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THE ROLE OF STAGED SPACE PROPULSION SYSTEMS
IN INTERPLANETARY MISSIONS
By Duane W. Dugan

Office of Advanced Research and Technology
Mission Analysis Division
Moffett Field, California 94035

SUMMARY

Conditions for obtaining maximum performance from two or more stages of
space propulsion are examined both by theoretical means and by a procedure
which utilizes numerical integration of the equations of motion in planetary
gravitational fields and which includes empirically derived scaling laws for
inert masses. Comparison of results indicates that the assumption of a con-
stant value for the inert fraction in an often-used theoretical model leads
to optimistic predictions of advantages in performance to be gained by staging
space propulsion systems, even though gravity losses are taken into account.

In general, results of the numerical method indicate that the performance
of two stages of space propulsion {(cryogenic chemical, solid-core nuclear
systems or their combinations) does not significantly surpass that of a single
stage unless the required energies are so high that the payload fractions are
small (about 0.10 or less). Overall performance of two stages used to escape
from Earth orbit is found to be insensitive to the ratio of the thrust of the
second stage to that of the first from about 0.10 to 1.0. Performance of a
combination of nuclear and chemical stages is better when the chemical system
serves as the second rather than the first stage of a two-stage system,
Results of the study indicate that adding a third stage does little or nothing
to increase performance over that of two stages.

The use of two stages of space propulsion rather than one is applied in
several high-energy interplanetary missions. Results suggest that although
markedly better performance is achieved, the actual performance of two-stage
systems in most of the missions studied is still so poor that other means for
accomplishing such missions should be considered. Possible alternate means
include the use of planetary gravitational fields to add energy to spacecraft
trajectories, and the development and use of advanced propulsion systems such
as low-thrust electric systems (solar or nuclear power), or liquid~ or
gaseous-core nuclear engines of high specific impulse,

INTRODUCTION

The energy requirements of certain interplanetary missions are so large
that using a single-stage chemical or solid-core nuclear propulsion system for
Earth escape or target capture or both would result in excessively large



initial masses in Earth orbit for the payloads delivered (ref, 1). These
high-energy missions include solar probes to within 0,05 of the Sun, synchro-
nous solar orbiters at a heliocentric distance of 0.176 AU (for a 27-day
period), solar probes inclined to the plane of the ecliptic at angles greater
than about 45°, missions to orbit the outer planets for trip times shorter
than those required for Hohmann transfers, and orbital missions to Mercury,
The purpose of this paper is to examine whether using two tandem stages rather
than one stage during Earth escape or at the target or both will improve the
capability of chemical or solid-core nuclear upper-stage propulsion systems
sufficiently to justify the added operational and systems complexity involved.

Although many analyses and studies pertaining to staging of rockets and
propulsion systems have been made, it appears that attention has been confined
to surface launch vehicles or to vehicles in gravity-free space (see, e.g.,
refs. 2-4). Results of such studies have either limited or no application to
the use of multiple stages of propulsion intended for escaping from or effect-
ing capture into relatively low orbits about planets with appreciable gravita-
tional fields. Consequently, other approaches are developed and applied in
the present study.

The first part of the present study deals with the conditions for optimum
staging of two or more propulsion systems to obtain the largest payload frac-
tion. First, the usual theoretical model in which the inert masses scale
linearly with propellant mass is adopted in order to determine the relation-
ships among the various systems parameters which lead to maximum overall per-
formance. A second model that includes the effect of "fixed" inert masses is
similarly analyzed. 1In a different approach the payload fraction of two stages
in tandem is optimized on the basis of numerical integration of the equations
of motion. This latter method takes gravity losses into account and enables
the selection of the thrust levels of the two stages that result in the maxi-
mum payload. Results of the theoretical and numerical methods are compared
for propulsion systems having the same specific impulse.

The second part of the paper assesses the advantages in performance
resulting from the use of two stages of propulsion, rather than one, to achieve
the high energies typical of several of the aforementioned interplanetary
missions.

NOTATION AND DEFINITIONS

a(t) instantaneous acceleration

aj initial acceleration

c exhaust velocity of propellants
ISp specific impulse

k ratio of inert mass to propellant mass



emos

gravity
loss

initial gross mass of first stage

mass of inerts which do not vary appreciably with propellant mass
total mass of stage inerts

mass of stage propellants

mass of propellant module

ratio of stage payload to stage gross mass

ratio of payload of last of n stages to initial gross mass of
first stage

thrust
time
optimum time for separation of first stage

hyperbolic excess speed (speed relative to a massive body at an
infinite distance)

total velocify increment, including gravity losses

dMS

TR slope of curve of inert mass of propellant module versus
p

propellant mass

Subscripts

first, second, . . . nth stage

values found to yield optimum results (e.g., maximum performance)

Definitions

A unit of speed equal to Earth mean orbital speed about the
Sun, 29.7848 km/sec

A loss in performance of a propulsion system using finite thrust
to accelerate a stage to a final velocity and altitude in a
gravitational field as compared with the hypothetical perfor-
mance of the same system using an infinitely large impulsive
thrust to attain the same final orbital energy. The loss is
associated with the change in gravitational potential imparted
to those portions of usable propellants yet unconsumed during
the thrusting period. It is usually expressed as an equivalent



velocity increment which if added to the impulsive velocity
increment and the sum used in the rocket equation

Mi/ (M3 - M) = eA ¢ would yield the same performance as in
the case of the finite thrusting. In general, numerical methods
are required to evaluate the performance of propulsion stages
having finite thrust.

CONDITIONS FOR OPTIMAL STAGING

The rationale for using more than one stage of propulsion to impart
velocity to a payload is that dropping spent propulsion stages reduces the
total mass that undergoes acceleration and thereby enables a higher final
velocity to be attained with a given payload, or allows a heavier payload to
be accommodated for a given terminal velocity, or permits a lower initial mass
for a given payload and terminal velocity. The viewpoint adopted here is that
given either payload or initial mass, the purpose of staging upper-stage pro-
pulsion systems used for escape from or capture into planetary orbits is to
maximize the ratio of payload to initial mass. Terminal velocities required
for interplanetary missions can, of course, be determined independently from
the energy requirements (hyperbolic excess speeds).

Theoretical Analysis

The payload Mj of a given propulsion stage is defined by the equation

M =M; - Mp - Mpy

where M; 1is the initial gross mass of the stage, Mp is the mass of propel-
lants expended in achieving a velocity change AV, and My denotes the mass
of inerts (those of the rocket engine, propellant tank and other structures,
and reserve and ullage propellants). The payload fraction can be expréssed

by
M M[1+<M /M)]
Ro. L_q_ P IN'T'P

1 Mi

=

Two methods of treating the ratio of the mass of inerts to the propellant
mass will be considered. For one, the ratio will be assumed to have a con-
stant value o for a given stage. This assumption has often been adopted in
propulsion and mission-analysis studies because of the simplicity it affords.
In the other method, the inert masses will be considered to consist partly of
certain '""fixed'" masses that do not change significantly with propellant mass,
and partly of other masses that vary linearly with propellant mass. This
view results in an inert fraction that varies in a nonlinear fashion with Mp.

Linear inert scaling law.- If the ratio of MyNy/Mp is assumed to be
equal to a constant o, the equation for the payload fraction of a propulsion
stage can be written
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R = (1+ o)e‘Av/c -0

where ¢ 1is the exhaust velocity of propellants relative to the spacecraft
(equal to the product of g,, the standard gravitational acceleration of Earth
(9.80665 m/sec?2), and ISP (specific impulse) of the stage). In the case of
two tandem stages, the payload of the first stage becomes the initial gross
mass of the second; the payload of the second stage is the mission payload.
The ratio of the latter to the initial gross mass of the first stage is there-
fore given by

R(2) = R4Ry (1)
where R(2) denotes the payload fraction obtained with two stages of propul-

sion, and the subscripts 1 and 2 refer to the first and second stages, respec-
tively. The payload fractions of each stage are given by

Rl *AVI/CI

(1 + gp)e - 01 (2a)

and

(1 + Oz)e_sz/cz - 0 (Zb)

Ry

Use is made of the condition that the sum of the velocity increments AV; and
AVp is equal to the total AV required in a given application, that is,

AV = AVy + AV, (3)

Setting equal to zero the derivative of R(2) with respect to either AV; or

AV, yields conditions for maximum R(2):

AVy/cy RZCZeAVZ/Cz

1+ 0, - 1o+ Go (4)

Ricye

Even if a constant value is assumed for the inert fraction, an explicit
expression for AV; or AV, 1is not obtained for two stages having different
specific impulses and different inert fractions. The expression obtained,

namely
1 + o1 C [ o .
2 2 _
AV = ¢ In{——[1 - —= + 2 "2 (8V-aVy)/ep
g1 (&3] Ci 1 + Go

could be used to find AV; and AV, for given values of AV, c;, c,, 07, and
0o by graphical means, iteration, or other devices.

