Calculation of the Neutron and Proton Spectra from Thick Targets Bombarded by 450-MeV Protons and Comparison with Experiment

R. G. Almiller, Jr., J. W. Moehler, and H. S. Murrell

Abstract

Nucleon-nucleon cascade calculations have been carried out for 450-MeV protons incident on a variety of thick targets. The energy spectra of emitted neutrons and protons at specific angles are compared with experimental measurements.

NOTE

This Work Partially Funded by National Aeronautics and Space Administration Under Order N-32280A

*Submitted for journal publication

This document contains information of a preliminary nature and not prepared primarily for general use at the Oak Ridge National Laboratory. It is subject to revision as correction and therefore does not represent a final report.
I INTRODUCTION

Wachter, Gibson, and Barrus (1) have recently published experimental data on the high-energy neutron and proton spectra from thin and thick targets bombarded by 450-MeV protons. These thick-target data cover a wide variety of angles and target materials and are therefore very suitable for testing the validity of high-energy nucleon transport calculations. In this paper, comparisons between calculations carried out with the nucleon-

meson transport code written by Coleman (2,3) and the thick-target experimental data are presented.

In Section II the calculational details are described, and in Section III the results are presented and discussed.

II CALCULATIONAL DETAILS

The calculations presented here were obtained using the nucleon-meson transport code written by Coleman (2,3). The physical processes incorporated into the code and the data used have been described in detail by Coleman and will therefore not be discussed here.

In the experiment, a narrow beam of 450-MeV protons was incident on the face of a cylindrical target 20 cm in diameter, and the neutron or proton current per unit energy which crossed a specified area A (see Fig. 1) was measured. Area A is at right angles to the line R. The results given in Ref. 1 are expressed as the number of particles per MeV per steradian about a "midpoint" c in the target. The radius R_c is different for each target.
The calculations were carried out to correspond very nearly to the experimental geometry. The lateral dimensions of the target in the calculations were taken to be infinite, but this should have no appreciable effect on the comparisons. In the calculations, the target thickness and the distances R and R_e in all cases were taken to have the values given in Ref. 1. The area A used in the calculations is only approximately that used in the experiment, but, since the comparisons are presented on the basis of an average over A, this should have no appreciable effect on the comparisons. Finally, to make the comparison between the experimental values and the calculations as meaningful as possible, the calculations have been performed using a Gaussian energy resolution corresponding to the resolution of the experimental spectrometer.

III RESULTS AND DISCUSSION

Calculations have been carried out and compared with all of the thick-target neutron data given in Ref. 1 and with a representative portion of the thick-target proton data. The comparisons are shown in Figs. 2 through 7. All of the results for a given type of emergent particle and a given element are shown in a single figure. Thus, Figs. 2-4 show the neutron yields from the elements C, Al, and Co, respectively, and Figs. 5-7 show the proton yields from the elements C, Al, and Cu, respectively. In the figures, the two solid curves with each set of data represent the 67% confidence limits of the experimental data. The calculated results are shown as plotted points with error bars that represent one standard deviation. Each point represents a 15-MeV histogram interval in the calculation and is plotted at the center of the interval. The calculations, of course, predict the

Fig. 2. Neutron Yields from 450-MeV Protons on Carbon Targets.
Fig 3. Neutron Yields from 450-MeV Protons on Aluminum Targets.

Fig 4. Neutron Yields from 450-MeV Protons on Cobalt Targets.
Fig. 5 Proton Yields from 450-MeV Protons on Carbon Targets

Fig. 6 Proton Yields from 450-MeV Protons on Aluminum Targets
particle-emission spectra at all energies, but only the higher energy spectra are shown in the figures. The target thickness, the experimental angle \(\theta \) (see Fig 1), and the angular interval over which the calculations have been averaged are given in the figures for each comparison.

In considering the results, it should be noted that all comparisons are made on an absolute basis. In all of the neutron comparisons, Figs 2-4, the calculated values are larger than the experimental values at high energy. In most cases, the discrepancy becomes progressively larger as the neutron energy increases. In the one case of a measurement at 60° (Fig 4), the agreement at the higher energies is somewhat better than at the larger angles. At the lower measured energies, the calculated values tend to be slightly larger than the experimental values at large angles and slightly less than the experimental values at the small angles. Roughly speaking, the degree of agreement between the calculated and experimental results is independent of target thickness and material. Qualitatively, the disagreement between the thick-target calculated and the experimental values seems to be consistent with the disagreement between the thin-target calculated and the experimental values (1).

In all of the proton comparisons, the target thicknesses considered are small and therefore the comparisons test primarily the differential cross section for proton production. That is, for such thin targets neither the incident protons nor the secondary protons lose appreciable energy in the target, so the measured and calculated results are representative of the energy and angular distribution of protons from a 450-MeV proton-nucleus collision. In the case of carbon and aluminum, Figs 5 and 6, and the 30° and 45° data in Fig 7, the proton comparisons are similar to those obtained.

