
z c 
4 
v, 
4 z 

TEMPERATURE  DEPENDENCE OF 
SELF-DIFFUSION  COEFFICIENTS 
FOR GASEOUS AMMONIA 

by Charles E. Baker 



TECH LIBRARY KAFB. NM 

1. Report  No. 3. Recipient’s  Catalog  No. 2.  Government  Accession  No. 

NASA TN  D-5574 
4. T i t l e  and  Subtitle 5 .  Report  Date 

TEMPERATUFE  DEPENDENCE  OF  SELF-DIFFUSIOK December  1969 

COEFFICIENTS  FOR  GASEOUS  AMMONIA 6. Performing  Orgonization  Code 

7. Authods) 8. Performing  Organization  Report  No. 

C h a r l e s  E. Baker  E-5097 
9. Performing  Organization  Name  ond  Address 10. Work Unit  No. 

Lewis   Research   Center  
h’ational Aeronaut ics   and  Space  Adminis t ra t ion 
Cleveland,  Ohio  44135 13. Type of  Report  and  Period  Covered 

129-01 
1 1 .  Contract or Grant  No. 

2.  Sponsoring  Agency  Nome  and  Address 

National   Aeronaut ics   and  Space  Adminis t ra t ion Technical   Note  

Washington, D. C.  20546 
14. Sponsoring  Agency  Code 

5. Supplementary  Notes 

16. Abstroct 

Diffusion  measurements   were  made  in  a s ta inless-s teel   Loschmidt- type cell; t emper -  
a ture   ranged  between  301.3  and  445.6 K, and   p re s su res   va r i ed   be tween  408  and  729 
torr .   Ammonia-N-15  was  used as the   t racer   gas   wi th   concent ra t ions   de te rmined   by  
mass   spec t romet ry .   The   expe r imen ta l   r e su l t s  are in  excellent  agreement  with  theo- 
re t ical   values   calculated  f rom  r igorous  kinet ic   theory  using  the  Stockmayer   potent ia l  
parameters   ob ta ined   f rom  recent   v i scos i ty   da ta   and   wi th   va lues   ob ta ined   d i rec t ly   f rom 
experimental   v iscosi t ies .   These  resul ts   suggest   that   s implifying  assumptions  made  in  
the  calculation of coll ision  integrals  for  strongly  orientation-dependent  potentials  such 
as  the  Stockmayer  potential  are valid. 

17. Key Words ( S u g g e s r e d  b y   A u r h o r ( s ) )  

Ammonia 
Diffusion  coefficients 
T ranspor t   p rope r t i e s  
Self-diffusion 

18. Distribution  Statement 

Unclassified - unlimited 

9. Security  Classif .   (of  this  report) 22. Pr i ce*  21. No. of  Pages 20. Security  Classif .  (of this  poge) 

Unclassified $3.00 15  Unclassified 

* F o r  sale by the  Clear inghouse  for   Federal   Scient i f ic   and  Technical   Information 
Springfield,  Virginia  22151 



TEMPERATURE DEPENDENCE OF SELF-DIFFUSION COEFFICIENTS 

FOR GASEOUS AMMONIA 

by Char les E. Baker 

Lewis  Research  Center 

I 
SUMMA,RY 

i 
The  coll ision  integrals  necessary  for  theoretical   calculation of the  transport  prop- 

e r t i e s  of polar  gases  have  been  available  since  the  early  part of this  decade.  However, 
the  validity of simplifying  assumptions  needed  to  make  mathematically  tractable  calcu- 
lation of collision  integrals  for  strongly  orientation-dependent  potentials  (such as the 
Stockmayer  potential)  has not been  adequately  tested  because of the  scarcity of reliable 
transport-property  data.  Measurement of the  self-diffusion  coefficient Dll  of a 
strongly  polar  gas  over a range of temperatures  should  provide  such a test .   This re- 
port   gives  results of recent  measurements of Dll  for  gaseous  ammonia  between  301.3 
and 445.6  K with pressures  varying  between 408 and 729 to r r .  

Measurements were made  in a stainless-steel  Loschmidt-type  diffusion  cell  with a 
shear  interface.  The  cell was mounted  in a large  oil  bath  maintained  to  within A). 02' C. 
Ammonia-N- 15 f5NH3) w a s  used as the  t racer   gas ,   and  the 15NH3 concentrations  fol- 
lowing  diffusion were determined  by  mass  spectrometry. 

