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MODIFIED EXTRAORDINARY MODE IN MAGNETIZED

PLASMAS WITH RELATIVE STREAMING

M. Bornatici *
Kai Fong Lee t

ABSTRACT

It is shown that for a system composed of two identical elec-
tron streams in relative motion across a magnetic field, a new
low-frequency propagation band occurs for elliptically polarized
waves propagating perpendicular to both the magnetic field and
stream motion. No low-frequency cutoff exists if the plasma fre-
quency is higher than the electron cyclotron frequency. This
"modified extraordinary mode" becomes unstable for wave num-
bers k greater than some minimum value, k mj,, when the streaming
velocity exceeds a certain threshold value. The case of two iden-
tical counterstreaming electron-ion plasmas is also discussed.
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MODIFIED EXTRAORDINARY MODE IN MAGNETIZED
PLASMAS WITH RELATIVE STREAMING

I. INTRODUCTION

In a system of two interacting electron plasmas, counterstreaming along a
uniform magnetic field, the purely transverse linearly polarized mode propagating
perpendicular to the magnetic field is expected to possess a low frequency prop-
agation band and to be unstable. l On the other hand, in the presence of two beams
of ions moving with equal and opposite velocities through a neutralizing background
of electrons and across the field, mixed transverse-longitudinal waves, propaga-
ting nearly along the direction of streaming, have been predicted to be unstable.2
Also, a current across a magnetic field can excite unstable waves propagating
obliquely to the magnetic field.3

In this paper, we consider a symmetrical double beam system, i.e. a system
composed of two identical counterstreaming electron beams with a constant and
uniform magnetic field perpendicular to the direction of streaming. The charac-
teristic properties of both stable and unstable waves are investigated for the
case of propagation perpendicular to both the magnetic field and stream motion.
It is found that the ordinary mode is unaffected by relative streaming, while the
extraordinary mode is modified in such a way that it possesses a propagation
band below the lower hybrid cutoff frequency. Moreover, the modified extra-
ordinary mode is expected to become unstable when the streaming velocity ex-
ceeds a certain threshold value. The analysis is extended to the case in which
also the ions take part in the streaming motion.

In Section II, the dispersion relation for the modified extraordinary mode is
derived. The instability criterion and the growth rate are found in Section III.
In Section IV the propagation properties of the stable modified extraordinary
waves are investigated. Finally, in Section V, two counterstreaming electron
ion plasmas are considered.

II. DISPERSION RELATION

Let us consider a homogeneous, infinite, fully ionized gas with relative
streaming motions among the charged-particle species in the direction perpen-
dicular to that of an external magnetic field, which is taken along the z -axis.
Temperature effects and collisions are disregarded and our analysis is based on
the magnetohydrodynamic equations for each species and Ma>:well's equa-
tions. The system is linearized and Fourier transformed in space and time
by assuming perturbations propagating perpendicular to both the magnetic field 	 g
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i.e.,	 k2 C2 = cv2 — W2,
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a

A33 = 0 , (3)

and streaming motions and varying as exp [- i (wt - kx ) ]. The dispersion re-
lation for waves of frequency -, and wave vector k is givers by
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where a refers to the different particle species (electrons or ions) present in
the plasma and summations extend over all species. Also p a and na are the
plasma and cyclotron frequencies respectively containing the algebraic sign of
the charge of each species; U a is the non-relativistic do velocity of the particles
in the unperturbed stream and c is the velocity of light.

The general dispersion relation, given by Equation (1), factors into two
equations

x

2
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and

All	 Al2

= 0 .	 (4)
A 21	 A22

Equation (3) refers to the purely transverse linearly polarized mode, whose
elect.ric field is along the external magnetic field B o , This mode, referred to
as the ordinary (0) mode, is unaffected by both B o and streaming motions.
Equation (4) yields the dispersion relation for the extraordinary waves in the
presence of streaming. These "modified extraordinary waves," hereafter ab-
breviated as MX, are mixed transverse-longitudinal waves, elliptically polarized
in a plane perpendicular to BQ

In order to be able to investigate the propagation properties of the MX mode
in a simple way, we consider a system composed of two identical counterstream-
ing plasmas, each of density n,/2, moving with equal and opposite de velocities,
+u and -u respectively. By disregarding the motion of ions (infinite ion mass),
from Equations (4) and (2), the following dispersion relation is obtained for the
MX mode:

602-02) (W2 _ W 2) ( W2 _ W+ )
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where WH = ( Q e 2  + Wp ê 1/2 is the upper hybrid frequency, and

2	 1 /2
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t = 	+ W e	 t	 (6)2	 p	 2

The characteristics of this mode will be examined in the next two sections,

III. UNSTABLE MX WAVES

In order to investigate the stability properties of the modified extraordinary
mode, it is convenient to write Equation (5) as a cubic equation in w2:

W6 - AW4 + Bev2 - C = 0
	

(7)
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where
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C

1111- is possible to show, (see also Deference 5) that all three roots for F,,,2 are real
and positive, corresponding to stability, if

4B3 -- A2 B2 - 18ABC + 27C 2 + 4A3 C < 0
(11)

C > 0 .

