 2
pAg~ EE P Wiv’ (120)

the numerical value for (u)TG is found to be
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Hi 2 -9
(u)TG =g P Wiv~ 2.2x%10 dyne~cm. (121)

which is certainly negligible compared to inherent torquer uncer-
tainties of 25 dyne-cm.

From the basic equations of error propagation given above,
it has been established that equivalent errors in a conventional
system will propagate identically in the RAMP system. This con-
clusion is valid whether the errors are deterministic or statis-
tical in nature. On the assumption that the error sources
[(u)M 1 and [(u)Wq] are statistically uncorrelated, have zero mean,
and varlances of ¢ andO%, respectlvely, the errors in computed
position velocity ‘and attitude are given by

. 2
sin w t\2 (1l-cos w_t)
E(56%) = [ t- —= o% + 2 ci (122)
s (mpG)
w2
E(85%) = (l-cos w_t)? 02+ =S sinzwst ol (123)
(mpG)
5 sin2wst 2 (1-cos wst)2 5 (124)
E(90 ) = e 05+ o
CMv wz W (mpG)2 M

If the mean is non-zero, then it propagates in the deterministic
manner dictated by Egs. (107), (108), and (110).

VII. MECHANIZATION OF A LOCAL VERTICAL
NAVIGATION SYSTEM

With allusion to the example of references 3 and 5, a local
vertical navigation system will be mechanized which utilizes two
RAMP's and one gyro. The RAMP's are used to sense the horizontal
components of specific force and the gyro is used for azimuth con-
trol. Three gimbals will be employed to mechanize the base motion
isolation system and a computer will be used for calculating com-
pensation torqgues, position, and velocity. A functional block
diagram for this system configuration is presented as Figure 13.
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The system mechanization is based on the equations for
specific force placed in coordinate form in the navigational
frame illustrated in Figure 14. The equations for specific force
in the navigational frame are given by

= M rt-GM]

i (125)

fl

which, in component form for an elliptical, rotating Earth, are
written as

f

r. T + & rz(kz—wie) sin 2L + 2r_L - ¥ e sin 2L

L 2 L
. 2
-3er sin 2L L” - &g
n _ " a S ot
T =4 Tph cos L - 2r L sin L + 2r X cos L + ng >
r2
_ o . . 122 2 L 2
g r rLL e sin 2L + r, (A wie) cos”™ L + - L
L o
where (126)
T = r(l-e cos 2L) (127)
r, = r(l+2e sin2 L). (128)

(See nomenclature for symbol definitions.)

Note that the effect of both the deviation of the normal and
the deflection of the vertical is included in Egs. (126), (127),
and (128). Further, all terms of magnitude less than 20 ug have
been neglected in accordance with the assumptions stated in Sec-
tion I.

The angular velocity of the navigation frame with respect to
inertial space is given by

(w. +Q) cos L
ie
=0 I . (129)

-(w. +2) sin L
ie
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A detailed mechanization of the system is given in Figure 15
and a simplified block diagram of the angular velocity sensor is
presented as Figure 16. Examination of these figures illustrates
the basic operation of the navigator, including the sensors, the
position and velocity loops, the azimuth control loop, the com-
pensation torques, and base-motion isolation.

The sensors and the position and velocity loops have been
discussed in great detail in the preceding sections; however, it
is necessary for the understanding of the system to describe in
greater depth the nature of the compensation torques, azimuth
control loop, and three-axis, base-motion isolation system.

The prime objective of this system is to indicate the verti-
cal. To this end, it is necessary to compute latitude and longi-
tude. Examination of Eg. (126) reveals that a number of terms,
other than latitude and longitude, are present in the Xy and Yy
components of the specific force. These additional terms will
then be calculated in the computer and appropriately subtracted
from the system input by torquing the RAMP's with the negative
of these values. By inspection then, the compensation torques
can be written as