The  experimental  values  for Dll are in  excellent  agreement  with  theoretical  val- 
ues  calculated  from  rigorous  kinetic  theory  using  the  Stockmayer  potential  parameters 
obtained  from  recent  viscosity  data.  The only measurments of Dll for  ammonia re- 
ported  previously  were  in  marked  disagreement  with  calculated  values  at low tempera- 
tures.  Values of Dll which are effectively  independent of any  molecular  model  may 
be calculated  directly  from  experimental  viscosities.  Diffusion  coefficients  obtained  by 
this  method are a lso   in  good agreement  with  the  experimental  results  reported  herein. 

This  research  was  undertaken  to  test   the  validity of the  simplifying  assumptions 
needed  to  make feasible calculation of collision  integrals  for  strongly  orientation- 
dependent  potentials.  For  the case of highly  polar  ammonia  over  the  indicated  temper- 
a tu re  range, the  results  reported  herein  strongly  suggest that the  present  theory is in- 
deed  adequate  even though  simplifying  assumptions  were  needed in its development. 



INTRODUCTION 

Even  though  polar gases play an  important   role   in   modern technology,  relatively 
little study  has  been  devoted  to  their  transport  properties.  In  particular,  diffusion- 
coefficient data, which  offer  an  excellent  means  for  the  determination of intermolecular 
forces,  are in  short   supply.   There are several   reasons  for   this   lack of data. Polar 
gases are generally  difficult  to  handle  experimentally;  many are corrosive  and  react 
with,  and/or are adsorbed on, the  surfaces of the  apparatus.  They  also  may  react  with 
themselves  ( to  form  dimers  or  polymers) o r  with  other  polar  gases.  In  addition,  until 
the   ear ly   par t  of this  decade  the  experimentalist  had  no reliable theoretical  values  with 
which  to  compare  his  results  because  the  necessary  coll ision  integrals  based on a re- 
alistic  potential  model were not available.  Monchick  and  Mason (ref. 1) provided  the 
needed  incentive by calculating  these  integrals  for a modified  (angle-independent)  Stock- 
mayer  potential.  This  potential is a superposition of a dipole-dipole  inverse r3 inter- 
action on the  familiar  Lennard-Jones (12:6) potential.  It  may be written as 

where r is the  molecular  separation, E the  depth of the  potential  well  and (3 the 
molecular  separation  at   zero  interaction  energy  in  the  absence of dipole  forces,  and 
6 = (p / ~ E U  )<. Here, p is the  dipole  moment  and < is a function of the  relative 
orientation of the  colliding  molecules. 

2 3  

In  order   to   make  the  analysis  of the  dynamics  involved  in  binary  collisions  between 
polar  molecules  mathematically  tractable,  Monchick  and  Mason (ref. 1) made two im- 
portant  assumptions.   The  f irst  is that  inelastic  collisions,  even though  they  may  occur 
frequently,  have  little  effect on the  trajectories.  Their  justification  for  this  assumption 
is based  on  the  argument  that  most  inelastic  collisions  involve  the  transfer of only a few 
quanta of rotational  energy. For most  molecules  at   ordinary  temperatures  this  amount 
of energy is small   compared  to  the  translational  energy, which is of the  order of kT. 
Thus,  they  expect  inelastic  collisions  to  have  only a small  effect on the  trajectories,  
and  they  neglect  them. 

Their  second  assumption  concerns  the  effect of the  orientation-dependent  potential 
on the  angle of deflection x in a collision.  They  argue  that  although  the  orientation- 
dependent  forces  act  along  the whole trajectory,  the  angle of deflection is determined 
primarily  by  the  interaction  in  the  vicinity of the  distance of closest  approach.  Because 
the  average  t ime  required  to  complete a collision is of the  same  order of magnitude as 
the  average  rotation  time,  over a small  range  near  the  distance of closest  approach,  it 
s eems  unlikely  that  the  relative  orientation would  change  much.  The  result is that  in 
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each  collision X is determined  largely  by only  one  relative  orientation,  and  they  eval- 
uate X as if the  orientation  were  fixed  at  one  value  throughout  the  entire  collision. 
Thus,  different  collisions wi l l  correspond  to  different  fixed  orientations. 

These two assumptions  change  the  analysis of orientation-dependent  forces  from a 
difficult  collision  dynamics  problem  to  one  that is mathematically  manageable. How- 

' ever,  the  kinetic-theory  problem now corresponds  to a gas   in  which  collisions follow 
not  one  intermolecular  force law,  but  any  one of a very  large  number of force laws, 
one for each  relative  orientation.  The  formal  kinetic-theory  expressions  for  the  trans- 
port  coefficients  which  result  from  the  solution of this  problem are the  same as for  a 
single interaction  potential,  but  the  collision  integrals  appearing  in  these  expressions 
are averages  over all possible  force  laws.  In  these  averages,  equal  weight  has  been 
assigned  to  each  orientation  or  force law. 

