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On Kruskal's Perturbation Metlhod

David »P. Stern
Laboratory for Theoretical Studies
Goudard Space Flight Center
Greenbelt, karyland 20771

Abstract

A general method for eliminating tne angle variable from the
equations of a perturbed periodic motion and for deriving an "adiabatic
invariant" J has been g,f'.sven by Kruskal, and for a special class of
Hamiltonian systems, ilcliamara and Whiteman have shown { to order = )
that J is related to a set of invariants 1 obtainel from the expan-
sion of Poisson bracket relations. In this work, un order-by-order
algorithu for rruskal's wethod is introduced and a rnew set of invariants
Zl is obtained. It is shown that these invariuants bear a close relation
to those obtained from the Poisson bracket expansion, and in the special
case investigated by liclianara and whiteman, the relation between I and
may be brought to the same form as the relation between 1 and J
derived by those authors. Finally, the relationship betwuen Zl and
is examined and arguuents are presented that in certain cases the two

«re equal to ali orders.



LiTiODUCTION

Let a perturbed periodic mechanical system be given, described by n
canonical variables collectively represented by the vector y and by a

Hamiltonian H dependent on a small parameter » of the form
0
- k (k) .
H = ¥y + ‘Z e H (y) (1)

(here and in what follows, superscripts in parentheses denote order in € ).
The vector y may be viewed as the solution of the Hamilton-Jacobi equation
for the unperturbed motion, yielding an action variable ¥y 0 its conjugate

angle variable Yo and a set of -ther variables A which are constants of

the unperturbed motion.

A perturbation expansion may now be employed to eliminate 4 and >

from the equations of motion to any desired order in g€ . One such technique
has been devised by Kruskal(l) and will be described in more detail further on
(this method is also applicable. to non-canonical systems). By Kruskal's approach,
a near-identity transformation from the variables y to new "nice" variables 2z
is performed, so that of the n first-order v.:lifferential equations descriting
the evolution of 2z , (n-1) may be separated and solved independently as an
autonomous set. Furthermore, using these "nice variables", an "adiabatic invariant”
J ,which is a constant of the perturbed motion, may be expressed to any order of € .
If J is used to eliminate zZ, » one winds up as required with a mechanical system
containing only (n=-2) independent variables.

An alternate method of deriving an invariant I for the system described

by eq. (1) is based on an expansion of the Poisson bracket relatign



[1,8] = o (2)

This expansion has been described by Nhittaker(z) and was further explored
by icliamara and whitewan (3) (henceforth referred to as iciW). '‘he latter
authors were able to show -- by a lengthy calculation ana only to order ézz -

that the invariant thus obtained is, in a special caso, related to Kruskal's J .

in what follows we shall show that for a system given by eq. (1), hruskal's
wethod may be modified to yield a family of invariants in a completely different
way tnan that used in deriving J . It will then be shown that zaese invariantis
are solutions of eq. (2) , are related to the invariant of kcNW and also are

connected with the adisbatic invariant J .
WOTATION

In order to obtain concise expressions, the notation used here departs
somewhat frou that of Kruskal. In Kruskal's work, y and z have (n-1) compo-
nents and special symbols V and ¢ stand fof what we here uenote by v,
and Z, . In what foliows, such vectors with (n-1) components, excluding the
angle variable, will be denoted by a tilde, e.g. y , 2 . Furthermore, if the

canonical variables in y are arranged in order

y = (p,q) (3)
we shall define a conjugate vector
7 = (Qo‘P/ (4)

so that §, =y , ¥, =-¥; -«



The use of § enables one to write Poiuson brackets concisely (the sumuation
convention is henceforth used in all summatipna over n or (n-l) components)
as

la, 0] = (Ra/25,)(P0/2y,) (5)

and Hamilton's equaticns become

dy,/ dt = - H/?F, ‘6)

Finally,
\we shall assume (as in Kruskal's work) that the basic period in the dependence

on y, is unity and denote quantities averaged over y = (which clearly depend

on ¥ only) by angular brackets

<a) = j a dy
0
XKRUSKAL'S _ EXPALSION

Kruskal's method does not require the system to be canonical but assumes the

avolution of y to be given by equations of the form

gy /dt = 2, &k g(k)(g) (7)
k=0

where the cemponents of g(k)

