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DEFINITION OF SYMBOLS

Symbol Definition

A beam A, upstream beam

B beam B, downstream beam

C a constant (C = 4id/nD)

D diameter of laser beam; photodetector

id absolute time averaged current supplied to photo-
detector with knife-edge removed

i(t) ac-electrical signal output of photodetector

K(ﬁ,wa,wb,wc) similarity function

R(E, T) cross-correlation function or cross-correlogram
of beam A
s sensitivity of laser schlieren beam
T integration time for computation of cross-correlation
t time
<U> the most probable speed of disturbances averaged over

the beam separation distance §

X,¥,2 coordinates in direction of flow, perpendicular to
flow direction (in horizontal plane), and perpendicular
to flow direction (in vertical direction), respectively

o4 . Gladstone-Dale constant

A beam deflection vector

13 beam separation distance

0 air density

T time delay of downstream signal

7 angle of rotation of A during transit time of disturbance

from beam A to B

iv



DEFINITIONS OF SYMBOLS (Cont'd)

Symbol Definition
2] angle measured from x-axis to beam deflection vector, A
<QP> the most probable preferred angular velocity of the

disturbances

() fluctuating component

?_Y time average

) vector

(A) unit vector

< > expectation value, or most probable value
Subscripts

X,V,% component in direction of x,y,z-axis, respectively
a,b beam A,B

c refers to angle between beam B and the Z-axis
1,2 case A, no rotation; case B, rotation

m most probable; maximum




TECHNICAL MEMORANDUM X-53870

A DIRECT MEASUREMENT OF THE MOST PROBABLE
PREFERRED ANGULAR VELOCITY OF TURBULENT STRUCTURES
BY OPTICAL CORRELATION OF LASER SCHLIEREN SIGNALS

SUMMARY

A method is introduced which provides the means for separating
the translational and rotational motion of turbulent structures. Simple
two-dimensional models are used to relate the skewness of cross-correlo-
grams computed from laser schlieren signals to the rotation of flow
disturbances, The method, referred to herein as the method of '"forced
similarity,'" is discussed with respect to application to the turbulent
free shear layer of an axisymmetric supersonic jet., Experimental results
show that the shape of the cross~correlogram in the neighborhood of the
"peak" is strongly influenced by rotational motion, and therefore, it
becomes necessary to account for the effect in order to determine the
correct statistical properties of the turbulence,.

I. TINTRODUCTION

This document contains the author's preliminary thoughts on the
possibility of making direct measurements of the most probable preferred
angular velocity at "localized"” regions within turbulent flows by optical
correlation of laser schlieren signals [2]. Although some experimental
results are presented which satisfy certain necessary conditions required
of the proposed theory, sufficient data verifying the theory do not pre-
sently exist, However, plans have been made to obtain these data in
Marshall Space Flight Center's Cold Flow Thermal and Acoustic Jet
Facility.

During the feasibility test presented in reference 2, there were
unexplained variations in the shape of the cross-correlograms computed
from laser schlieren signals retrieved from the supersonic turbulent
boundary layer on a thin plate, 1In April 1968, near the conclusion of
this test, the connection between the skewness of the cross-correlograms
and the angular rotation of the disturbances was considered,




Preliminary experimental results eventually led to a method for
separating rotational and translational contributions to the computed
cross-correlograms, This method is referred to herein as the method
of "forced similarity.," The "forced similarity" condition provides the
means for direct measurement of the most probable preferred® angular
velocity of the turbulent structures® at localized regions inside turbu-
lent flows. The potential extension of the method to yield the probabil-
ity distribution of the angular velocity and measurements of vorticity
are very interesting, and may result as a natural consequence of the
development of the laser schlieren system,

II. THE LASER SCHLIEREN OPTICAL REMOTE SENSING SYSTEM

For simplicity, let us consider the model of a laser schlieren
optical remote sensing system shown in figure 1% where two laser beams
of light are directed through the test section of a wind tunnel, The
parallel beams are perpendicular to the flow and separated by a dis-
tance £. The plane formed by the beams is such that flow disturbances
passing through the upstream beam (beam A) at time t, also pass through
the downstream beam (beam B) at a later time t + 7. A knife-edge is
positioned perpendicular to each of the beams such that 50 percent of
the light is prevented from reaching the respective photodetectors when
the beams are undisturbed.