How well do  the  results of this  somewhat  simplified  theoretical  treatment  agree 
with  experiment?  Monchick  and  Mason  (ref. 1) concluded  that  the 12-6-3 potential 
model  worked  about as well  for  polar  gases as the 12-6 potential  model  does  for non- 
polar  gases,  as far as they  could  tell  from  the  available  data.  However, we  have al- 
ready  emphasized  that  there is a general  paucity of data  for  the  transport  properties of 
polar  gases.  In  addition  to  the  intrinsic  value of the  data  itself,  measurement of the 
self-diffusion  coefficient of a strongly  polar  gas  over a range of temperatures  should 
provide a tes t  of the  validity of the  simplifying  assumptions  necessary  for  calculation 
of the  collision  integrals  for  strongly  orientation-dependent  potentials.  Furthermore, 
these  measurements  should  also  test  the  ability of the  Stockmayer  potential (which 
represents  a polar  molecule  simply as a spherical  potential  with a point  dipole  embedded 
at the  center)  to  describe the interaction of polar  gases.   This  report   gives  results of 
recent  measurements of the  self-diffusion  coefficient for  gaseous  ammonia  over  the 
temperature range 301.3 to 445.6 K.  

EXPERIMENTAL APPARATUS AND  PROCEDURE 

Of all the  methods  that  have  been  used  to  measure  diffusion  coefficients,  the Lo- 
Schmidt  method is generally  recognized as the  most  suitable  for  accurate  work  in  the 
gaseous  phase (ref. 2). For  this  reason,  this  method w a s  chosen  for  the  work  reported 
herein.  Briefly,  the  Loschmidt  method  involves  placing  the  gases  to  be  studied  in 
separate,  but  identical,  tubes of uniform  cross  section.  Diffusion is star ted by  joining 
the  two  tubes  in  such a way that  the  boundary  between  them is not  unduly disturbed,  and 
is terminated  after a suitable  time  by  separating  the two half-cells.  The  average  con- 
centration of the  reference  substance  in  each  half-cell is then  determined.  With  this 
information  and a knowledge of the  geometry of the  apparatus, it is then  possible  to 
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calculate  the  diffusion  coefficient  for  the  particular  temperature  and  pressure of the 
experiment . 

u r e  1. The  cell   was  constructed of hardened 17-4-PH stainless  steel, which  permits its 
use  with corrosive gases. Each  half-cell  consists  basically of a 6-inch-diameter  plate 
of 1-inch  thickness  to  which a tube of uniform  inside  diameter  (1.129iO. 0005 in. ) is 
welded. A hole  with a diameter  equal  to  the  inside  diameter of the  tube w a s  cut  through 
the  plate  and  the  mating  surface of the  half-cell  carefully  ground  and  lapped. A system 

The  Loschmidt-type  diffusion  cell  used  in  this  work is shown  schematically  in  fig- 
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Figure 1. - Schematic of  diffusion  cell. 
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of stops  allows  the  two  half-cells  to be placed  in  any  one of three  positions  relative  to 
each  other.  The "fill" position is shown  in  figure 1 and is used when pumping  out  the 
half-cells or filling  them  with  the  test  gases.  In  the  "mid''  position  none of the  tubes 
are alined,  while  in  the  "diffusion"  position  the  two  half-cells  form  one  uniform  tube. 
In  this  position  the  inside  length of the  diffusion  cell w a s  60.866  centimeters,  originally. 
However,  because  several  relappings  were  required,  the cell measured only  60.813 
centimeters at the  conclusion of the  work.  This  change of length  following  each re- 
lapping was  accounted  for  in  the  diffusion  calculations. 

In  order  to  ensure a vacuum-tight seal and  to  prevent  damage  to  the  lapped  sur- 
faces, a thin  layer of high-temperature  silicone  stopcock  grease was used on the  metal  
surfaces  and  the  plates were spring  mounted  at  the  centering bolt. The  lower  half-cell 
remained  fixed  during  the  turning  procedure,  while  the  upper  half-cell was rotated  by 
means of the  closing  rod  shown  in  figure 1. A four-O-ring  rotating  compression  fitting 
mounted  above  the  centerline of the  closing  rod  conveniently  solved  the  problem of 
movement of the  line  to  the  lower  half-cell  during  turning of the  upper  half-cell. 