If the two stages have the same specific impulse (c; = cyp = c¢), some
simplication results:



o, 1 + o,
AV, = 0.5 AV + 0.5c¢ Zn(——-————~—
g1 1 + o,

An equation often used to express the conditions for optimum staging of two
similar stages is obtained when it is assumed in addition that o; = 0, = o

Thus, we have

AV = AV, = 0.5 AV
Ry = R, =R
and 2
R(2) = R? = [(1 + o)e’AV/2C - 0] (5)

This result can be extended easily to any number n of similar stages, that
is,

R(n) = [(1 + o)e bV/ne _ o]n (6)

In reference 2, essentially the same results as shown in the foregoing
were obtained by seeking the conditions for achieving maximum final velocity
for a given payload with two stages.

Nonlinear scaling law for inerts.- In practical propulsion systems, the
mass of inerts does not scale linearly with the mass of usable propellants.
In the case of the propellant module (propulsion module less the engine),
masses of certain items tend to remain relatively constant for rather wide
variations in the propellant capacity of the tanks. One useful scaling law
for calculating the mass of a propellant module (empty, except for reserve
propellants and pressurization devices) is (ref. 1)

MS=———MPO‘9+B (7)

in which A and B are constants, p is the specific gravity of the propellant,
and M. 1is the inert mass of the tank and associated structures and compo-
nents. This equation was used for the plots in figure 1 for modules designed
to contain liquid hydrogen and liquid hydrogen/liquid oxygen; the figure also
shows the ratio of Mg to Mp in each case. It is evident that the ratio
Mg/Mp increases as the mass of required propellant decreases,

The mass of a given rocket engine depends chiefly upon its design thrust
level, which, in practice, is not varied with propellant mass but is selected
on the basis of stage acceleration levels (i.e., initial gross weight). Also,
in the interests of economy, a given engine is likely to be used in several
applications involving a rather wide range of propellant requirements.




An additional more-or-less ''fixed" inert mass is that of interstaging
structures used to interconnect the payload with the propulsion system, and
one stage with another.

If the inert mass of a stage is considered to include both '"fixed" masses
and those that vary linearly with propellant mass, the inert fraction k; of
the first stage would be

O’lMP + MF MF
k ! Loogy + .
1 = = V1 ARREN
MPl M (1 e AVl/Cl)
where o 1is dMS/dMP, a constant, and MF is the fixed mass of the first
1

stage. The payload fraction R; then becomes
-AVy /ey
Ry = O +00e - 0] = =

For a second stage, however, the inert fraction k,; involves the payload
fraction of the first stage, that is,

S22, —
Mp, RlMi(l - e sz/cz)

Likewise, the second-stage payload fraction is now

Rp = (1 + Uz)e—sz/Cz - 0o - 2

The overall payload fraction of the two-stage system can be expressed by

MF M

- 1 - 2
R(2) = (1 + 01)e AVi/er | o1\l + o7 [ 1+ cz)e aVa/ea 02] -
1 1

(8)

Conditions for obtaining maximum performance of two stages in this case are

found to be
RlcleAvl/cl I:Rz + (MFz/RlMi>]C2

— : ,
1 Ry, + 0y + (MFZ/RlMi)

or, in terms of velocity increments,



-1
MF

1+ 04 c c o
AV] = ¢c; In —0—1— [1 - _Z + 2 _2 e(AV-Avl)/Cil 1 + ——

As in the previous example based on a linear scaling law, graphical or itera-
tion methods or other schemes are required to obtain values of AV; or AV, in
the general case.

If both stages have the same specific impulse and utilize identical pro-
pellants (i.e., ¢ = ¢co = ¢, and 0] = 0y = ¢), fairly simple expressions are
obtained for the stage velocity increments:

M
F1
AVy = 0.5 AV - 0.5c in|l + o, (9a)
MFl
AVy = 0.5 AV + 0.5c in |1 + oM (9b)
i

The equation for the maximum payload fraction of the two similar stages can be
written as

Mg \1/2 2 Mg
-AV/2c o1+ 1 2

oMi Mi

R(2) = [ (1 + o)e (10)

This expression can be compared with equation (5) which was derived earlier on
the basis of a linear scaling law for inerts. It is clear that a simple defi-
nition for the inert fraction leads to a more optimistic view of the efficacy
of staging than does the more practical and realistic definition used to
obtain equation (10).

Calculations for more than two stages become increasingly involved and
lead to inconvenient solutions. The case of three stages having the same
specific impulse and using identical propellants is treated here. The pay-
load fraction R(3) can be expressed as

R(S) = R1R2R3

M
MF

Rl[(l + oye Ve °] N [(1 v o)e tVele 0] - - an
1

If AV3 is considered fixed, one finds by solving the expression

3R(3) _ _ 3R(3) _

5 AV 2 AV,



that M
Fl
AV = AV2 - ¢ in{l + gﬁl—

or, with the condition that the sum of the three-stage velocity increments is
equal to the total change AV required,

M

F
- 1
avy = 0.5(av - av3) - 0.5c nfl + o (12a)
and
MFl
AVp = 0.5(aV - AV3) + 0.5¢ (L + o, (12b)

as might be expected from the results obtained in the case of two similar
stages (cf. eq. (9)). Substituting these values of AV; and AV, into equa-
tion (11) gives an expression for R(3) in terms of AV3, AV, ¢, o and the
ratios of the fixed masses to the initial mass, If we set

MF1
A=1+ oM C=1+c¢
1
M
F AV/2c
B=—2 D=ce
oM

the expression for R(3) becomes

Mp

CYA AVa/oc C AVa/2c -AVa/c 3
R(3) = <———~e 3 - 06)(——-—6 3 - 0) - cB] Ce 3 -0} - = (13)
[ D D/K ( ) M,

From the procedure used in its derivation, equation (13) represents the locus
of first-maximum values of R(3) for all values of AV3 in the range of AV.
To find the value of AVg corresponding to the overall maximum value of R(3),
we equate to zero the result of differentiating the right-hand member of equa-
tion (13) with respect to AV3 and solve the resultant equation for the

appropriate root. In terms of x = eAV3/2c

written as

, the resultant equation can be
xt - %?-A1/2x3 - DAY/ 2« - (g—é—gé) D2 = 0 (14)

In general, only one root of this equation will yield a maximum value of R(3).
Analysis shows that typically only one real positive root of equation (14)



exists when the coefficients are related to propulsion systems. Once this

root x; is found, it can be used in equation (13) to find the maximum perfor-
mance of three similar stages directly, or, alternatively, the three AV can
be calculated from

AV3 = 2¢ In x3

and from equation (12); these AV can be used to calculate the payload frac-
tions R;, Ro, and R3, and then R(3) = R;RyR3.

Numerical Method

Although the equations derived in the foregoing may appear entirely
applicable to assessing performance of two or perhaps more stages of space
propulsion systems, they all suffer from a common defect. This defect arises
from the lack of exact definitions of the total velocity change required, AV,
and of the AV supplied by each stage. The equations apply actually to sys-
tems of infinitely high thrust (impulsive AV). However, in practice, the
stage AV will generally include ''gravity' losses which depend on the accel-
erations, speeds, flight-path angles, and distances from planets at thrust
initiation of each stage, as well as on the specific impulse. It is not
known a priori what the total AV, including stage gravity losses, will be for
a given required hyperbolic excess speed. Nor do the equations derived con-
tain information relating to the thrust levels and, hence, engine masses
appropriate to each stage. To be truly representative of actual staging per-
formance, the theoretical equations should be supplemented by additional
information from other sources.

In addition, it was noted in the theoretical approach that solutions, in
the case of dissimilar stages, are not mathematically convenient.

In view of the foregoing, a numerical approach was developed to include
gravity losses and realistic scaling laws for inerts in the simulation of the
staging of two propulsion systems having either similar or unlike character-
istics. In brief, equations of motion of a given initial mass undergoing
tangential thrust are first integrated numerically from an initial velocity
and planetary distance to some fraction f of a given hyperbolic excess
speed V_ (0 < f < 1). Tangential thrust has been shown to give results
within a fraction of 1 percent of those based on an optimal steering program
in similar applications and involves guidance requirements less complex than
those of the optimal method (e.g., ref. 5). The payload at termination of
the first-stage thrusting is then calculated and used as the initial mass of
the second stage. Integration is resumed with this mass and with an input
thrust level of the second stage until the given hyperbolic excess velocity
is reached. The payload of the second stage is then calculated, as is the
product of the two payload fractions, R(2). The fraction f 1is decreased
incrementally from unity (which represents a single stage only) toward zero.
The fraction f that produces the largest overall payload fraction is then
found, as well as the largest value of R(2) and its components R; and Rj,.
The largest value of R(2) obtained in this way will not always necessarily
be the maximum ratio possible; inasmuch as f has a lower limit of zero, the
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first stage will contribute at least parabolic velocity, and it is conceivable
that in some instances dropping of the first stage at lower velocity could
yield a larger payload. However, for hyperbolic excess speeds as large as

0.1 emos (earth mean orbital speed, 29.7848 km/sec), analysis of the detailed
data from computer runs shows that the slopes of the curves of payload frac-
tion versus f for both stages reach equal absolute values at £ > 0 satisfy-
ing the conditions for the maximum value of the product of the fractions.
Other quantities of interest are calculated for each value of £. These
include the impulsive AV, gravity losses, inert fractions, and thrusting
times of each of the two stages. For deparature from a planetary orbit (cir-
cular or elliptic) the integration proceeds normally with the acceleration due
to thrust increasing with time since the mass decreases. For capture into a
planetary orbit, however, the integration commences at the final conditions of
payload mass, velocity, and position in the orbit and proceeds toward the
mostly unknown initial conditions, with mass increasing with time (thrust
acceleration decreasing). An automated iteration scheme is employed in this
case. The foregoing procedure is incorporated into a program for a high-speed
digital computer.

