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Abstract

A general ruethod for eliminatini, trc: angle variable from the

enuation.; of a perturbed periodic motion and for deriving w.: "adiabatic

invariant" .' !uis been ,T.Lven by Kruskal, and for a :rpecial clac:s of

Harailtor:iarl s ,toms, ilcLamara and Whitec,an have shown ( to order	 2 )Y.'

that J io related to u set of invariants I obtainer: from the exparr-

aior: of Poia:soat bracket relations. In this work., an order-by-orde^-

<ilgoritixi `'or i.ruakal'o ruethod is introduced ana ri r.ew set of invariants

z is obtained. It is shown that these invuritu.ts bear a close relation

to those obtained from the Poisson bracket expansion, aria in the special

case investigated by 4160u.usra and ilhiteman, the relation between I and 'L1

may be brought to the dame form as the relation between 1 and J

derived by those authors. Finally, the relationship betwoeu :: 1 and

is axamined and arguLients vre presented that fir: certain cases the two

-re equal to all orders.
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Id""ROLUCTIW

Let a perturbed periodic mechanical system be given, described by n

canonical variables collectively represented by the vector y and by a

Hamiltonian R dependent on a small parameter 	 , of the form

H = Y1
 + z k 

(k)
	

ll)

(here and in ghat follows, superscripts in parentheses denote order in f- ).

The vector y may be viewed as the solution of the Hamilton-Jacobi equation

for the unperturbed motion, yielding an action variable y  , its conjugate

angle variable y  and a set of ,they variables yi which are constants of

the unperturbed motion.

A perturbation expansion may now be employed to eliminate y  and yn

from the equations of motion to any desired order in E . One such technique

has been devised by Kruskal (1), and will be described in more detail further on

(this method is also applicable to non-canonical systems). By K.ruskal's approach,

a near-identity transformation from the variables y to new "nice" variables z

is performed, so that of the n first-order -,differential equations describing

the evolution of z , (n-1) may be separated and solved independently as an

autonomous set. Furthermore, using these "nice variables", an "adiabatic invariant"

J ,which is a constant of the perturbed motion, may be expressed to any order of E.

If J is used to eliminate z l , one winds up as required with a mechanical system

containing only (n-2) independent variables.

An alternate method of deriving an invariant I for the sy: ,-tem described

by eq. (1) is based on an expansion of the Poisson bracket relation
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C 1, II ]	 -	 0	 lr)

This expansion has been described by dhittaker(2) and was further explored

by ;;cllacwra and whitecaan (j  (hencei •orth referred to us rlcrvW). The latter

authors were able to show -- by a lengthy calculation anu only to order F.2

that the invariant thus obtained is, in a sijecial :as,:, tviated to r.ruskal's J

in what follows we shall show that for a system riven by eq. (1), r.ruskal's

method may be modified to yield a family of invariants in a completely different

way tiian that used in deriving J . It will then be shown that .acne invariair-:s

are solutions of eq. (2) , are related to the invariant of IlciW and also are

connected with the adiabatic invariant J .

1OTATION

In order to obtain concise expressions, the notation used here departs

somewhat from that of Kruskal. In Kruskal's work, y and z have (n-1) compo-

nents rind special symbols V and 0 stand for what we here uenote by y_
and z  . In what folLows, such vectors with (n-1) components, excluding the

angle variable, will be denoted by a tilde, e.g. J , = . Furthermore, if the
canonical variables in y are arranged in order

y =

we shall define a conjugate vector

so that Y  - yn - yr. - -yl

(P,q)	 (S)

(4)
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The use of y enables one to write Yoiason brackets concisely (the sunuation

convention is henceforth used in all sumraatipns over n or (n-1) components)

as

[ a, b]	 a/ l Yi	 b/, Yi )	 ( 5 )

and Hamilton's equationu become

dyi/ dt	 =	 - 7i H/Z Yi	 t.6)

Finally,
ewe shall assume (as in Kruskal's work) that the basic period in the dependence

on yn is unity and denote q•,um tities averaged over yn (which clearly depend

on y only) by angular brackets

1

a >	 =	
J 0 

a dyn

KRU SKAL' S EXNA;, SION

Y.ruskal's method does not require the system to be canonical but assumes the

ivo.lution of y to be given by equations of the form

0̂ +
dy / dt	 =	 L E k 9(k) (Y)	 (7)

