A Facsimile Report

Reproduced by
UNITED STATES
ATOMIC ENERGY COMMISSION
Division of Technical Information
P.O. Box 62 Oak Ridge, Tennessee 37830
Neutron Physics Division

CALCULATION OF THE NEUTRON AND PROTON SPECTRA FROM THICK TARGETS
BOMBARDED BY 450-MeV PROTONS AND COMPARISON WITH EXPERIMENT

R. G. Almiller, Jr., J. W. Nuchter, and H. S. Moran

Abstract

Nucleon-nucleon cascade calculations have been carried out for
450-MeV protons incident on a variety of thick targets. The energy
spectra of emitted neutrons and protons at specific angles are com-
pared with experimental measurements.

NOTE
This work partially funded by
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Under Order N-38280A

*Submitted for journal publication

*NOTE: This document contains information of a preliminary nature
and was prepared primarily for internal use at the Oak Ridge National
Laboratory. It is subject to revision or correction and therefore does
not represent a final report.

CIRCULATION OF THIS DOCUMENT IS UNRESTRICTED
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>II. CALCULATION DETAILS</td>
<td>4</td>
</tr>
<tr>
<td>III. RESULTS AND DISCUSSION</td>
<td>6</td>
</tr>
<tr>
<td>FOOTNOTES</td>
<td>15</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>16</td>
</tr>
</tbody>
</table>
I INTRODUCTION

Wachter, Gibson, and Barrus (1) have recently published experimental data on the high-energy neutron and proton spectra from thin and thick targets bombarded by 550-MeV protons. These thick-target data cover a wide variety of angles and target materials and are therefore very suitable for testing the validity of high-energy nucleon transport calculations. In this paper, comparisons between calculations carried out with the nucleon-meson transport code written by Coleman (2,3) and the thick-target experimental data are presented.

In Section II the calculational details are described, and in Section III the results are presented and discussed.

II CALCULATIONAL DETAILS

The calculations presented here were obtained using the nucleon-meson transport code written by Coleman (2,3). The physical processes incorporated into the code and the data used have been described in detail by Coleman and will therefore not be discussed here.

In the experiment, a narrow beam of 550-MeV protons was incident on the face of a cylindrical target 20 cm in diameter, and the neutron or proton current per unit energy which crossed a specified area A (see Fig. 1) was measured. Area A is at right angles to the line R. The results given in Ref. 1 are expressed as the number of particles per MeV per steradian about a "midpoint" c in the target. The radius R_c is different for each target.

Fig. 1 Schematic of Experimental Geometry
The calculations were carried out to correspond very nearly to the experimental geometry. The lateral dimensions of the target in the calculations were taken to be infinite, but this should have no appreciable effect on the comparisons. In the calculations, the target thickness and the distances \(R \) and \(R_c \) in all cases were taken to have the values given in ORNL-DWG 68-13782. The area \(A \) used in the calculations is only approximately that used in the experiment, but, since the comparisons are presented on the basis of an average over \(A \), this should have no appreciable effect on the comparisons. Finally, to make the comparison between the experimental values and the calculations as meaningful as possible, the calculations have been performed using a Gaussian energy resolution corresponding to the resolution of the experimental spectrometer.

III. RESULTS AND DISCUSSION

Calculations have been carried out and compared with all of the thick-target neutron data given in Ref. 1 and with a representative portion of the thick-target proton data. The comparisons are shown in Figs. 2 through 7. All of the results for a given type of emergent particle and a given element are shown in a single figure. Thus, Figs. 2-4 show the neutron yields from the elements C, Al, and Co, respectively, and Figs. 5-7 show the proton yields from the elements C, Al, and Cu, respectively. In the figures, the two solid curves with each set of data represent the 67% confidence limits of the experimental data. The calculated results are shown as plotted points with error bars that represent one standard deviation. Each point represents a 15-MeV histogram interval in the calculation and is plotted at the center of the interval. The calculations, of course, predict the...
Fig 3. Neutron Yields from 450-MeV Protons on Aluminum Targets.

Fig 4. Neutron Yields from 450-MeV Protons on Cobalt Targets.
Fig. 5 Proton Yields from 450-MeV Protons on Carbon Targets

Fig. 6 Proton Yields from 450-MeV Protons on Aluminum Targets
particle-emission spectra at all energies, but only the higher energy spectra are shown in the figures. The target thickness, the experimental angle θ (see Fig 1), and the angular interval over which the calculations have been averaged are given in the figures for each comparison.

