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AN ANALYTIC MONTE CARLO APPROACH

TO

PARAMETRIC STUDIES

P. Argentiero

SUMMARY

The following is a frequently occurring problem. A random
variable Y is assumed to be a deterministic function of a one by N
vector of random variables. From information on the multivariate
statistical distribution of X, it is desired to answer questions con-
cerning the statistical distribution of Y. If computational problems
are surmountible, the most satisfactory solution to the problem is
a Monte Carlo one. If this approach is too expensive, then another
approach discussed in this paper should be considered. It involves
obtaining an N-dimensional polynomial fit to data obtained from the
simulation program connecting the input variables to the output
variable, and obtaining Monte Carlo samples from the fitted poly-
nomial instead of the simulation program. A drastic reduction in
computer time is the usual result. This procedure also makes it
quite easy to arrange the input variables in a hierarchy with regard
to their impact on the distribution of the output variable.

This method was applied to obtain a histogram of the distribution
of a minimum fuel midcourse velocity correction of a Venus-72
mission (a mission with a goal to orbit a probe around Venus). It
is also shown that the down-track and radial-track velocity injec-
tion errors are the most significant injection errors with regard
to their influence on the size of the midcourse correction of such a
mission.
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AN ANALYTIC MONTE CARLO APPROACH
TO

PARAMETRIC STUDIES

INTRODUCTION

The following is a generic problem which appears in many diverse areas of
technology. A random variable Y is assumed to be a deterministic function of
a one by n vector of random variables X. From information on the multivariate
statistical distribution of X, it is desired to answer questions concerning the
statistical distribution of Y. It is also frequently useful to be able to arrange
the components of X into a hierarchy with regard to their impact on the distribu-
tion of Y or to perform a parametric study by obtaining estimates of the proba-
bility of Y exceeding a given critical value when certain components of X are
fixed at certain values. If the functional relationship between Y and X is given
in closed form, then in principle a closed form representation of the distribu-
tion of Y can be constructed from the given distribution of X. In practice, how-
ever, this fact is usually not relevant since in most cases either the closed
functional form in question is too complicated to permit an analytic representa-
tion of the distribution of Y or the functional relationship is not given in closed
form at all but in terms of a computing algorithm (i. e. , a computer program).
If computational problems are surmountible, the most satisfactory solution to
the problem is a Monte Carlo one. The technique consists of repeatedly sampl-
ing from the given multivariate distribution for X and computing for each
sampled value of X, the corresponding value for Y. The Y values are arranged
in a histogram. The histogram obtained is then considered as an approximation
to the true distribution of Y. The error produced in substituting the histogram
for the true distribution for Y varies inversely as the square root of the sample
size. Thus the demand for high confidence levels can lead to the necessity of
very large sample sizes. In many cases, this becomes quite expensive in terms
of computer time. The expense is even higher when parametri.; studies of the
sort discussed above are required since this involves a repeated application of
the entire Monte Carlo process.

When the Monte Carlo approach appears too expensive the root sum square
procedure is sometimes utilized. In root sum square studies, individual one-
sigma perturbations on the components of X are introduced into the functional
relation, and the other components of X are set at zero. The resultant effects
on Y are root-sum-squared to obtain the deviation on Y. If the investigator is
willing to assume that Y is normally distributed, then, of course, the distribut-
tion of Y would be completely determined. This procedure is quite convenient
but it relies on assumptions of linearity and statistical independance which
frequently are not satisfied.

Recent authors have directed attention toward obtaining techniques for error
analysis and parametric studies which avoid ooth the expense of standard Monte
Carlo methods and the often times vitiating assumptions of normality, linearity,
and statistical independence which accompany the root-sum-square technique.
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Morel and Mullin (1) for exampleutilize covarience matrix analysis to seuarate
linear and non-linear error sources and, after the effect of linear terms is
computed, the effect of non-linear errors is obtained in a Monte Carlo simula-
tion. Logsdon and Africano (2) make a series of perturbations on each individ-
ual input variable of a simulation. The effects on the output variable are then
fit with a sequence of polynomial curves. Monte Carlo samples are then taken
from the polynomials instead of the simulation program. Very accurate histo-
grams and a drastic reduction in machine time are the reported results.
Another advantage to this approach which should attract attention is that individ-
ual effects of input variables can be isolated and studied thus making paramet-
ric studies both cheap and convenient. For these reasons, further elaboration
and improvement of the technique are offered in the present paper.

In order to exhibit the power and convenience of the present version of this
polynomial fit-Monte Carlo approach, the technique will be utilized to obtain a
parametric study of the effect of injection errors on the important first mid-
course correction of a Venus-72 mission, a mission with a goal to orbit a probe
around Venus during 1972. This example will also permit an opportunity to dis-
cuss some of the practi mi issues that occur in the application of this technique.

AN AI`1ALYTIC MONTE CARLO PROCEDURE

Monte Carlo methods are frequently employed when it is desired to find the
simultaneous effect of several input statistical variables on an output variable.
The result of the application of the Monte Carlo method is usually a histogram
which approximates the distribution of the output variable. But si: -e the accu-
racy of such a histogram varies directly as the square root of the sample size,
Monte Carlo procedures can prove quite expensive. In space work, for instance,
high confidence levels are frequently demanded. Such demands can typically
lead to Monte Carlo samples in excess of 10, 000. If the simulation program is
a time consuming one, then such sample sizes cause practical difficulties. In
(2), Logsdon and Africano suggest a compromise procedure which in many cases
produce histograms very similar to those produced by an honest Monte Carlo
procedure but at a small fraction of the cost. This compromise procedure rests
on the following analysis.

