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INTERVOL.XTION FOR FUNCTIONS
OF SEVERAL VARIABLES

CHAPTER I

GENERAL INTERPGLATION

1.1 INTRODUCTION

The usual method for interpolation of functions of several variables has
been to iterate the interpolation process for each variable taken separately.
By its very nahu•e, this process has forced the base points to be located at the
corners of a rectangular or triangular grid. These are, however, generalizations
of some of the classical interpolation formulas to much larger classes of points.
This report is a summary of some of the algebraic techniques in interpolation
theory with particular emphasis on the application of these techniques to func-
tions of several variables. In particular, we discuss what appears to be the
most natural generalizations of the familiar Lagrange formula, Newton di ided
difference scheme and Aitken interpolation scheme to functions of several
variables. We shall show that both the Lagrange formula and Newton formula
can be derived from more general theorems on finite dimensional vector spaces.
When applied to functions of several variables, these formulae are applicable to
arbitrarily located base points as long as the determinants appearing in the
denominators are not zero. On the other hand, the Aitken scheme does no: have
a generalization to arbitrary finite dimensional vector spaces. In this case we
present an iteration scheme, due to Thacher and Milne [19], which is valid for
certain restricted classes of points.

For the single variabie mse, the p, irpose of the various interpolation schemes
has been to put the interpolation polynomial in a form which is more convenient for
numerical computation. In the several variable case this is only accomplished to
a much smaller degree. For the single variable case, the Vandermonde deter-
minant Flays a fundamental role in the derivation of the various interpolation
schemes and in almost every case the simple single variable formulae can be
derived from the general theorems on vector spaces hy using the evaluation
properties of this determinant. In the several variable case this tool is not
available, for this reason the formulae will be considerably more complicated.

For a more complete di-rnssion of the topics discussed in this report we
refer the reader to the list of papers in the bibliography. Almost ail the ma-
terial presented here can be found in one form or another in the work of itlilne.
Arntzen, Reynolds, Wheelock ([8]); Thacher ([16], [17], [18]): \ ,Iilne and Thacher
([19]): Salzer ([11]); and Curry ([1]).
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Preliminaries and Notations

We shall assume the reader is familiar with the basic single variable in-
terpolation techniques as found in Hildebranu [5] or Householder [ 7]. In addi-
tion we assume the reader is familiar with the basic techniques of linear
algebra as found in Roffman and Kunze [22]. We shall briefly recall a few
definitions and results from linear algebra and matrix theory which will be
needed in the sections to follow.

Let V and W be finite dimensional vector spaces. A linear operator 'f is a
function

	

T:V	 ^'W

which satisfies the property

T(c 1 u + c 2 v)	 c1 f(U)) + c 2 (T(v))

where c 1 and c 2 are real numbers and a and v belong to V. When the range
space W is the vector space of real numbers it is customary to use the term
linear functional. One can easily show the collection of linear functionals de-
fined in V is itself a vector space. This vector space is known as the dual
space for V and is usually denoted by V

.. 
The following results can be found

in Hoffman and Kunze ( [22], p. 90-96).

Theorem (1.1): Let V be an n dimensional vector space. Then

1) dim V = dim V=;

2) If v 1 , ... , v . is a basis for V, then, there exists a unique basis L1,
L 2 ,	 L  for V' w'iich satisfies the property

	

L, ( v j)	 ='	 8 1 j .

This basis is known as the dual basis associated with v 1 , ... , vn.

3) V = (V')'.

t

i
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We shall use the following notation:

1) The symbol R will denote the real numbers; R" will denote the usual n
dimensional Euclidean space.

'l) If u 1 ... u P are members of a vector space V. then

Sp . 11 l . ... , u P '.

will denote the vector space spanned by these elements.

a	 3) If [ a ; i ] is an n x n matrix, the determinant of [ a i i ] will be denoted by

det [aii]

Let A, o, o be the matrix obtained from [ a , 1 by removing the i o h row
and j o` ' , column. Then %ye shall use the notation

Cof(a	
n )
	 _	 (-1)io{lodetA

\\ 'oo	 `o'o

One particular matrix occurs quite often in interpolation theory. If x o,
X 1 ,	 , x ,, are real numbers, we can consider the matrix

X 	

Xo2

1	 xl	 x12

X	 X 2
n	 n

The determinant of this matrix is known a
can be evaluated by the following formula:

X O1

X n
1

X n
n

s the Vandermonde determinant. It

3



1	 x0	 x0	 xo'

de 

2	 ...	 nL	 X ,	 nx	
x'J

([7], p. 91).

H(x^ -xj)
I'>j

L

1.2 CENERAL INTERPOLATION

In interpolation theory we attempt to approximate a function f defined in a
region G of R" by a finite linear combination

M

,k( x )	 aj It j (x)
i=o

where lei (x)) is a collection of linearly independent functions defined in G. In
the most restricted form of interpolation we determine the constants { a i ^ by
choosing a collection of base points x o , x I , ... , x m in G and requiring that

¢(x^)	 f(X i) ,	 (1.2-2)

for i - 0, 1, 2, . .. , m. Applying this condition to Equation (1.2-1) we obtain
the m + 1 equations

f(x^)	 ajj (x i )	 (1.2-3)

The condition

D = det 
L

# j (x i )] 1 0	 (1.2-4)

4
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_ - i?i- =fir I = t-=

is necessary and sufficient to guarantee that the system (1.2-3) has a unique
solution. Therefore when (1.2-4) is satisfied, we obtain

it

m Di
(1.2-5)

-0

where D i is the determinant of the matrix obtained by replacing the j th column
of the matrix r1; i (x i)J by the column vector [f ( X , )] .

Alternately, sonic authors ([19], [7], p. 186) define t(X) by the formula

	

4 0 ( X 0)
... 41

m \ X O)	 f 1X0/

0 - dvt
I 	 1	 r

f/	 0	 (1.2-6)

0 
( X	 IIm).. .

m \ X m)	 f \ X m)

(X) ... 'tm (X)	 (4X)

If D r 0, formula (1.2-6) defines 4^(X) uniquely as a linear combination of q5o,
(" 1 , ... , 4,m• In order to show ¢,(X) defined in this way satisfies the condition
imposed by Equation (1.2-2), we set X - z i and expand (1.2-6) by minors of the
last column; we obtain

m

	

f(z i ) Cof (ff(x i ))	 DT(X i )	 -	 0
i=0

However, since X = z , we have

0	 if	 i	 j
Cof (f (X A =

	

- D	 if	 i

i

(1.2-7)

5



Therefore Equation (1.2-7) becomes

-D ,f(x J )	 -D f(x,)

or

4'(x,)	 f(xi) .