With such a computer program, the effects on two-stage performance can be
found readily for a number of parameters such as initial acceleration of the
first stage, thrust level of the second stage, hyperbolic excess speed, and
magnitude of stage inerts. These effects are discussed in the following
sections.

To assist the reader in relating performance capabilities of propulsion
systems discussed subsequently to mission energy requirements, hyperbolic
excess speeds for typical high-energy missions are listed here.

Mission Hyperbolic excess speeds, emos (km/sec)

Earth depart Planet arrival Planet depart

Solar probe to 0.05 AU 0.680(20.254)
45° inclination to

ecliptic 0.695(20.700)
Synchronous solar orbit 0.445(13.254)| 0.7249(21.590)
Jupiter orbiter (550

days) 0.353(10.514)| 0.400(11.914)
Saturn orbiter (3 yr) 0.395(11.765)| 0.395(11.765)
Uranus orbiter (6 yr) 0.432(12.867)| 0.413(12.301)
Mercury manned orbiter

(370 days) 0.323(9.623) 0.2819(8.396) 0.3643(10.851)

Initial acceleration of first stage.- In order to gain an insight into
the factors that influence the selection of the initial acceleration of the
first stage of a two-stage propulsion system, the performance of a single
stage in achieving hyperbolic excess speed in the gravity field of a planet is
first examined. Two approaches to the problem of determining the variation of
performance with initial acceleration are possible. For example, in the case
of injection from a parking orbit about Earth into some heliocenter trajectory,
one can assume that the initial mass is fixed by the orbital payload capabil-
ity of a given launch vehicle, or, conversely, that a rocket engine of given
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thrust is available, to be used either singly or clustered to give quantum
steps in thrust level. Either viewpoint may be applicable depending upon
circumstances. The two approaches can be expected to produce somewhat differ-
ent results since the variation of inert fractions with acceleration will not
be the same in each case. Results are given here for both assumptions in the
cases of chemical and nuclear stages. Data are obtained with the computer
program described, utilizing an option which bypasses calculations for a
second stage. Inert masses include, for the present purpose, only those of
the propellant modules and of the rocket engines as given in appendix A or
figure 2.

Figure 3 shows the variations of payload fraction with initial accelera-
tions for a chemical propulsion system. In part (a) of figure 3, an initial
mass of 113,100 kg (250,000 1bm) is assumed and the engine thrust is varied.
The effect of doubling the mass of the propellant module is also shown. In
part (b), the engine thrust is held fixed and the initial mass is varied. In
both cases, the figure shows that the effect of the initial acceleration upon
payload fraction is small as long as the acceleration is at least one-third of
an Earth g.l The difference between the optimum initial accelerations
obtained by the two foregoing methods is shown in figure 4. Although varying
the thrust to suit the initial mass appears to result in somewhat larger opti-
mum initial accelerations than does adjusting the mass to a given engine
thrust level, figure 4 also shows that the optimum payload fraction is essen-
tially unaffected. Figure 5 indicates that an increase in propellant-module
inert mass tends to require slightly larger accelerations to obtain the maxi-
mum payload fractions. The payload fractions differ by about 0.05 to 0.065
for a given hyperbolic excess velocity; for equal values of payload fraction,
the extra inerts decrease the hyperbolic excess velocity attainable by about
0.048 to 0.10 emos (1.4 to 3.0 km/sec).

A similar analysis is made for a nuclear propulsion system. Results are
shown in figures 6, 7, and 8. It is noted in figure 6 that the performance of
the nuclear stage is more sensitive to initial acceleration than that of the
chemical system, particularly when the data are obtained by varying the ini-
tial mass while holding the thrust level constant. The more rapid falling off
of payload fraction with increasing initial acceleration observed in fig-
ure 6(b) is largely owing to the fact that the inert masses (e.g., the engine
mass) constitute an increasingly larger fraction of the total mass as the
initial acceleration is increased. As noted in figure 7, the optimum payload
fraction is larger when thrust is constant than when initial mass is constant.
This difference is due to the initial masses also being larger and hence the
inert fractions smaller for a fixed thrust level. For the chemical system
discussed previously, the effects just noted are scarcely discernible chiefly
because the engine mass represents only a small fraction of the inert mass,
in contrast to the nuclear system, and the initial masses are more nearly the
same. The effect of doubling the inert masses of the propellant module has
little effect on the values of optimum initial acceleration when the nuclear

1This is true only for initial masses and thrust levels as large as those
considered here. For masses or thrust levels considerably smaller, the sensi-
tivity of payload fraction to initial acceleration is greater and the
optimum acceleration is lower.

12



engine has a fixed thrust level of 444,822 N (100,000 1bf) (fig. 8). The
effect on optimum payload fraction is significant, however.

From the results just presented, the variation of the optimum initial
acceleration with hyperbolic excess speed is not so large that the use of an
average value would result in noticeable loss in performance over a wide range
of energy requirements. This fact has a bearing on the choice of the initial
acceleration for the first stage of a two-stage system. The hyperbolic excess
speed attained at the end of optimum first-stage thrusting will vary from
near-parabolic values to generally not more than about half the total speed
required. Hence, the initial acceleration found to be optimum for a single
stage at a given hyperbolic excess speed can be considered essentially optimum
for the first stage of a two-stage system designed to attain the same energy
starting from the same parking orbit and same initial mass as the single stage.

Effect of engine lifetime on selection of initial acceleration.~ Although
it is desirable to match engine thrust and initial gross mass to achieve the
maximum payload fraction as closely as is practical, there may be another con-
sideration, at least for the nuclear engine. Although current plans call for
several hours (perhaps as many as 10) of total operating time for a multiple-
restart nuclear engine, a ''single-use' time may, for one reason or another, be
limited to some definite period. The effects of limiting single-use time on
the minimum permissible initial acceleration of the nuclear engine is examined
here. The time required to achieve a given velocity increment can be
expressed in terms of the initial acceleration aj; and specific impulse of
the propulsion system as follows:

g 1
t = (1 - e‘AV/goIsp) -0 Sp
aj

For a given allowable time of engine operation, the minimum initial accelera-
tion is

(aj) . = (1 - e_Av/goIsp) _8olsp
min tallow

This relationship is plotted in figure 9 against AV for a nuclear engine
having a specific impulse of 820 sec and for allowable operating times of 1800,
2700, and 3600 sec. An auxiliary scale shows typical hyperbolic excess speeds
attained with these AV in departing Earth from a circular orbit (altitude
485 km) with an initial acceleration of 0.25 Earth g. (The scale would be
shifted somewhat for other altitudes and other values of aj.) A comparison
of figure 9 with figure 6(b) shows that an allowable operation time of 1800
sec imposes possible penalties in payload fraction ranging from zero to about
18 percent for hyperbolic excess speeds up to 0.5 emos in the case of Earth
departure with a thrust level of 444,822 newtons (100,000 1bf). Increasing
the allowable time to 2700 sec reduces the largest penalty to about 2 percent
at a V_  of about 0.5 emos. With an allowable time of 3600 sec, the minimum

13



thrust-to-initial-weight ratio is smaller than desirable for maximum payload
fraction except for hyperbolic excess speeds as large as 0.6 emos when a
nuclear engine of the above thrust is used (fig. 6(b)). In this instance
(V, = 0.6), the payload fraction reduces to a mere 0.10 percent or so if the
engine is not operated beyond 3600 sec. Staging in this case could improve
the payload fraction and reduce the operating time required of either stage
to considerably less than 3600 sec.

Effect of second-stage thrust level.- In a previous section ("Imitial
acceleration of first stage') it was found that the initial acceleration which
would result in maximum performance of a single stage during escape from
Earth to a given hyperbolic excess speed could also be considered as essen-
tially optimum for the first stage of a two-stage space propulsion system
required to attain the same energy under similar initial conditions. For the
present, the foregoing result will be used to fix the initial acceleration of
the first stage in an investigation of the effect on performance of varying
the thrust level of the second stage of a two-stage vehicle.