Let the output variable Y be a function of n random variables x 1 , x 2 , .. , x n .
Thus Y = f (x J , x 2 , ...x  ). A first order Taylor series expansion gives

n
Y = E of x where the expansion takes place about the origin of the n dimen-

sional domain space. If the partial derivatives are analytically independent, the
n

equation can be written Y = E AYx i where each term is a function only of its
i=1

subscripted variable and hence can be expanded as a polynomial. Thus
AYx i = ao+a^ x i +^, xi +.. , 

^k Xi* The coefficients can be determined by making
separate perturbations on the individual x , 's while maintaining the other xi 's,
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j ^ i at their zero values. Least square polynomial curve fits are then per-
formed on the results.

Once the curve fits have been performed, the Monte Carlo samples of the
X, is are substituted into the appropriate polynomial rather than the simulation
program. The resultant functional values are then summed to obtain a sampled
value of Y. These values are then arranged in a histogram which hopefully
apprWmates the histogram which would have been obtained had a true Monte
Carlo ,)rocess been performed. And since the evaluation of polynomials is usu-
ally orders of magnitude faster than, say, the numerical integration of a long
trajectory, in many situations a considerable saving in computer time is realized.
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	 An important feature of this technique is that it conveniently permits an iso-
lation of the effect of each input random variable on the statistics of the output
variable. In fp ^t, if one assumes that the input variables are normally distri-
buted and statistically uncorrelated then the individual contributions of the input
variables to the statistical mean and deviation of the output variable can be cal-
culated directly from the coefficients of the least square polynomials. How
these calculations are carried out is demonstrated in (2). If the input variables
are significantly correlated or not normally distributed, then parametric studies
can still be performed quite cheaply. One such method for the performance of
parametric studies in the presence of significant correlations will be exhibited
in a later section.

THE EFFECT OF ANALYTIC CORRELATION

The above analysis is contingent on the assumption that the partial derivatives
in the Taylor series expansion of the simulation function are each functions of
just one variable. This is a strong assumption and it is easy to see how its
acceptance in some situations could lead to bad results. The essence of this
assumption is that the output variable represents the sum of the effects of the
individual input variables. But frequently pL i rs of input variables have a coupled
or covarient effect on the output variable which can not be represented as a sum
of their individual effects. This coupling, when it exists, will manifest itself in
a mutual dependence of the associated partial derivatives. (It is analytic corre-
lation which is under discussion here. This should not be confused with a possi-
ble statistical correlation of the variables in question. The two types of corre-
lation are quite unrelated. ) Allowances can be made for this coupling effect in
the following way. Suppose input variables x ? and x i are suspected to have a
coupled or correlated effect on the output variable. Their contribution can be

m-1

represented as AYx i ,xi = E a k X' - k  X The coefficients a k are then determined byW
simultaneously perturbing x, and x i and performing the usual least squares fit
on the perturbations of the output variable. For each Monte Carlo sample that
is then produced, AYxi ,xi is summed with the other contributors to obtain the
values of Y which are arranged in a histogram.



In principle, there is no reason for not also considering the effects of corre-
lated triples of input variables and so forth. Such contributions could be obtained
in much the same way as the effect of correlated couples is obtained. This
is not recommended either in (2) or in the present study. The reason is that the
inclusion of such correlations increases the number of parameters to be estimated
thus possibly causing numerical difficulties. It also increases the number of
simulationF necessary in order to obtain the polynomial fits. Thus the possible
gain does not appear to be worth its price.

THE QUESTION OF FEASIBILITY

Why should it be that under many circumstances the analytic Monte Carlo
procedure outlined above can give essentially the same results as a standard
Monte Carlo procedure but at a small fraction of the cost in terms of computer
time? To understand the reason, it is useful to recognize that every Monte
Carlo procedure that le,-,Is to a quantative result ( say the evaluation of the 99`70
critical value of an out-dut random variable) may be regarded as an estimation
procedure for the value of a multiple integral. Suppose that n random samples
are deemed sufficient to estimate a given parameter. The results will be a
function 0(EPE`.E3....En) of the random numbers E P EZ ....% which were chosen for
the Monte Carlo process. 'Phis is an unbiased estimate of the correct answer

which can be represented as J t..
	

0(x t , X  , ... x n )dx t 	 dxn
0 

So any Monte Carlo calculation is the result of an integrating or averaging
process and is hence dependent on the global rather than the local properties of
the simulation function. Hence, it is not surprising that in some cases a poly-
nomial approximating surface can be utilized in the Monte Carlo process to pro-
duce almost the same histogram as would have been obtained had the simulation
function been used. All that is necessary is that the polynomial surface fit the
general contours of the multi-dimensional surface which defines the simulation
function. If such a polynomial surface can be obtained, then it is quite sensible
to utilize it since, as was mentioned before, it is frequently orders of magnitude
faster to evaluat3 a polynomial than to evaluate the simulation function.