In considering the results, it should be noted that all comparisons are made on an absolute basis. In all of the neutron comparisons, Figs 2-4, the calculated values are larger than the experimental values at high energy. In most cases, the discrepancy becomes progressively larger as the neutron energy increases. In the one case of a measurement at 5° (Fig 4), the agreement at the higher energies is somewhat better than at the larger angles. At the lower measured energies, the calculated values tend to be slightly larger than the experimental values at large angles and slightly less than the experimental values at the small angles. Roughly speaking, the degree of agreement between the calculated and experimental results is independent of target thickness and material. Qualitatively, the disagreement between the thick-target calculated and the experimental values seems to be consistent with the disagreement between the thin-target calculated and the experimental values.

In all of the proton comparisons, the target thicknesses considered are small and therefore the comparisons test primarily the differential cross section for proton production. That is, for such thin targets neither the incident protons nor the secondary protons lose appreciable energy in the target, so the measured and calculated results are representative of the energy and angular distribution of protons from a 450-MeV proton-nucleus collision. In the case of carbon and aluminum, Figs 5 and 6, and the 30° and 45° data in Fig 7, the proton comparisons are similar to those obtained.
with neutrons. At all angles the calculated values are larger than the experimental values at high energies, and at small angles the calculated values are smaller than the experimental values at the lower energies. Figure 7 also contains proton data measured at 60°. This comparison seems noteworthy because this is the largest angle considered here and because it is the only case in which the calculated values are smaller than the measured values at the higher energies.

In general, the agreement between the calculated and experimental results is rather poor, particularly at the higher energies. If one assumes that the experimental data are correct, then the discrepancies shown in the figures must be taken to represent the state of the calculational art at this time. The comparisons presented here are very detailed, that is, the differences in the figures must be taken to represent the state of the calculational art at this time. The comparisons presented here are very detailed, that is, the differences shown in the figures are the result of differences in the calculations and not of the experimental data. It should be noted that the experimental data are in reasonable agreement with several different kinds of experimental data (3, 5, 6).

Footnotes

a. This work partially funded by the National Aeronautics and Space Administration, Order H-15280A, under Union Carbide Corporation's contract with the U.S. Atomic Energy Commission.

b. A paper comparing the particle-production cross sections used in the transport calculations with the thin-target data of Wachter et al. and with the thin-target data at other energies is in preparation by Bertini. A few of the thin-target comparisons with the Wachter et al. data are given in Ref. 4.

c. The proton spectrum at 0° from a very thick (165 g/cm²) cobalt target is given in Ref. 3. It has not been possible to obtain sufficient statistical accuracy in the calculations to obtain a meaningful comparison with these data.
REFERENCES

NASA-High Energy Distribution List

R M Ahrens, Advanced Research Corporation, 715 Miami Circle, N.E., Atlanta, Georgia 30324

Donald W Atten, Research Physicist, Stanford University, Department of Physics, Stanford, California

Argonne National Laboratory, Library Services Department 203-CE125, 9700 South Cass Avenue, Argonne, Illinois 60439

Armed Forces Radiobiology Research Institute, Defense Atomic Support Agency, National Naval Medical Center, Bethesda, Maryland 20014

Army Materials and Mechanics Research Center, ATTN Technical Information Branch, Watertown, Massachusetts 02172

Louis Avanzi, Radiation Effects and Support Branch, Explosives Laboratory, SMERP-VE3, El Segundo, California 90301

Miguel Auschelam, National Accelerator Laboratory, P O Box 500, Batavia, Illinois 60510

Col E R Bellinger, USAF, NC, USAF School of Aerospace Medicine, F O Box 4013, Brooks AFB, Texas 7635

M Barbier, CERN, Geneva, Switzerland

N Barr, Radiological Physics Branch, Division of Biology and Medicine, U S Atomic Energy Commission, Washington, D C 20545 (5 copies)

C K Bauer, Dept 73-24, 2-26, Lockheed-Georgia Company, Marietta, Georgia 30060

Sherwin M Deck, NASA/Langley Research Center, Mail Stop 400, Hampton, Virginia 23665

P R Bell, Code TH, NASA/Johnson Spacecraft Center, Houston, Texas 77038

J R Beyster, 9321 La Jolla Farms Road, La Jolla, California 92037

Frank L Bouquet, Dept 72-71, 311, B-6, Lockheed California Co, Burbank, California 91503

S Brebner, Grumman Aircraft Engineering Corp., Space Sciences Group, Plant 5, Bethpage, L I, New York 11714