Some feeling for the factors involved in selecting a thrust level for the
second stage may be obtained from applying the results of previous theoretical
analyses in combination with certain assumptions. For example, the adoption
of the assumption that the single-stage optimal initial acceleration is also
essentially optimum for a first stage leads to another valid assumption
according to the following heuristic reasoning. The thrust-acceleration
history of both the single stage and the first stage of the two-stage vehicle

is given by
i
at) = T @70t

where a(t) is the acceleration due to thrust at a time t following thrust
initiation. Associated with this acceleration profile is a trajectory which,
with a given thrusting program (tangential steering is assumed here) and an
optimum initial acceleration, makes the best compromise between gravity losses
on the one hand and propellant consumption and inert masses on the other in
attaining a given hyperbolic excess velocity. Such a trajectory results in
maximum performance of a single stage. Under the present assumption, the
two-stage vehicle has the same acceleration history and trajectory up to the
optimum time tg for separation of the first stage and start of the second-
stage engine (assumed to occur simultaneously with separation). It therefore
appears reasonable to assume that the second stage would attain essentially
maximum performance if it continued the optimum single-stage trajectory until
the remaining energy were provided.

If the foregoing assumption is adopted, it follows that the acceleration
history of the single stage should remain unbroken. Then at time tgq

T1 T2
a(t ) = =
S Mie—Avl/Cl R]-Ml

Hence, the optimum ratio of second-stage thrust to that of the first stage is
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where the definition of the payload fraction R; of the first stage is that
used in the analytic method based on nonlinear inert fractions. The same
theory gives, for similar stages (cf. eq. (9))

M ~1/2

F
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i
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Thus, in terms of the total required velocity increment AV, the ratio can be
expressed as

M 172
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pt
Equation (15) indicates that T, should always be less than T;, and decrease
relative to T; as energy requirements (V,) increase.

If a good estimate for AV (including gravity losses) is available for a
given hyperbolic excess speed, equation (15) may be useful. However, the
sensitivity of performance to second-stage thrust level is not given by the
theory. To investigate this sensitivity, and, incidentally, to assess the
validity of equation (15) and the underlying assumption, the numerical pro-
cedure is applied to obtain the variation of performance of two-stage propul-
sion systems with the ratio T,/T;. A combination of an initial mass and a
first-stage thrust level is selected to give an initial acceleration found
earlier to yield essentially maximum payload fractions for a single stage over
a range of hyperbolic excess speeds. The thrust level of the second stage is
then varied in the simulation of departure from an Earth parking orbit.
Results are presented in figure 10 for similar chemical and nuclear stages
and for combinations of chemical and nuclear systems. It is apparent that
when it is advantageous to use two stages rather than one, the thrust level of
the second stage is generally not critical from the standpoint of performance
as long as it is at least about one-tenth that of the nearly optimum first
stage. This insensitivity is potentially advantageous in that a rocket engine
suitable for a single-stage space propulsion system could be used in both
stages of a two-stage space propulsion system with little or no degradation
in the performance attainable with optimum engine sizing.

In view of the flatness of the curves in figures 10(a} and (b), compari-
son of the theoretical predictions of (T2/T1)opt with the numerical results

is somewhat academic. The trend of the analytic predictions, however, is borne
out by the computer-obtained results, namely a decrease in the optimum second-
stage thrust level with increasing V.

Effects of using nonoptimum first-stage acceleration.- Since it is not
economically practical to design, develop, and produce a wide variety of
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rocket engines having thrust levels ideally suited to each of many interplane-
tary missions, the use of a given engine either singly or in clustered arrange-
ments for a number of missions will result in nonoptimum initial accelerations
in both single-stage and multiple-stage applications. Figures 3 and 6 indicate
that a given initial mass in Earth orbit could be matched without appreciable
loss in performance with single-stage propulsion systems with thrust levels
ranging from about 0.3 to 0.8 of the initial mass for chemical stages, and

from about 0.25 to 0.50 of the initial mass for nuclear stages. From another
viewpoint, it is clear that a single stage of given thrust level could be

used with initial masses from about 1.5 to 4.0 times the thrust level of chemi-
cal engines or from approximately 4.0 to 6.0 times the thrust level of nuclear
engines without significant loss in performance.? (Engine operating time
limitations may prohibit using certain otherwise acceptable low initial accel-
erations.) In the discussion of two-stage space propulsion systems in the
previous section, it was found that for a given initial spacecraft mass and a
first-stage thrust level which gave essentially optimum first-stage initial
acceleration, the thrust level of the second stage could be varied over nearly
an order of magnitude without appreciable change in the overall payload
fraction obtained.

Although the foregoing remarks tend to justify developing relatively few
space propulsion engines of different thrust levels, it remains to complete
the analysis by assessing the effects on two-stage performance of using off-
optimum first-stage initial accelerations. Accordingly, additional data sim-
ilar to those presented in figure 10 were obtained with the same first-stage
thrust levels but with different initial masses. Examples of results obtained
by varying initial accelerations as much as a factor of 8 are shown in
figure 11.

In the case of two stages of chemical propulsion (fig. 11(a)), the
optimum first-stage initial acceleration may be taken as 0.4 g. The variation
of performance with second-stage thrust tends to increase somewhat as the
first-stage acceleration departs from the optimum value. This larger varia-
tion is due to the fact that with off-optimum first-stage performance the
overall performance can be affected more by second-stage characteristics such
as thrust level. Even so, the range of second-stage thrust levels which could
be used without serious penalty in overall performance is large even in the
extreme cases shown for off-optimum first-stage acceleration. If the thrust
level of the second stage is selected near its optimum value, the loss in
overall performance due to off-optimum first-stage initial acceleration is
proportionately less than that correspondingly incurred in the case of a
single stage (represented by intercepts on the vertical axis T,/T; = 0).

In the case of nuclear propulsion, a study of figure 11(b) leads to
essentially the same conclusions as those in the preceding paragraph. One

2These figures are representative for only initial masses and thrust
levels as large as those considered here. For smaller values, the ranges
cited would be reduced.
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difference can be noted, however. At hyperbolic excess velocities as large

as 0.5 emos, the data indicate that the overall performance of two stages may
remain unchanged or slightly improved if the initial acceleration of the

first stage is reduced to about one-half that found to give maximum perfor-
mance of a single stage. The difference between the effect of initial accel-
eration on chemical and nuclear two-stage performance when the first-stage
thrust level is fixed is one of degree only; it is chiefly due to the larger
fixed inert masses (particularly that of the engine) of the nuclear stages,

As the initial mass is increased to produce a smaller initial acceleration,
the inert fractions of both nuclear stages decrease more in proportion than do
those of the chemical stages; hence, the payload fraction of the former has a
more pronounced tendency to increase despite the incurrence of larger gravity
losses. Advantages of using such a low acceleration, however, could be pro-
hibited if limitations on single-use operating times were required in practice
as discussed earlier. Figure 12 displays maximum-performance thrusting times
of each stage as a function of first-stage initial acceleration and of a
second-stage thrust for a hyperbolic excess speed of 0.55 emos (16.5 km/sec).
For an initial acceleration as small as 0.1 of an Earth g, the first-stage
nuclear engine would have to operate more than about 30 percent longer than

an assumed 3600-sec capability. At aj = 0.15 g, a single stage would thrust
about 4500 sec; with the addition of a second stage having optimally half the
thrust of the first stage, the first stage would require only about 3000 sec
and the second nearly 2000 sec. Figure 12 also indicates in this case that
although reducing the second-stage thrust from 0.5 to, say, 0,2 that of the
first stage diminishes the overall performance by only 1 or 2 percent (cf.
fig. 11(b)), the operating time of the second-stage engine correspondingly
increases to beyond an assumed 3600-sec limit. It may be concluded that,
under assumptions made here, the first stage of a two-stage nuclear space pro-
pulsion system designed for high-energy Earth-escape maneuvers should have

an initial acceleration in the neighborhood of that found optimum for a single
stage for similar purposes, and the second-stage thrust level should be from
one-half to the same as that of the first stage.

In general, results of this section indicate that the effect of using
nonoptimum thrust levels of first-stage units of two-stage systems is not so
large from the standpoint of performance as it is for single-stage space
propulsion systems.

COMPARISON OF RESULTS OF THEORETICAL AND NUMERICAL
METHODS OF PROPULSION STAGING

In order to make meaningful comparisons among the predictions of the
theoretical analyses and of the numerical method, certain ground rules are
observed here. One such rule is that the magnitude of the total velocity
increment AV required for a given hyperbolic excess speed in the theoretical
formulas is to be that calculated by the numerical method for a single stage
having a near-optimal initial acceleration. In this way, gravity losses will
be taken into account in both methods, and comparison between the performances
of single and multiple stages will be meaningful. Another rule is that inert

17



masses such as those of the engines and propellant modules shall be calculated
in essentially the same way in both approaches. For example, in using equa-
tions (5) and (6), the value of the constant inert fraction ¢ 1is calculated
by dividing the sum of Mg (eq. (7)) and the mass of the engine (appendix A,
or fig. 2) by the mass of the propellant Mp. The latter is calculated from

M, = M.(l - eAV/nC)
P 1

where M. 1is the initial gross mass of the spacecraft and n 1s the number
of stages. In the use of equation (10), the value of ¢ 1is taken to be the
slope of the straight line that best fits the appropriate curve of Mg versus
Mp in figure 1. The scaling law for propellant modules shown in figure 1

can be closely approximated over a rather wide range of Mp by

MS = GMP + MSO

The fixed mass Mg of each stage is computed as the sum of MSO and the mass

of the stage engine. For the present comparison, other inert masses such as
those of interstaging structures, meteoroid and thermal protection of tanks,
and payload adapters are not included. In subsequent examples of the applica-
tion of staging to interplanetary missions, these other inerts are taken into
account. A simple computer program was written to solve equation (14) and to
use the appropriate root for calculating AV, AV,, AV3, Ry, Ry, R3, and R(3)
in the case of three similar stages. The solution of equation (9) and calcu-
lations for Ry, Ry, and R(2) for two similar stages were also included as

options.