The saving involved in the analytic Monte Carlo process is strongly dependent
on the nature of the simulation program. If it is a poorly behaved function with
many sharp contours, then many simulations will be necessary in order to obtain
sufficient data points for an adequate polynomial fit. But the purpose of the ana-
lytic Monte Carlo procedure is to keep the number of necessary simulations
down. Thus, for a poorly behaved function, little may be purchased by an ana-
lytic Monte Carlo approach. Also the more poorly behaved a function the higher
the orders of the polynomials must he in order to approximate the function. In
this case the time involved in evaluating the high order polynomials may ap-
proach a significant fraction of the time necessary to evaluate the simulation
function. In this way, also, a point of diminishing returns can be reached.

To see another difficulty with the version of the analytic Monte Carlo procedure
presented in (2), it is necessary to look deeper into the analysis on which this

r

4



i

version rests. Notice that the output variable in this analysis is represented as
the sum of the uncoupled contributions of the input variables with provisions made
for the coupling effect of certain pairs of the input variables. These contribu-
tions are then expanded as pol:'nomials and the coefficients are determined by
perturbing the appropriate input variable, keeping the others at zero, and fitting
the concommitant perturbations of the output variable in a least-squares sense.
This is equivalent to finding the least-squares multidimensional polynomial fit to
the simulation function, with the data points lying along the axes of the domain
space and in certain two-dimensional subspaces generated by pairs of basis
vectors of the domain space. This particular distribution of data points offers
significant numerical advantages since, in effect, it insures that the matrix of
the normal equations contains a large number of zeroes which are in a pattern
that can be exploited in the inversion process. Hence the problem of inverting
large matrices is avoided. Inherent in this approach, however, is a very seri-
ous restriction. A least-squares polynomial approximation to an n-dimensional
function is obtained while utilizing only information on the behavior of the func-
tion in certain selected one and two-dimensional subspaces of the domain space.
This may lead to a good fit on the subspaces in question but a rather bad fit else-
where. In general, the Monte Carlo samples used in the construction of the
histogram will not he drawn exclusively from any particular subspace of the
domain space. Hence, the analytic Monte Carlo procedure given in (2) while
offering numerical advantages could in many situations also offer a warped
histogr'm .

It should be clear that a modified version of the analytic Monte Carlo proce-
dure given in (2), in which the data points could be chosen arbitrarily, would be
desirable. With such a modification, for instance, one could choose the data
points randomly from the same multivariate distribution from which the Monte
Carlo samples are to be chosen. This would insure the most accurate histogram
since the density of data points, and hence, the quality of the polynomial fit i n a
given region would be proportional to the number of Monte Carlo sample] to be
chosen from that region. Also, if one were particularly interested in a certain
section of the histogram, typically a tail section, then one could choose the data
points in a disproportionate manner frim the region in the phase space which
produces the values for that section of the histogram.

The possibilities of such a modified procedure depend on one's abilities to
accurately invert large and not necessarily well conditioned matrices. The
author has developed his owr. analytic Monte Carlo procedure which permits
arbitrary selection of data points for the least-squares polynomial fit. The
inversion problem is dealt with in this modified procedure by closely following
the advice offered by Mullonen (3) and Lefferts (4) concerning proper numerical
procedures in the inverting of large matrices.

NUMERICAL TECHNIQUES FOR LEAST SQUARES FITTING

In any least-squares fitting procedure, the inversion of a matrix or its
numerical equivalent is required. The must straightforward approach with re-
gard to bast-square fitting is to fo-in the normal equations, obtain the associated

5



matrix and invert it. But this is not always the best approach. In fact, it can
sometimes lead to useless results. Many alternative procedures exist. The
proper procedure in a given situation depends on the particular trade off with
regard to accuracy, computer time, computer storage, etc. That one de::ires.
Recent research as reported in (3) and (4) has foc , ised attention .:n five solutions
to the least-squares fitting problem.

1. The Gauss-Jordan Algorithm on the normal equations,

2. An Andre ,, dgorithm for the Penrose pseuJoinverse on the normal
equations,

3. A Gram-Schmidt orthogonalization pseudoinversior. scheme on the
normal equations,

4. The Gram-Schmidt procedure applied to the original rectangular data
matri,., and

5. Householder's algorithm for direct triangulation of the original data
matrix.

Some of the results obtained are listed below:

1. Procedures (4) and (5) a l)ove, which avoid the formation of the normal
equations, give consiaerably better results than do the other schemes.

2. Procedure (4) should he used in double precision when there are no
storage or timing restrictions. It will handle situations of reduced rank.

3. Procedure (5) should be used in double precision when timing but not
storage restrictions exist. It does not handle situations o: reduced rank.

An IBM 360/95, which is quite fast and has great storage ca pacity, was
available during the course of this research. Hence, procedure (4) was utilized.
It was found to be exceedingly accurate, reasonably fast, and demanding of con-
siderable core storage when used for n-dimensional least-squares polynomial
fits. Hence, it must be admitted that the version of the analytic Monte Carlo
procedure presented in this paper is not practical unless an electronic computer
with substantial storage capac`_ty is available.

In Appendix A is a complete listing of a double precision Fortran program
which utilizes the Gram-Schmidt procedure to obtain n-dimensional polynomial
fits tc, arbitrary data. The program is a very flexible one as can be seen from
the description of its input.