Fig 7 Proton Yields from 450-MeV Protons on Copper Targets
with neutrons. At all angles the calculated values are larger than the experimental values at high energies, and at small angles the calculated values are smaller than the experimental values at the lower energies. Figure 7 also contains proton data measured at 60°. This comparison seems noteworthy because this is the largest angle considered here and because it is the only case in which the calculated values are smaller than the measured values at the higher energies.

In general, the agreement between the calculated and experimental results is rather poor, particularly at the higher energies. If one assumes that the experimental data are correct, then the discrepancies shown in the figures must be taken to represent the state of the calculational art at this time. The comparisons presented here are very detailed, that is, absolute comparisons of energy spectra at specific angles, and it is very difficult to determine how much effect discrepancies such as those shown in the figures will have on space-vehicle and high-energy-accelerator shielding calculations where one is primarily concerned with integral quantities such as dose. In this regard, it should be noted that calculations carried out with the nucleon-meson transport code are in reasonable agreement with several different kinds of experimental data (3, 5, 6).

Footnotes

a This work partially funded by the National Aeronautics and Space Administration, Order H-38280A, under Union Carbide Corporation's contract with the U. S. Atomic Energy Commission.

b A paper comparing the particle-production cross sections used in the transport calculations with the thin-target data of Wachter et al. and with the thin-target data at other energies is in preparation by Bertini. A few of these thin-target comparisons with the Wachter et al. data are given in Ref. 4.

c The proton spectrum at 0° from a very thick (165 g/cm²) cobalt target is given in Ref. 1. It has not been possible to obtain sufficient statistical accuracy in the calculations to obtain a meaningful comparison with these data.
REFERENCES

7. NASA-High Energy Distribution List

A. N M Alvensleben, Advanced Research Corporation, 715 Miami Circle, N.E., Atlanta, Georgia 30324

B. Donald W Atke, Research Physicist, Stanford University, Department of Physics, Stanford, California

C. Argonne National Laboratory, Library Services Department 203-CE125, 9700 South Cass Avenue, Argonne, Illinois 60439

D. Armed Forces Radiobiology Research Institute, Defense Atomic Support Agency, National Naval Medical Center, Bethesda, Maryland 20014

E. Army Materials and Mechanics Research Center, ATTN Technical Information Branch, Watertown, Massachusetts 02172

F. Louis Avanz, Radiation Effects and Support Branch, Explosives Laboratory, SMUPA-VF3, El G 407, Picatinny Arsenal, Dover, New Jersey 07801

G. Miguel Auschal, National Accelerator Laboratory, P O Box 500, Batavia, Illinois 60510

H. Col E R Ballinger, USAF, MC, USAF School of Aerospace Medicine, P O Box 4013, Brooks AFB, Texas 7635

I. M Berbier, CERN, Geneva, Switzerland

J. N Barr, Radiological Physics Branch, Division of Biology and Medicine, U S Atomic Energy Commission, Washington, D C 20545 (5 copies)

K. C Bauer, Dept 72-34, 2-26, Lockheed-Georgia Company, Marietta, Georgia 30060

L. Sherwin M Beck, NASA/Langley Research Center, Mail Stop 400, Hampton, Virginia 23665

M. P R Bell, Code TH, NASA/Manned Spacecraft Center, Houston, Texas 77059

N. J R Beyster, 9321 La Jolla Farms Road, La Jolla, California 92037

O. Frank L Bouquet, Dept 72-71, 1411 B-6, Lockheed California Co, Burbank, California 91503

Q. Charles J Bridgman, Physics Department, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio 45433
R C Good, Jr., General Electric Company, Room 0500-VFSTC, P O Box 8955, Philadelphia, Pennsylvania 19101
Frederick Gordon, Jr., NASA/Goddard Space Flight Center, Code 716A, Greenbelt, Maryland 20771
Ellie Gradstajn, Institut de Physique Nucléaire, B P 1, 91-Orsay, France
Raymond M Hansen, Mail Stop 235, NASA/Langley Research Center, Hampton, Virginia 23665
Harry Harrison, Code NMB, National Aeronautics and Space Adm, HQs, Washington, D C 20546
Russell Heath, Phillips Petroleum Company, P O Box 2067, Idaho Falls, Idaho 83401
Phillip B Hemmig, Division of Reactor Development, U S Atomic Energy Commission, Washington, D C
Herbert D Hendricks, NASA/Langley, Mail Stop 499, Hampton, Virginia 23665
High-Energy Preprint Library, Department of Physics, University of Toronto, Toronto, Ontario, Canada
Doris M High, Librarian, Commanding Officer, U S Army Nuclear Defense Laboratory, Bldg 5655, ATTN Library, Edgewood Arsenal, Maryland 21010
R H Hilberg, Belcom, Inc., 1100 17th Street, N W, Washington, D C 20036
Charles W Hill, Dept 73-69, Zone 174, Lockheed-Georgia Company, Marietta, Georgia 30050
John R Hoffman, Kaman Nuclear, 1770 Garden of the Gods Road, Colorado Springs, Colorado 80907
L Hoffman, CERN, Geneva, Switzerland
George M Holman, Health Physicist, Yale University, Health Physics Division, 116E Kline Biology Tower, 219 Prospect Street, New Haven, Connecticut 06520
J T Holloway, Grants and Research Contracts, Office of Space Sciences, National Aeronautics and Space Adm., Washington, D C 20546
Holmes and Harver, Inc., 828 South Figueroa Street, Los Angeles, California 90017

