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PRECEDING

SUMMARY

A theoretical analysis has been conducted to study the
dynamic behavior and aerodynamic characteristics of a rotor
in autorotative flight operating in proximity of a reentry
capsule., A mathematical model representing the rotor entry
vehicle was established, the necessary equations formulated
and computer programs were generated for solution of this
system.

The equations of motion describing the articulated rotor
blades retained all nonlinear inertial terms and incorporated
nonlinear aerodynamics to account for stall, compressibility
and reversed flow effects. Provisions were also included to
consider the effects on the rotor of the detached bow shock
wave generated by the capsule.

The equations of motion for vehicle dynamic stability
were written to include coupling effects between capsule body
motion and rotor forces and moments. Numerical time histories
of the coupled rotor entry vehicle system are calculated at
time increments specified by the user.
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INTRODUCTION

Background

Modern aerospace programs bave imposed a need for improved
performance and control capabilities of recovery systems. More
accurate flight path control during the reentry phase, improved
maneuverability during descent, lower touchdown velocities, and
control of the landing mode are sought.

A concep* that has demonstrated capabilities for these
advanced recovery functions is the unpowered rotary wing de-
celerator - a multibladed, helicopter-type rotor which provides
aerodynamic retardation and control in autorotative descent.
Rotary wing decelerators can be incorporated in a single-stage
system for low or high speed deployment, retardation and sta-
bilization, drag force modulation, flight path maneaverability,
and landing with effectively zero vertical and horizontal spezds.

State of the Art

The potential of rotary wing decelerators has been demon-
strated successfully at subsonic speeds in a USAF-sponsored
flight test program during which decelerators were dropped at
speeds up to 550 knots (Reference 1). A wind tunnel test phase
of this program also demonstrated that rotors can be deployed
and operated in axial descent at speeds up to Mach numbers of
3.0 (Reference 2). Recent wind tunnel investigations by NASA
(Reference 3) have successfully expanded the operating regimes
of rotary wing .2celerators to glide flight at Mach numbers up
to 3.5. A detailed summary of the state of the art is presented
in Reference 4.

The various flight tests and wind tunnel tests mentioned
above will be enhanced with the complementary use of a rotor
analysis which will predict blade airloads, blade dynamics,
rotor performance, and vehicle stability for a rotor entry
vehicle system throughout its flight spectrum. Available heli-
copter rotor analyses (e.g., Reference 5) have been concerned
with powered rotors in subsonic flight. As such, they are not
directly usable for studying autorotative rotors in supersonic
flight; consequently, they must be modified and extended to
investigate autorotating rotors at these extreme operating
conditions.



Program Goals

The analysis descr.ibed herein was undertaken to provide
NASA with the analytical tools to evaluate rotor entry vehicle
systems thereby permitting t.ade-off studies between rotary
wing decelerators and present day decelerators. Furthermore,
results of the progrem will be useful in identifying areas of
research in rotary wing decelerator technology that require
further investigation analytically and experimentally.

Problem Definition

As mentioned previcusly, the present state of the art cf
~otor technology must pe advanced to examine rotor and vehicle
dynamic behavior at transonic and supersonic speeds. Theories
already developed for powered rotors in the subsonic regime
were used as stepping stones in developing the advanced theories
and computer programs for predicting the performance, dynamics,
and stability of autorotating rotors. The key step in the de-
velopment of the new theories and programs is the formulation of
a valid blade airloads and rotor performance analysis. Only by
having reasonable estimates of rotor performance and airloads
can any confidence be placed in analytical predictions of rotor
and vehicle system dynamics and stability.

Consequently, the analyses in the present program are sub-
divided to evaluate rotor stability, rotor airloads and per-
formance, and vehicle dynamic stability. Descriptions of these
analyses and their equations of motion are presented in the
ensuing sections.



ROTOR STABILITY, AIRLOADS, AND PERFORMANCE

Mc .hod of Analysis

A systematic method of analysis was developed in Reference 5
for the derivation of the general nonlinear equations of motion
of a rotor hlade with five degrees of blade freedom under both
steady and maneuvering flight conditions. This method incor-
porates a position matrix which transforms point mass coordinates
from a rotating axis system to a fixed axis system by finite
rotations for each degree of freedom. These position matrices
are orthogonal. Hinge offsets are obtained by matrix transla-
tions.