PROCEDURAL QUESTIONS

There are several practical questions to be considered in the application of
the analytic Monte Carlo technique. The number of simulations which are

1
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necessary in a given application is an important issue. The particular type of
n-dimensional polynomial to be used in the fitting procedure must be decided.
These questions can only be answered within the context of a particular applica-
tion. There are, however, general principles which ought to be followed.
Obviously, the number of simulations should be kept as small as possible. Also,
the total number of terms in the polynomial fit should be kept as small as possi-
ble. The number of necessary simulations and the number of terms necessary
in the polynomial fit are dependent on the number of input variables, the nature
of the simulation function, and the amount of filtering that is desired.

The issue of how much filtering is desired is dependent on the amount of
noise the simulation values are thought to contain. The greater the amount of
noise ( computer round off, mathematical approximations, etc. ) included in the
simulation values, the greater the ratio of simulations to parameters in the
polynomial fit must be. But other factors influence the minimum number of
parameters in the polynomial fit which is tolerable. The more poorly behaved
the surface of the simulation function is, the greater is the number of parameters
that is required. Another factor to be considered is the nature of the multi-
variate distribution on which the Monte Carlo sampling is to be performed. The

,E	 greater the dispersion of this distribution the larger the region is over which
the polynomial fit must be adequate. This, of course, influences the number of
parameters to be included in the fit. Once the number of parameters has been
tentatively decided, the quantity of noise which is thought to be present then
determines the number of simulations to be requested. It is advisable to be
quite optimistic in the estimate of the number of necessary simulations. If the
estimate proves too optimistic, then more can always be obtained.

There is no fixed forinat for deciding how the parameters of the polynomial
fit are to be distributed. If the output variable is thought to be strongly influ-
enced by a certa.., input variable, then the power on that variable in the poly-
nomial fit should be large. Conversely, if a certain input variable is suspected
of having little influence on the output variable, then a smaller power should be
used. Physical intuition should also be relied on in deciding which input vari-
ables are to be correlated in the polynomial fit. It is recommended that consid-
erable experimentation be performed with a variety of possible types of fit using
as a criteria for quality some goodness of fit statistic calculated on the data
points.

Another and perhaps more valuable method for comparing polynomial fits is
possible if the nature of the problem fixes practical bounds on the size of the
output variable. The procedure in testing the usefulness of a particular poly-
nomial fit consists simply of choosing some data points randomly from the multi-
variate population on which the Monte Carlo process is to be performed and cal-
culating their respective polynomial values. The number of values which exceed

w	 the practical bounds is obviously related to the quality of the polynomial fit. If
for instance, the ratio of simulations to parameters in the fit was not sufficiently
large, then the filtering would be insufficient and the quality of the fit off the data
points could in some cases be surprisingly bad. This would not be shown by a
goodness of fit statistic. But the above mentioned test would reveal that a

4
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significant fraction of the polynomial values are either too large or too small to
be realistic.

In summation, the problem of obtaining a useful polynomial fit for the
analytic Monte Carlo process is essentially a heuristic and experimental one in
which physical intuition and common sense play an important part.



AN EXAMPLE

INTRODUCTION

One of the missions considered for the Planetary Explorer project was a
Venus-72 mission whose goal is to orbit a probe around Venus. A fixed mid-
course, minimum fuel guidance correction is planned at approximately five days
after injection. It is desired to obtain information on the distribution of the mid-
course velocity correction caused by injection errors and also to obtain hints
concerning which types of injection errors have the most impact on the mid-
course correction. For this purpose, a simulation program with Monte Carlo
capabilities was available (5). The program utilizes an iterative scheme on an
impulsive approximation to obtain midcourse corrections. The Monte Carlo
sampling is performed on a six by six covarience matrix which defines the
multivariate distribution of the injection errors in a local tangent coordinate
set. For this particular mission the position and velocity vectors of the probe
at injection are orthogonal. Hence what is referred to here as the down-track
direction is the direction of the probe velocity vector at injection. A down-
track velocity error is just a speed error.	 1

Approximately ten thousand of these Monte Carlo samplings can be performed
per hour on an IBM 360/95 computer. Clearly a straightforward Monte Carlo
analysis using this simulation program could be quite costly in terms of computer
time. Thus it was decided to apply the analytic Monte Carlo procedare. The
results are reported in some detail below.

HOW THE POLYNOMIAL FIT WAS OBTAINED

The first step in applying the analytic Monte Carlo procedure is to obtain a
polynomial fit to the data from the simulation program. The model for the poly-
nomial fit was obtained by choosing one hundred data points from the population
defined by the covarience matrix of the injection errors and fitting their associ-
ated midcourse velocity corrections with a variety of types of six dimensional
polynomials. In doing so, the ratios of orders on the six variables, and the
number and types of correlations were systematically varie:l and the one asso-
ciated with the smallest goodness of fit statistic was chosen as the model. The
model giving the smallest goodness of fit statistic had the same order on all six
variables with correlations between the three position errors and between radial,
down, and cross track position and velocity errors included. Next the ratio of
data points to parameters in the fit was decided. For this sort of decision, a
goodness of fit statistic is of no aid. A sample of one thousand output values
from the simulation program, indicated that the midcourse correction should
very seldom exceed one hundred and twenty meters per second. Since the
corrections are always positive, effective bounds on the output variable are
known. The proper number of parameters and data points can be dete-mined
by taking Monte Carlo samples of various fits and counting the number of values
that fall outside the bounds. It was decided that the bounds to be used were