On the other hand, for a 2 to be a negative or complex root, corresponding to an
instability, a sufficient condition is

U22
SZ2 C,,4 +. k2 C 2 W 2 ^2_ U2 ty2	 < oe pe	 H	 e	 C2 pe
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Condition (13) yields the minimum unstable wave number for a given streaming
velocity and shows that waves with infinite wave numbers begin to become

(12)
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unstable when

U > C I ile I/WPQ I
	 (14)

From the dispersion relation given by Equation (7), it is possible to show that
for waves with k - X , the growth rate is

1 !'2
U2 r.)P e

C 2 	 e

which is also the maximum growth rate, corresponding to an unstable wave with
purely imaginary frequency.

It is useful to derive the equations relating the phases and magnitudes of the
electric field components and to examine the polarization for the MX mode. To
this end the wave equation for the electric field E can be written as A • E = 0,
where A is the dispersion matrix defined in Equation (1). For MX waves then,
the electric field components are related by two equations (E z = 0)

	

Al l Ex + Al 2 Ey	 0
(16)

	

A2 F Ex + A2 2 Ey	 0

where the coefficients A, Q (a, )3 = 1 0 2) are given by Equations (2), and Ex and
Ey are the electric field components parallel and perpendicular to the wave
vector k, respectively. For the system of two identical counterstream.ing elec-
tronic plasmas, from Equations (16) and (2), it results

Ex	 ^^eI	 ape
Ey - 

- 
1 w W2 _ a) H2

H

with co being the solution of the dispersion relation (5). It appears, therefore,
that the MX mode is in general a mixed transverse-longitudinal mode, elliptically
polarized in the plane containing the wave vector k and the streaming velocity u.

r

(15)

(17)
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However, it is possible to show that for ;v.tiible' %IX wavess NNith very large wave
numbers 1> 	 Es 	 the longRuding t (- of ponont of the electric field is
g;reatcr than this Iran:.versv component. 6 On the , other hand, ! g x	 EY when
U ) 1 : 0	 / . 0 f. , Thei,eforc, unstable MX	 vc;S with very large wave nuin -
ber.;, i.e. they most unstabic ones, are predominantly transverse waves, with th©
clectric field nearh- parallel to the direction of streaming, This is as expected
,since it is the field component along the streaming inotion which causes instabil-
ity, to fact the instability occurs since kinetics energy associated with the ordored
streaming motion of electrons is fed into waves in the form of clectromag*netic;
energy, at a rate; proportional to (u - E) . Since the maxi mum amount of energy
is fee! into w,,lvc s whose electric field is along the direction of streaming, it
results tlutt. the most unstable waves are the transverse ones. We finally note
Mat the insLability c:r4terion (1 .1) and the ma::imum growth rate (15) are identical
to these of dic modified ordinary (MO) inode l and, therefore, the MX and Mo in-
stabilities are similar for very large wave numbers, caused respectively by
streaming, motion across and along an external magnetic field.

I`, . STABLE MX WAVES

In the limit of no streaming, a	 0, Equation (5) yiel.cls the usual dispersion
relation for X waveO

k 2 C2	 (18)

The ranges of allowable frequencies are determined by requiring that for real
wave numbers propagation occurs only when k 2 e 2 > 0. As shown in Figure 1,
two propagation bands exist for the electronic extraordinary mode, with a low-
frequency and a high-frequency cutoff at ,, - anti,,, * respectively, and a resonance
at t. }ci . When the plasma density is sufficiently high and such that c"p e > 21/2 , Sie
no propagation occurs at frequencies less than the electron cyclotron frequency.

in the presence of a streaming motion, when the dispersion relation is given
by Equation (5), the propagation properties of X waves are modified due to the
fact that a new cutoff and a new resonance; appear, at I ix ' I and [ Q 2 - u 2 

W
/c 2 ] 1/2

respectively. This can produce a now low frequency propagation band. Three
possible cases are examined and shown in Figure 2. When the plasma density
is sufficiently low and such that wp e < 21/2 1 Q, ! , it is possible for cU to be
smaller, Case 1, or greater, Case 2, than LQe2 - u2 0) ^ /c 2 ] 1/ 2. In the first case
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Figure 1. Propagation (P) and evanescent (E) bands of the electronic extraordinary mode.