Reference 2 shows that a disturbance characterized by a local gra-
dient of the index of refraction will deflect each of these beams as it
passes through them. Each deflection is proportional to the component
of the gradient which is perpendicular to the path of the beam, When a
deflection occurs, the amount of light reaching the photodetector is
changed. The photodetector converts this change into an ac-electrical

IThe word "preferred" is used since the statistical process does not
yield the angular velocity components based upon statistical averages
of absolute values.

2Throughout this report reference is made to 'turbulent structures'" and
"disturbances" in order to distinguish between the motion of the density
gradient and the motion of fluid particles which represent an "eddy" at
a particular instant, The laser schlieren signals are produced by the
fluctuating density gradient component perpendicular to the path of

the beam [31].

SThis system is described in detail in reference 2,
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Figure 1. A Schematic of A Laser Schlieren System Using Parallel Beams




signal, Therefore, the output signal of the photodetector is related
to the beam deflection which is caused by a local gradient character-
izing a particular flow disturbance passing through the laser beam,

Because the refractive index of air is proportional to the density
(to a good approximation), the output signal of the photodetector is
proportional to the change in the component of the density gradient
which is perpendicular to the beam and to the knife-edge.

i(t) = ds‘i%é—’il] . (L

aveg.

In equation (1), s is the sensitivity of the beam, « is the Gladstone-
Dale constant [3], and i(t) is the output signal of the photodetector,
Also, the knife-edge was assumed to be perpendicular to the x-direction
as shown in figure 2.

Figure 2, a view taken along the centerline of the laser beam
(either beam A or B) from laser toward detector, shows the knife-edge,
the eye of the photodiode, and the laser beam cross section, The beam
is .shown in the undisturbed position and in a deflected position
described by the beam deflection vector, A.

In the following let A(t) and 6(t) represent the magnitude and
direction of A(t), respectively. Further, assume that the eye of the
photodiode has a large area of constant sensitivity compared to the
cross sectional area of the laser beam, and that no laser light falls
outside of this area of constant sensitivity. If the intensity across
the laser beam is assumed to be constant over the beam cross-section
and that the knife-edge is straight, the relationship between the time
histories of the beam deflection vector and the photodetector ac-elec-
trical output is simplified considerably.

Because the area of sensitivity of the eye of the photodiode
monitoring the fluctuating laser light is constant, the component of
the beam deflection vector which is parallel to the knife-edge does not
contribute to the output signal of the photodetector. The component of
A which is perpendicular to the knife-edge will determine the amount of
change in light reaching the photodiode, If the beam deflection is
small compared to the diameter of the laser beam, the output signal,
i(t), can be expressed conveniently as a function of the component A
which is perpendicular to the knife-edge:

z&d
i(t) =L—D~]Ax<t> (2)
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where the first group of terms in brackets on the right-hand side of
equation (2) is the change in the output signal per unit change in Ay
and is assumed to be a constant, C,

1(E) = C - Agt) . (3)

For this case, the photodetector output is a linear function of the com-
ponent of A which is normal to the knife-edge. This result is not
unrealistic and can be approximated very well in practice.

Since
A_(t) = A(E) + cos B(t), (%)
equation (3) can be expressed as
i(i) = C « A(t) - cos g(bt). (5)
Thus, we see from equation (5) that i(t) is a function of the direction

as well as the magnitude of the beam deflection vector.

For the laser schlieren system shown in figure 1, the signals from
the photodetectors monitoring the respective beams are

ia(t) Ca . Aa(t) + cos ea(t) (6)

and

ib(t) Cb . Ab(t) * cos eb(t). (7)

Let us assume that the turbulence is two-dimensional; i.e., the
time-averaged statistical properties do not vary along the beams,
Although this assumption will restrict the analysis, it provides a
better model for the purpose of describing the fundamental concept,
the prime purpose inere. It will soon become evident that relaxing
this assumption will not change the fundamental relationship between
the shape of the correlograms and the angular velocity of the density
gradient vector component which is normal to the respective beams.




The cross-correlation of the signals i,(t) with ip(t + 1) is given
by

[

R(E,7) = lim

T

T
fia(t) . i (t+r) de, (8)
O

Let us substitute equations (6) and (7) into (8) and assume that the
integration time, T, is large enough so that

CaCb

R(E,T) = T Aa(t) . Ab(t+r) . cos ea(t) * cos eb(t+f) dt, (9)

o]

Figure 3 shows the knife-edge orientation for the cross-correlation of
equation (9). This figure also shows the beam deflection vector of beam
A at time t when a particular disturbance is passing through the beam,
and, the A of beam B when the same disturbance is passing through beam
B at a later time t + 7. When this disturbance passes through beam A,
the. beam is deflected in a direction 65, and by a magnitude of Ag.