Similar Propulsion Stages

Figure 13 shows the performance of single- and multiple-stage propulsion
systems over a range of hyperbolic excess speeds. An initial parking orbit
(altitude = 485 km) about Earth is assumed. Two types of propulsion systems
are considered, chemical stages using liquid hydrogen/liquid oxygen with an
ISP of 450 sec, and solid-core nuclear stages with an Isp of 820 sec.
Chemical stages.- Figure 13(a) shows the predictions of the theoretical
method based on the nonlinear inert scaling law to be in excellent agreement
with those of the numerical-integration method in the case of two chemical
stages. As anticipated earlier, the method derived from the assumption that
the inert fraction is constant and the same for all stages tends to over-
estimate the performance advantage of two stages over a single stage. From
the comparisons shown for two- and three-stage performance, the addition of a
third stage of propulsion for Earth departure does not appear to be warranted.

Nuclear stages.- Because of the larger inert mass (particularly that of
the engine) of nuclear stages, predictions of the theory based on a constant
inert fraction are shown in figure 13(b) to exaggerate the performance advan-
tages of two nuclear stages over a single stage much more than in the previous
example of chemical staging. Theoretical results based upon more realistic
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inert scaling laws again agree well with the numerical calculations. As in
the case of chemical space propulsion systems, a third stage does not appear
to be warranted here. According to theoretical results (not shown here), if
the same sized nuclear engine (thrust level in the neighborhood of 100,000 1bf)
were used in each of the three stages, the performance would be poorer than
that of two stages having identical engines.

From the foregoing comparisons, the theoretical method which was derived
on the basis of a nonlinear scaling law for the inert fraction may appear to
be a convenient and adequately accurate means of assessing performance of two-
or three-stage space propulsion systems. However, it will be recalled that
the theoretical results were based on the assumption that the total velocity
increment required was that calculated by integration of the equations of
motion for a single stage having the same initial acceleration as the first
stage of a two-stage system. As a matter of fact, examination of the output
of the computer program shows that the sum of AV; and AV, is within about
1 percent of the AV for a single stage (gravity losses included in all
stages). The question arises whether the use of the readily computed single-
stage impulsive velocity increment could be substituted for the total AV in
the theoretical method without significant change in results. Figure 14 shows
the effects of neglecting gravity losses in the theoretical calculations for
performance of the two-stage systems just discussed. In the case of two
chemical stages, figure 14(a) indicates that differences in predicted perfor-
mance range from about 10 percent at V, = 0.4 to 25 percent at V, = 0.6 emos
(18 km/sec). For two nuclear stages (fig. 14(b}), corresponding discrepancies
are about 25 and 100 percent. The relatively larger errors noted for nuclear
stages are associated with the considerably greater gravity losses (10 to
12 percent of impulsive AV) which in the examples are about three times as
large as those of the chemical stages for corresponding V.

The foregoing analysis leads to the conclusion that for applications such
as Earth escape, failure to take gravity losses into account in assessing
performance of two-stage space propulsion systems results in unacceptably
optimistic expectations. It follows that some such approach as the numerical
method adopted here is required to provide at least the proper total AV
requirements and appropriate engine sizes in order to obtain meaningful
results with the analytic expressions derived in this report. Also, since no
closed form was obtained for staging two dissimilar propulsion systems, an
algorithm would need to be devised and probably be programmed for a computer
in order to analyze the effectiveness of staging in a number of applicatinns.
The present computer program based upon numerical integration of the equations
of motion solves the general staging problem and provides a convenient method
for evaluating the advantages or disadvantages of using two similar or dis-
similar stages rather than a single stage of propulsion in diverse situations
typical of interplanetary missions.

In view of the foregoing, staging and staging applications will be
studied further on the basis of data obtained with the computer program
described earlier.

All the data presented thus far have been obtained with departure from an
Earth parking orbit as a frame of reference. Results and conclusions derived

19



from presentation of such data would not be materially different should another
planet be used as a basis for calculations. The chief difference noted would
be changes in the performance curves of payload fraction versus hyperbolic
excess speed V.. The shape of these curves would differ because the perfor-
mance of given propulsion systems in attaining the energy associated with V,
depends upon both the impulsive velocity increment and the magnitude of the
gravity loss, and both of these vary from one planet to another, For example,
for the small planet Mercury, the impulsive velocity increments are smaller
than those at Earth for V., less than about 0.23 emos, but become increas-
ingly larger beyond this value. Likewise, the gravity losses incurred in
escaping Mercury with optimum initial accelerations are comparable with, or in
some cases larger than, those incurred in escaping Earth to the same V.. In
view of the disparities in mass and radius of the two planets (mass and radius
of Mercury are about 0.054 and 0.38 that of Earth, respectively), this latter
fact may appear paradoxical. However, an analysis of the trajectories fol-
lowed in departing both planets and of the optimum initial accelerations lends
credence to the observation. It is found that for the same absolute initial
acceleration and same impulsive velocity increment, the flight path is steeper
and the radial distance (in planetary radii) is greater for departure from a
parking orbit about Mercury than about Earth. This means that the overall
propellant load receives a larger gain in Mercurial gravitation potential than
it does in the terrestrial potential. The work done in changing the potential
level of the unused portion of the usable propellant, of course, constitutes

a "'gravity loss,' expressed as an equivalent velocity increment additional to
the impulsive velocity increment. Hence, although the strength of the gravita-
tional field of Mercury is only about 0.376 that of Earth, the gravity losses
under similar conditions at the two planets tend to become more alike. In the
case of chemical propulsion, analysis shows that maximum performance is
obtained with essentially the same absolute initial acceleration (0.4 Earth g,
or 1.064 Mercury g) for V., to about 0.4. Gravity losses are found to be
generally larger by as much as 15 percent for Mercury than for Earth for cor-
responding V,. At a hyperbolic excess speed of 0.5 emos, the optimum ini-
tial acceleration has decreased to 0.15 Earth g and the maximum payload
fraction has decreased to zero in the case of escape from Mercury. At this
V., the impulsive AV and gravity loss are nearly 17 and 200 percent larger,
respectively, for Mercury than for Earth, resulting in a total velocity incre-
ment 20 percent or 2.256 km/sec greater. In the case of nuclear propulsion,
the optimum initial acceleration for escape from Mercury to a given V., 1is
about one-half that correspondingly found for Earth; gravity losses would
generally be about the same at Mercury as at Earth under these conditions.
However, such low accelerations could not be used for V., much larger than
0.2 emos without requiring engine operating times longer than 3600 sec; con-
sequently, some sacrifice in performance would be required in such instances.

In the following examples of the use of two stages of space propulsion,
rather than one, in missions to other planets, effects of planet mass and size
on energy requirements are automatically taken into account in the computer
program based upon numerical integration of the equations of motion.
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OTHER STAGING CHARACTERISTICS

Before presenting results of applying two-stage propulsion systems to
specific missions, two other characteristics of staging are examined here.
For one, the effect of varying the inert masses of the stages is assessed.
The other is the comparison of performances of two dissimilar stages (e.g.,
nuclear and chemical) with those of similar stages.

Effects of Inert Mass

Although masses of chemical and nuclear engines may be considered to be
known or predictable within limits sufficiently accurate for preliminary mis-
sion analysis, estimates of the masses of propellant modules (propellant tanks
and associated equipment and structures) are subject to more uncertainty at
present. The nominal value of the constant A cited in appendix A for the
empirically derived scaling law for propellant modules is about one-half that
found to be representative of a number of launch-vehicle stages on which the
law was based (cf. ref. 1). These stages, however, included masses of thermal
insulation and of meteoroid shielding which are accounted for separately in
the inert scaling laws adopted here for space propulsion systems, Also, the
use of current materials and structural technologies in the design and fabri-
cation of future space propulsion stages should logically result in stage inert
fractions lower than those of stages designed some years ago for launch vehi-
cles. Preliminary calculations indicate that a value of 0.10 for the constant
A should not be unduly optimistic for future propellant modules incorporating
tanks with common bulkheads for containing liquid oxygen and liquid hydrogen,
or modules containing liquid hydrogen only. 1In view of the demonstrated
dependence of staging effectiveness on the inert scaling law employed in the
theoretical approaches, it is pertinent to examine the effect of varying the
inert fraction of the propellant module in the numerical simulation of staging.
Figure 15 shows the effect of doubling the constant A in the formula for
calculating the mass of the propellant module. The only other inert mass
included in this comparison is that of the engine. One conclusion from
figure 15 is that although increasing the inert mass decreases the payload
capacity of both single-stage and two-stage propulsion systems, the perfor-
mance of the two-stage system is relatively less affected than that of the
single stage. As a result, advantages of staging become significant at lower
energy requirements and are also relatively larger at a given V., as inert
fractions increase. Another noteworthy observation is that the data indicate
that reducing the structural mass of the propellant module significantly can
vield gains in performance comparable with those obtained by adding a second
stage. This is particularly true for the nuclear system shown in figure 15(b).