the low-frequency cutoff is a,_ (as in the absence of streaming) and there is
propagation for W_2  < W2 < (Q2 - U 2 Wp /C 2), Q 2 < CO2 < WH and c^: 2 > W+ . In Case 2,
a new Iow-frequency cutoff appears at l Qe2 - U2 U)'2 /c 211/1  	and the allowable fre-
quency ranges are ( Q 2 - U2 CO 2 /C 21 < W2 < W? , Q 2 < W2 < W 2 and C,)2 > W 2 . It has
to be noted that (Qe2 - U2 Wp /e 2) is

/
 greater than zero since ^,;p e <'42 1/2 J Qe I and

a non-relativistic analysis has been used. When the plasma density is sufficiently
high and such that cop > 2 1/ 2 1 Q e I, a new low frequency propagation band, ( pe
- u 2 Wp 

/c 
2) < W2 < Qe2 , exists for the MX mode. As shown in Figure 2, Case 3,

propagation is possible also for W? < W2 < WH and W2 > W +2 ,  which are the two
propagation bands characteristic of the case in which there is no streaming. The
interesting feature of Case 3 is that MX waves can propagate at frequencies be-
low the electron cyclotron frequency and, furthermore, according to this model,
for u/c = Q^/w no low-frequency cutoff exists. It should have to be kept in
mind, however, tf

a
 t at very low frequencies, it is no longer permissible to dis-

regard the ions and this model becomes invalid since it takes into account only
the electron motion. The ion effects will be considered in detail in Section V.
For sufficiently high values of the streaming velocity, ( Q 2 - U2 WP e^c 2) becomes
negative and an instability of MX waves with purely imaginary frequenc ies occurs.
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Figure 2. Propagation and evanescent bands of the stable m2dified extraordinary mode (infinite
ion mass). In Case 1, w can be either greater or less than ( 	 2u cv2 /c 2). The new propa-
gation bonds (n0 — u 2/c2  2) < cv2 < cv? and p 2 — u 7/c 2 W 2 ) < c) 2 < S^ 2 appear in Case 2

and 3 respectively. 	 pe	 p®
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V. COUNTERSTR,EAMING ELECT RON-ION PLASMAS

5o far the Ion mass has been assumed infinito so that only the electron dy-
namics needed to be considered. We are going now to consider the case of two
identical counterstreaming electron-ion plasmas, in the approximation in which
terms of order m e /m i (the ratio of electron and ion mass) are disregarded com-
pared with one. By allowing the ions also to take part in the streaming motion
in the system of two identical counterstreaming plasmas described in Section II,
the dispersion relation for the MX mode, which follows from Equations (2) and
(4), can be written in the following form:

k	
nX W2 /CO2 

fie) 
(W2 

_ ^ 2^	
192 2 _	 ( )

W4 — aW2 +^

where nX is the square of the index of refraction for extraordinary waves and
is defined as
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X	 (W2 
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W.2
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where co H is the upper hybrid frequency; Wt are defined by Equations (6) and

52. 2 + W 2.
2 P 1

OD
W i = 1 + 

WP e lQ

The quantities a and,8 in Equation (19) are given by

(21)

C

CL = Qe2 (1 U 2 Wp e/C 2 fe ) 	
'8	 Q e 2 Q12 (1 U2 WP i /C 2 Qi2 )
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In Equation (19) the denominator can be rewritten in the form

^^>1 r tztv2 + 1	 (6,,2 —2 ) (c6
2 a) 2
	

(22)

where w2 and (, 2 can be approximated as

2
wC^2

ci .2 ( 1 — U 2 t, 2i ' C 2 f2 i2,

1 - U 2 a) 2
PC
 /C 2 r, ,	 (1^3 = 0 2 (1 " U 2 c,V c /c 2 Q 2 ) , (23)

when

By using Equations (W) and (22), the dispersion -elation (19) takes on the form

k C	 -	

(4)2 
(W2 — fje2 ) (w2 — Qi2 ) ( ``'2 — W2) (w2 w'^2 ) ^	

252 2	
(	 1	 1	 `	 ()

(^}2 
60.2)
  1 cv2 — (,^.1/ (W2 — 

r_^ 2 / (CO2 (A) 2 I

In the limit of infinite ion mass Equation (25) reduces to Equation (5).* It is
possible to establish an instability criterion directly from Equation (25)
'by looking for purely imaginary roots, i.e. w = ± i y , which correspond to a pair
of growing and decaying waves. In such a case, from the requirement that the
first member of Equation (25) be positive for real wave numbers and from con-
ditions (24), it results that the MX mode is unstable, for any wave number, if

me 
1/2

	

a < c " w 1 — m.	 +	 (27)
pi	 p 	 i

'Since Equation ( 25) is a fifth degree algebraic equation in w 2 , it is difficult to obtain analytically
a sufficient condition for stability, i.e. the case in which all roots for cu t are real and positive.



with maximum growth rate

U2
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with maximum growth rate

V2 ^ 2	 1/2

Pe	 2
Ye	
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which is equal to the maximum growth rate (15) for the case in which the ions
are disregarded.
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