This magnitude of the deflection vector is determined by the magnitude
of the density gradient component normal to the beam characterizing the
disturbance., The direction of the deflection is due to the particular
orientation of the same density gradient component. If we make the
realistic assumption that the disturbance rotates as it travels down-
stream, its orientation will not necessarily be the same when it passes
through beam B as it was when it passed through beam A. This is repre-
sented in figure 3 where the beam deflection vector caused by a particu-
lar disturbance has rotated during its transit from beam A to beam B.

It follows that

éh(t)x éb(t+T) = Aé(t) . Ab(t+T) - sin g(t+T). (10)

This equation defines the angle ¢ through which the disturbance rotated
during transit from beam A to B. Thus,

plett) = 6, (8) = 6 (t+0). (11)
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Solving equation (11) for 6y (t+t) and substituting into equation (9)
gives

CaCb

R(E,T) = =S [ 8,(6) - A (t+1) - cos g (8) + cos[o,(t) - p(e+n)]dr,

(12)

To examine the effect’which this angular rotation has upon the
cross-correlation function R(E&,7), let us consider a simplified two-
dimensional flow model where it is assumed that the disturbances are
random and produce statistically stationary signals, The cross-corre-
lation function (equation (12)) will be studied for two cases: (a) where
the disturbances do not rotate and (b) where each disturbance rotates
through the same angle, @, during transit from beam A to beam B. Case
(a) will be discussed first,

Figure 4 shows four knife-edge arrangements where the view is taken
along the laser beams similar to that of figure 3, The differences
between these four figures is the orientation of the downstream knife-
edge. If we assume that the disturbances do not rotate, then

g(t+7) = 0, (13)

and from equation (l1), we see that
o, (t+7) = 8_(t). (14)
The signal from beam A will be

ia(t) = Ca . Aa(t) © cos ea(t) (15)

and is the same for all four knife-edge arrangements.

The signal from beam B, for figures 4a,b,c, and d are

ibl(t+r) = C,_ = Ab(t+T) + cos Gb(t+T) (16)

b
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ibz(t+T) = Cb . Ab(t+7) + sin eb(t+T) (17)

i 4(t47) = -C « A (t+7) + cos 0 (t+1) (18)

i, (EF1) = -C, AL (E+T) - sin g (E+7), (19)

respectively,

When we substitute equation (l4) into equation (16), (17), (18)
and (19), the cross-correlation functions for the respective knife-
edge arrangements become

Cc C I
a’b
Ry(E, 1) = [ T ] /ﬂAa(t) . Ab(t+T) + cos ea(t) s CcOS ea(t) dt (20)
o ,

c.C :
Ro(E,T) = { T ] /qAa(t) © Ay (t+r) - ocos 8 (t) - sing (t) dt  (21)
- O
Cacb
R3(E,1) = - { T :} JFA%(t) » A (t+T) - cos g (t) + cos g, (t) dt  (22)
o]
c.C, I
R4(E,T) = - [ 5 J sz%(t) A (E+T) cos g (t) - sin g (£) dt.  (23)
O

The cross-correlograms for these arrangements are shown in figures 5a,
5b, 5c¢, and 5d, respectively. An example of & cross-correlogram, repre-
sented by equation (20), would be similar to that shown in figure 6a.

A cross-correlogram similar to that represented by equation (22) is
shown in figure 6b,

11
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For case B, it is assumed that each disturbance rotates through
the same angle @ during transit from beam A to B; then,

glt+t) = 4. (24)

Expanding equation (12) and making the substitution from equation (24),
we get

. T
c C
R(E,T) = [_%FE] \/pAa(t) . Ab(t+T) coszea(t) + cos ¢ dt

o
CaCb I
+ [ T } \/nAa(t) . Ab(t+T) . CcOS ea(t) . sin ea(t) - sin ¢ dt,
© (25)

Since ¢ is not a function of time, cos ¢ and sin @ can be taken outside
of the integrals on the right-hand side of equation (25), respectively.