Performance of Dissimilar Stages
Although data for combinations of chemical and nuclear stages were cal-
culated and presented earlier (figs. 10(c¢c), 10(d)), the purpose there was to
assess the effect of the magnitude of the second-stage thrust on performance.

Here the objective is to compare the performance of two-stage propulsion
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systems consisting of a nuclear first stage and a chemical second stage (N/C),
of a chemical first stage and a nuclear second stage (C/N), of two chemical
stages (C/C), and of two nuclear stages (N/N). Figure 16 shows performance
curves for such space propulsion systems as applied to escape from an Earth
parking orbit (altitude = 485 km) to various hyperbolic excess speeds.
Included for reference are the performances of single-stage nuclear (N) and
chemical (C) systems.

From a study of figure 16, it is clear that if both chemical and nuclear
propulsion systems were available, the chemical system should be used as the
second, rather than the first, stage of a two-stage space propulsion system
for injecting paylods into high-energy heliocentric trajectories from an
Earth parking orbit. The nuclear/chemical combination yields higher perfor-
mance than the combination of two nuclear stages only at such large velocity
requirements that the payload is at best a few percent of the initial mass in
Earth orbit. This situation is analogous to the demarcation in performance
that can be delineated for chemical and nuclear single stages in terms of AV
and of either initial mass in Earth orbit or payload. Figure 17 shows curves
of equal performance for chemical and nuclear space propulsion systems similar
to those considered as component stages here. In the case of the subject
two-stage vehicles with an initial mass of 226,800 kg, at sufficiently large
V, the mass remaining after separation of the nuclear first stage will be
less than some such initial-mass boundary value, with the result that a chem-
ical system with its relatively low inert masses will perform better as a
second stage than the heavier nuclear system despite the advantage of the
higher Ig of the latter. The same line of reasoning can be followed in
terms of a payload boundary curve and the second-stage performance. Likewise,
these same factors help to explain why the performance of two chemical stages
becomes equal to or better than that of two nuclear stages as the payload
fraction tends toward zero, as noted in figure 16.

From the comparisons between the performances of two-stage and single-
stage space propulsion systems here in figure 16 and earlier in figure 13,
one noteworthy general observation can be made: advantages in performance
resulting from the use of two stages rather than one stage of propulsion
become significant only at such large energy requirements that the payload
fractions are usually no larger than about 0.10.

APPLICATIONS OF STAGING IN HIGH-ENERGY MISSIONS

The use of two tandem stages to achieve the large velocity changes
inherent in several high-energy solar-exploration missions is examined in
the following sections. Arbitrarily ruled out for consideration here are
trajectories which utilize the gravitational field of Jupiter or of other
planets to reduce AV requirements.
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Solar Probe to 0.05 AU

Hyperbolic excess speeds required to inject a payload into heliocentric
orbits having an aphelion distance equal to the distance of the Earth from
the Sun at the time of launch and various perihelion distances are shown in
figure 18 for a summer launch date (July 7, when Earth is at aphelion and
velocity requirements for solar probes are least). For a perihelion distance
of 0.05 AU, the probe must have a residual velocity of 0.68 emos
{20.254 km/sec) after escaping from Earth.

Figure 19 shows the payload capabilities of an Earth-departure propulsion
system consisting of a nuclear first stage and a chemical second stage. Data
for initial masses in Earth orbit of 45,360 kg (100,000 1bm), 113,400 kg
(250,000 1b), and 181,440 kg (400,000 1b) are shown. Interstaging masses for
connecting the two propulsion stages (diameters assumed to be 10 m), as well
as for connecting the payload (diameter of 1.5 m) to the second stage are
included in the calculations (see appendix A). Performance of a single
nuclear stage also is shown for several initial masses. Figure 19 indicates
that the single stage with an initial mass as large as 453,600 kg cannot
deliver any payload closer than about 0.1 AU from the Sun. With an initial
mass of 113,400 kg, the two-stage system cannot attain the objective peri-
helion distance. If the initial mass is increased to 181,400 kg, a payload
of about 1450 kg (payload fraction of 0.008) could, under the assumptions
used in the calculations, be sent to 0.05 AU by the two-stage system consid-
ered. From these results, it is obvious that the mass required in Earth orbit
for even a small solar probe of only a few hundred kilograms is representative
of the capability of two current Saturn V launch vehicles. Studies at the
Mission Analysis Division indicate that the use of a nuclear stage in a sub-
orbital mode with the Saturn V launch vehicle could increase the payload by
perhaps 20 to 30 percent compared with its use in an orbit-start mode. In
this case, one standard Saturn V and a nuclear/chemical system might be suf-
ficient for small but perhaps adequate payloads to 0.1 AU. On the other hand,
analyses (e.g., ref. 6) have indicated that the subject solar-probe mission
could be accomplished with a smaller launch vehicle (e.g., a Saturn I-B) and
a solar electric or nuclear electric upper-stage propulsion system, although
the mission time required may exceed one year. Hence, although staging of
nuclear and chemical rocket engines does provide much better performance than
a single nuclear stage at large hyperbolic excess speeds, the initial mass
requirements for a solar probe to within 0.05 AU or closer are still of such
magnitude that consideration of more advanced types of upper-stage propulsion
for this mission may well be warranted.

Probes in Heliocentric Orbits Inclined to Ecliptic

From the viewpoint of scientists concerned with solar and space physics,
instrumented probes orbiting the Sun in planes inclined to the solar equator
at relatively large angles (45° to 90°) would be highly desirable to extend
our knowledge and understanding of solar phenomena and of the space environ-
ment above and below the ecliptic. Since the solar equator is inclined by
only 7.25° to the ecliptic, the inclinations of the probe orbits with respect
to the ecliptic would be almost equal to those with respect to the solar
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equator. If departure from Earth coincides with the passage of Earth through
the descending node of the solar equator on the ecliptic (heliocentric
longitude = 2557356) the solar latitude reached by the probe will be the
largest possible for a given inclination of the probe trajectory with respect
to the ecliptic, and AV requirements will be nearly minimum, since Earth

is approaching its aphelion (lowest orbital velocity). To achieve the largest
inclination of the probe trajectory for a given hyperbolic excess velocity,
the latter is made to lie in a direction normal to the plane of the trajectory
as shown in sketch (a) below.

In this method, it will be noted
that the resulting heliocentric veloc-
Pole of ecliptic . ity of the probe Vy is initially
" less than the orbital velocity Vg of
the Earth. The probe will therefore
have a perihelion distance less than
1 AU which decreases with increasing
— Vi angle of inclination. For observation
Nl of solar phenomena at high solar lati-
tudes, such probe orbits could provide
\ 6 relatively high resolution at the
{ . highest latitude attained. If an
Ve orbit at 1 AU is stipulated, AV
requirements grow much more rapidly
with inclination angle than in the
Sketch (a) method described. s

Figure 20 shows the hyperbolic excess speeds required to attain probe-
trajectory inclinations with respect to the ecliptic up to 90°. Figure 19
indicates that a single nuclear upper-stage propulsion system is incapable
of placing any payload into heliocentric trajectories inclined by as much as
about 40°. For an initial mass of 113,400 kg in Earth orbit, the nuclear-
chemical two-stage system could achieve an inclination of only about 41° or
42° for a small payload of 100 or 200 kg. Increasing the initial weight to
181,437 kg would enable an inclination of about 47° or 48° to be attained with
a small payload and two stages. Here again, the use of a suborbital start
of the nuclear stage (with a Saturn V launch vehicle) could improve overall
performance somewhat.

From the foregoing results, it appears that achieving out-of-ecliptic
probe misions with angles of inclination as large as 45° or larger is costly,
in terms of initial mass required in Earth orbit, with nuclear or chemical
upper-stage propulsion despite the significant increases in performance over
a single stage afforded by a two-stage system. As in the case of the solar
probe discussed previously, advanced propulsion systems such as low-thrust
electric propulsion are worthy of consideration for such high-energy missions.
As indicated in reference 7, the use of electric propulsion (powerplant
specific mass of 30 kg/kW) in combination with relatively small launch vehi-
cles (e.g., Atlas/Centaur, Titan III-D/Agena D) could place payloads of a
few hundred kilograms into solar orbits at 1 AU with inclinations extending
to perhaps 60°. A somewhat larger launch vehicle, with a capability similar
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to that of a Saturn I/Centaur, would enable angles up to about 70° to be
attained. The times involved are of the order of 500 days with low-thrust
systems.