In the matrix method of analysis the transformed point mass
coorZ_.rates are differentiated to obtain velocities and accel-
erations resulting from each degree of freedom. The velocities
and accelerations are combined to yield the inertial and centrif-
ugal terms in the blade equations of motion. The blade forces
and moments associated with the control springs and retention
springs and damper< are added to these acceleration terms thereby
resulting in the complete, nonlinear, free equations of motion.
The forced equations of motion are obtained by applying gener-
alized forces which incorporate experimental aerodyhamic co-
efficients.

The aerodynamic characteristics are a function of angle of
attack, Mach number, and radial station. The unsteady aeiodynamic
forces anu moments are included 1in the forcing function as an
approximation.

Equations of Motion

Figure 1 shows a deflected, twisted rotcr blade assumed “o
have flapping, feathering, and lagging degrees of freedom. The
coordinate transformation matrices are obtained by considering
an axis system initially on the blade feathering axis. The axes
are then rotated and translated sequentially until they are co-
incident with the rotor shaft and are transiating through space.
The complete expression for the displacement matrix is obtained
by combining the coordinate trausformations. Velocity and
acceleration matrices are defined by differentiating the dis-
placement matrix. The final equations of motion evolving from
these matrices are derived in detail in Reference 5 and are
prcsented below,
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The inertias and generalized forces in Equatioms (1) - (3)
are summarized in Appendix A. For sake of convenience. the
following symbolism was also used in these equations and will
be retained throughout the vehicle stability analysis.

$u= sine vy Cu = cosiney

The feathering input is given by:

Oin = 6c-8is By - 0ic Ty + Kgg B Ky, L



Numerical Solutiorn

Numericai methods of solutiorn for the previous differential
equations of motion are derived 1n Reference 5. The techniques
descriped therein are used 10 generatie response matrices, eval-
gate transient responses to an iritial distcrbance, and 1terate
uLt1l periodic solutions are acnieved which incluade nonlinear
irertial and aerodyramic effects.

The converged periodic soluations yield azimuthal variatiorns
of blade kinematics and radial! and azimuthal variations of tlade
airloads. These distributions are used in the following expres-
cions to ~alculate rotor torgue, thrust, rhorizontal and side force.

D » )
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Because the ana1y51s is written to evaluate an unpowered
rotor, the equilibrium torgque, as defined by Equation (4), must
be rzero. Consequently, at a particular rotor operating con-
dition, the blade pitch angle must be determined to effect zero
torque. If the torque does not vanish at a preselected operating
condition, a torque iteration procedure automatically changes
blade pitch setting unt:l the torque constraint is satisfied.

Initially, ithe method employs a derivative to estimate the
second trial pitch angle. The value of the derivative is ob-
tained by using linearized rotor theory (Reference 6) and is

given by
dQ T 2_5
_— e —— X R
dg 5 PATAL (8)

Thus, the second trial value of pitch angle 1is
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Numerical values for the derivative are obtained from the cal-
culations using the first trial value of blade pitch setting.

The third trial value of blade pitch angle is estimated by
using a first-order difference equation . which is based on the
first two calculations. _ Qz

03 - 92 -

()z‘<3| ,
(10
8.-6,
The fourth and subsequent trial values of blade angle are
determined from the following second order curve,

Q=a,8%+q,8+ao (11)

A collocation procedure is used to evaluate the a - coefficients
in Equation (11). Por equilibrium conditions, the torque must
vanish and new values of § are obtained from the above quadratic.

As the torque iteration continues, the three most recent
values of torque and respective blade angles are retained to
evaluate the next trial value for blade pitch angle. A toler-
ance on torque supplied to the computer program as input is
employed to determine autorotative equilibrium. Retardation
of the rotor due to bearing friction was omitted from the
computations.

Supersonic Inflow Through The Roto:x

A rotary wing that is used as a retardation system on a re-
entry vehicle will operate through a shock wave generated by the
capsule during a portion of its trajectory. At transonic and
supersonic speeds, the rotor blades will be operating in and out
of the shock wave envelope generated by the capsule,.

For simplicity, the capsule is assumed to be a sphere
which produces an axially symmetric bow wave as illustrated
in Figure 2. 1In order to define which portion of the rotor
is operating ahead of and which part is operating aft of the
shock wave, the line of intersection between the detached bow
shock wave generated by the capsule and the rotor cone must be
determined.