9



minus ten meters per second and one hundred and thirty meters per second. It
was also decided that a fit would be considered adequate when no more tha,-: one
Monte Carlo value in a thousand fell outside these bounds. The intention, of
course, was to choose the smallest number of parameters and data points which
fulfill this condition. The fit which was finally accepted as adequate utilized
three hundred data points and seventy-two parameters. This involved a poly-
nomial order of six for each of the six variables with six parameters associated
with each of the six analytic correlations. Since interest was focused on the
right hard tail region of the resultant distribution of midcourse corrections,
half the data points were chosen from the multinomial population of injection
errors defined by the given covarience matrix and half were chosen from a
distribution with twice the dispersion of the original distribution. This was
believed to give a tighter fit in the region of large injection errors in the six
dimensional domain space. Since this is the region associated with large mid-
course velocity corrections, this procedure was believed to provide greater	 r
accuracy in the right hand tail region of the distribution. Ten thousand Monte
Carlo samples can be obtained from the least-squares polynomial in less than
ninety seconds on an IBM 360 model 95 computer. As mentioned previously,
the obtaining of ten thousand Monte Carlo samples from the simulati-)n function
would require, approximately, and hour on the same computer.

THE RESULTS

Figure 1 is a histogram of midcourse velocity corrections based on a
Monte Carlo sample of ten thousand. The values were obtained by samplingsix
tuples from the population defined by the given covarience matrix and obtaining
the corresponding polynomial value from the six dimensional, seventy-two pa-
rameter polynomial fit. The ninety-nine and ninety-five percent critical values
were respectively eighty-eight meters per second and sixty-seven meters per
second.

It is of considerable interest to discover which of the injection errors have
the most serious impact on the midcourse velocity correction. The analytic
Monte Carlo procedure is a convenient tool for answering such questions. Each
Monte Carlo value calculated from the polynomial may be thought of as the sum
of twelve contributors, one contribution from each of the six input variables and
six contributions from the terms giving the six analytic correlations of the poly-
nomial fit. If the covariance matrix used to obtain the Monte Carlo samples
were diagonal, then the mean value of these contributions could be readily cal-
culated fi om the values of the appropriate coefficients in the polynomial fit.
The method is discussed in (2). In this application, the covarience matrix was
distinctly non-diagonal and this method could not be applied. An alternative
procedure which should prove adequate in any situation is to calculate the mean

	 I'
of a few hundred sample values of each contributor and to accept the results as
decent estimates of the true means. If one assumes that the polynomial surface
coheres reasonably well to the true surface, then the relative sizes of these
estimated means provide valuable information on the relative importance of the
injection errors with regard to the midcourse velocity correction. The

10



results are:

percent of mean due to radial-track position error = 10.0 10
percent of mean due to down-track position error = 0.0 %
percent of mean due to cross-track position error = 13.0 %
percent of mean due to radial-track velocity error = 27.0 %

•	 percent of mean due to down-track velocity error = 42.0 %
percent of mean due to cross-track velocity error = 6.5

The contribution of the six correlation terms is negligible, the sum of their
means amounting to less than 2 % of the total mean. Clearly, the radial-track
and down-track velocity errors are the most critical with regard to a minimum
fuel midcourse velocity correction. Figures two, three and four tend to cor-
roborate these results. They represent the histograms of the midcourse veloc-
ity correction with respectively the radial-track position and velocity errors
deleted, the down-track position and velocity errors deleted, and the cross-

}	 track position and velocity errors deleted.

The histogram of figure two was obtained by sampling ten thousand values
of the down-track and cross-track posiiion and velocity errors from a covari-
ence matrix obtained from the original covarience matrix by deleting the rows
and columns associated with the radial-track position and velocity errors. The
radial-track position and velocity errors are set at zero. The resultant ten
thousand six-tuples were used as input into the polynomial and the output values
were arranged in the histogram seen in figure two. Figures three and four
were, of course, sim?larly obtained. The ninety-nine percent and ninety-five
percent critical values associated with the histogram of figure two are respec-
tively 62. 5 m/sec and 47 m/sec. For the histogram of figure three, the same
critical values are 57.6 m/sec and 44 in/sec. For the histogram of figure four,
the critical values are 75.5 m/sec and 56 m/sec. These may be viewed as
values toward which the 99 percent and 95 percent critical values will tend as
greater and greater reductions in radial-track or down-track or cross-track
errors are realized. The indications are that it is most advantageous to reduce
down-track errors and least advantageous to reduce cross-track errors.

It ought to be noticed that these results are derived from the interaction of a
multinomial distribution given by a covarience matrix with a polynomial fit to an
analytic surface. If either one is substantially changed, these results may no
longer be relevant.