We summarize the preceding discussion in the following theorem:

Theorem (1.2.1): Let t o , t 1 , ... , ^,, be a collection of linearly independent
functions defined in a region Gof R" and let x 0 x 19 ... , x m ;)e m+ 1 points in
G. Suppose f is an arbitrary function defined in G. Then, there is a unique
function ¢(x), which is a linear combination of { ,t i (x)} and which satisfies the
condition

f(xi)	 _	 41(x,)

if and only if

D - det 
[

b j (x )] '7 0 .

If this condition is satisfied, (t(X) is given by (1.2-5) or (1.2-6).

Definition (1.2.2): We refer to the interpolation problem considered in
Theorem (1.2.1) as the restricted interpolation problem. The unique function
(t,(x) is known as the interpolating functi on for f at the points x o , x 1 , ... z m .

We relate the preceding discussion to the problem of polynomial interpola-
tion for functions of several real variables.

Example (1.2.3): Let f (x) be a real valued function defined in an interval
[a, b] and let x o , x 1 , ... , x ,n be m + 1 distinct points in [a, b) . For our basis

6



functions we take the collection

(to (x)	 1

^t t (x)	 -	 x

^m (x)	 x"

In this case, the determinant in (1.2-4) takes the form

	

1	 xo	 xo

	

I	 X^	 xtm

D	 d( t

	

\1	 Xm . . Xm

This determinant is the Vandermonde determinant and its value is given by

x 	
... xo

1	 X t	
x'm

D = dct	 (xi _ x j)	 (1.2-8)

1<j

1	 XX mm	 m )

Since the points (xd are distinct, this determinant is not zero and by Theorem
(1.2.11 there is a polynomial

M

P( X ) - La X,
 ,

=o

7



such that

p(x )	 f(x.)	 i	 0, 1, 2. •• - , m.

Example (1.2.4): Let G be a region of R Z containing the points

x o -	 (- 2, 0)

R  - (0, -2)

x 3	I 1 .	 I

Let f (x) be a function defined in G which takes the values

f(( -2. 0))	 -	 4,

1
fl(-3, - 21	 S,

f ((0, - 2))	 _ - 10

f 	 3 I)	 - 5
C	 /

f	 For our basis functions we take the polynomials
r

"to(X, Y) =	 1

! (X, Y)	 x,

icen 	— - --

f



(^2 ( X. Y) 	 Y

03 ( X. Y) =	 XY

r

In this case, Equation (1.2-4) Wcomes

1	 -2	 0	 0

	

1	 3

r	
1	 -3	 - 2	 2

clot [;^ z )	 det
L	 1	 0	 -2	 0

	

3	 3

D 0 .	 (-.2-9)

Since the above determinant is zero, the conditions of Theorem (1.2.1) are not
satisfied and we cannot produce a unique polynomial in the form

`R X, Y)	 ao + a l X + a2 Y + a 3 XY

which satisfies the condition

lb(Xi)	 f(Xi)

Y

for i = 0, 1, 2, 3.

Example (1.2.5): In this example we consider the same base points and
function f considered in Example (1.2.4). However, in this example we define

(to (X, Y)	 _.	 1 .

01 (x. Y) = X

02 ( X• Y)	 Y

(f3 (X. Y)	 =	 x 2 .

9
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In this case the determinant in Equation (1.2-4) becomes

de 

1	 -2 0	 4

1
1	 -3 - 2	 9
1	 0 -2	 0

3
1	 1 - 2	 1

18 ?!	 0 .

Therefore, this time the conditions for Theorem (2.1.1) are satisfied. Using
Equatior_ (1.2-5) we obtain

¢(x. y) = x 2 + 2x + 6y + 2

Remark (1.2.6): The above examples point out a fundamental difference be-
tween single variable interpolation an(! interpolation for functions of several
variables. In the single variable case we are always guaranteed a unique solu-
tion to the restricted interpolation problem by choosing the functions 1, x, x'-.. .. ,

x' for our basis functions. However, in the several variables case it may not be
at all clear which monomials we must use in order to guarantee a unique solution.
Except for certain special cases, the author is not familiar with any "short cut"
techniques for determining whether or not a unique solution does exist. In most
cases one must evaluate the determinant in Equation (1.2-4).

There is, however, a geometric approach to this problem which might be
valuable in some special cases. In Example (1.2.4) we can make the observations
that the four base points lie in the algebraic curve

p( x , y) = y + xy + x + 2 = 0 .

This observation is in fact equivalent to the singularity of the matrix in (1.2-9).
	 t

We relate the two ideas in the foliowing theorem.
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Theorem (1.2.7): Let ^o, 1 1 .... , `t. be m+ 1 linearly independent functions
defined in a region G of R" and let x o , x 1 , ...	 xm be m 1 1 points in G. Then

det[t i ^x i i]	 0

if and only if there exists a nontrivial algebraic curve in R" in the form

L
P( x )	 ai ^ i (x)	 0

such that P(x; = 0, for i = 0, 1, ... , m.

Proof: Suppose the points x 0, ..	 xm lie on the curve

M

P( X ) _ T ai 14i (x)	 0 .
=00

	where not all the coefficients (ad are zero.	 Substituting the points x 0 ,	 , xm

in this equation we get the homogeneous system

m

L a i ^i \ X 0/ 7 0
i=0

R-i

M

	

a  `x i x 11	 0
i = o	 (1.2-10)

i

M	

Ir	 l

	

ai 'f i ` x m/	 0
=0

11
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Since not all the coefficients a i are zero, the above system has a nontrivial
solution. It follows that

I	

Ir
	

ll 1

Conversely, if the above determinant is zero the homogeneous system (1.2.10)
must have at least one nontrivial solution a o, 1 , ... a m . The curve

M

P( X )	 /	 a i ^ i ( X )	 0
ii == 011

satisfies the condition P(_ j) = 0 for i = 0, 1, 2, 	 , m.

n
1.3 INTERPOLATION ON TWO DIMENSIONAL GRIDS

In most practical problems Theorem (1.2.5) is of little value. However,
for the case of restricted polynomial interpolation we can apply Theorem (1.2.7)
to rectangular and triangular grids of points in order to obtain a sufficient col-
lection of monomials to guarantee a unique interpolation polynomial.