The  original  Loschmidt  method  had  the  disadvantage of using a diaphragm  to  sepa- 
rate  the  gases  in  the  two  half-cells.  The  volume of the  diaphragm  could not be  made 
equal  to  zero; when the  two  half-cells  were  connected,  gas  rushed  in  to fill this  volume 
causing  some  mixing  which w a s  not due to  ordinary  diffusion. With the  present  appara- 
tus,  the  two  half-cells  are  connected  by  means of a shear interface  technique,  and  tur- 
bulence  caused  by  alining  the  two  half-cells is minimized. 

could  be  controlled  to  within k0. 02' C. Temperature w a s  measured with a platinum 
resistance  thermometer.  A commercially  available  polyalkylene  glycol  "synthetic oil" 
w a s  used as the  thermostat  fluid.  Pressures of the  test   gases,  which  ranged  between 
408 and 729 t o r r ,  were measured with a differential  precision  dial  manometer  with 
readability  to  within 0 .25  torr.  Diffusion  times  were  measured  with a standard  elec- 
t r ic   t imer  which  could  be read  to  within 0.01  second.  Since  the  two  half-cells are in- 
terconnected  by  rotating  the  top  half-cell  at  reasonably  constant  angular  velocity,  rather 
than  instantaneously,  diffusion  actually  starts as soon as the two half-cells  begin  to 
overlap.  Thus,  the  question arises as to  what is zero  t ime  for  the  process.  A calcu- 
la t ion  for   zero  t ime  s imilar   to   the one  given  in  detail  by  Strehlow (ref. 3) shows  that  the 
timing  should  be  started when the  angle  between  the  centers of the  two  half-cells  is 
17.3'. The  diffusion  experiments  reported  herein were timed  in  this  manner. 

The  diffusion  cell was mounted  in a large  capacity  constant  temperature  bath which 

The only par t s  of the  diffusion  cell not already  discussed are the  outer  sealing  ring 
and  bolt  sealing  ring  shown  in  figure 1. These became  necessary when i t  was found 
that,  despite  the  quality of the  lapped  surfaces, at elevated  temperatures  the  thermo- 
static  fluid found i t s  way  into  the  interface  (and  thence  into  the  lower  half-cell)  although 
the  apparatus  had  been  leak-tight  in air at   room  temperature.   The  outer  sealing  r ing 
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contains two high temperature  si l icone rubber O-rings;  one  O-ring  contacts  the  upper 
plate,  and  the  other  the  lower  plate, so  that  the  interface is isolated  from  contact  with 
the  bath  fluid  that  could  have  entered  from  the  outer  edge.  The  bolt  sealing  ring,  which 
also  contains  two  silicone  rubber  O-rings,  prevents  fluid  from  entering  the  interface 
via  the  bolt  hole  in  the  lower  plate.  This  system of O-rings  completely  solved  the 
problem of fluid  leakage  into  the  lower  half-cell. 

was conventional in all respects.  Both  the  ordinary  ammonia  t4NH3)  and  the  isotop- 
ically  substituted  ammonia t 5 N H 3 )  used  in  this  work  were of  high chemical  purity 
(99.99  percent  min. ). However,  any  noncondensibles  were  removed by freezing  the  am- 
monia  with  liquid  nitrogen,  pumping on the  condensate,  then  bringing  the  ammonia  to 
room  temperature.  This  procedure w a s  repeated  several   t imes.   The  mixtures of 
85  to 90 percent 14NH3 and 10 to  15 percent 15NH3 were made  up  by  the  method of 
partial  pressures.  However, as  wi l l  be  seen  later,   i t   was not necessary  to know the 
initial  concentration of 15NH3 in  the  mixture  in  order  to  calculate  the  diffusion  coef- 
ficient. 

The  gas-handling  system  used  in  these  experiments was constructed of glass  and 

Attempts  to  mass  analyze  the  ammonia  mixtures  obtained  after  diffusion  were  un- 
successful.  This was probably  due  to  the  highly  polar  nature of ammonia,  which  causes 
it  to  adsorb on the  surfaces of the  mass  spectrometer  inlet   system.  This  problem  was 
solved  by  completely  decomposing  the  ammonia  mixture on a heated  platinum  filament 
(-1200' C). The  resulting  mixture  contained  nitrogen  molecules of masses  28, 29, 
and 30, plus  hydrogen. By scanning  masses 28,  29, and 30 it was  possible  to  calculate 
the  percentage 15NH3 in  the  ammonia  mixture  prior  to  decomposition. 