CaCb .
R(E,T) = [cos g] [ T } \/nah(t) . Ab(t+T) . cos2ea(t) dt
)
CaCb g
+ [sin ¥} [ T J ]FAa(t) . Ab(t+r) + cos ea(t) - sin ea(t) dt,
)

(26)
In equation (26), the integrals represent the cross-correlations derived

for case A, Substitution of equations (20) and (21) into (26) yields

R(E,7) = [cos @] Ri(€,7) + [sin @] Ro(E,1). (27)

14



Equation (27) relates the cross-correlogram of case B to those of case
A, We see from equation (27) that

R(E,T) = Ry(E,7), for g =0 (28)
R(E,T) = Rp(E, 1), for @ = x/2 (29)
R(E,T) = -Ry(E,7), for g = = (30)
R(E,T) = -Ra(E, 1), for @(3/2) = (31)

as should be expected,

In equation (27) the unknown quantity is the angle @, A direct
measurement of @ for the idealized model in case B can be made by com-
bining case A with case B. This procedure is referred to here as the
method of "forced similarity'" and is as follows:

(1) Compute the cross-correlogram R(E,7) for zero beam separation
with the knife-edges as shown in figure 2 (¢ = 0), Since @ = 0 for
£=0,

R(0,T) = Ry(0,7). (32)

(2) Separate the two beams by moving beam B Jdownstream a known
distance £ from beam A, The position and knife-edge angle, V,, of
beam A are not changed (y5 = 0).

(3) Rotate the downstream knife-edge, B, to the angle {p, which
produces the same '"shape' of the cross-correlogram as was computed for
zero beam separation, For this simplified flow model, the angle Vbm
corresponding to the maximum "degree of similarity" between the cross-
correlograms is equal to the angle ¢ through which the disturbances
rotate during transit from beam A to beam B, The "forced similarity"
condition is

R(E, T = Tooly) = K(E,7,9;) + R(O,7) (33)
where K(E,T,Wb) is "optimum' when vy = Yy, for a particular .

(4) The most probable transit time 7, of the disturbances is
determined by the time delay on the cross-correlogram for separated

15




beams corresponding to the similar position at zero time delay on the
cross~-correlogram for zero beam separation,

(5) The most probable speed of the disturbances is
<U>= ¢ T (34)
(6) The most probable angular velocity is

<> * P = Yy (35)

These models have been used to relate the experimentally observed skew-
ness of cross-correlograms, computed from laser schlieren signals, to
the rotation of the turbulent structures,

ITII. PRACTICAL APPLICATION OF THE METHOD OF FORCED SIMILARITY

In the previous section a method of "forced similarity" was intro-
duced which provides the means for measuring the most probable preferred
angular velocity of the simplified two-dimensional disturbances. As a
consequence of the proposed relation between the skewness of the cross-
correlogram and the rotational motion of the disturbances, the "forced
similarity'" condition, equation (33), must be imposed in order to deter-
mine the most probable transit time, 7,, as well as all other statis-
tical properties which are computed from the shape of the cross-correlogram
in the neighborhood of 71,. Imposing this condition analytically involves
normalization of the cross=-correlogram and optimization of the similarity
function, K(&,7,{},). These details will not be discussed here, Rather,
we will proceed to the practical application,

Figure 7 shows a schematic of the free jet shear layer of a super-
sonic axisymmetric air jet. Two laser beams are directed through the
flow perpendicular to one another and in such a manner that the plane
formed by the beams is perpendicular to the centerline of the jet. The
horizontal beam (beam A) passes through the center of the jet. The
vertical beam (beam B) passes through the shear layer and intersects the
horizontal beam as shown in figure 7.

In reference 4 it is theoretically shown that the statistical cross-

correlation of the signals from two such beams should result in a cross-
correlogram representative of the components of the signals which are

16
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caused by disturbances passing through the localized region about the
beam intersection, That is, flow disturbances passing through the beams
that are not common to both beams do not contribute significantly to

the cross-correlogram (the integration time being sufficiently long).

In reference 2 the experimental verification of this "cross-beam' concept
was successfully achieved in a supersonic (M = 2,0) turbulent wake of a
thin flat plate,

Referring again to the axisymmetric jet, the "forced similarity"
condition may be satisfied for retrieving all three components of the
most probable preferred angular velocity <w,>, of the disturbances
passing through a localized region of the :Eear layer, We may assume
that the mean statistical properties of the turbulence are also axisym-
metric, and thereby eliminate one component of <wp>. However, this is
not necessary and will not be done,

The experimental procedure is as follows:

(1) The beams are directed through the turbulence as shown in
figure 7 with zero beam intersection (£ = 0). The knife-edges are
positioned as shown (Y5 = 0 and y, = 0).