1 22 2 . ‘e o .
ox Cx 0 5 rg(ki-wie) sin 2Lc + 2rLc - re sin 2LC
= -3er sin 2L L2=
" 2 . N C c\“
Mcy 0 Cy _zrchAc sin L + ZrQAC cos L,
(130)
where
= - 131
C,, (m_p Ipx/rL) ( )
C_ = (m -I r (132)
y = (MyPy Iy /Ty

To calculate the compensation torques, it is noted that
terms such as r, ¥, and ¥ are required. To obtain these terms,
an altimeter is used or, alternatively, a vertical accelerometer-
altimeter combination could be used. A vertical accelerometer
would also be useful in the system to aid in the calculation of
gyro mass unbalance compensations. These types of compensations
will not be discussed in this report, however, since they are
identical to those which would be performed in a conventional sys-
tem. The only point to be emphasized, however, is that a verti-
cal accelerometer could possibly improve the accuracy of the RAMP
navigator.
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If the compensations (130) are applied, then the outputs of
the RAMP sensors are proportional to

n Y s

hid rp L &g §f
= " +

£ rzx cos L + ng ny

X
(133)

where the &f terms are the result of using computed values in the
torque compensation rather than the true values. This uncertainty
will result in one of the types of uncertainty torques (u)Mp.

The azimuth control loop is identical to a conventional local
vertical navigator azimuth loop and will, therefore, not be dis-
cussed separately, but rather as part of the base-motion isola-
tion system. The basic configuration of the base-motion isola-
tion (BMI) system is illustrated in Figure 17. The equations for
governing the motion of the BMI system are rather complex and,
since they are developed in detail in references 6 and 8, they
will not be redeveloped in this report. However, the basic assump-
tions and resulting equations will be stated for the purpose of
completeness.,

The basic assumptions governing the developments in the above
references are:

1. Each gimbal has a spherical ellipsoid of inertia.
2. Small changes of gyro angular momentum are negligible.

The error signals from the two RAMP's, as well as the signal
from the azimuth gyro signal generator, are processed in the same
manner as the commands to the gimbal servos in a conventional sys-
tem. Figure 18 illustrates the method of processing these signals.
The gimbal angles (¢, 6, ¥) required for the signal resolution in-
dicated in Figure 18 are obtained from signal generators mounted
on the gimbal axes. The command to the gimbal torque motors is
finally computed from

Kl 0 eR
MCM = K2 ep (134)
0 K3 eA
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where the gains K; are chosen according to the methods of Section
IV (i.e., K = I \W.2).

In Section IV, it was noted that the frequency WecMm should be
high. This is also desirable in the three-axis case since cross-
coupling caused by off-diagonal effects is minimized by making
these gains large.

The one advantage of this mechanization over the conventional
local vertical system is that a higher degree of base-motion iso-
lation is achieved as was discussed in the single-axis case. It
should also be noted that without the vertical gyro, navigation
would be virtually impossible although, with a clock one could
keep track of the vertical component of Earth rate and implement
a free azimuth navigator in an open-loop fashion. However, this
would be a very crude system to say the least.

VIII. ERROR ANALYSIS OF THE RAMP SYSTEM

For the single-axis RAMP system discussed in Section VI, it
was found that error sources in the RAMP propagated in the same
fashion as identical error sources in the conventional single-
axis system. The error equations for the RAMP system will now be
developed to determine whether this conclusion is valid in the
three-axis case.

The derivation of the system error equations begins, as did
the RAMP system mechanization, with the equations for specific
force (see Egs. (126), (127), and (128)). By defining a set of
error angles (ey, €, €z) resulting from positive rotations of
the instrumented navigational frame about the true (positive)
navigational axes, the actual components of specific force sensed
by the instruments are given by

l/CX 0

? - (-] o+ (u) M (135)

0 1/C P
/Cy

. n .
where the error matrix E~ is found from

. 1 ez € R 136)
Cp = EZ l €E = T 4+ B .
€p Ey 1
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In the system mechanization (Figure 15), it has been assumed,
however, that

and that
C 0o o0 C N RER?
X ?P - M—c - X L” (138)
0 C 0 0 C r, A cos L
Ng y L

where the quantities Mg, Cy, and Cy were previously defined by
Egs. (130), (131), and (132).