A  typical  diffusion  run was car r ied  out according  to  the following  procedure:  The 
nitrogen  with  which  the  diffusion  cell was filled  when  the  apparatus was not in  use was 
pumped  out.  Ammonia was then  added  directly  from  the  storage  cylinder,  pumped  out, 
and  again  added  to 750 torr.   This  ammonia w a s  allowed  to  stand  in  the  cells  for  at 
least  1 hour.  This  procedure was followed  to  ensure  against  the  presence  in  the  upper 
half-cell of any 15NH3 from  an earlier run.  (In  the  subsequent  calculation of the  diffu- 
sion  coefficient  for a given  run,  the  concentration of 15NH3 in  the  upper  half-cell  was 
assumed to be 0. 37 percent,  which is the  natural  isotopic  abundance of 15N (ref. 4). ) 
This  ammonia was then  pumped  out of the  upper  half-cell  and  previously  purified  am- 
monia  added  to  the  desired  diffusion  pressure.  The  lower  half-cell was then  pumped 
out  and  filled  to  this  same  pressure with the 14NH3-15NH3 mixture.   After  several   min- 
utes  the two  half-cells  were  briefly  connected  externally  to  make  certain  that  the  pres- 
su re  in  both  half-cells was identical.  The  upper  half-cell was then  rotated  to  the  mid- 
position.  After a t   least  15 minutes of equilibration,  diffusion was star ted by  rotating 
the  upper  half-cell  until  the  half-cells were alined.  During  the  diffusion  period  several 
determinations of the  bath  temperature  were  made  and  recorded.  After  the  desired  dif- 
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fusion  time,  the  half-cells were put  back  into  midposition,  both filling lines  evacuated, 
and  the  half-cells put into fill position.  The  entire  contents of each  half-cell w a s  then 
frozen  into  sample  bottles  via  separate  glass  lines.  Later, a portion of each  sample was 
decomposed  over  the  heated  platinum  filament,  and  the  resulting  mixtures of N2, 

29N2, and 30N2 (as  well as hydrogen  which  does not interfere  with  the  analysis) were 
mass  analyzed. 

28 

EXPERIMENTAL RESULTS 

The  f i rs t   par t  of this  section wi l l  describe  the  steps  required  to  obtain  self-diffusion 
coefficients  Dll  from  the  experimental data. These  s teps  are (1) to  determine  the 
percent 15N in  the  diffusion  samples  from  the  mass  spectrometer  peak  heights, (2) to  
get  the  mutual-diffusion  coefficient D12 from  the  results of mass  analysis,   and (3) to  
calculate  Dll  from D12. 

For  step (l), the  fdlowing  equation is used: 

h30 + - h 1 
2 

h28 " h29 + h30 

29 
Percent 15N = x 100 

where  h is the  peak  height at the  mass  given by the  subscript.  Because  this  analysis 
is concerned  with  isotopes of the  same  chemical  species,  it  is not necessary  to  bring 
instrument  sensitivity  (which  varies  from  day  to  day)  into  the  calculation.  Thus,  the  ac- 
curacy of the  concentration  determination is enhanced. 

Once  the  concentration of 15NH3 (which is the  same as the  concentration of 15N)  in 
both  half-cells  after a given  diffusion  time is determined, D12 at   the  experimental  
p ressure  is calculated  from  the  following  relation  (ref. 5): 

where L is the  length of the  diffusion  tube  in  centimeters,  t is the  t ime of diffusion  in 
seconds, nT and  nB are the  average  concentrations of 15NH3 in  the  top  and  bottom 
half-cells  after  diffusion,  and n$ is the  concentration of 15NH3 in the top  half-cell 
before  diffusion,  which is taken  to be 0. 37 percent as previously  noted.  This  equation 
is accurate   to  better than 1 part  per  thousand as long as the  dimensionless  quantity 
(D12);7r2/L2 is kept  equal  to, or greater  than, 0.6.  In  these  experiments  the  diffusion 

t ime  and  pressure were always  adjusted so  that  this  requirement  was  satisfied.  Equa- 



, . . . . . . . . . . ..  .. . . . . . - 

tion (3) gives D12 at   the   experimental   pressure which  usually  varies  from  run  to  run. 
Thus,  it  is convenient  to  convert  the ( D12 )p values  to  using  the  relation: 