We shall use the following lemma:

Lemma (1.3.1): Let p(x, Y) be a polynomial in two variables and suppose
for a fixed real number x 0 the polynomial P(x o • Y) - 0 for all Y. Then there
exists a polynomial g(x. y) such that

P( X, Y)	 IX _XO\ g ( X• Y)

Proof: We can write P(x . Y) in the form

P( X, Y) - L P i (Y)X'
	

(1.3-1)
i=0

12
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where each coefficient P i (Y) is a polynomial in Y. Since for each fixed y, the
polynomial p(x (,. y) is equal io zero, we can write

n- 1

P( x • Y)	 (x-x0) L b i (Y) x '	 (1.3-2)
i=o

We must show the coefficients b i (y) are polynomials in y. However, compar-
ing the coefficients of x i in Equations (1.3-1) and (1.3-2), we obtain

bn- 1 (Y) - P„ (Y)

;F.

E

bn-j (Y)	 Pn-j +1 (Y) + a0bn-j +1

for j = 2, 3, ... , n. Therefore, the coefficients b ; (y) are polynomials in the
variable Y.

We now turn our attention to rectangular grids in R 2 . Let ( x j. Y i ),
(i = 0, _ .. , n), ( j = 0, 1, ... , m) be (n + 1 ) (m + 1) points on a rectangular
lattice in Q2 (see Figure (1.3.1)).

Let F be a function defined in a region G of R 2 containing the above rec-
tangular lattice. In the following theorem we obtain a collection of monomials
which is sufficient to guarantee a unique solution to the restricted interpolation
problem on the above grid.

Theorem (1.3.2): Let f be a function defined in region G of R 2 containing
the rectangular lattice in Figure (1.3.1 ). Then, there exists a unique interpolating
polynomial ^(x, y) in the form

Y)	 L L a ll x` Y 1 	(1.3-3)
i = o J=O

dtP



Yrt,

Yj

Y1

YO

x 0 X 	 xi	 Xn

Figure (1.3.1 )

such that

YJ	 f (x i' Y 	 '

for ( i = 0, 1, .. . , n), (j = 0, 1, ... , m).

Proof: We prove this theorem by contradiction. Suppose a unique solution
in the form of Equation (1.3-3) did not exist, Then, by Theorem (1.2.7), there
exists a nondegenerate algebraic curve

m,n

	

Po (x, y) _ T bit x` j i	 0

ii

such that

Po (x i . y i )	 0

14
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for i = 0, 1, ... nand i = 0, 1, 2, ... , ni. Let x	 x o. The polynomial
Po (xo, y ) has degree less than or equal to m in the variable y. Since it vanishes
at the m + 1 points yo, Y 1 , ... ym ,c must vanish for all y. By Lemma (1.3.1),
there exists a polynomial p, (x, y) such that

P o (x, y) _	 ^ x - x o) P1 (x, y) .

We can apply the above process for the point x 1 and the polynomial p 1 (x, y).
Since p, (x 1 , y) is a polynomial in y of degree less than or equal to m which
vanishes at y o , Y 1 , ... , ym, it must vanish for all y. Therefore, by Lemma
(1.3.1), there exists a polynomial P 2 (x, y) such that

P o (x, y)	 (x x o ) P 1 (x. Y)

lX x o ^x	 x 1 ) P 2 (x. y) .

Continuing in this manner, we obtain a polynomial p n (x, y) such that

n- 1

P o (x, Y)	 H (x — x i) P n- 1 (x, Y)	 (1.3-4)
=o

Since P o (x, y) has degree less than or equal to n in the variable x, the poly-
nomial Pn- 1 (x, y) can not depend on x. Therefore, we can write

n- I

Po ( x , Y)	 11, 
(x— x

1) Pn-1 (Y)

=o

Now let x - x n . Since the polynomial p o ( x n , y) has degree at most m in the
variable Y and since p o (x n , y) is zero for y = y 0 , y 1 , ... , y m , it follows that

15



(X0, YO )	 (XO, Y, )	 (Xp,Y2)

Figure (1.3.2)

Po (x,,, y) - 0 for all y . Furthermore, since

n- 1

^x , - X i )	 r 0

i=0

and since P,, (Y)does not depend on x, it follows that P, (y) is identically equal
to zero. But then p o ( x, y) is identically equal to zero which contradicts our
assumption that p o (x. y) be nondegenerate.

The previous theorem does not guarantee a polynomial of lowest possible
total degree. For example, consider the grid in Figure 1.3.2. If f is any function

(X1 , Yo )	 (xi , Y, )	 ( X 1 , Y2 )

defined in a region G containing the above grid, then the previous theorem
guarantees an interpolation polynomial of the form

¢( x . Y)	 ao + a  x + a 2 x 2 + a 3 y a- a4 xy + a 5 x 2 Y

A

16
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such that lt(x, y) and f (x, y ) agree at the points on the above grid. The poly-
nomial (f(x, y) has total degree 3. There are, however, six monomials 1, x, y,
x 2 , xy, Y 2 with total degree at most 2; unfortunately unique interpolation with
these monomials is impossible. One can easily check that the points in Fig-
ure (1.3.2) lie on the nondegenerate algebraic curve

P( X , Y)	 (Y yo) (Y Y	 0 .

By Theorem (1.2.7), interpolation with the minimals 1, x, y, x 2 , xy, Y 2 is
impossible.

The following theorem shows the above problem does not occur on triangular
grids. By interpolating with the base points on a triangular grid we can obtain
an interpolating polynomial of lowest possible degree.

Theorem (1.3.3): Let f be a function defined in a region G containing the
triangular grid in Figure (1.3.3). Then, there exists a polynomial of total

Y

Y

Y

vx 0 xl
	 X,	 x„

Figure (1 .3.3)
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degree n such that f and Jl agree at the points of the above triangular
lattice.