Thus, the system error equations are obtained from Egs. (135),
(137), and (138) and are written as

X FREE T EEN + (WM =
0 C 0 0 C 0
y Y
CX 0 rLL
. (139)
0 Cy rzk cos L
Next, let
L,=1L+ 8L (140)
c
Ac = A + SA (141)

and further assume that an altimeter is used to calculate r from
the relation

r=rxr +h, (142)

and that an altimeter error is defined by

§h = h_ - h. (143)
a
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Substitution of Egs. (140) through (143) into Egs. (126) and (130)
yields, after extensive algebra, the equation:

)

c 0 C ollz. L
X X L
" +
0 C c 0 C r, A cos L
y y L

r .. , , , , v 7
£g + rSL + 2L S&h + rX sin 2L & + Léh

C 0 -ng + r cos Lréﬂ + 2[r cos L-rL sin L] 61 +

X . (144)

0 c ﬁ-— 2r)\ sin L 6L - r[x sin L+2Li cos L] &L +

Yy . . »
+ 2AX cos L Sh + A cos L ¢&h
L ,

It can also be shown that the term

X DRy = X . (145)

This is accomplished by using Eg. (136) and by defining

7= e . (146)

Substitution of Egs. (144) and (146) into Eg. (139) finally
results in the basic system error equations:

£Eg + réT, + 2L6h + rA sin 2L8A + L&h - Ezfe +oepf +
- (u)fX =0 (147)
and
ng + r cos LGX + 2[£ cos L-ri sin L] 6% - 2ri sinl §L +
—rfi sin L+2Li cos L] 8L + 2\ cos L &h + & cosL &h +
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where

C 0
Ox ) (u>§x . (w)F (149)
y| (WEy P '

Examination of Egs. (147) and (148) reveals that these equa-
tions contain five unknowns. It remains then to find three addi-
tional equations in the five unknowns in order to describe the
error propagation characteristics of the system completely.

The angular velocity of the instrumented frame with respect
to inertial space is given by

=p  _ P =D
W = CnW?n + W (150)

Now consider the two torgques to the RAMP's in addition to the
torque applied to the vertical gyro. The torque applied to the
vertical gyro is given by

—AC sin Lc (see Figure 15),

so that the z component of the platform angular velocity with res-
pect to inertial space in platform coordinates is given by

Wipz = —Ac sin LC + (u)WZ (151)

where (u)W, is the uncertainty in the z component of the angular
velocity of the instrumented frame, which is caused by gyro drift,
torquer scale factor, and so forth. Next, recall from the single-
axis analysis that

G [(u)Wg] p[(u)Mp] (152)
W = W, =W, + = +
CMD ivc iv R (p2+G/R) mpR(p2+G/R)
and that
[(u)M_] pl(u)W_]
0, = 5 P - — d (153)
P mpR(p“+G/R)  (p“+G/R)
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Differentiation of Eq. (153) and substitution into Eq. (152)
reveals that

Wive = Wiy + POy ¥ (u)wg (154)

Wivc = WiV + pevp + (u)Wg. (155)

The relation is also easily established from Figure 9. From
Eg. (154) it is obvious that

ip = Wive = (WWgs (156)
and from Egs. (129), (151), and (156) that
: 3
Ac cos Lc - (u)WgN
oo )1 - . (157)
" Lo - (WW_g >
-AC sin Lc - (u)Wng

Again with use of Egs. (140) and (141), it is easily shown

that
Wﬁp = [T+W] W+ (W (158)
where
((u)ng f(u)WN )
(u)W==—ﬁ(u)WgE =ﬁ (u)Wy (159)
L(u)Wgz L}u)WZJ

(i.e., a negative gyro drift causes a positive angular velocity
of the instrumented coordinate frame) and where

SA/A 0 SL

w' =|o &L/ 0 |- (160)

L—SL 0 Gi/i
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Equating Egs. (158) and (150) and solving Wﬁp yields

W, = [W+E] W?n + (WW. (161)