(0)

g has only one non-zero component, namely the n-th. Since we are interested

are periodic in Yo with period unity and where

in systems for which (/) reduces to (6) with H given by (1), we shall assume

that this component is unity

g = (0,00 1) (8)

although what follows can be extended to more general cases. We now seek a

near-identity transformation to new variables




+ 5 e plk)(y) (9)

£ =

]
<

such that the evolution of g satisfies

ig/at = 2. gkplp (10)
k=0
with h(o)= g(o) . Since z, does not appear on the right-hana side, the

first (n-1) equations of (10) form an autonomous system which may be solved
independently, the solution then being substituted in the remaining equation

to provide the evolution of z, -

Substitution of (9) in the l.h.s. of (10) gives

dz / dt

ay/at + X €F (ls(k)/zyi)(dyi/ dt) (11)
kel B

.k (k) = ,
y{?)t' {.-‘-‘ * Eo & a?‘?_s(“'”/ayi)}

K=~1

k - o )
- Z_. €. {- g(k) . ()g(ﬂ)/} yn) r 3 g(‘”- V; (k=j) }
k=0 - = j=1 - =

with the V operator defined in y space. We now convert the r.h%‘rﬂ%pend
on y as well, using the 'aylor expansion operators derived as follows.
vefining the exponential of a difterential operator by means of the power
series for e° , one can formally express the Taylor expansion of E(k) (2)

as follows ( * stands for "operates on")
= exp Z_an(j),v) - E(k)(?)

_ {_'o gl pld), h(k)(y) (12)
J
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where the T(J) are differentiul operatora obtained by expanding the expo-

nential. The first few of them are ‘4
T(o) = 1
(1) (1)
T = Vv
, 5 _ (13)
S R AP LI 1
2(3) . S(’j).v ) ;(1) s(z), vv  + (1/6) S(1)5(1) 5(1)... IVY
Because ’1‘(0) equals unity, one can separate the h(k) term from the rest.

The r.h.s. of (10} then becomes
k-1 . .
k { p()g) otd), h(x-.;)(~)} o
S & {- y) o+ ;5 by

Both sides of (10) are now functions of y and therefore the equality holds

independently for every order. One thus obtains a set of equations

S T A () P LT (15)
where )
Nhy) - ‘ngm,p_m) £ ‘J‘Li (W gz 06)
and
k = 1,2, ..

This may be used as a recursion relation. Suppose all quantities entering
i
here are (like the g(k)) either periodic in y or independent of it. Then
A(k) will possess a "secular" part ¢ )(k)) ' independent of A and a

purely periodic part averaging zero

( -A-(k))per - %(k) 2 <)-(R))



On the l.h.s. of (1%), n&k) is wholly secular by definition, while the

other term there is purely periodic, since any secular part of (k) is

2

removed by the differentiatvion. Thus if ;\(k) is given we can derive

the k-th order quantities through

My - - (A(“)> (17)
fas(k)/,wn . a(k;‘ - <auc)> (18)

from which

Y,
ST I PR S Sl SR/

-

with /\1\(“) an arbitrary secular vector. In Kruskal's work, _/‘_‘(k) is

chosen to vanish, so that at Y= O the vector gz is identical with y 3
we shall denote the functions thus obtained by %(k) . If however we only

-

demand that z should satisfy equations of the form (10), /u“‘) may be

arbitrarily chosen. In what follows we shall make use of this free choice

in order to endow the "nice variables" 2z with additional desired properties.

THE NEW IWVARIANT

So far we have treated the general case of Kruskal's expansion (apart
from our choice of gn(o) ) with no reference to the canonical character of

y . Taking this ncw into ecccount, one finds from (1) and (6)

g = - g, (20)

Defining for convenience

S(O) =y

and using (16) and (S)Igivea

(19)



K

k=1 : ) ,
>\(k) - = pld), B(k-.))(?)}_'. Z [n(u'?}(k—;)J (1)
- J=1 J J=1 -

We now pose the following question: is it possible, by proper choice of the

/‘j(“) in (19), to make some component 2z, of 3z & constant %, of the

i
motion?