Synchronous Solar Orbiter

Establishing an instrumented spacecraft into an orbit having a period
equal to that of the solar photosphere at some latitude (e.g., 30°) appears
to be highly desirable from a scientific viewpoint. Such an orbit would
uniquely permit observation of the complete history of certain transient
solar phenomena (e.g., sunspots, flares) from first appearance to final
demise. However, energy requirements for this mission are enormous. At
Earth departure, a velocity increment of about 9.4 km/sec is required to
reach the requisite perihelion distance of 0.176 AU. To capture into a solar
orbit at this distance requires a decrease in speed of more than twice that,
21.6 km/sec. No single chemical or nuclear system presently under develop-
ment can provide this latter velocity change. When thermal protection and
propellant boiloff, shielding against micrometeorite puncture, and other
inerts are included in the mass of the stages, calculations indicate that a
combination of a nuclear first stage and a chemical second stage requires a
gross mass of several million kilograms at perihelion arrival in order to
place an instrumented probe weighing only a few hundred kilograms into the
circular solar orbit. Clearly, missions having such energy requirements as
are inherent in the solar synchronous orbiter must await development of more
advanced propulsion devices.

Outer Planet Orbiter Missions

Figure 21 shows typical variations with trip time of optimum hyperbolic
excess speeds for both Earth departure and planet arrival in the case of bal-
listic trajectories to Jupiter, Saturn, and Uranus. IHohmann transfer times,
for which total energy requirements are minimum, are indicated in the figure.
The arrival speeds at the planets are seen to be particularly sensitive to
variations in trip time.

The velocity changes required for capture depend not only upon the
arrival speeds but also upon the mass of the planet and upon the radius of
the capture orbit. Examples of the variation of capture AV with arrival
speed for selected circular capture orbits about Jupiter, Saturn, and Uranus
are given in figure 22. Included for comparison is the variation of impul-
sive AV with V, for Earth departure. It is interesting to note that
although the capture requirements at Saturn and Uranus are smaller than those
at Jupiter for hyperbolic excess speeds less than about 0.3 to 0.4 emos (9 to
12 km/sec), they are larger at greater arrival speeds. Figure 21 indicates
that the arrival speed is about 0.4 emos for a 3-year trip to Saturn and for
a 6-year trip to Uranus. An arrival speed of 0.4 emos corresponds to a 550-
day trip time to Jupiter. Hence, a study of orbiter missions to Jupiter
involving trip times as short as 550 days will provide an upper limit on
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capture performance at Saturn and Uranus for much longer trip times. Impulsive
AV serves as a valid criterion here since, at the orbital altitudes

considered, gravity losses are negligible.

Simulation of capture into an orbit about Jupiter (the orbit of the
Jovian satellite Ganymede at 15 planet radii) was carried out for payloads
in orbit of 4536 kg (10,000 1b) and 907 kg (2000 1b) and for various capture
propulsion systems. Inert masses included those required by propellant boil-
off and tank thermal insulation, by meteoroid shielding, and for interstaging
between propulsion stages, as well as those associated with tank structure
and engines. Results are shown as the variation of payload fraction with trip
time in figure 23. (No nuclear performance is shown for the smaller payload
since the assumed nuclear engine (thrust of 444,800 N) proved to be too heavy
to compete with the chemical stage even at the shorter trip times.) Results
indicate that staging of two chemical systems gives better performance than
does a single chemical stage for all trip times shown if payloads as large as
4536 kg are placed in orbit. For trip times less than 500 days, a combina-
tion of a nuclear first stage with a chemical second stage provides the best
performance. Even at a trip time of 500 days, however, the payload fraction
is less than 0.04 in the case of the 4536 kg payload. As can be seen in the
figure, the payload fraction decreases significantly with decreasing payload
mass. Hence, the gross mass required at arrival can be expected to be large
for a reasonable size payload for trip times as short as 500 days.

Figure 24 shows the variation of the overall payload fraction with trip
time for the total mission including planet capture and Earth departure.
Note the scale change between figures 23 and 24, For the range of trip times
shown, a single nuclear stage gives better performance at Earth departure
except at trip times as short as 400 days for which a nuclear/chemical two-
stage system is slightly superior (see figs. 21 and 19). The relative overall
performances of the various combinations of propulsion systems used for Earth
departure and planet capture are thus much the same as for the capture phase
shown in the previous figure. What this means in terms of requirements for
initial mass in Earth orbit is indicated in figure 25. For payloads as large
as 4536 kg, part (a) of the figure indicates that reductions of trip times
become significantly more costly in terms of the mass required in Earth orbit
for trip times less than about 750-800 days regardless of the propulsion
systems used. Shown on the figure for comparison purposes is the nominal
value of the Earth-orbital payload capability of the current two-stage Saturn
V launch vehicle. Figure 25(a) indicates that the use of two chemical stages
rather than either a nuclear/chemical combination or a single chemical stage
for the orbit capture maneuver 1is to be preferred from a performance stand-
point. However, the figure also shows that, for a given mass in Earth orbit,
replacing a single chemical capture stage by two chemical stages will reduce
the trip time by only a few weeks. The effect of reducing the required pay-
load is shown in part (b) of figure 25. It is noteworthy that a fivefold
reduction in payload results in considerably less than a twofold reduction
in the weight required in Earth orbit for missions of the same trip time. The
figure shows that for a fixed initial mass the use of two stages rather than
one during the capture phase reduces trip time by about 50 days at best.
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As remarked earlier, the analysis of the role of staging in the Jupiter
orbiter mission can serve to gage the effectiveness of staging in orbiter
missions to Saturn and Uranus. It was noted that if a trip time of three
years is stipulated for a mission to Saturn, figure 21 indicates that the
hyperbolic excess speed at arrival (0.4 emos) is the same as that for a 550-
day trip to Jupiter. As shown in figure 22, the AV required for capture
at this arrival velocity is essentially the same for the two planets. Hence,
the performance of the capture stage(s) would be essentially the same for
both planets under these conditions for identical payloads delivered provided
that the inert masses were equivalent. Chiefly because of the much longer
trip time of the Saturn mission, the inert masses represented by propellant
boiloff, tank thermal insulation and micrometeoroid protection would be larger
than those for the 550-day Jupiter mission. Hence the capture phase at Saturn
for a 3-year trip time would require a larger gross mass at arrival than the
similar maneuver for a 550-day trip to Jupiter for a given delivered payload.
Likewise, figure 21 shows that the hyperbolic excess speed required at Earth
departure is larger by about 0.04 emos (1.2 km/sec) for the 3-year Saturn trip
than for the 550-day Jupiter mission. It can be expected, therefore, that the
masses required in Earth orbit would be considerably larger than those shown
in figure 22 for the 550-day Jupiter trip time for comparable delivered pay-
loads. The same conclusion can be drawn for a Uranus orbiter mission which
takes 6 years of travel time.

More advanced space propulsion systems may be desirable to reduce the
trip times to planets beyond Jupiter. Reference 8 contains examples of
orbiter missions to outer planets by means of combined high- and low-thrust
propulsion systems. A 3-year mission to Uranus, for example, is shown there
to require in the neighborhood of 90,000 kg (200,000 1lbm) in Earth orbit for
a delivered payload in Uranus orbit (18.367 radii) of 4536 kg (10,000 1bm) if
a chemical propulsion system is used in combination with a low-thrust electric
system (propulsion system specific mass = 10 kg/kW) during Earth departure and
if capture is accomplished by low-thrust spiraling. Use of a nuclear high-
thrust stage rather than the chiemical stage would correspondingly require
about 57,000 kg (125,000 1b) in Earth orbit. Calculations with larger values
of specific mass which may be more typical of first-generation nuclear-
electric propulsion systems indicate that the masses in Earth orbit cited
above might be doubled, or the payloads halved. Even so, the mission appears
to be within the capability of one launch vehicle of the standard Saturn V
class if nuclear-electric systems were available.

Manned Orbiter Mission to Mercury

As an example of a mission for which initial mass required in Earth
orbit is unreasonably large when single stages of solid-core nuclear propul-
sion are used for each of three required major velocity changes, the manned
orbiter mission to Mercury is selected to determine if the use of two stages
will reduce the initial mass required to more acceptable values.

In any one year, there are three opportunities for accomplishing the
Mercury round-trip mission. One of these periods generally requires much
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lower total velocity changes than the other two. Associated with each of
these opportunities is an optimum period (staytime) between arrival and
departure. One of the most favorable opportunities is selected for the
present purpose. Hyperbolic excess speeds required in this case are, in emos,
0.3231, 0.2819, and 0.3643 for Earth departure, Mercury arrival, and Mercury
departure, respectively. Atmospheric braking upon return to Earth is assumed.
A staytime of 80 days is optimum for minimizing energy requirements. Trip
times of 90 days, Earth to Mercury, and 200 days, Mercury to Earth, are
required. An orbit close to the planet surface (altitude = 93 km (50 n. mi.))
is chosen for the mission.