The shape of the detached bow wave may be expressed analyt-
ically using the approximate method of Moeckel as reported in
Reference 7. Moeckel has indicated that a spherical body



generates a shock wave which can be satisfactorily approximated
by a hyperboloid of revolution with its axis parallel to the
remote relative wind. The intersection of the hyperboloid and
the rotor surfaces defines the boundary between disturbed and
undisturbea flow; the blade flapping response is considered in
the determination of this boundary. Thus, the line of inter-
section hecomes a function of blade radial station and azimuth

location. Equations which define the boundary line are presented
in Appendix B.

The disturbed flow conditions behind the shock wave are
evaluated by the oblique shock equations of Reference 8., The
shock wave angle at rotor azimuth position of 180 degrees is
used as a control point to determine shock strength., New
velocities and densities are evaluated behind the shock using
this control point and the advance ratio and inflow ratio dis-
tribution are reevaluated. Because of expansion behind the
shock wave, the air density was also assumed to vary with azimuth
and rotor angle of atiack according to the following relation

A, .{p'V'Z( 1-.58,) +.5[2p VA 143Cq)
(- 2 2 (12)
- pV2(1-.58, 1] €2 (1+C} /U

The effects of flow turning behind the bow wave and the
effects of mutual shock interference between adjacent blades
were neglected.



VERICLE DYNAMIC STABILITY

Equations of Motion

The six basic equations of motion necessary to describe the
dynamic behavior of the rotor entry vehicle shown in Figure 3
are formulated in detail in Reference 9. These basic equations
are modified to include rotor forces and momenis., The modified
equations are written for a right-hand coordinate system with
the origin at the vehicle center of gravity. The coordinate
systems for the vehicle and rotor are shown in Figure 6. All
rotor hub forces and moments are resolved from the rotor axes to
the body axes; the rotor axes are defined so that the relative
free stream velocity lies in the XR-ZR plane. Furthermore, the
vehicle was assumed to be symmetrical with respect to the XB-Zp
plane thereby eliminating the capsule body cross-products of
inertia, Ixy and Iyg.

The orientation angles between moving earth axes and body
axes are indicated in Figure 7. The fixed earth axes is also
portrayed in the figure, and is used as a reference for the
gravity force.

A sevenih equilibrium equation is required to complete the
vehicle stability analysis. This latter equation defines the
rotor angular acceleration in terms of the applied aerodynamic
torque and the vehicle yaw acceleration. The complete system
of seven equations 1is summarized below,

Mg(Ug-Vgra+ WaQg) = Frg* Mgg e+ Fypq (13)
Mg(Vg—Wgpg +Ugrg) = Fy . = M, 9T S +Fy, (14)
Ma(Wg~updg + Vapg = Frg “Ms g T, Co_ +F,, (15)

pBIu- rB Ixz+(Izz. Iyy)qBrB - quBIxz= MxB+ MxR- (BR- BC ) FYR
- ( Bu‘ B() F,a

(16)

gL, b 1y PLL - L,;) +( P, = M, M, +(B4-B,) Fr
tA(F, + F. ;) +(Bu-Bc) Fg (17)



;BIn - bBIxz+(I'yy- Ixx) quB + quBrB - AC( F o+ F ) (18)

. Q
rg= {d = — (19)
8 .IR

Methods of Solution

ihe preceding differential equations are solved for accel-
erations in Appendix C. The resulting accelerations are used in
a self-starting, multistep, predictor-corrector integration pro-
cedure (Reference 10) to evaluate numerically vehicle velocities
and displacements relative to the body axes. In turn, these body
axis kinematic components are integrated to yield translational
and rotational displacements with respect to a flat earth axis
system. The equations which describe the earth axis displace-
ments are developed in References 9 and 11 and are surmarized in
Appendix D.

In the vehicle stability program, the altitude and free
stream Mach number are considered constant; thus, the air
density remains invariant. Furthermore, the entry vehicle is
assumed axisymmetric and its aerodynamic force and moment char-
acteristics are assumed specified at a point in the plane of
symmetry; this point is called the balance center in Figure 3.
Because the capsule is axisymmetric, body side force, yawing
moment, and rolling moment about the .,alance center are neg-
lected. Consequently, only body 1ift, drag, and pitching moment
about the balance center are included in Equatiomns (13) - (18)
and these aerodynamic characteristics are transierred to the
body center of gravity.