If z, 1s conserved, this means that h (k) vanishes for all k , which

i
in turmn implies the vanishing of ¢ )1“) Y . By the last equation, this

reduces to
k
.Z‘;: <[H(“-'S§""”J> o (32)
J:

\
Suppose thet at the stage when eq. (22) is reached the /,_.(i/ have been
derived up to and including the (k=2) order. We can then fulfii (22) by

(k=1)
choosi. .
ng ,/‘4 i

k
[, (4] - <[H(1),"(1;-1)]) . E ([H(J”. gi“"i’]> (23)

where the r.h.s. is assuned to be known at that etage. The above equation is a

to satisfy

linear first-order partial differential eqL‘ation. and solutions in general do
exist. Deriving them explicitely is another problem, however. For the special

(k)

case when all H with k >1 vanish, McNamara and whiteman (who arrive at

obtained frow first principles allo \
a similar equation) ~ Y  formulas whj.;t-xr_/‘!';(k) to be derived (fzr i=1,
wnich is the relevant case, as will be seen) up to k=3,
A different approach to the problem will be outlined in
the last section of this article.
The iteration for Z1 can thus be carried on -- provided 1t can te
started. The first sdditive function encountered is /«1‘“ , used in ensuring

the vanishing of < /\1(2)> . Thore exists no adjustable variable to ensure the




the vanishing of < Ai(1)> y 80 the iteration can be usturted if and ouly
L]
if this teru vunishes of its own accord, which in tuim implies

< ’bu(l)/ A > = 0 (24)
If (as ausumed) ¥, emt:'s H only through angular terus, this will
certainly hold for i=1, since the Y, derivative wnich is ajpplied in that
case removes the secular part of Hu’ » leaving a purely periodiec function.
Thus an invariant zl of the type discussed here muy in generul be derived.
If H(l" itself is purely periodic, other invariants may be

generated for i £1 .

THE _POISSON _BRACKET METIIOD

McNamara and H‘nitemnn(3). foliowing Uhittuker(z) , derivc an invariant I
(in their notation: J) in the following way. Let I have an expansion in £
o | k )
1 - 0, eX1i®y) (25)
k=0 -
let H be expanded as in (1) (this is & slight peneralization: in the

cited work, all N(i) with i>1 vanish(”). Then ,

., Kk e
[I. H_] = 0 = é) E.‘ J{{; [I(J)' ﬂ(k-J)J (26)

By (v) ,
[, @] 2 [1%, 5] - 2%y, @

So the equation for the k-th order is

k-1
’bI“"/’byn - - 3):% [I(J)'u(k-J)J (28)

which defines I(k) recursively within an arbitrary function of ¥



yn k-1 s . \

1“‘) - 5 N [I\J)' u(k"’)_] ay! + c(k'(‘_i) (29)
o 90
1k, ek

By (19) and (21), this is exactly the same as the equation for ;i(k) ¢

srovidid a1l B! vanish.

i

Consider again eq. (28) : due to the y, derivative, its l.h.s. will
be purely periodic, but unless special steps are taken the r.h.s. may well
contain a secular part. We therefore must assume that at the stage at which
() olk-1)

is being derived, has not yet been determined. The r.h.s. can

then be mai» purely periodic by requiring

k=2
i j=0 =

which has the same form as (23).

The lowest order of (26) gives

[1(0)' H(0)] o 7 = QI(O}/Dyn

so that
I(O) - 'I(O)('i)

The iteration can be started only if I(o) makes the r.h.s of (28) purely
periodic for k=1 :

[1(0).<H(1))] = 0 (31)

1) (0)

Ooviously, any runction of H( can be chosen as I

10 ('a(l)> (32)

; McNW choose



- 10 -

This however is not entirely satisfactory, since we
exvect I(o) to tend to some natural invariant of the unperturbed system in the

limit of vanishing € , independent of the choice of . A more suitable

choice is
10 ' (33)

which also satisfies (31), since (24) holds for i=1 . With this choice, I
equals the action variable yl in the unperturbed limit, a property shared by
the invariant 4 previously derived and alsc (it may be shown, by Kruskal's J .
The alternative choice, made by licliW, will be explored in the next section.