(D12)atm = ~ ( D ~ ~ ) ~ / 7 6 0  where  p is in  mil l imeters  of mercury  (torr). 

the  self-diffusion  coefficient of ammonia refers to  the  diffusion of 14NH3 into  itself, an 
isotopic  correction  must be applied  to  the D12 values.   This  correction is obtained  by 
dividing  the  rigorous  kinetic-theory  expression  for  Dll  by  the  similar  expression  for 
D12 (ref. 6) and is as follows: 

Since  the  experiment  actually  measures  the  diffusion of 15NH3 into 14NH3, whereas 

Dll  = ( 2M2 J” 
M1 + M2 

- D12 

where M1 is the  molecular  weight of 14NH3 (17.032)  and M2 is the  molecular  weight 
of 15NH3 (18.033). For the NH3-15NH3 system  the  ratio of Dll  to D12 is 1.01417. 

At  the  t ime  the  current  research was initiated,  no  measurements of Dll   for  am- 
monia  had  been  reported.  Because of the  difficulties  encountered when  working  with 
polar  gases,  it   seemed  desirable  to  checkout  the  apparatus  by  measuring  the  mutual  dif- 
fusion  coefficient of a nonpolar  gas  pair  for  which  diffusion  data w a s  available.  The  car- 
bon  dioxide - nitrous  oxide  system  satisfies  these  requirements;  moreover,  diffusion 
experiments on this  gas  pair   give a close  approximation  to  self-diffusion  because of their  
striking  physical  similarity (ref. 7). 

14 

The  mutual  diffusion  coefficients  obtained  for  this  gas  pair  between  325.0  and 
475. 5 K are listed  in  table I and  shown  graphically  in  figure 2. The  current   resul ts  are 

TABLE I. - EXPERIMENTAL MUTUAL-DIFFUSION COEFFICIENTS 

FOR CARBON  DIOXIDE - NITROUS OXIDE SYSTEM 

remperature, Mutual-diffusion 
K coefficient, 

D12’ 
cm  /sec 2 

( referred  to  1 atm) 

325.0 
327.3 

0.139 

.201 393.5 

. 192 383.0 

. 194  382.9 

. 184  374.3 

. 157  347.7 

. 141 

Temperature, 
K 

403.5 
422.7 
432. 1 
433.5 
443.2 
444.0 
475.5 

Mutual-diffusion 
coefficient, 

D12’ 
cm  /sec 2 

( referred to 1 atm) 

0.209 
.233 
.240 
.237 
.251 
.256 
.284 

8 



. 3 5 r  

.u)- 

.25- 
2 
E, 

ru' 

" ." 
.- c m 
V 

m 
0 
V 

0 * 
c 
13 

.- 
L 
L 

c .15- ._ 
L 

n 

. lo- 

.05- 

0 Present  work 0 
0 Boardman  and Wild (ref. 7) 
A Amdur  et al. (ref. 8) 
v Wall  and Kidder (ref. 9) 
0 Trautz and Muller  (ref. 10) 

0 
1 5 0  200 250  300  350 400 450 500 

Temperature, K 

Figure 2. - Diffusion  coefficients  for  carbon dioxide - nitrous oxide system as function of temperature. 

in  excellent  agreement  with  the  available  data  (refs. 7 to 10) with  the  exception of the 
three  points  obtained  by  Trautz  and  Muller  (ref. 10). Their  values are 9 to 10 percent 
higher  than  the  values  obtained  from a smooth  curve  drawn  through  the  rest of the  data, 
and  this  suggests a systematic  error  in  their  work.  Trautz  and  Muller's  diffusion  data 
for  the  ammonia-nitrogen  and  ammonia-hydrogen  gas  pairs  were  also found to  be  much 
higher  (about 11 percent)  than  the  careful  measurements of Bunde (ref. 11) for  these 
same two systems.  Thus,  it   seems  very  likely  that  there was a systematic  error  in 
their  experiments  reported  in  reference 10, and  their  data  for C02-N20  can be disre-  
garded. The agreement  between  the  results  reported  herein  and  the  remaining  data  in- 
dicates  that  the  apparatus  used  in  this  work is capable of producing reliable diffusion 
data over a useful  temperature  range. 

The  experimental  results  for  the  ammonia  diffusion  are  presented  in table 11. All 
the  data  necessary  for  calculating DI2 for  each run are also  included.  The  average 

value  for DI1 at  each  temperature is listed  in  the last column of table 11, and  these re- 
sul ts  are plotted  against  temperature  in  figure 3. The only measurements of D l l  f o r  
ammonia  reported  previously are those of Paul  and Watson (ref.  12) using  the  two-bulb 
modification of the  Loschmidt  method.  Their  results  (published  after  the  checkout of 
this  apparatus) are a l so  shown  on figure 3. 