Proof: We shall prove the theorem by contradiction: Suppose a unique
polynomial q,(x, y) of total degree n did not exist. Then, by Theorem (1.2.7),
there exists an algebraic curve p(x , y) of total degree a which vanishes at the
points on the above triangular lattice. Let us write p(x, y ) in the form

n

	P( x, Y)	 Ai (Y)xi
=o

where A l (y) has degree n - i in the variable y. If we set y = yo , then

n

	

p(x, Yo)	 IT A (Y0) xi
i=o

is a polynomial in the variable x which vanishes at the n + 1 points x 0, x I , ... ,
X n . Therefore, since p(x, y o ) has degree n, it follows that p(x, y o ) is zero for
all values of x. In particular, the coefficient A, (y) which, as a polynomial in Y,
has degree zero must vanish at y - Y O . It follows that A n (y) is identically
zero. Next we set y	 y 1 • In this case, the polynomial p( x, y 1) will vanish
at the n points x o , x 19 ... , x n _ 1 . Therefore, since p( x, y I) has degree n - 1
in the variable x, it must be identically zero. Now we recall that An- I (y) has
the form

An-I (Y) - cy + d .

However, from the above remarks we have

A n- I (YO)	 0

A n-I ( Y 1)	 -	 0

18



Y2

Y1

YO

which implies A,,_ i is identically zero. In a similar way, one can show A„_ 2 (y),
All -3 (Y), ... , A O (y) are all identically zero. Therefore, p(x, y) is identically
zero which contradicts the fact that p(x, Y ) be nondegenerate.

0
The above techniques can be used to find monomials sufficient to guarantee

a unique solution for points arbitrarily located at certain vertices of a rec-
tangular grid. We illustrate the technique in the following example.

Ea ample (1.3.4): Consider the problem of finding a sufficient set of monomials
which will guarantee a unique interpolating polynomial for functions defined in a
region containing the grid in Figure (1.3.4).

	

X0	 xl	 x2

Figure (1.3.4)

We shall show that the monomials

y2 .	 Y2 x .

Y ,	 yx ,	 Yx 2 .

1 ,	 x .	 x2

are sufficient to guarantee a unique solution to the problem. Suppose a solution
did not exist. Then, by Theorem (1.2.7), there exists :nondegenerate algebraic
curve

1	 P(x, Y) _	 ( a 2 +b 2 Y) x
2 	 (al 4 b l y + c I y2) x

1

+ ( a 0 + b o J' + c o)	 (1.3-5)	 ==

19
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which contains all the points on the above grid. Let Y = Yo . Then p( x, y o ) is a
polynomial of degree 2 in the variable x which vanishes at the three points x,^,
x and x 2 . It follows that p(x. y o ) is identically zero for all values of x. In
particular since a 2 + b 2 y is the coefficient of x 2 we have

a 2 + b2 YO - 0 .	 (1.3- 6)

In a similar way we can set Y - y l in Equation (1.3-5) to obtain

a 2 + b 2 Y 1	 0 -	 (1.3-7)

Combining Equations (1.3-6) and (1.3-7) we obtain the homogeneous system

a 2 T b 2 yo = 0

a 2 + b2 Y1 - 0 .

Since y o r y, it follows that a 2 = G and b 2 = 0. We can use a similar tech-
nique to show the constants a l , b 1 and c 1 are zero. In fact, if we let y = y o ,
y l and Y2 and look at the coefficients for x in c -Lch case we obtain the homogeneous
system

al + y p b l + yo C l - 0

a l + yl b l * y12 C  - 0

a l + Y 2 b l 
4 y2 c l -

 0.	 (1.3-8)
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Since

1 2Yo	 Yo

det	 1 2Y t	Y 

1 2Y 2 	Y2

(Yt Yo ) ( Y 2 Yt) (Y 2 Yo)

0,

the system (1.3-5) has the unique solution

a t = 0

b t = 0

c t	=	 0 .

In a similar way, one can show

a o = 0

b o = 0

c o = 0 .

Therefore, (x, y) is identically zero which contradicts the fact that p(x, y) = 0
was a nondegenerate algebraic curve. Therefore, by Theorem (1.2.7) we can use
the monomials y 2, y 2 x, y, yx , yx 2, x , x 2 , and 1 to interpolate any function f
defined in a region containing the grid in Figure (1.3.4).

0



In a similar way, it can be shown for the grid in Figure (1.3.5).

Figure (1.3.5)

A correct choice of monomials is

Y 2	 Y2 
x3

Y	 Yx2•	 Yx3•

	

1,	 x,	 x3

Or possibly

Y2	 y2 x 2	 y2 X .

	Y x	 Yx3

1	 x ,	 x3 .

1.4 GENERALIZED LINEAR INDEPENDENCE

In this section we briefly introduce the concept of generalized linear in-
dependence. In particular, we introduce the concept of homogeneous and in-
homogeneous degree n independence of points and show how this idea relates

22
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f

to interpolation for functions of several variables. In Section 2.4, we use this
notion to determine a sufficient set of condtitions under which an Aitken type
interpolation scheme is valid. For notational conve. fence we consider points
in R m+ 1 .

Definition (1.4.1): A point x o = (x o , X 01  ... x o in R,n+ 1 is said to be
• homogeneous degree n combination of the points x 1 , .. , X  if there exists
• collection of scalars a ) , (i = 1, 2, ... , p) such that

nt	 P	 m

fl. 
Tîi	 i 

^ X 0	 L ai	 ^x 
n

i
i =o	 i=1	 =o

for all sets of nonnegative integers {n i : i = 0, 1, ... , m) such that

ML n i	 n
i=0

Example (1.4.2): If m = 2 and n = 2, then a point (xo, Yo, Zo) is a homo-
geneo:ls degree 2 combination of the point (x 1 , y 1 , z 1 ) and ( x 2 , Y2, z 2) if and
only if there exist constants a and b such that the following six equations are
satisfied:

X 02 -- ax 12 + bx 22

yo = ay12 + by 2:

zo = az 12 + bz22

x 0 ya = ax i y l + bx 2 y2

z	 _x o z o - ax l z l + bx 2 z2

y o z 0 = ay, 
Z 1 + bY 2 Z2

23
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Definition (1.4.3): A collection of points X,, x 2 , ... , X  in R m+ 1 is homo-
geneously degree n dependent if and only if there exist a l , a 2 , aP, not all
zero, such that

p	 m
e	 n
r	 aj	

`X11	
'	 -	 0

i
7 = 1	 i=0

E
i

for all sets of positive integers {ni: i = 0, ... , m) such that

R•

L n, = n.
i = o

Definition (1.4.4): A collection of points -x,, ... , `c P is hoi,:ogeneous
degree n independent if it is not homogeneous degree n dependent.