Vith I(O) chosen as in (J3), it also equals §]}0) and it is easy
to show that the expansion equations of I match those of the invariant Zl

stage by stage, On may then match

(k) §k)

]

by making identical choices of the arbitrary functions of H(l) (and by virtue

(k)

of (33) satisfying (31), of y, as well) which can be added to G and to

/Al\k) at every stage.

THE CHOICE 1(0) = <H(1)>

lcllamara and Whiteman chose I(o) as in (%2), in the special case where

H(k) Vénishes for k>»1 . In that case, their recursion continues with

y |
- jn ((um% B Yoy e o(t) (34)
0 _

)

(1)

+ G(l)



- 11 =

and
[o®, )] = ([0, 307) (35)

Bxpanding the invariant Z1 by Kruskal's wmethod, for the same H,

)‘1(1) - ’Bu(l)Nyn
and by (19)

S‘I(l) - H(1)_ H(l)(yn=0) + /41(1)

Froo (23) and the preceding equation, noting that secular functions may be
taken out of the averaging brackets

[/4(1). <a(1))] - [(u(l),). H(l)(yﬁ))]
1

Let us select

/“‘il) DY CYIN TS

so that

S(11) , g1 <H(1)>

The second order equations then are , by (21)

y
©) I Gl g ¢ DI G DI b (2)
;1 'fo [.H '(H 7] n * /1
and

[/AEZ)' (u(l))] - <[3(1). ’%iw])

This demonstrates that, with matching cloices of qduitive furctions

!

(1) (2)
I = -
§1

1) /,\ (2)
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If adaitive functions of higher orders are muatched as well, the subsequent
parts of '§| and of I are identical, except for an extra order of £

in the former. That means

- (1 - 1\ o Z - S(O) ey
1 1
or
3 = HB - &1 (36)

a relation reseubling that obtained (to order £ ° ) by MohW , except that

in their result J appears in place of 21 .
RELATION TO J

Kruskal defined the adiabatic invariant J by

al

I = j();‘pkqu - S Z_ p (29/22) dz_ (37)

0
where the integration is carried over a set of points ("ring") sharing the

same 2z and differing only in Z, . For details about J , the reader is
referred to Kruskal's articlo(l) ; its value is indepenuent of the canonical

set used in its derivation, though the components of y are the beut choice
for this role, if tiey form a canonical set (the inverse transformation z —» y
must then be derived by means of the éxpmnsion operators (13) ). Here we shall

merely sketch out the connection betveen.r 2, and J without deriving the

1
details,
Suppose that awmong thn many sets of "nice" variables possible, differing

(k)
in their choices of M '™ o ) ioving (10), there exists a set (or a

family of sets) that is canonical, with z, conjugate to 3z . Obviously,
this set, too, can be used in deriving (37), leading inmediately to

L
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J = z,

The existence of nice canonical variables has been proved by Kruskal(l) in
appendix 2 of his article. It is furthermore possible to express the gk) which
generate such variables. The details of this derivation are somewhat involved and
will therefore be described in a separate article; here we shall just assume that
these /A§k) are known. Then the transformation which they describe belongs to

the (much larger) femily of transformations which make 2z, a constant of the

1
motion, each of which in its turn provides a solution to the corresponding

Poisson bracket expansion. Thus among the many possible solutions of Z1 and

I, there exist such ones for which

Practically, given the /V\ik) which make 2z canonical, these functions
offer

probablyYthe best way of deriving Z, or I, since they are known to solve eq. (30).
The only other possibility for solving this equation is to use the formulas of

lMcNW, which are valid for the lowest few orders only and are specifically

(0)

related to the choice of I' ’ given in (32).



(1)
(2)

(3)
(4)

(5)

-1 -
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