^k	
_	 _

where the components of g (k) are periodic in Y. with period unity and where

9(0) has only one non-zero component, namely the n-th. Since we are interested

in systems for which (7) reduces to (6) with H given by (1), we shall assume

that this component is unity

although what follows can be extended to more general cases. We now sock a

near-identity trt=formation to new variables
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?	 =	 Y +	 L_^ j.k ^ (k) (Y)	 (9)
k--1	

-	 -

such that the evolution of z satisfies

dz / dt	 =	 Z.	 k h(k) (z) 	 t10}
k=()

with h	
I1

	

(0)= B 	 :since z does not appear .)n the right-hams side, the

first (n-1) equations of (lU) form an autonomous system which 4iay be solved

independently, the solution then being substituted in the remaiiiing equation

to provide the evolution of z  .

Substitution of (y) in the 1.h.8. )f (10) gives

(

	

dz / dt	 =	 dy / dt +	 F. 
k	

s (k)/
-,
 yi }(dyi/ dt)	 (11)

k=1	 -

rr k	 )	 k-1	 )

LJ ^.	 g(:;	 +	 gl ( j 
	 (k-j )/ b y )0	 i

^.k	
g(k^	

Y	 t^
Y } T	 g(j) 	̂ (k-j)

-'	 n	 }k;-U	 j =1

of (10),
with the V operator defined in y space. We now convert the r.h.sr to depend

on y as well, using the 'Taylor expansion operators derived as follows.

refining the exponential of a differential operator by means of the power

series for ex(k)one can formally express the Taylor expansion of h (z)

as follows ( * stands for "operates on")

h(k)i Z )	 =	 h(k)(Y + 7-^: J ^( ,i)^

exp	
E J (j)  V) +►

 h(k)(Y)

F.j 
T(j)* 

h(k) (Y)	 (12)
j=0

.
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where the TO) are differentiel operators obtained by expanding the expo-

nential. The first few of them are (4)

T (1)	 _	 V

(13)

T (3)	 _	 ^(3).^	 ^(1) (2) : 00	 + (1/6) ^0 ) t (1) ^ (1) ... 7 V V

Becaulse T' 0) equals unity, one can separate the h (k) term from the rest.

The r.h.s. of (10., then becomes

	

f k [,L(k)^,y)
	 +	 k-1	

(.1)	 (k-.J)
L T • h	 (y)	 (14)
J=1	 j

Both sides of (10) are now functions of y and therefore the equality holds

independently for every order. Une thus obtains a set of equations

	

'as(k)/-^ yn - h_(k) (Y) 	 A (k)(Y)	 (15)

where

W(y)
	 - 

T(J) * h(k-J) _ g( k) _ '-I g(J) . V ^(k-J)IL
ja	 J=1

and

k_	 1, 2 9 ...	 1

This may be used as a recursion relation. Suppose all quantities entering

here are (like the g (k) ) either periodic in y  or independent of it. Then

	

a (r) will possess a "secular" part 	 ,^(k)> indepenuent of yn and a

purely periodic part averaging zero

(	 (k) )	 _	 ^(k) - ^)1(k)^

	

Per	 -

(16)



- 6 -

On the l.h.s. of (15), h^ k) is wholly secular by definition, while the

other term there is purely periodic, since any secular part of ' kk) is

removed by the differentia Uon. Thus if A(k) is given we can derive

the k-th order quantities through

h(k) (Y)	 _	 - ( A(k)>	 (17)

from which	

l

d^^k) jyn ^(k)(y)	 }	 y 	 1^ (k)lY)
0	

^^ 	J 	 n

with M (k) an arbitrary secular vector. In Krusskal's work, is/'_"( k)

chosen to vanish, so that at yn 0 the vector z is identical with y

we shall denote the functions thus obtained by ^(k) If howover we only

demand that z should satisfy equations of the form (10), M (k) may be

arbitrarily chosen. In what follows we shall make use of this free choice

in order to endow the "nice variables" z with additional desired properties.

THE NEW DVARIpNT

So far we have treated the general case of xruskal's expansion (apart

from our choice of gn(0) ) with no reference to the canonical character of

y . Taking this nc•w into account, one finds from (1) and (6)

gi(k) 3 - )H(k)/j Yi
	

(20)

Lefiaing for conver1ence

^(0) = Y

and uai ng ( 16) acrd ( 5 ) 1 gives

119)

n
i
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k
(k)	 'r1	 T(j) « h(k-J) , , + z CH (j)^^(k-j)^	 ( 11)

A	 -	 'd -j

Jsl t	 J-Al

We now pone the following question: is it posAble, by proper choice of the

kdl in (ly), to make some component z 1 of 1 a constant Zi of the
/111

motion?