RESULTS FOR A FIXED TIME OF ARRIVAL GUIDANCE LAW

The results obtained in previous sections concern the statistical character-
istics of the mid-course velocity correction under a minimum fuel guidance law.
In this section, the statistical characteristics of the mid-course velocity correc-
tion under a fixed time of arrival guidance law are reported. The same mission
with the same covariance matrix of injection errors was utilized. Interest here
was focused on the relative importance of the individual injection errors under
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such a guidance law and not on critical values. Hence for this study, three
hundred fifty Monte Carlo samples of injection errors were chosen from the
multivariate normal distribution defined by the covariance matrix of injection
errors. The same polynomial model as used in the case of minimum fuel guid-
ance was again utilized and the midcourse correction was again simulated at
five days after injection. The resultant histogram based on ten thousand Monte
Carlo samples was obtained from the least-squares polynomial and is displayed
in Figure 5.

The relative importance of the individual injection errors on the fixed time
of arrival midcourse velocity correction is revealed in the table below:

percent of mean due to radial-track position error =	 9.8 %
percent of mean due to down-track position error =	 8.5 %
percent of mean due to cross-track position error =	 U. 0 %
percent of mean due to radial-track velocity error = 22.9 %
percent of mean due to down-track velocity error = 41.0 %
percent of mean due to cross-track velocity error = 17.6 %

Again the contribution of the six correlation terms is negligible. The major
difference between the above results and results obtained previously with regard
to a minimum fuel guidance law is the increased importance of cross-track
velocity errors.

CONCLUSION

The problem of obtaining information on the distribution of a random vari-
able which is a known function of several other random variables of a given
multivariate distribution is a common one. If computational difficulties are
surmountib!e, then the most satisfactory solution to this problem is a Monte
Carlo one. In many situations where a Monte Carlo approach is not feasible
because of computer time requirements, the technique discussed in the present
paper can be of considerable value. The technique involves fitting data points
from a simulation function with a multidimensional polynomial in the least-
squares sense. Monte Carlo samples are then obtained from the multinomial
distribution of the input variables and their functional values are calculated
from the multidimensional polynomial instead of the simulation function. The
functional values are then arranged in a histogram which, one hopes, approxi-
mates the true distribution of the output variable. And since, presumably, the
polynomial can be evaluated much more quickly than can the simulation function,
a considerable saving in computer time may be realized.

A major advantage of this technique is that it isolates the influence of each
input variable on the statistics of the output variable thus making parametric
studies quite convenient. If the input variables are normally distributed and
statistically independent, then the contribution to the mean and deviation of the
output variable from each input variable can be calculated from the coefficients
of the polynomial fit. Even if these conditions are not satisfied, the individual
contributions can still be quite conveniently estimated.
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The analytic Monte Carlo technique was applied to obtain a study of the
statistical distribution of a minimum fuel midcourse velocity correction for a
Venus-72 mission. A histogram of the midcourse velocity correction was
obtained and is displayed in Figure 1 of the text. It was also discovered that
the largest contributor to the mean of the midcourse velocity correction is the
down-track velocity injection error. The next largest contributor is the radial-
track velocity injection error. The other four contributors are substantially
less important than these two.

If a fixed time of arrival guidance law is used for the midcourse velocity
correction, the cross-track velocity error becomes substantially more impor-
tant. Under this guidance law, the down-track velocity error is again the most
important. The radial-track and cross-track velocity errors are next in impor-
tance having an approximately equal impact on the midcourse velocity correction.
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APPENDIX A

Description and listing of a multidimensional polynomial fit program.

"POLY" is a double precision Fortran IV subroutine which obtains a least-
.

	

	 squares multidimensional polynomial fit to input data. A Gram-Schmidt proce-
dure applied to the original rectangular data matrix is utilized in the least-
squares process. The program can provide a multidimensional least-squares
fit to any degree up to and including ten. There are no restrictions on the indi-
vidual orders of the variables in the polynomial model. Any or all possible
binary correlations can be included in the model. Correlated triples and higher
correlations cannot be included in t1he model and the total number of terms can-
not exceed one hundred and twenty. An input and output description of "POLY"
and a listing of the program are provided below.

INPUT

i
a	 N - Dimension of polynomial fit

M - Number of times the function to be fitted was evaluated. ( This number
must exceed the number of parameters in the polynomial fit. )

F - An M dimensional array. The Ith element in F is the value of the
function at the I th evaluation.

A - An N by M array of numbers. The number A (I, J) is the value of the
I th input variable at the J th evaluation of the function.

NP - An N dimensional array of fixed point numbers. NP (I) is the order

desired on the I th variable in the polynomial model.

K - The number of binary correlations included in the polynomial model.

IB - A k dimensional array of fixed point numbers giving the correlation
numbers of the k correlations to be included in the polynomial fit. The
correlation number associated with the correlation of input variables I
and J where I < J is obtained by the formula

I
E ( 10-k) - ( 10-J )

k=1

The correlation numbers in the IB array must be stored in the increas-
ing order of magnitude.
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OUTPUT

NNI - The number of terms in the least-squares polynomial.