Homogeneous degree n dependence is a natural generalization of the familiar
concept of linear dependence. Many of the linear concepts such as basis and
dimension have natural extensions to the more general case. For a more com-
plete discussion the reader should consult the original work of Thacher [16].

Example (1.4.5): For the case n = 1 Equation (1.4-1) becomes

L
P

X 0

	

a 
J 

X.1

J

j=1

for i = 0, 1, 2, ... , m. It follows that x o is a homogeneous degree 1 c(,.nbina-
tion of the points X 1 , X 21 ... , x P if and only if x o is a linear combination of
X 1 , x2 , ... x 

P 
in the usual sense.
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Example (1.4.6): Consider the points

z °	-	 (x ° , y 0 )	 -	 ( 1, 1)

Xl	 (xl, 
yl	

(1, 0)

X 2 	(x2, y 2 )	 ( 0, 1) .

In this case we show x ° is not a homogeneous degree 2 combination, of x l and
X 2 . If x ° were a degree 2 combination of x l and x 21 there would exist constants
"a" and "b" such that

xo = ax l2 + bx2

X0 YO - ax l y l + bx2y2

YO 	 = ay l2 + by 22 	 (1.4-2)

Upon subst:tu`ion, the second line of Equation (1.4-2) becomes

1 - a(1) (0) + b(0) (1) = 0 .

i

Therefore, the point (1, 1) cannot be a degree 2 combination of (1, 0) and (0, 1).

Many of the results for generalized linear dependence can be derived from
known results in the linear case. We shall use the following well known lemma
(see [6]; ;13]).

Lemma (1.4.7): There are (n + m)! /m! n! monomials in m + 1 independent
variables of total degree equal to n,

Proof: A monomial in the n + 1 variables x °, x 1 , ... x `D with total de-
`-	 gree rl has the form

n.
(x')

1=°

j 25
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where

M

n 1	 n

i=0

Therefore, the number of such monomials is given by the number of nonnegative,
integer valued solutions of Equation (1.4-3). It is well known that the number of
nonnegative, integer valued solutions of (1.4-3) is given by (n + m)! /n! m! (see
[4], p. 36).

Notation: We shall use the notation

( 1) 1 m)!

W n Vim)	 n; mi

Consider the mapping

R	 1	 Rµ"(m)m* -y
On

defined by

M

^n r!
x il)	 11 ( x i `ni

1\ 1	 / /I 	 i = 0 1	 /

where the collection { n i I ranges over all positive integer valued solutions of
the equation

M
J n i	n

([I = 0

=1
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Example (1.4.8): For n = 2 and m = 2 we have

	

<t 2 
:R3	

^R6

defined by

02 (x, Y, z)	 (x2, y 2 , z 2 , xy, yz, xz) .

The following theorem relates homogeneous degree n independence in Rm' 1

to linear independence in R W " (m) .

Theorem (1.4.9): Let x i , ... XP be a collection of points in R m+ '. Then
x I , ... x p is homogeneous degree n independent if and only if the collection

¢'n (x l ),	 ¢n (x p ) is linearly independent in RWrl (m).

W (m)
Proof: Suppose (tn X 1 , .. , , ^n X  is linearly independert in R	 Then,

there are constants a 1 , ... , a , net all zero, such that

	

L

P	

l
a  (fn 

r
lxj/	

0 .
j=1

Looking at the components of each (f n ( x j ) we have

	

p	 m
/ (

	

a 	 IXjI)n ^	 0

	

j = 1	 i=0

for all nonnegative integer solutions in i ) of the equation

M

n i	 n .

i=OHO

27

•



It follows immediately from the definition that the points z l , z 2 , ... , X  are
homogeneously degree n independent in R" 1 . The converse follows in the same
way.	 .

In order to relate the al)ove material to multivariate interpolation we need
the following definition.

Definition (1.4.10): A collection of points (X, ) in R`° is inhomogeneously
degree n dependent (independent) if the collection

	

X '	 (I. X I X 2	 Xm)

	

i	 i

is homogeneously degree n dependent independent) in R°'' 1

We can now present the main result of this section:

Theorem (1.4.11): Let f be a real valued function defined in a region G
of R'° and let {_x i ) be a collection of W,, (m) points in G. Then there exists a
polynomial <f of total degree n such that

41 ( X i) 	 f (Xi)

for i = 1, 2, ... , W n (m), if and only if the collection is inhomogeneously de-
gree n independent.

Proof: Let {x i ) be a collection of W n (m) inhomogeneously degree n in-
dependent points in R'. By Theorem (1.4.9), the vectors {¢,, ( —X , ' ) ) are linearly
independent in O n (m) . Eut since the vectors l¢n (X,' )) are the rows of the
determinant in Equation (1.2-4) when the basis functions are taken as all
monomials in m variables of total degree less than or equal to n, the existence
of the polynomial ¢ follows immediately from Theorem (1.2.1). The converse
follows in a similar manner.

Corollary (1.4.11): A collection of W, (m) points {z d in R'° is inhomogeneously
degree n independent if and only if there exists a nondegenerate algebraic curve
(^(z) = 0 with total degree n, such that

^(x , )	 c,

for i = 1,l, .. . , W, (m).
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For some further geometric results for degree n independence the reader
should consult the paper by Whaples [20].

1.5 INTERPOLATION IN VECTOR, SPACES

Let (t o, t i , ... , ^^ be a collection of functions defined in a region G of R'
and let V be the vector space of functions generated by this collection. If y is
a point in R', the evaluation function defined by

	

EY ((t) _ ¢(Y)	 (1.5-1)

is a linear operator from the vector space V to the real numbers. In fact if
and 4) are members of V and if c, and c 2 are real numbers we have

	

E  (C,¢ +C 2 ^') 	 (C1 (t+c24')(Y)

C  `t(Y) + C2 ^'(Y)

C 1 EY (0) + C 2 E 

It i6 not necessary to restrict our attention to linear functionals defined by
Equa t ion X1.5-1). In fact any collection c F m + 1 linearly independent func-
tionals on V is sufficient to guarantee a unique solution to the interpolation
problem. For example, if the functions {^t i ) and f are sufficiently smooth, we
might consider a linear functional defined by

2

	

L(^)	 dx. dx). (XO)
1	 J

or possibly one in the form

dx .

c
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In fact the above methods can be generalized considerably. For arbitrary
vector spaces Theorem (1.2.1) takes the following; form:

Theorem (1.3.1): Let V be an m + l dimensional vector spare with basis
{v o , V P ... , v m '^ and let L O , L I , ... , L,, , be m+ 1 linear functionals defined
in V. The following conditions are equivalent:

1) The collection (L, ) is linearly independent.