If 
Z  

is conserved, this means that hi (k) vaniahes for all k , which

in turn implies the vanishing of < '^ i(k) > 	 . By the last equation, this

reduces to

rrk
L^ ( ` H(J)^ ^ik-J)Il	 a 0	 (`1)

j=1	 \ L
	

JJ

Suppose that at the stage when eq. (22) is reached the /u(i; have been

derived up to and including the (k-2) order. We cart then fulfil (22) '  by

choosingP i k-1) to satisfy

k
M (1-1)" / H(1)^j	 ^` H (1)^ '0'(k-l' 1)	 +	 l[H(J), ^ 1 ( k-,i)^^	 (^3)!

where the r.h.s. is as:sut•,crd to be known at that Stage. The above equation is a

linear first-order partial differential egLation, and solutions in general do

exist. Deriving them explicitely is another problem, however. For the special

case when all H (k) with k >1 vanish, Mct+amara ar.d Whiteman (who arrive at
obtained from first principles	 allow (k)

a similar equation) Y— formulas which ri	 to be derived (f:r i=1

which is the relevant case, su will be seen) up to k=3.

A different approach to the problem will be outlined in

the last Section of this article.

The iteration for Z1 can thus he carried on -- provided it can to

s',.arted. The first additive function encountered is /till) , used in ensuring

the vanishing of < AI k2/ > . Thore exists no adjustablu variable to ensure the
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the vanishing of	 A	 so the iteration can be :;t,,rted if and oily
I

it' thin term vaniaheu of itu own accord, which in ttu-n impliea

'J li (l )^ v Yi 	-	 0
	

(24)

if kas a:.aumed) y11 ent-. -s H only through anC-ular ter-.an , this All

certainly hold for i=1, Since the yi derivative which is a,.plied in that
case removes the secular part of H (1 ' , leaving, a purely periodic functions.

Thus an invariant L1 of the type discussed here may in eeneral be derived.
If	 111 itself is	 purely periodic, other invariants may be

Venerated for i ^ 1 .

THE POI:i:i01i 3RACLET ME'LIOD

McNamara and	 (3), followine Whittaker (2) , derive an invariant I

(in their notation: J) in the foliowing way. Lot I have an expan;ion in F

I	 =	 ^,,	 k I (k) (Y)	 l25)
k--0	 -

jtnd let H be expanded as in (1) (this is a slight generalization: in the

cited work, all 14(1) with i > 1 vanishb) ). Then

rrk
	

llrIQ), ii(k-j) ,l 	 116i0 
k-0	 j=0 L

dY (>1

I I(k) ^ H (0) ^ = L I kk) ^ Y1^	 _	 ^i I (k)/ oyn 	(27)

So the equation for the k-th order in

k-1

•
	

j=1	
Jc^I (k)I Oyn	 =	 -	 LI (j) , h (k-j ) I
	

(2b)

which defines ► (k) recursively within an arbitrary function of y
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1 

i

I lk) _ _ yn
	

f I k j )^ H(k-j)j dy
Il

,	 +	 G(k (Y)	 (29)L 
O	 J--0

I(k) + G(°)

by (1)) and (21), this is exactly the same as the egwition for 	 (k)
1

provided all hi(k) vanish.

Consider again eq. (28) : due to the y  derivative, its l.h.s. will

be purely periodic, but unless special steps are taken the r.h.s. may well

contain a secular part. We therefore must assume that at the stage at which

I (k) is being derived, G (k-1) has not yet been determined. the r.h.s. can

then be mad-4 purely periodic by requiring

k-2	 \
r G(k-1)^ <n(1) \l = - r I (k-l) , (1)	 'El	 _	 'Elrl(j)' H(k-j)^1 	 (3^iLL	 \	 / ^1	 L	 J	 J--O

which has the same form as (23).

`:he lowest order of k26) gives

rI ko) , 11(0) ]	 = 0	
(0) /)y

so that

I(o) = 1(0)(Y)

The iteration can be started only if I (0) makes the r.h.s of (28) purely

periodic for k=1 :

^I (0) ,	 H(1) ^,	 =	 0	 (31)

Ubviously, any :unction of h (1) can be chosen as I (0) 11OW choose

I(0) 	 \ h(l)>	 (32)
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This however is not entirely Jts„isfactory, since we

ex-^ect I (0) to tena to some natural invariant of the unperturbed system iii the
lirdt of vanishing F. , independent of the choice of 2W . A more suitable

choice is

1(0)	 = Y1
which also satisfies (31), since (24) holds for i=1 . With this choice, I

equals the action variable y1 in the unperturbed limit, a property shared by

the invariant 4  previously derived and also (it may be shown) by kruskal's J .