Noting that, in scalar form,

— i 162
=0 _ {ep ( )
np .
€
z
one realizes that Eq. (161) represents the needed three-error
equations. In scalar form, they are given by
€y ~ Le, * A sin L eg = cos L A - A sin L 8L + (u)WN (163)
€p = A cosL e, - A sin L ey = -8L + (u)WE (164)
e+ A cos L ep + Leyg = -2 cos L §L - sin L &A + (u)WZ‘

(165)

Thus, five equations in the five unknowns have been obtained
and can be written in the matrix form

AX = G {166)
where
o
N
| FE (167)
X =$ &
€2
6L
LSAJ
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r
(u)WN h
(u)WE

G = (W, } (168)

(u)fN - &g - (L+2Lp) &h

\fu)fE + ng + cosL (&+2ip) 6hJ

and where

p A sin L -1 ) sin L (-cos L)p
-\ sin L P -\ cos L P [¢]
L A cos L P A cos L (sin L)
P
o +2 M .
. o (—-t'3~r+rL + (21:LA sin L+ rp2 (r} sin 21)p
(a] = -ri2 cos? 1) -rA cos L)
(g+T-rL2+ o (rT+ ~2r (A sin Lp+ (r cosL p+2r cos L-
-ri2 cos? L) + % rA2 sin 2L} AL cos L+ 2rL sin L)p
+ % A sin L
L 3

(169)
At this point it is sufficient to notice that these equa-
tions are identical with those obtained for a conventional local
vertical navigator (ref. 5).

Solutions are obtained by the methods of references 5 or 9
and will not be repeated here. Non-dimensional plots of error
growth are also presented in these references.

The forcing function is also identical with the conventional
navigator except that, as in the single-axis case, the accelero-
meter bias is replaced by the pendulum torquer uncertainty, i.e.:

m_p 0 (u)fX _ (u)Mpx (170)

0 £ M
myPy | [(WEy (W) My

Thus, it has been shown that the full RAMP navigation system
has the same error-propagation mechanism as a conventional navi-
gator, provided that the error sources are equivalent. If, however,
the gyro drift rate is sensitive to float motion, the RAMP system
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should be superior to a conventional system, since float motions
of the gyro are smaller in the RAMP because of the base-motion
isolation system and tight pendulum torquing loop than are the
gyro float motions in a conventional systemn.

IX. CONCLUSIONS

Based upon the preceding analyses, it has been shown that
the basic error propagation mechanism for a conventional local
vertical navigator and the RAMP navigator are the same. Explana-
tion of the high navigation accuracy with low accuracy components
reported in reference 3 is therefore not explained in this way.
At least two explanations of this phenomenon are possible. The
first is that the gyro used in the RAMP system is susceptible to
shifts in the drift compensation because of float motion and,
since the RAMP base-motion isolation system and pendulum loop
minimize this float by comparison to a conventional system, stable
gyro drift terms which are compensable result. This effect is
easily included in the error analysis, however, by appropriately
including it in the forcing function terms (u)W. An alternative
explanation is that the gyros used are basically stable, once
they are warmed up and calibrated, and that shifts would not occur
except from warm-up to warm-up. In this event one system has no
distinct advantage over the other from an accuracy standpoint. A
definitive explanation is not possible, therefore, without exten-
sive gyro testing to determine an appropriate model for (u)Ww.
The author has discussed the system with Mr. Folke Hector of the
Swedish Philips Company, Ltd., of Stockholm, and he is essentially
in agreement with the author's conclusions. One additional possi-
ble advantage of the RAMP system over a conventional system is
cost, since no accelerometers are necessary in the RAMP system.
Certain disadvantages or problems in construction of the RAMP sys-
tem should also be noted. These are particularly apparent in the
design of the pendulum suspension and the large pendulum torqguer,
as well as the requirement to align the pendulum axes with the
gimbal axes.

Finally, mention should be made that the system could be
fully digitized, mechanized as a free=-azimuth navigator to eli-
minate azimuth tyro torquing uncertainty and, if inertial quality
components are used, improved accuracies and warm-up to warm-up
repeatability could be achieved.
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