W C Hulten, NASA/Langley Research Center, Mail Stop 234, Hampton, Virginia 23665
H E Hungerford, 101 Michael Gold Laboratory, Purdue University, Lafayette, Indiana 47907
T Iida, National Institute Radiological Sciences, Anagawa, Chiba-Shi, Japan
Harvey I Israel, H-DD, Los Alamos Scientific Laboratory, P O Box 1663, Los Alamos, New Mexico 87544
Lt Joseph F Janni, W 2E, Air Force Weapons Laboratory, Kirtland AFB, New Mexico 87117
Philippe Tardy-Joubert, S F R, Centre d'Etudes Nucléaire de Saclay, B P 2, 91-Dif-Sur-Yvette, France
Clyde Jupiter, Gulf General Atomic, P O Box 608, San Diego, California 92112
Irving M Karp, NASA/Lewis Research Center, 21000 Brookpark Road, Mail Stop 49-2, Cleveland, Ohio 44135
La Katz, Director, Accelerator Laboratory, University of Saskatchewan, Sask, Canada
Glenn Keister, Boeing Airplane Company, Aerospace Division, P O Box 3707, Seattle, Washington 98103
D Alling-Kelly, Nuclear Enterprises Ltd., Sighthill, Edinburgh 11, Scotland
James F Kenny, Boeing Scientific Research Laboratory, P O Box 3951, Seattle, Washington 98124
E C Kidd, Zone 571, Dept 61-2, General Dynamics/Fort Worth, P O Box 48, Fort Worth, Texas 76101
P T Kieltyka, Capt, USAF, Hq OAR (HROSP), 1400 Wilson Blvd, Arlington, Virginia 22209
E M Kinderman, Radiation Physics Division, Stanford Research Institute, Menlo Park, California 94025
Robert I Kloster, McDonnell Aircraft Corp., P O Box 516, St Louis, Missouri 63168
T. R. Strayhorn, Mail Zone 2671, General Dynamics, P.O. Box 748, Fort Worth, Texas 76101

J. A. Swartout, Union Carbide Corporation, 270 Park Avenue, New York, New York 10017

R. F. Toschek, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544

Eizo Tajima, Rikkyo University, Ikebukuro, Toshimaku, Tokyo, Japan

K. Tesch, DESY, Hamburg, Notkestrasse 1, Germany

Ralph A. Thomas, Health Physics, 67 Encina Hall, Stanford University, Stanford, California 94305

O. Lyle Tiffany, Chief Scientist, Bendix Systems Division, 3300 Plymouth Road, Ann Arbor, Michigan 48103

Cornelius Tobias, Lawrence Radiation Laboratory, Berkeley, California 94720

Jacob I. Trombka, Goddard Space Flight Center, Greenbelt, Maryland 20771

W. Turchinetz, Bldg. 86-A11, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Anthony Turkevich, University of Chicago, Chicago, Illinois

Werner Von Braun, Director, George C. Marshall Space Flight Center, NASA, Huntsville, Alabama 35812

G. P. Wachtell, Franklin Institute, 20th and Parkway, Philadelphia, Pennsylvania 19103

Roger Wallace, Bldg. 72, Lawrence Radiation Laboratory, Berkeley, California 94720

M. B. Lells, Radiation Research Associates, Inc., 1555 West Terrell Avenue, Fort Worth, Texas 76104

G. T. Western, Y-71, General Dynamics, Fort Worth, Texas 76101

Glenn A. Whan, Associate Professor, Nuclear Engineering Laboratory, The University of New Mexico, Albuquerque, New Mexico 87106

Robert V. Wheeler, R. S. Landauer, Jr., and Co, Glenwood Science Park, Glenwood, Illinois 60425

Ralph Wiley, Mail Zone Y-128, General Dynamics, Fort Worth, Texas 76101

Maurice Wilkinson, The Boeing Company, M.S. 23-82, Seattle, Washington 98124

William E. Wilson, Jr., Reactor Supervisor, Department of Nuclear Engineering, Nuclear Reactor Bldg., University of Washington, Seattle, Washington 98105

W. R. Yucker, A-2-833, Douglas Aircraft Co., Nuclear Department, 3000 Ocean Park Boulevard, Santa Monica, California 90405

Marcello Zocchi, Reactor and Radiation, National Bureau of Standards, Washington, D.C. 20234

K. Ziock, Department of Physics, University of Virginia, Charlottesville, Virginia 23831

Walter Schimmerling, Head, Radiations Measurements Group, Princeton-Pennsylvania Accelerator, P.O. Box 682, Princeton, New Jersey 08540

J. R. Ranft, Science Research Council, Rutherford High Energy Laboratory, Bldg. 225, Chilton, Didcot, Berkshire, ENGLAND
END

DATE FILMED

5 / 26 / 69