The alternative choice, made by f c:+W, will be explored in the next sec Aon.

:lith I (0) chosen as in (J3), it also equals 1(G) and it is easy
to show that the expansion equations of I match those of the invariant Z1

stage by stage. On may then match

I (k)	 -	 (k)1
G (k)	 _	 (k)

1

1

by mPkinp identical choices of the arbitrary functions of H 	 by virtue

of '^S3) satisfying (31), of 3 ,1 as well) which can be added to G W and to
at every staLv.

/ 1

THE CHOICE I (0) _	 < H (1) J

iacja:aara and Whitenan chose I (0) as in (32), in the special case where
H(k) vanishes for k >1 . In that case, their recursion continues with

I(1) _ - J 
yr.	

C^H(11
	 H(I	 a dyn	 +	 G (1)	 (34)>>

i (1)	 +	 G(1)

N

(^31

.4
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and

C` cl ), ^H(1)^^ _ (( H(1) i (1) ]>	 (35)

Expanding the invariant Z 1 by Ya-uskal's method, for the same: H,

^1(1)	 = OH

andand by (19)

l̂(1)	 =	 ti(1) - H(1)(yn:,0) l(l)

F'roo (23) and the preceding equation, noting that Secular functions may be
taken out oi' the averaging, brackets

C (l)'	 H(1)>1 _ - C< ii(1j^> H(1)(Yn
1

Let us select

♦ 	 Hk1)(Yn=U)
1

r	 so that

1

The second order equations then are . by (21)

Y

l2)
	 _	 n 

L

r H(1) , <Ii(1)>]dY
n

,	 + Jk,I

	

/ .J	 ^ 1
U

and

r^(2)^ ^ N(1) ^^	 (LH(1)' ^(2)
1 1	 1

This demonstrates that, with matching choices of rduitive functions

I (1)	 _ -^(2)
1
(2)

G 	
-P

f

t
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If additive futictions of higher orders are matched as well, the subsequent

part.- of - ^^ and of I are identical, except for an extra order of F.

in tho former. That means

- f.(I - I(V ^)	 =	 Z1 -	 ^10)	 - f X11)

or

Z1	 =	 H	 - F I	 (36)

a relation reseubling that obtained ( to order ^-, 2 ) by McNW , except that

in their result J appears in place of Z1 .

RELATIO14 TU J

Kruskal defined the adiabatic invariant J by

1

J =	 pk dqk 	=	 J	 pk ( -Z1 .qk/ `) zn ) dZn	 (37)J
0 K

where the integration is carried over a set of points ( "ring") sharing the

same z and differing only in z  . For details about J , the reader is

referred to Kruskal's article (l) ; its value is indeperuent of the canonical

set used in its derivation, though the components of y are the beat clioice

for this role, if t„ey form a canonical set (the inverse transformation z - t y

must then be derived by weans of the bxptwion operators (13) ). Here we shall

merely sketch out the connection between
r Z

1 and J without deriving the

details.

Suppose that among th,i many sets of "nice" variables possible, differing

in their choices of	
(k)

^i	 but all obeying (10), there exists a set (or s

familZ of sets) that is canonical, with z  conjugate to z  . Ubviously,

this set, too, can be used in deriving ( 37), leading immed_ately to

r

n



- 13 -

J = zl

The existence of nice canonical variables has been proved by Kruskal (1) in

appendix 2 of his article. It is furthermore possible to express the14( k) which

generate such variables. The details of this derivation are somewhat involved and

will therefore be described in a separate article; here we shall just assume that

these 
/ i	

are known. Then the transformation which they describe belongs to

the (much larger) frmily of transformations which make z  a constant of the

motion, each of which in its turn provides a solution to the corresponding

Poisson bracket expansion. Thus among the many possible solutions of Z 1 and

I, there exist such ones for which

I = Z1 = J.

Practically, given the /^ ik) 	 which make z canonical, these functions
offer

probablylthe best way of deriving Z 1 or I , since they are known to solve eq. (30).

The only other possibility for solving this equation is to use the formulas of

McNW, which are valid for the lowest few orders only and are specifically

rela ted to the choice of I (0) given in (32).
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