Charles J Bridgeman, Physics Department, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433
Brookhaven National Laboratory, ATTN Research Library, Upton, New York 11973
Brooks Air Force Base, Radiobiology Department, Chief, San Antonio, Texas 78235
N O Burrell, M-RF-MEA, National Aeronautics and Space Adm, Marshall Space Flight Center, Huntsville, Alabama 35812
Walter R Berrus, Tenneco, Inc, P O Box J, Oak Ridge, Tennessee 37830
D K Butler, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
Richard L Childers, Physics Department, University of South Carolina, Columbia, South Carolina 29208
Haj Anthony J Chuta, 54 AFSC (SCSM), Andrews AFB, Washington, D C 20331
R G Cochran, Department of Nuclear Engineering, A and M College of Texas, College Station, Texas
W A Coleman, Box 855, Edgewood, Maryland 21040
Ted Colvin, Bendix Systems Division, 3300 Plymouth Road, Ann Arbor, Michigan 48105
Consultant, Nuclear Medicine, Office of the Surgeon General, Washington, D C 20315
E A Costie, Argonne National Laboratory, Argonne, Illinois 60439
Frederick P Coven, Head, Health Physics Division, Brookhaven National Laboratory, Upton, L I , New York 11973
Richard B Curtis, Office of Research and Advanced Studies, Indiana University, Bloomington, Indiana 47401
Stanley B Curtis, Bldg 29, Room 213, Lawrence Radiation Laboratory, Berkeley, California 94720
Raymond Davis, Jr, Chemistry Department, Brookhaven National Laboratory, Upton, L I , New York 11973
J Deuren, 3401 W Broadway Avenue, Hawthorne, California 90250
Director, Defense Atomic Support Agency, Pentagon, Washington, D C 20351

Charles A Dempsey, 6570 AMRL (HSE), Wright-Patterson AFB, Ohio 45433
Herbert DeStaebler, SLAC, Stanford University, Stanford, California 94305
Director, Defense Atomic Support Agency, ATTN APT, Washington, D C 20305
Herman J Donnert, U S Army Nuclear Defense Laboratory, AMXND-C, Edgewood Arsenal, Maryland 21010
Israel Dostrovsky, Weizmann Institute for Science, Rehovoth, Israel
D W Drenbaugh, Westinghouse Astronuclear Laboratory, P O Box 10864, Pittsburgh, Pennsylvania 15236
John E Duberg, National Aeronautics and Space Adm, Langley Research Center, Langley Field, Virginia 23356
D L Dye, The Boeing Company, Mail Stop 33-76, Seattle, Washington 98124
R D Edge, Physics Department, University of South Carolina, Columbia, South Carolina 29208
Nat Edmundson, Code R-RF-J, National Aeronautics and Space Adm, Marshall Space Flight Center, Huntsville, Alabama 35812
E M Finkelstein, Grumman Aircraft Engineering Corp, LEM Project, Plant 25, Bethpage, L I , New York 11714
Trutz Fœlsche, National Aeronautics and Space Adm, Langley Research Center, Mail Stop 314, Langley Field, Virginia 23355
R E Fortney, Northrop Space Laboratories, 3401 West Broadway, Hawthorne, California 90250
Leo Fox, Code RRE, Biotechnology and Human Research Division, National Aeronautics and Space Adm, Washington, D C 20546
J Y Freeman, Division MPS, CERN, Geneva 23, Switzerland
Takayoshi Furu, Ship Research Institute, Shinkansen, Kitakata, Japan
Russell R Galasco, Headquarters, USAF Test and Evaluation Command, Aberdeen Proving Ground, Maryland 21005
J Geobel, CERN, Geneva, Switzerland
General Dynamics/Fort Worth, ATTN B S Pain and K G Brown, P O Box 746, Fort Worth, Texas 76101
R Nelson, Stanford Linear Accelerator Center, P O Box 4369, Stanford University, Stanford, California

Kerran O'Brien, U S Atomic Energy Commission, Health and Safety Laboratory, 475 Hudson Street, New York, New York 10014

CRED Library, Research Triangle Institute, P O Box 12194, Research Triangle Park, North Carolina 27709

W. K. R Panitzky, Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

C. Pasecznik, Institute for Experimental Physics, Technical University of Gdansk, Gdansk 80, Poland

Kelvin Rooney, Atomics International, 8900 DeSoto Avenue, Canoga Park, California 91304

H A Sanderson, University of California, Los Alamos Scientific Laboratory, P O Box 1663, Los Alamos, New Mexico 87544