( )P 
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TABLE 11. - EXPERIMENTAL  SELF-DIFFUSION  COEFFICIENTS  FOR AMMONIA 

I 1 Temper 
ature,  

K 

Pressure  
P, 

mm Hg 

Diffusior 
t ime, 

sec  

~ 

Percent NH3 
af ter  diffusion 

15 Mutual-diffusion 
coefficient, DI2, 

cm  /sec 2 

Self-diffusion  coeffi- 
cient, DI1, cm 2 /sec 

1 Lower 
half-cel: 

Upper 
half-cell 

t 
Mean 

0.200*0.001 

301.3 580.0 
551.0 
408.0 
492.0 

901.73 
901.98 
632.39 
731.93 

8.497 
7.759 
7.838 
7.131 

3.559 
3.400 
3.308 
2.945 

326.4 834.57 
833.78 
934.96 
903. 96 

11.830 
11. 522 
9.310 
8.112 

4.773 
4.631 
3.823 
3. 327 I 0.233*0.002 

649.5 
650. 5 
729.0 
699. 5 

648.75 
648.75 
698. 5 
697. 5 

700.5 
700.5 
651. 5 
653.0 

~ 

348.7 743.18 
684.03 
783.58 
784.68 

6. 539 
6.008 
8.867 
8.645 

2.773 
2.454 
3.671 
3.553 

b 0. 268*0.001 

1 0. 308+0.003 

0.343-tO. 002 

373.8 682.46 
683.00 
632. 54 
633.28 

7.498 
7.335 
7.452 
7.241 

3.138 
3.059 
3.053 
3.000 

563.01 
563.05 
603.44 

8.783 
8. 539 
8.295 

3. 563 
3.486 
3.401 

397.3 

422.9 

651.0 
651.0 
700. 5 

651.0 
651. 5 
700.5 
700.0 

701. 5 
700. 5 
700.0 

503.49 
503.  25 
543.00 
543.15 

454.73 
456.65 
513.75 

8.343 
8.214 
8.100 
7.857 

7.971 
7.762 
7.482 

3. 505 
3.457 
3.333 
3.307 

3.188 
3.134 
3.246 

~ 

0.399+0.003 

E 445.6 
p 0.4411tO. 001 
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Figure 3. - Comparison of experimental  self-diffusion 
coefficients  for  ammonia  with  theory  and  with  litera- 
ture values. 

ANALYSIS  AND  DISCUSSION 

Theoretical  values of the  self-diffusion  coefficient of polar  gases  may  be  obtained 
from  the  rigorous  kinetic-theory  expression  for Dll using  collision  integrals  calcu- 
lated  for  the  modified  (angle-independent)  Stockmayer  potential  (ref. 1). The  param- 
eters  for  this  potential,  which  must be known in  order  to  obtain  the  appropriate  collision 
integrals, are generally  obtained  by  fitting  experimental  viscosity  data.  Viscosity  data 
are   more  avai lable   and are usually  more  accurate  and  precise  than  the  other  transport 
property data. Self-diffusion  coefficients  may  also be obtained  directly  from  viscosity 
data using  the  well-known  relation  (ref. 6): 

PDll - 6(~* ) "- 
5 11 

71 1 

where p is the  density, qll is the  viscosity,  and (AZ1) is a rat io  of collision  inte- 
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grals  (essentially  the  ratio of the  viscosity  and  diffusion  cross  sections).  Because 
(AT1) .is quite  insensitive  to  temperature  and  the  details of the  intermolecular  force 
law, at least for  spherically  symmetric  potentials,  equation (5) yields Dll from  ex- 
perimental  viscosity  which is effectively  independent of any  molecular  model. 

Values of Dll obtained  from  the  rigorous  kinetic-theory  expression  and  from 
equation (5) are given  in  table III along  with  the  experimental  values.  The  third  column 
of table I11 gives  the  results  obtained  using  the  Stockmayer  potential  parameters  deter- 
mined by Burch  and Raw from  their  recent  viscosity  data  (ref. 13). The  solid  curve 
shown  in  figure 3 is the  result  of plotting  these Dll  values  against  temperature.  The 
fourth  column  gives  results  obtained  by  this  same  method  using  the  potential  param- 
eters  determined by  Monchick  and  Mason  (ref. 1) from  earlier  viscosity  data. 