2) For all collections of real numbers r o , r l ,	 , r m , the condition

L i (v)	 -	 r 

for j = 0, 1, ... , m defines a unique vector in V.

3) The determinant det IL j (v )I is not zero.

Proof: (1)	 (3). Suppose det IL i 
( v , ;I x 0. 	 Then the homogeneous system

M

LA  L i ( V I ) =0
=o

M

La  L  ( v m )	 0
j - o

has a nontrivial solution. Since

M

L
a j L j ( v i ) = 0

j0

for i	 0, 1, ... , m, it follows that

m

La
j L  (v) = 0

j=0
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for all v in V. However, this means the collection 
(L i ) is linearly dependent

which contradicts (1). Therefore (let [L,(v i )^ = 0.

(3)	 (2). A vector v in V has the fora

0
m

=0

Consider the system

m

T a , L I (v i )	 r 
i=

(1.5-2)

m

Tai L
m (vi rm

i=0

Since

det [L ) (V i ))	 T 0 ,

the system (1.5-2) has a unique solution for the coeffic"---nts a o , a 1 , ... , am.
The unique vector

m

Tv	 ai vi

i = 0

3i

r



i

i

r

(1.5-4)

I

satisfies the property

L, (v)	 --	 r 

for j = 0, 1, ... , m.

(2) ==t, (1). Suppose the collection (L i ! is not linearly independent. Without
loss of generality we assume

m

L o	 ci L , .	 (1.5-3)
LLj - I

For a collection of real numbers r o , ... r m we have a unique vector v in V
such that

Li (v)	 =	 ri

Furthermore, by Equation (1.5-3)

)

M

L o (v) =	 c J r.1

j = 1

Choose a new set of constants s o ,	 , s 
m 

such that

s o r ro

and

	

s.	 =	 r.

	

J	 J
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for 1 < j < m. Because of Equation (1.5-4) we cannot find a vector v such that

Li (v) = S 

for 0 < j Vim. Therefore, the collection (Li}, is linearly independent.

0

I^
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CHAPTER II

INTERPOLATION FORMULAE FOR SEVERAL VARIABLES

2.1 THE FUNDAMENTAL FORMULA

Almost all interpolation formulas can be derived from the following ele-
mentary theorem on finite dimensional vector spaces.

Theorem (2.1.1): (Fundamental Theorem of Interpolation Theory) Let V
be an n + 1 dimensional vector space with basis v o , v 1 , ... , v n and let L o, ... ,
L n be a basis for the dual space V'. Then any v in V can be expressed in the
form

Lo (vo ) ... L,, 	 vo

det	
I

L'0 1
/( 

vn) ... L'n ` v n)	 vn

Lo (v)	 Ln (v)	 0
v - -

	 [Lidet 	 (vj)1

Proof: The expression on the right is a linear combination of v o , ... , vn
and hence is a member of V. Let us denote this expression by v'. If we apply
the linear functional L i to v' we obtain

Lo (vo) ... L  (v o)	 Li ^vo)̂

det Lo 1vn) ... 
Ln (vn)	 Li (vn)

Lo (v)	 Ln (v)	 0

Li W) det
[L' (v 

i )1
J

r
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In the determinant in the numerator we subtract the i th column from the last
column and obtain

Lo (vo) ... L . ( v o)	 0

det
L 0 

\Vn) ... 
L n (Vn)	 0

Lo (v)	 ... Ln(v)	
_L, (v)

L i (V')
det [L i ^vi)] J

Expanding the numerator by the last column we obtain

-	 L i (v)) det [Li (v,)]
Li (v^)

det [L i
 (v )]LL	 ^ J

	

=	 Li(v),

for i = 0, 1, 2, ... , n. By Theorem (1.5.1-2) we have

V	 =	 %,,

By interchanging the roles of V and V" we obtain

Theorem (2.1.2): Let V * be the dual space of an n + 1 dimensional vector
space V. Let L o , ... , L  be a basis in V' and v o , ... , v n be a basis in V.
Then any L in V' can be writton

Lo (vo) ... LO ( v n)	 L'o

	

det	 (
L n fv o ) ... L n ` V n)	 L' n

L(vo)	 ...	 L (v n)	 0
L

det [Li(Vi)]
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In the determinant in the numerator we subtract the i th column from the last
column and obtain

LO (vo) ... Ln ( '̀o)	 0

det
Lo 

I

\vn) ... 
Ln (Vn)	 0

LO (v)	 ... L n ( V )	 -Li 
(Vi

det ILi (vi)]

Expanding the numerator by the last column we obtain

- ^- L i (v)) det[L. (v,)]

L i (v')
det [L . (v )]

LL ^	 ^ J

- L i (v) ,
.4

for i = 0, 1, 2, ... , n. By Theorem (1.5.1-2) we have

V = V,

By interchanging the roles of V and V" we obtain

i
Theorem (2.1.2): Let V" be the dual space of an n + 1 dimensional vector

space V. Let L o , ... , L n be a basis in V' and v o , ... , v n be a basis in V.
Then any L in V' can be writton

-L O (vo) ... LO \vn/	 LO

det	 /

L n (v o ) ... L n lvn)	 L n

L L(vo) ... L (v n)	 OJ
L = -

det (L i (v i )1
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In other words, the Lagrange coefficients ^ i (x) are the unique dual basis in
V" = V associated with the basis E o , F. 1 , ... , En in V - . It is actually possible
to obtain a formula for a general vector space which is similar to Equation
(2.2-1). If we expand the determinant in the numerators of Equation (2.1-2) by
the bottom row and then rearrange the columns we obtain

n

v	 T L i (v),Li
	 (2.2-3)

i' 0

where

L0 ( v0 ) ... 
L i - 1 (v0)	

v0	 Li +1 (v0) ... Ln (v0)

det

L0 (vn)	
.. L i-1 (v n)	 v 	 Li+ 1 ( V n )	 Ln (V,,

. (2.2-f)
det ILi (vi)]	 _

Formula (2.2-3) is known as the generalized Lagrange interpolation formula and
the 1p i are the generalized Lagrange interpolation coefficients. One can easily
check that

Li ('^i)	 bii

For polynomial interpolation in several variables the Lagrange formula
takes the following form:

Theorem (2.2.1): Let f be a function defined in a region G of R n and let xo,
X 1 , ... z m be m + 1 points in G. Let (to (X), ¢1 (x) , .	 (tm (X) be m + 1

monomials in n variables such that

det lhi (xi)]	 0
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Then, the unique interpolation polynomial is given by

M

P( X ) - T '( X 	 iX)

	
(2.2-5)

i =o

where

	

140( X 0) ... ^bo^X l-1 )

	
,t0 (X)	 ¢ 0 (Xi+1) ...