In calculating the vehicle stability time histories, the
rotor airloads Equations (1) - (7) are solved initially until
equilibrium is achieved in blade airloads, blade motions, and
rotor torque. These rotor equilibrium hub forces and moments
are then combined with the vehicle body forces and moments
according to Equations (13) - (19) and integrated numerically
at user-specified time increments., After each time increment,
values of rotor angle of attack, rotor speed, inflow ratio,
and advance ratio (CIR,SI, N, [ ) are compared to previous
values, If the increment in these four parameters exceeds
user-specified tolerances, new rotor airloads are evaluated;
otherwise, the present rotor airloads aie retained for the
next time increment,

Further details of the computer program logic and use are
presented in the user's manual (Reference 12).

10



CONCLUSIONS

The nonlinear equations of motion are derived which define
blade transient responses, periodic blade airloads and
kinematics, and rotor performance of fully articulated
rotor systems,

Numerical iteration methods are developed to solve these
equations of motion until equilibrium Jlounditions are
achieved.

A second numerical iteration method is developed to iterate
on blade pitch control until the rotor autorotation cri-
terion is satisfied.

The effect of capsule shock wave interaction with the rotor
system is estimated by evaluating flow field characteristics
ahead of and behind the shock wave line of intersection with
the rotor.

The equations of motion for dynamic stability of the entry
vehicle are modified to include rotor hub forces and moments
thereby directly coupling the rotor and vehicle.

All of the preceding analyses are programmed in FORTRAN IV

language for the Ames Research Center 7040/7094 Direct
Couple System,

11
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APPENDIX A
ROTOR BLADE INERTIA AND AERODYNAMIC CHARACTERISTICS

Generalized Inertias

The generalized inertias used in Equations (1) - (3) are
defined by the following equations and are grouped into mass,
first mass moment, and second mass moment integrals. Third
and fourth order inertial terms are neglected.

M= fdm I=f (r-e;)dm
I,= f(r-ez)f$9xdm
Si= [(r-ez)dm Is= [(r-e,)€ Codm
Sz=fE$e,dm 14=f€2dm
S3=[€Cs, dm Is=/¢°C5,dm (A1)

Generalized Forces

The generalized forces used in Equatioas (1) - (3) are
defined by the following equations.

Q .Y "0-2_9__ (X=€5) ¢ dC -
IO 2 -/;2U C, d : {[ C .t RU "dT-z"' a]¢¢+ CD$¢}dX (A2)
where D =ﬁgﬁ’—

13
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Lo* , CRa RU da

: c dC .

[(CL,+ 20 az" a )¢,+CD$,]}dx (A3)
_Q;_ ___l 0_, C(X'él) C dC.
IO 2 ilu coa UC*RT da al%

- Co Gy} dx (a4)

The directions for positive general-
ized forces are indicated in Figure 4,
In these equations, it is assumed that the
l1lift deficiency function C(k) = 1. The
local section angle of attack and velocity
components are shown in Figure & and are
given by the following equatioms.

a=6+08,+¢
(A5)
Up'—\Q,R{X(IE—(X"éz) %’g —H $B¢¢,;}+X{Q¢W”P$w}
. (A€)
Ur = QR {8+[(6 8+ (x~8) G (1+ 55 ) ¥ uSeat}
U? = Ui+ Up (A8)
- tap- Yp
= 3 (49)
¢ = tan U :



APPENDIX B

CAPSULE SHOCK WAVE INTERCEPT WITH ROTOR

Figure 2 illustrates the rotor entry vehicle at an arbitrary
angle of attack relative to the free stream velocity. Superposed
on this vehicle are the approximate sphere and its associated de-
tached shock wave as described in Reference 7. It is assumed
that the rotor advance ratio, rotor tip speed, rotor angle of
attack, and vehicle attitude are known a priori. The free stream
Mach number can be evaluated from these parameters,

_ kiR

M
@ Bl
0 Cap (B1)
If ap = ¥/2, the free stream Mach number is expressed as
_OR Cr
Mg =g (A 250)
Qo 2\

where CT is the rotor thrust coefficient

R
T pmwrZ(QR)?

and A 1s the rotor inflow ratio

X = Vsinag-v
R

The hyperbolic shock wave defined in Reference 7 can be
described in the xo, V¢, Zo wind axis coordinate system as a
furction of the hyperbsla semi-transverse axis (A) and the
stand-off distance between the sphere and the bow wave IZX.
Figure 2 shows these dimensions and the aprropriate axes; they
are tabulated below versus free stream Mach number,

M A/Rc [S/Rc
1.5 4.10 0.540
2.0 6.41 0.340
2.5 9,94 0.225
3.0 14.80 0.180
3.5 20.80 0.160
4.0 26.80 0.150

At intermediate Mach numbers, A and /A can be evaluated by
lirear interpolation.