(2) The cross-correlogram R(0,1) is computed,

(3) The vertical beam (beam B) is moved downstream a distance £
as shown in figure 8, and the cross-correlogram R(£,7) is computed which
satisfies the "forced similarity" condition

R(E.:T = Tm:‘lfam:‘qum) = K(é, T"lfam’wbm) ° R(O,T) (36)

for axisymmetric flows. K(&,7,V,psVpy,) 1S determined to be the "weakness'
function necessary to satisfy equation (36) in the neighborhood of 7T .
Experimentally, this involves rotation of both of the knife-edges.

When this step is completed the condition should be satisfied for this
particular flow.

(4) 1If necessary, the next step would be to rotate the downstream
beam in the plane perpendicular to the centerline of the jet. This is
done in increments and step (3) is repeated for each increment until all

three angles Vy,, Yy, and y. have been determined which satisfy the three-
dimensional similarity condition

R(E, T - Tm’\lfama\l;bm’wcm) = 3K(§,T,¢'am,\lfbm,\lfcm) « R(0, 1) (37)
where Y, is the angle of rotation of the vertical beam.

18
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(5) The most probable transit time of the disturbances is deter-
mined by evaluating the similarity condition (37) for 7 = O:

R(0,0) . 38
RCE, 0,0, o4 V) 8

R(E,0 - Tm’wam’wbm’wcm) =

Thus, 1T, is equal to the time delay on the cross-correlogram R(§, T,Vgp,
Vpms Vem) corresponding to the similar position at zero time delay on the
cross-correlogram for zero beam separation,

(6) The components of the most probable preferred angular velocity

are
v
<w> = == (39)
X T
—I'I -
< > = 2 (40)
y T
v
<w > =28 (41)
z T
m
and the most probable vector is
<w> .1 <wu>+ ] <w>+ Kk <w> (42)
=P X y z
(7) The most probable speed of transit is
<U> =& | (43)

“m

Figures 9 and 10 show the first successful cross-beam measurements
made in the supersonic free shear layer of an axisymmetric jet, The
exit Mach number of the nozzle was 2.5, and the expansion was optimum.

20
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In figures 9a and 9b, the positive and negative time delay ranges
of the cross-correlogram are shown, The beam geometry is shown in
figure 7 (£ = 0). It can be seen that the correlogram is not symmetric
about the origin (v = 0), but that there is a dominant peak at (1 = 0),
This cross-correlogram corresponds to R(0,7) in equation (36).

Figure 10 shows the cross-correlogram for a beam separation of one
inch (¢ = 1") with the knife-edges in the same positions as in figure 9
(Y, = 0, yp = 0). The fact that there is a considerable difference in
the shapes of these correlograms satisfies one necessary condition
required by the theory of "forced similarity."

Figure 11 shows four cross-correlations computed from signals
retrieved with a laser schlieren system using parallel beams as pre-
viously described. The data® were retrieved from the supersonic
(M = 2.,0) turbulent boundary layer on the thin plate shown in figure 12,
The beams were separated by approximately 1.5 inches in the direction of
flow and were approximately 1/8 inch above the surface of the plate.
These cross-correlograms were computed with the downstream knife-edge
orientations shown and were the first experimental attempt to relate
the shape of the correlogram, in the neighborhood of the most probable
transit time, 7, to the orientation of the knife=-edges relative to the
flow and to each other.

These data show that the relative orientation of the knife-edges to
each other does indeed influence the shape of the cross-correlogram,
Therefore, it is reasonable to consider that the cross-correlogram is
influenced by a change in the relative orientation of the disturbances
to the knife-edges as they translate from one to the other,

IV. CONCLUSIONS

Based upon the theoretical and experimental results which have been
presented, the following conclusions are:

(1) The relative orientation of the knife-edges to each other con-
trols the shape of the cross-correlogram in the neighborhood of the time
delay, 1y, corresponding to the most probable transit time of disturb-
ances between the laser beams,

.

“These measurements were made in MSFC's Bisonic Wind Tunnel on June 3,
1969 [2].
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(2) The method of "forced similarity'" introduced here provides
the means for separating the translational and rotational contributions
to the shape of the cross-correlogram. However, more experimental
results are needed for verification,

(3) The "forced similarity" condition is based upon the assump-
tion that the shape of the cross-correlogram computed with beams
separated is "similar" to that computed with zero beam separation when
the contribution due to rotation has been eliminated (the effect of
decay accepted).

(4) Because of the rotational influences, significant error can
result in the flow properties which are computed from the shape of the
cross-correlogram unless the influence due to rotation is considered.

(5) The condition of "forced similarity" may be applied by
rotation of either or both beams about the axes of a reference
coordinate system in combination with rotation of the knife-edges.
The particular combination used is primarily dependent upon the flow.
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