With the  exception of the point a t  397.3 K (see fig. 3), the  experimental Dll val- 
ues  reported  herein  are  in  excellent  agreement  with  the  theoretical  values  obtained 
using  Burch  and  Raw's  potential  parameters.  The  experimental  values of Paul  and 
Watson a r e  lower  than  the  curre-nt  results  and  the  theoretical  values.  Paul  and  Watson 
(ref.  12) state  that   there is marked  disagreement  between  observed  and  calculated  val- 

TABLE 111. - COMPARISON OF  EXPERIMENTAL  SELF- 

DIFFUSION COEFFICIENTS  FOR AMMONIA WITH 

THOSE  CALCULATED  FROM VISCOSITY DATA 

AND FROM RIGOROUS KINETIC  THEORY 

[Pressure,  1 a tm.]  

ITernper- I Self-diffusion  coefficients, Dll, cm  /sec 2 

ature ,  

326.4 
348.7 
373.8 
397.3 
422.9 
445.6 

Experimental Calculateda 

0.200*0.001 
.235 .233+0.002 ' 

0.200 

.268*0.001 .269 

.308*0.003 .309 

.343*0.002 
.397 .399+0.003 
.350 

.441 .441*0.001 

Calculatedb 

0.198 
,233 
,266 
.305 
.345 
.391 
.434 

Calculated 
(es. (5))' 

0.195 
.230 
.264 
.305 
.346 
.393 
.435 

aCalculated by using  the  Stockmayer  potential  parameters  obtained 
by  Burch  and Raw: 6max = 0.68, E/k = 431 K, u = 2. 99 A .  

bCalculated by using  the  Stockmayer  potential  parameters  obtained 
by Monchick  and  Mason: 6,,, = 0.70, E/k = 358 K, u = 3.15 A .  

'Values of (AT1) used  in eq. (5) were  taken  from ref. 1 using  the 
Stockmayer  potential  parameters  obtained  by  Burch  and Raw 
(ref. 13). 
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ues  at low temperatures,  and  they  explain  this  discrepancy  in  terms of dimerization. 
However,  the  diffusion  coefficients  obtained  in  this  work  show  no  tendency  toward  being 
low in  the  temperature  range  where  the  data  overlap. 

It is interesting  to  observe  in  table I11 that,  with  the  exception of the  results  at  
397.3 and 422.9 K, the  experimental  coefficients are equal  to or lie between  the  two 
theoretical  values.  The  value at 397.3 K definitely  appears  inconsistent  with  both 
theory  and  the  other  experimental  points  from  this  work.  The low results  for  the  sev- 
eral different  determinations  at  this  temperature were probably  caused  by  instability 
of the  mass  spectrometer  during  these  particular  analyses. 

The  last  column of table 111 lists  the  diffusion  coefficients  obtained  directly  from 
the  viscosity  data of Burch  and Raw (ref. 13) using  equation (5), which  effectively  gives 
Dll without  any  assumption as to  the  nature of the  molecular  interactions.  These 
values are only  slightly  lower  than  the  other  values  below 326.4 K, and are in  excellent 
agreement  above  this  temperature.  Thus,  the  experimental  results are generally  in  ex- 
cellent  agreement with values  obtained  theoretically  using  viscosity  data  and  assuming a 
Stockmayer  potential, as well as with values  obtained  directly  from  viscosity  data. 

CONCLUDING REMARKS 

In  addition  to  obtaining  data  which is important in i t s  own right,  the  purpose of this 
research  was to  test  the  validity of the  simplifying  assumptions  that Monchick and 
Mason  found  it  necessary  to  make  in  order  to  calculate  the  collision  integrals  for 
strongly  orientation-dependent  potentials. If these  assumptions are valid,  and if the 
Stockmayer  potential  adequately  describes  the  interaction of strongly  polar  gases,  it  
should be  possible  to  calculate  reliable  diffusion  coefficients  using  existing  rigorous 
kinetic-theory  and  potential  parameters  obtained  from  another  transport  property,  such 
as viscosity. For the  case of highly  polar  ammonia,  the  excellent  agreement  between 
the  experimental  self-diffusion  coefficients  obtained  in  this  research  and  those  calcu- 
lated  from  different  sets of viscosity  data  strongly  suggests  that  the  theory is indeed 
adequate  even though  simplifying  assumptions were necessary  in  the  course of i t s  de- 
velopment. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  September 19,  1969, 
129-01. 
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