15



The equation in the wind axis system for the hyperboloid is

2 24 22
Xo Y§+Zg _

X ( AZ )‘
M

In order to describe the line of intersection between this shock
wave surface and an offset flapping rotor, Equation (B2) must be
transformed into the rotor axis system. This traasformation re-
quires a standard sequence of translations and rotations 2s
described in Reference 5. The resulting expression for the
hyperboloid in rotor axis coordinates is

| (B2)

2
[XR¢¢R+ (ZR+ Bo.q) $¢R+ (A+ RC * A)JZ [stcR- (ZR+ Boq) ch + y:

- =}

'y Y
—_— (B3)
Mw— |
where By, is the distance between the rotor hub and the center
of the equivalent capsule sphere,

The coordinates of a pcint on the blade are given by

xg =€, +(r-e,) Cy| C,

Yr=1e,t(r-e,)¢] Sy
Zp=(r-e,)%, (B4)

Substitution of coordinates (B4) into Equation (B3) results in
the following quadratic equation which describes the desired
line of intersection.

{Ci-[Cir G E](MZ- 1} (r-e,)
+ 2{C(C3‘[C2C4+ ez¢g$$] (M;‘ | )} ( f'ez)
+{C§-[C§+e22$2J(Mzm-l)-Az} =0 (B5)

16



where

Cy

8y, 30 + € 050,
Ca= Cads~ 3.,0sC,
C3= Begdagt €20, Cy+ A+Rc+ A
Ca= BeqClag €23, Ty

The periodic variation of blade flapping angle with rotor
azimuth position is known from the numerical solution of
Equations (1) - (3). Thus, the coefficients C;, Cg, C3, C4
and the coefficients of Equation (B5) can be numerically evalu-
ated at any 2zimuth position,y . The resulting quadratic
equation at each azimuth can be solved for (r-eg)

17



APDPENDIX C

VEHICLE STABILITY EQUATIONS

Equations (13) - (15) can be solved directly for the linear
accelerations in the body axis system as shown below.

R Frn
Ug= M *9$o M -~ Wg(Qsg
8 B 1)
. F)’B FYR
M-IV ‘QGQE% M. tWaPs~Usls
8 8 (c2)
: 28 . Fzq
wB Ma =g O¢ OE M + Ug QB - VB pB (©3)
Equation (17) can also be solved directly for the body
pitch acceleration.
My + My, #(Bg- Be) Fy + Ac(Figt Fig) +(Bu=Be) Fry
qa- I
yy
Iz-Ix
+(rg- Pa) +'apa(§[_‘)
YY yy (cq)

Equation (18) can be written to express yaw acceleration
in terms of roll acceleration.

. AC( F’R+ F’B) . le I;x- I’y
l’a T Izz ' (pa-qara) Izz N Izz paqa (C5)

Substitution of this relation into Egquation (16) yields the
following expression for roll acceleration.

18



. Ill
Pe = {M, *M, ~(Bg"B.)F, ~(B,~ B.JF, } 1T

iz

] I,
—{AC\ ,8+FyR)} Lux Izz - Ifz

2
+' (Iyy' Izz) Izz_ xz} + Ixz(Ixx°Iyy+Izz) p q
2 Jgls 2 } sle
Ixszz - Ixz Ixszz' Ixz
(C6)
Finally, the rotor deceleration is simply
Q =r.- - (c7)

B
Iq
where Q is the torque due to airloads as defined in Equation (4)-

Because of the axisymmetric characteristics of the capsule
mentioned in a previous secticn, the body forces and moments
given in Equations (Cl) - (C7) are related to the reference
center l1ift, drag, and pitching moment by

an = ( DB ([“B— La $"R)¢"
FVB = (DB (I:.,B"LB $°R) $,,

Fzg=(Dg $,,+Ls C,p)

~ (C9)
M,B' Mya ¢1)
Mza =/—\ACFYB
where MVB is defined in Equation (C13).
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The rotor hub forces and moments in Equatiomns (Cl) - (C7) are

FxR = qu"Y$q
F’R: Y¢q+H$q

Fro=T

R
M, = - (Be-Bc){YC,+HS,} +, C,- M, S,

M,R= (BR‘BC){Hmv'Y$?}+MxR$"+ Mynq:" (C10)

~ ~
where M,Rand M’R are defined by Equations (C16).