XX - An NNI dimensional array giving the coefficients of the least-squares
polynomial. In order to properly interpret the elements of XX, a stan-
dard sequence for the terms of the least-squares N dimensional poly-
nomial must be given. The powers of the first variable are written
first in the order of increasing power. The powers of the second vari-
able are written next and so forth. There is no provision for a con-
stant term in the polynomial fitting process. The correlation terms
are written next and in the order of increasing correlation number.
The terms associated with a given correlation are written in the order
of increasing order of the lower indexed variable and decreasing order
of the higher indexed variable. For instance, if the first element in
the IB array is 2, then the correlation of the first and third variables
is the first one to be written. If L is the smaller member of the set
[ NP (2 ), NP (3) 1, then the first term in the sequence related to the
correlation of variables one and three is X z X 3 . The next term is
X Z X L-I and the last term is X L XThe XX array can now be inter-
preted. The I th element in the XX array is the coefficient of the I th

term in the least squares N-dimensional polynomial when the poly-
nomial is written in the above defined standard fashion.
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SUBROUTIwE POLY(11I,I'• I, F,A, NP,K,Ih,XX,iNli,I,i\1R ANK)
C------	 - - - I'llITE	 r,lli aflfuTE
C23456 H9 COLUIIN SFVFf1I MARI(Fk

IiMPL IC IT REAL '^` 8J A-H.0-7 )
RFAL' ;= 4 FPS
UINFMSI0N UH00.100).AFI AGI lOO) ATEMPI 10(11-XX( IOOI
1)I :1FNSION	 F(td)	 ,	 A( 1( I , ro	 ,	 H p 11'I ),	 I1^ K ).

C	 LC1( 45).LC2(/+5).LC(45).LiLl156).X(3t(,t100
C-----CALL FkRSFT (210,256, 2(I, (1)

CALL ERRSFT (210,2569- 1 91)
HR= hI

I' IZ= 1
FPS=3.0

C---- -- ---SET UP ((:1 Ari l) C2 AKRAYS

C,
C.	 . . . . LC-1- ARYAY -IH^T ,!I,\IF flFc-F-11`_=l
C	 NEXT I:IGH1 FLF-riF1\,TS=2
C	 FTC
C
C. . . . . . . I C2 ARKIIY r  Lm r T5	 1-9 =2-1O
C	 FLEIENTS 1(1-ll="^-1(1
C	 FLFmFr'TS 1H-24=4-JO
C	 FTC

C-----------LC1 AkkAY CODING

KX=1
NX=9
L. X=
00 100 I =1 ,45
IF(1\1X.LF.I ) G,II 111 2ti

LC1(I)=KX
GIO TU lUU

25	 NX=I\JX + LX
LX=LX - 1

LC  ( I)=KX

KX=KX +

1	 C 0 ICI T I N I) F
C-----------LC? ARRAY CfluIr,G

KX=(1
SCI 200 I = l :9
L=I + 1

I) i I -̂ 00 J=L.1U
KX=KX + 1

LC?(KX)=J
3OU	 C (i ri T	 1	 ,, LI I_=
200 C 0 N T I )v 0 E --- _	 _ ---- _ - - _--
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C----------SI- T UP LC ARR4► Y --- -	 — ------ --
00 'il, I=1,rC	 _
I - =IP.	 1 )

I_)= LG11L)
L-=LCZ(I.)
II (I ,.I P(Lj LT.I , IhH-_ ._LL. I I' TU 4ti

L C ( i ) =1 ,1 P 1 I_ / )
( i 1 )	 111	 ',I_I	 .,

>0	 C. II r T I im II F	 _
I -- - - - - - - - - - - tiF--I 1.1 	 I l '1 nl?I^nY

1 ,11 1( L )=I '^----	 ---	 —
JVI 90

I=J + 1

^l ll	 I.	 II	 Iv	 1	 1	 II	 H

I. 1. = w +	 1.
L J= K + 1.1

Il,t	 • , 1.	 ,I=1_.I X1.7

I1-= J - II

91	 C 11	 T 1 P I I1 F

L----------CI I INII I k X( J, I) A K k A Y
ia-

1 •.li= 1\1HO-1 )
L1.1L11 -1 =14-1 4 1 11 1- - -- - -	 ---	 -..— .

DI 	 110 ,1=1,1\11
i -1 1.1H 1 J J.- I T.Ll.yl1_LLI _ llli, ..------	 ----__ _^_

L = .1 - 1

- — — U, TI 1 -1 1 1
110	 C n	

.f I 
1• H F

---111 LL= I=---^+-1 ^-•1— --- ---	 - -----	 --- --	 ..-
11 = 1 r1. LT.I_)	 1;11	 ^i l l	 11++

113	 x111 	 )=r (L•I1)**LL

1 'J - Ti 	 I / i	 -
11H	 I_ I t^x=L + 1

- --	 L	 Lce ( ,1,1 t
11;1	 I1-1

	

_ 119 X( I 1- LI-1_° wa 111	 L^:'!-A fl.1,_I.1 L4-- LLL___
17.0	 C nn	 T I i.t o F

- 
.1iC=1'1' 'x------._._..._.__ -	 --	 — __--_.-_....-- - _..-
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u1 1 	1()1.)	 J =	 2,i,IC
I)11T1	 =	 OUT (11R,1Ii1,n,J,J)

_ __ J•1	 =	 J-1 _	 _

WII	 30	 K .^ -1 ^ ^^'^^- —	 ---	 --- --- -	 -- -----
30 ATFrnP(K) =	 I)(IT(tIR,I\IR,A,J,K)

I)1I	 '45	 1	 = 1. ,wk
35 A(I,J)	 = A( I,JI - AT C-mPIK)*A( I,K) 	 hFLAG(K)

nr;	 40	 1	 = 1,i,C
4C1 (I(1,J IIJ) - ATFt- P(K)*UII,K)
45 C 11^.I'f 1 . ,10 F
ti0 C, O WT IntuF