	
0 \Xn)

det

`\
	

¢n 
/X)	

9^n 
(X j+1 )	 ^'n (Xn)

detPi(Xi)

Proof: The proof is an application of Theorem (1.5.1) and the preceding
discussion.

In the case of single variable interpolation, we can use the properties of
Vandermonde determinants to reduce the Lagrange coefficients to the form found
in Equation (2.2-1). Except for special cases, such a reduction for the several
variables case is not possible.

Lagrange Interpolation on a Two Dimensional Grid

One case, where a simplification of the Lagrange coefficients is possible,
occurs when the points are located on a rectangular grid as shown in Figure
(2.2.1).

Let f be a function defined in a region G containing the above grid. By
Theorem (1.3.2), we can obtain a unique solution to the interpolation problem
by using the monomials

1 ,	 X	 Xn

Y I	 YX	 yXn	
(2.2-7)

Y 	
Y  X	 Y  X 
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Then, the unique interpolation polynomial is given by

m

P( X ) -	 f (Xi) 	 (X)
	

(2.2-5)

=0

where

	

1j0 (xo) ... 00(X1-1)	 (to ( X )	 (to (Xi + 1)	 'to \Xn)

det	 /

	

n \ X O)
... ¢

n ( X j-1)	 '4n (X)	 q'n ( X i + 1)	 'tn (Xn)

^^ lX)
	

detrli(Xi)]

Proof: The proof is an application of Theorem (1.5.1) and the preceding
discussion.

In the case of single variable interpolation, we can use the properties of
Vandermonde determinants to reduce the Lagrange coefficients to the form found
in Equation (2.2-1). Except for special cases, such a reduction for the several
variables case is not possible.

Lagrange Interpolation on a Two Dimensional Grid

One case, where a simplification of the Lagrange coefficients is possible,
occurs when the points are located on a rectangular grid as shown in Figure
(2.2.1).

Let f be a function defined in a region G containing the above grid. By
Theorem (1.3.2), we can obtain a unique solution to the interpolation problem
by using the monomials

1 ,	 x .	 Xn

Y ,	 yX	 yXn	
(2.2-7)

}+ m	Y  X ..	 ym Xn
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The polynomial p(x, y) is a linear combination of the monomials in (2.2-7) anti
it satisfies the property

	

p ( Xi ' Y ')	 f (Xi' Y i)

Furthermore, the coefficients	 (x) C ; (y) sa bfy the fundamental property

	

^i ( X i)	 (Yi)	 1

^i ( X k ) ^i (Y,)	 0	 k ;e i	 j

Alternately, we may derive Equation (2.2-8) fi om Equation (2.2-6). Although
this approach is more complicated we include it to illustrate the techniques
needed to derive results from the general formula (2.2-6). We shall use the
following lemma.

Lemma (2.2.3): Let (x ; , y ; ) (i 0, 1, ... , n), (j = 0, 1, ... , m) be the

(m + 1) (n + 1) points on the grid in Figure (2.2.1). Then for each fixed set of
indices (i 1 , 

1 1 ) we have

2 ..	 n	 m

	

1	 x0	 yo	 xo	 xo Yo

n m

	

det 1	
x1	 YO	 xl	 x1 Y 0

..

	

1	 X 	 ym	 X  2	 X  
n y mM

n 

(l	

m

\x i 1	 X '/	 \yi1	
Yj) Cof(X ii Y I

i = 0	 i=0	 \
i^il	 jdjl
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Proof: Consider the matrix

2 ..	 n	 m1	 xo	 Yo	 Xo	 Xo Yo

P	 1	 x l	 Y o	 x '2 ... x i y o '	(2.2-9)

1

	

	 x 2 ... X"	
mX

	

n	 Ym	 n	 n Ym

Replace the pair (x i f , Y i f  in P by the variable points (x, y) and let P(x, y) de-
note the polynomial obtained by taking det [P] with this substitution. Let x = xo.

It follows that P(x o , y) is a polynomial of degree m in the variable y which
vanishes at the m + 1 points y o , Y 1 , ... , y  and therefore for all y. Therefore,
by Lemma (1.3.1), there exists a polynomial O o (x, y) such that

P(X, Y) _	 ( X- Xo) Qo ( X, Y)

Repeating the above procedure for each i / i t and each j 7 j 1 we obtain

P(x, Y) _
	

H (x xl) 
H 

(y y i ) C( X, y)
-	 ill	 j7)

E

To determine C(x , y) we note that
It

H(X X1) H ^y Yi)i ^ if	 i -' i'

contains a term x" y m and therefore C(x, y) must be the coefficient of x" y m in
P(x, y). Expanding the determinant of the matrix which defines P(x, y) by the
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last column we see that

C(x, y)
	

Co f (x , 
Y ;

Therefore

P ( x ' Y) (x-x 	 (y- yJCof(x ; l y i)
11	 ;

j4^

E

t

I

Letting x = x , , and y = y 3 r we obtain the result of the lemma.

Theorem (2.2.4): The Lagrange coefficients for interpolation on a two di-
mensional grid are given by

II (x-x;) rI (Y - Y;)

;i,'
( x ' Y)

(
x 	 x	 (Y	 'Yj

Proof: Evaluating the determinants for the Lagrange coefficients in Equa-
tion (2.2-6) by the previous lemma we have

(x - x i)	 ly - y ; ) Cof (x" Ym)r	 r

^.r	 ( x ' Y)
1 ,	

lH ,	 i	 j.,J, 	
j

\
x 1	 x^l	 (y 1	 y^^ Cof(x i Y 1/

lt
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However, since

Cof (x" y"')	Cof(x;y ;l	 0,
\\ i	 1 1

i

we obtain the result.
M

2.3 DIVIDED DIFFERENCES FOR SEVERAL VARIABLES

In this section we present a generalization to functions of several variables
of Newton's fundamental interpolation formula in terms of divided differences.
The early definitions for divided differences of functions of several variables
(see [8]) where based on an iteration of the difference operations for each
variable taken separately. B y there very nature, these processes place the
base points at the corners of an n-dimensional rectangular grid. A different
definition is given by Whittaker and Robinson [21] where the points are located
on a two dimensional triangular grid. Salzer (see [101) presents two more gen-
eral schemes, however neither scheme gives a polynomial of lowest possible
degree and in both cases we obtain polynomials with more coefficients than base
points.