A mass of 45,360 kg (100,000 1b) is assumed for the spacecraft on the
return leg. This mass includes those of a mission module and of an Earth
entry vehicle. Compared in figure 26 are the masses required at departure
and arrival at Mercury, and the initial masses in Earth orbit for the use
of a single stage in each phase with those required when two stages of propul-
sion are used. Also indicated in the figure are the number of propulsion
modules required in each stage either to maximize the payload fraction or to
constrain the nuclear engine operating time to no more than 2700 sec. The
thrust level of the nuclear engines is assumed to be 444,822 newtons
(100,000 1bf).

Although the advantages of staging are quite modest in terms of payload
fractions at any one of the three phases, the overall reduction in the
requirement for mass in Earth orbit is significant, nearly 40 percent. Even
so, however, undertaking this mission with current launch vehicles and with
solid-core nuclear spacecraft propulsion systems still does not appear prac-
tical. Results of reference 1 indicate that the mass in Earth orbit for this
mission could be reduced to about 400 metric tons if liquid- or gaseous-core
nuclear rockets with specific impulses of 2000 sec were available. In
reference 9, it was shown that use of combined nuclear and low-thrust elec-
tric propulsion for the subject mission might reduce the mass in Earth orbit
to about one-fourth of that required by high-thrust nuclear systems. It
must be concluded that manned missions having energy requirements comparable
with those of the Mercury mission examined here must await development of
propulsion systems having much higher performance than that possible with
solid-core nuclear or chemical engines, whether staged or not.

CONCLUDING REMARKS

An assessment has been made of performance advantages that might be
obtained by the use of more than one stage of space propulsion to provide
the large velocity changes inherent in space missions of particularly high
energy.

In analyzing the conditions under which multiple stages of propulsion
would achieve maximum performance, it was found that a commonly employed
simplified theory based upon the concept of a constant value for the inert
fraction gives unduly optimistic predictions for advantages of using more
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than one stage for a given velocity change. The basis for comparison was a
method of solution that employs an empirically derived, nonlinear scaling law
for inert masses and depends upon numerical integration of the equations of
motion of vehicles undergoing tangential thrust acceleration within the gravi-
tational field of a planet. A second theoretical analysis based on an inert
scaling law nearly equivalent to that used in the numerical method was found
to give results almost identical to those of the numerical method in the case
of performance of two similar stages. However, both of the theoretical solu-
tions require that equivalent "gravity-loss" velocities be known in order that
meaningful results will be obtained in applications to maneuvers close to
planets. Gravity losses due to finite thrust are calculated and taken into
account in the method based upon numerical integration. Furthermore, analytic
solutions in the general case of dissimilar stages are not explicit and there-
fore require indirect methods of approximation to yield answers. The method
based on numerical simulation of a two-stage vehicle operating in the near
vicinity of planets was designed to accommodate combinations of stages having
different specific impulses, different inert characteristics, and different
thrust levels. This method also gives individual stage operating times more
realistic than can be obtained from the analytic solution. For such reasons,
the numerical method is employed to obtain the data required in the study.

Other results and conclusions obtained from the present study are
briefly summarized as follows.

(a) In general, for assumed nominal estimates of inert masses,
advantages of staging become significant only at such large velocity require-
ments that the ratios of payload mass to initial mass are about 10 percent or
less. If inert masses are considered to be larger than the assumed nominal
values, results indicate that staging becomes advantageous at velocity
requirements somewhat less than those found in the case of nominal inert
values, although performance at corresponding energies is reduced.

{b) The use of more than two stages to provide large velocity change does
not appear to be warranted.

{(c) If chemical and nuclear stages are to be combined for a two-stage
propulsion system, better performance will result if the chemical system is
used as the second, rather than the first stage.

(d) The optimum initial acceleration {(thrust level) of the first stage
of a two-stage space propulsion system is not essentially different from that
found for a single stage similar to the first stage. Performance of a two-
stage system is less sensitive to the initial acceleration than that of a
single stage.

{e) The thrust level of the second stage of a two-stage propulsion
system can vary by about an order of magnitude (from about 0.1 to the same as
that of the near-optimum first stage) without seriously degrading overall
performance. Allowable engine operating time may impose a lower limit on
thrust level under certain conditions (e.g., very high mission-energy
requirements).
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(£f) Although staging of chemical and nuclear systems makes possible the
accomplishment of certain high-energy missions that are beyond the capability
of single stages (e.g., a solar probe to 0.05 AU or closer, and probes at
heliocentric latitudes of 45° or higher), the ratio of the mass required in
Earth orbit to the payload mass is so unfavorable that consideration of
development of more advanced propulsion systems (e.g., solar-electric or
nuclear-electric) for such missions may be warranted.

(g) Staging of chemical or solid-core nuclear propulsion systems to
reduce trip times for orbiter missions to planets beyond Mars does not
appear sufficiently rewarding to justify the added complexity involved.

(h) In the case of the extremely difficult manned orbiter mission to the
planet Mercury, the use of two, rather than one, nuclear stages for Earth
escape, planet capture, and planet escape reduces the single-stage require-
ment for mass in Earth orbit by about 40 percent. Even so, however, the
initial mass required is several million kilograms. To cope with the high
energy requirements of such missions and to bring the initial mass require-
ments down to more practical values, development of more advanced propulsion
systems such as a liquid- or gaseous-core nuclear engine or a nuclear-
electric low-thrust system would be necessary.

The foregoing results indicate that although using more than one stage
of space propulsion for high-energy interplanetary missions does make many
such missions feasible, the cost in terms of Earth launch vehicle require-
ments yet remains so high with currently envisaged chemical and nuclear
systems that consideration of more advanced space propulsion systems for
such missions may be warranted.

National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Aug. 5, 1969
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APPENDIX
INERT SCALING LAWS

Scaling laws for inert masses and formulas for interstaging weight used
in this study are summarized below.

Mass of Chemical Engines
(Ref. 1)

The scaling law for chemical engines was empirically derived from
characteristics of liquid-rocket engines ranging in thrust from 15,000 1bf to
over 10% 1bf.

ME = TTE + 45 kg
where
T 0.0125
Tk engine thrust, kg (force)

Mass of Nuclear Engines

The variation of the mass of the solid graphite-core nuclear engine with
thrust level is given in figure 2. The curve is based on data obtained from

the NASA Space Nuclear Propulsion Office.

Mass of Propellant Module
(ref. 1)
{Total mass of propulsion module excluding engine
and thermal and meteoroid protection)

M, = No-l(A/oo-533)MP0-9 + 500 N kg

S
A 0.10 for nominal value
a specific gravity of propellant

Mp mass of propellant

N number of propulsion modules
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Mass of Propellant Boiloff and Thermal Insulation
(ref. 1)

The following scaling law is based upon minimizing the sum of the
masses of boiloff and tank insulation, and upon the use of cylindrical tanks
with hemispherical ends and a length-to-diameter ratio of 3.0.

Mg + Mg = B(MP/0> /3¢ at/1)1/?
B 0.034 for nominal value
t exposure time, days
AT temperature difference across insulation
L latent heat of vaporization of propellant, kcal/kg

The insulation material is assumed to be of the high-performance type with a
conductivity of 4.44x10"° kcal/hr-m/K and a density of 80 kg/m3.

Meteoroid Shielding
(ref. 1)

The following scaling law is based upon the 1963a Whipple distribution
of near-Earth cometary particles, upon the Nysmith-Summers penetration theory,
a particle density of 0.5 kg/km3 and an average particle velocity of 20 km/sec,
upon the use of aluminum as shield material, and upon the same tank geometry
described above. For single-sheet protection, the mass M, of the shield is
given by

5/6 1/4
My = C(Mp/o) /81
C 0.06 for nominal value for heliocentric distances less than that of the
asteroid belt

C 0.10 for trips through the asteroid belt

The use of a double-sheet shield ('"Whipple bumper') is assumed when
warranted. The following conditions determine the mass of shielding material
which is required in addition to the mass of the propellant tank.

H

AMpet 03 Mp < Mg

Mper = My - Mg; M§ < Mp < 4/3 Mg
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AMpet = 1/3 Mg; 4/3 M§ < My < 16/3 M
m S

MMper = 1/4 My - Mg; My > 16/3 M

where ,

MS = O'.8MS

Interstaging and Clustering Structures

The masses of various interstaging and clustering structures are derived
from results of a contract study, NAS8-20007 (ref. 9).

For interstage structures used to interconnect propulsion modules,
the following scaling laws are used.

For nuclear systems

=
I

INT = 142 (D + Dy)
For chemical systems

MINT

65(D; + Do)

where Dj and D, are the diameters in meters.

For clustering two or more propulsion systems in parallel, the mass
required is

Mopusy = 97008 - 1)
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