-- WIT?	 =	 1111	 rak,I\1R,«,J,J)
I^	 (	 (11(1 -I'i /UI111 )-Tf1L)	 55ti,5if(

1)5 01)	 6o	 1	 = 1"11-11 
ATFmP ( I) =	 0.
Im	 l ' o	 <	 = 1, I

ho &TF- , PI I) =	 ATF ,., N( I	 ;+Ii	 K 	 K,JI
Df)	 6 &ti	 I	 = I Wk

18

-- -	 -CnI.L GIo ,IV2(X,(I, AFL raG,ATFNIP,i+IR,NR,nIC,NRANK9EPS)
I ) I i 25U I =1, (, -	 -------- --	 —	 ----
XX( I )=1.).01),1
DI) 24O L=I,Nk	 -----	 --- -- -
XXII)=

_
 XX(I) + X(1,1)	 F(L)

2 4 0 1 	 C CI 0 T I N ( I F
l ti I l	 C;	 r 1	 T	 I	 1\ 11 F

C O W T 1_ ^J tI -	 --	 --- --- — - --- -----
31H	 R F r I I K i^11^1

F_ 1\1 1) —	 -	 ---	 ---- --	 --	 - -
- si t HRI11)TINP GINV2(A, I 1 9 4\FLAG9ATEr P,NR9HR91C,9NR19EPS)

—.	 ^)111i1)LE PKFCISI	 A	 k	 f^. 	A G ( N L	 ATFHP(1'C 1
F PRF(,ISION FAC 9 liI)T 9 DIJT1, 1 ) T29TIIL9I)Sr)RT

_l_= L LI ----------.-- •— -- —. ---------- ---
1.111 5 J = 1 ,IIC

_— 5 I1 I 1 = C 1 ' — -- ---- --	 --- ---- —	 ---
10 11(1,1)	 = 1.

F ly% = I1I IT ( i_I'Z, rIRSA, 11-!-)

Frac _- 1. /IISI.ik'f(FAC)

---- 15 A(I11.) = f1(?,l)*FAC --------- --- -- --
	 ----- --

1)1) 20 1 = 1,1^J (,_ -
20 Il(I,l) = II(I,1)MFAC

(rII_ = 11C^. : •" .X FPti .5*4C IO )yt*2



i, 5 h( T , J) 	_	 ( I f J) — r i (I,	 ) ' !;r 'T H P 	 FI_:; 1; ( K. )

--	 F 	 = i. /11Sr=1PT(F^^f,)
_	 ^fT = i^_K1-1

F ^ 1. = I./ I ( LICIT  )
75 W	 1 = 1 .!'R

k u !a( 1,J	 = n (i,,I)=:=Ft,

R5 I1( T ,J) _ !!(IfJ1=FAC
1(101	 C I ll. TIr,:(,1-

MI 1. 3( ) J = 1. , C
'Ii 1 130	 I = 1 ,!
FAC = o.

_	 I)11 120 K = J,fltC
I- O FoC = F,,(;+,L.(1	 J, K)

130 A( I,J) = Fk•C
PTIJk1,1

F .,^ n
-- --	

r^i(11kL1- PkFCISIn .,i FIJ ,i CTI_n i DUT( :: R	 R, 11,J,K)
00MALF PRFCISIIIr\ 1 6 i,,P,I),X
X = O,00
(1ii	 51i	 T	 =	 1 , ;!-,

X, = X+i_-.(I,J)-*A(I,K)
50 CONTPA!I=

IJO T 	=	 X
R FT; IP Iv'l

F Jn
PFAL	 F( I NCT101-	 V!u ORr =A(Z,'!)

-- I - PL IC IT	 P1 AL A-H2O-7_)
i)I1'!^(^1STUi''Z(3), 0(3)-- 

i SCL'= 115(?kT(7_(1)= 	 ^= 2+7(2) = 	 = 2+Z(3) = 	=2)
IF(SGL.i--Q.0.01)0) Gli	 TH	 20

( 1 r?	 Z	 I=1, -s

VN11PP-! =SCL
I<FTIIP!\,

f(1 \/P1nR	 =U.ODo
1 )^I	 5	 I =1, 3

5 I )=U.oDO
RETURN
F n! F)

S ! II 1 RC1UTI N F	 CPHSS(,4,B C)
IMPLICIT	 RFAL :, 8 (A-H,CJ-1_)
nT,	 FI\;SI0 !\1	A(3), B(j),	 C(3)
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C( 2)=N( 1 ) N(3	 A( 1) 1' ( 3
C( 3 )=A( 1 )*o (2 )-1,( 1 )*/j( 2)
k T I I k 1\1
F \ir)

SIJRRr)I-JTII\IF
PIPLICIT RFAL*R(A—HqFI-7)
D I ME ws It)' %, 1-4 9 , H(9),
DATA NO/ 3. 1	 0/

K1=1
F) n 4 1=1

C ( T 1
Dil 2 i/\ = 1 3
C ( T I	 C T I	 A J 1
j I = J 1 +

2

A	 K!	 1-3

F iq n
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Figure 1. Histogram of Midcourse Velocity Corrections
Under Minimum Fuel Guidance Law
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