In Equations (C9) and (Cl0), the angle 73, between the rel-
ative wind and the X-axis 1s defined as follows:

- Vg
=tan™ —=
K Ug (C11)

The set of equations given by (Cl) - (Cll) can be solved
numerically after initial conditions are specified and backward
differences are calculated as described in Reference 10. After
the pitch and roll rates of the body are calculated from the
preceding equations, they are transformed into pitch and roll
rates irn the rotor axes according to the following equationmns.

q = qgl,-Pg ¥,

P qg$ﬂ+pa¢ﬂ

(c12)
The pitch and roll rates from Equation (Cl12) are then transmitted

back to the blade equations of motion and used to evaluate new
equilibrium airloads and blade kinematics.

20



The capsule body 1ift (Lg) and drag (Dg) forces are cal-
culated using the plan area of the capsule body as a reference.
The body pitching moment (IYB) is also a function of the afore-
mentioned reference area and capsule body diameter,

Ls

2 2
-121. Pvm RC CLRC

Ds = 5p Voo RcC

DRrc

M, = TpVE REC
’B 7Tp @ '\C Mmac (C13)
where the subscript RC refers to the body reference center,
The rotor hub moments due to the vertical shear forces
acting at the flapping hinge are calculated in the rotor axis
system and resolved into the body coordinate system., These

vertical shears include forces resulting from aerodynamics,
flappirg accelerations and pitch and roll rates.

The vertical shear acting at the biade flapping hinge at
any azimuth position can be expressed as:

dFv _ a8
Sﬂ&l +2(q%,+
dy d [ dy? (a3, p¢¢)]¢p (C14)

The contribution to the moments about the blade flapping
and feathering axes due to spring and damper effects at any
azimuth position can be expressed as

dMs - dBs
d' -Cpﬂ ‘IJ KB(B-#?Q)

~ KowKep (Keg B+ 6,,-8 + Kob)

dMm, d6
v ey
— KOIN( 9‘ KBBB - KOC g - elN) (C15)
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The moments due to this force, and these moments resolved into
the body coordinate system are:

dMx _, dFv dMs dMe
3y + v (e2- e|)$w;+e:$y}+ By-¢ + d\lf
dMy _ dFv dMe dMa
av {(ez e) Ty e Q&} —~——CQyq + d‘# (C16)

Integratlng these expressions around the azimuth yields
the rotor average moments about the body X and Y axes,

A - b 27 dMx
Mug = 2w j; dy ay
A b 2w dMy
M = c——— —
®oo2w Yo dy av (C17)
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APPENDIX D

EARTH AXIS DISPLACEMENTS

The linear and rotational velocities and displacements
of the rotor entry vehicle in flat earth axis coordinates can
be calculated from the results of the coupled rotor-body equa-
tions of motion in Appendix C. The relationships between the
body velocities and earth axis velocities are given below.

®c = 9500, 1 %0 (D1)
CPE “Pgt? (q8$¢E+ s Gd’E) $gE/ @gE (D2)
\i/E =(Q3, 15 Cq) / Ty, (D3)

Xe ={ugCo,t (VaSs t Wplo) So.} Ty,
- {VBG%" Wg $°E $‘1’E (D)
Yeg = { Ug G:QE"' ( Vs $°E+ Wg @@E) $8E} $‘I’E

+{VB ¢¢E" WBSQE} (I:\PE (D5)

ZE = —UB$OE+(VB $°E+ wB¢°E) (EOE (D6)

Coordinates in the ea-th axes are calculated by integrating
Equations (Dl1l) - (D6’ .
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Figure 1. Geometry of Deflected Rotor Blade
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Figure 2. Configuration For Approximating Bow Wave Shape
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Figure 3. Vehicle Configuration For Dyznamics Study
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Figure 6.

Rotor And Vehicle Coordinate Systenms
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