J Scannion, Research Department, Grumman Aircraft Engineering Corp, Bethpage, New York 11714

H J Scherer, U S Naval School of Aviation Medicine, U S Naval Aviation Medical Center-54, Pensacola, Florida 32512

W Wayne Scott, Chattanooga State Technical Institute, 4501 Amnicco Highway, Chattanooga, Tennessee 37402

Robert B Seale, Office of Nuclear Engineering, University of Arizona, Tucson, Arizona 85721

W E Selph, LINAC, Gulf General Atomic, P O Box 606, San Diego, California 92112

E S P Shen, Department of Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

K Shure, Westinghouse Electric Corp, Bettis Atomic Power Laboratory, P O Box 79, West Mifflin, Pennsylvania 15122

Robert T Siegel, Director, Space Radiation Effects Laboratory, operated by College of William and Mary, 11970 Jefferson Avenue, Newport News, Virginia 23606

J J Singh, M S 234, NASA Langley Research Center, Langley Station, Hampton, Virginia 23602

Charles Goodhaus, University of California, California College of Medicine, 1721 Griffin Avenue, Los Angeles, California 90031

Jerry Spahn, 6570 ANL (M2796), Wright-Patterson AFB, Ohio

Stanford Linear Accelerator Center, GTRI Library, P O Box 4369, Stanford, California 94309

William Steinemann, KJUL Corp, 1200 North Broad Street, Philadelphia, Pennsylvania 19121

Henry Stern, R-NP-1, NASA Marshall Space Flight Center, Huntsville, Alabama 35812

G R Stevenson, Radiation Protection Group, EDO, Rutherford High Energy Laboratory, Chilton, Didcot, Berkshire, England
T R Strayhorn, Mail Zone 2671, General Dynamics, P.O. Box 748, Fort Worth, Texas 76101

J. A. Swartout, Union Carbide Corporation, 270 Park Avenue, New York, New York 10017

R F Toschek, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

Eizo Tajima, Rikkyo University, Ikebukuro, Toshima-ku, Tokyo, Japan

K Tesch, DESY, Hamburg, Helgoland, Germany

Ralph H Thomas, Health Physics, 67 Encina Hall, Stanford University, Stanford, California 94305

G Lyle Tiffany, Chief Scientist, Bendix Systems Division, 3300 Plymouth Road, Ann Arbor, Michigan 48103

Cornelius Tobias, University of California, Lawrence Radiation Laboratory, Berkeley, California 94720

Jacob I Trombka, Goddard Space Flight Center, Greenbelt, Maryland 20771

W Turchinetz, R26-411, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Anthony Turkevich, University of Chicago, Chicago, Illinois

Werner Von Braun, Director, George C Marshall Space Flight Center, NASA, Huntsville, Alabama 35812

G P Wachtell, Franklin Institute, 20th and Parkway, Philadelphia, Pennsylvania 19103

Roger Wallace, Bldg 72, Lawrence Radiation Laboratory, Berkeley, California 94720

W A Wallenmeyer, Division of Research, U S Atomic Energy Commission, Washington, D.C. 20545

M B Lells, Radiation Research Associates, Inc., 1555 West Terrell Avenue, Fort Worth, Texas 76104

G T Western, Y-71, General Dynamics, Fort Worth, Texas 76101

Glenn A Whan, Associate Professor, Nuclear Engineering Laboratory, The University of New Mexico, Albuquerque, New Mexico 87106

Ralph Wiley, Mail Zone Y-128, General Dynamics, Fort Worth, Texas 76101

Maurice Wilkinson, The Boeing Company, MS 23-82, Seattle, Washington 98124

William E Wilson, Jr., Reactor Supervisor, Department of Nuclear Engineering, Nuclear Reactor Bldg., University of Washington, Seattle, Washington 98105

W R Yucker, A-2-833, Douglas Aircraft Co., Nuclear Department, 3000 Ocean Park Boulevard, Santa Monica, California 90405

Marcello Zocchi, Reactor and Radiation, National Bureau of Standards, Washington, D.C. 20234

K Ziock, Department of Physics, University of Virginia, Charlottesville, Virginia 22901

Walter Schimmerling, Head, Radiations Measurements Group, Princeton-Pennsylvania Accelerator, P.O. Box 636, Princeton, New Jersey 08540

J Ranft, Science Research Council, Rutherford High Energy Laboratory, Bldg. 225, Chilton, Didcot, Berkshire, ENGLAND
END

DATE FILMED
5 / 26 / 69