The generalization of divided differences that we present was first explicitly
given by Salzer [11], however a more geaeral scheme which can easily be applied
to the several variable case had been given earlier by Curry [1] and more recently
by Davis [3]. We present a variation of Curry's method and apply it to polynomial
interpolation in several variables to cbtain some of Salzer's results. The gen-
eralization presented here is applicable to arbitrarily located points as long as
the determinants appearing in the denominators are not zero.

To motivate the several dimensional approach we briefly list some of the
main properties of divided differences and Newton's :undamental formula.

Let f be a function defined on an interval [a, b] which contains the points
x o , X 1 , ... , x n . Since the polynomials

V 	 1

V 1 7 (x xo)

n- 1	

1V n	 (X Xi/

i=J
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are linearly independent, they form a basis for the vector space V spanned by
the monomials 1, x, x 2 , ... , x n . Let E i be the evaluation functional on V
defined by

Ei ( 41 )	 _	 It ( X i ) .

Since

det[Ei (V j )]	 = detil

1	 1	 •••	 1

0	 (X1	 X0) ...
	 (Xn	 XO)

0	 0

n- 1

o	 0	 ... fj ( X n Xi)i =1110

0,
it follows from Theorem (1.5.1) that there exists a polynomial

n

P( x) - L a  V j (X)

j =0

(`u.3-1)

such that

P(xi)	 -	 f(xi)

for i = 0, 1, 2, ... , n. In Equation (2.3-1) the coefficients a j are called the
divided differences of order j and are usually denoted by [0, 1, ... , j ], [x O , , , .
X j ] or [ f (x o ), . , . , f (x j ) ], The polynomials (V j (x)} are known as the Newton
Polynomials.
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Three important properties of these differences are summarized in the
following theorem.

Theorem (2.3.1):

'	 1) The divided difference [0, 1, ... , j ] can be considered as a linear
functional on

	

V =	 SP (1, x, x 2 , • • • , XI

which is a linear combination of the evaluation functionals El, E 21 ... , E i .
It is given explicitly by

i
1

	

^I	 x0 ... x0i- 1	 EO (^O	 1

det

	

1	 xi	 x^i-i	 E' (o

1	 x0 ... x0i

det

1 X.	 x.^

2) The divided difference [0, 1, 2, ... j] satisfies the following:

	

[01 1, ...	 j] /xk)	
=	 0	 k < j

= 1	 k = j

3) The divided difference can be computed by the following recursion
formula

[0 1	 j]	 =	 L1, 2 , ...	 j] - [0 1	 j - 11
x i -x0

Proof: Statement (1) is proved in Householder ([7], p. 203) and is also a
special case of Theorem (2.3.3). Statement (2) follows directly from statement
(1). Statement (3) is discussed in almost any book on numerical analysis.
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In a similar way the Newto.i polynomials possess a number of important
properties.

Theorem (2.3.2):

1)E i (V k ) = 0	 for	 j < k .

2) V i is a linear combination of 1, x, x 2 , ... , x i .

1	 x0 ... x0i

det

i-1	 1	 x.	 x'
i

3) Li ( V i)	 xi	 x')	 1	 x	 x i- t=0	 0	 0

det

-1	 xi-1... 
xi 

i 
-1 1

Proof: All three properties follow directly from the definition anc the
properties of Vandermonde determinants.	 .

With this motivation we have the following general theorem in finite di-
mensional vector spaces.

Theorem (2.3.3): Let V be a finite dimensional vector space with basis Vol
V 1 , ... , V n . Let L 0 , L 1 , ... , L ,1 be a collection of linear functionals on V such
that the subcollection L 0 ,L 1 , ... , Lk is linearly independent when considered
as linear functionals over

V 	 SpjVol V1• ... , VkI

Then, there exists a uni ryue basis N 0 , N 1 , ... , N,, for V' satisfying the properties

a-1) N k is a linear combination of L 0 , ... Lk

a-2) N k (V j= 0	 for	 j< k

a-3) Nk (V i) - 1.
t
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Similarly, there exists a unique basis W O , ... , W„ of V which satisfies the fol-
lowing properties

b-1) W k is a linear combination of L o , ... Lk

b-2) Lj (Wk) = 0 for all j < k

L O (VO) ... Lk (VO)

•	 det

LO (Vk) ... L k (Vk)
b-3) Lk (Wk)

LO (VO) ... L k- 1 (VO)^

det

L0 (Vk-1) ... L k- 1 ( V k- 1)

(2.3-2)

The functionals N  are known as the generalized divided differences for V and
the vectors W k in the generalized Newton Polynomials.

Proof: We shall just determine the generalized divided differences N k . Con-
sider the subspace

Vk =	 S p {V 0 , V1• ... , V 

By our hypothesis, the functional L o , ... , Lk are linearly independent when con-
sidered as functionals over V k . By Theorem (2.1.2), there exists a unique vector
N  in V k* 	 the property

N k (VJ = 0	 for	 j < k

N k ( V k)	 1 .
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In fact N k is given by

I

t

rk

t

a

LO (VO) ...	 LO(Vk)	 LO

det 
Lk (VO) ...
	

Kk (V k)	 L„

0	 0	 1	 0

	

Nk =	 - 	
L O (VO) ... LO (Vk)

det

L k (VO) ... Lk (V,.)

Expanding the numerator of N k by the bottom row we obtain

LO (VO) ... LO \ V k- 1)	 LO

det

L k (VO) ... Lk ( Vk- 1)	 Lk

	

Nk =	

LO (VO) ... L 0(Vk
	 (2.3-3)

det

Lk (VO) ... Lk /\VkJ

To obtain the Newton polynomials we apply the exact saine process. Since the
functionals L O , ... , L k are a basis for (V k )' we can apply Theorem (2.1.1) to
obtain the existence of a vector Wk :n V such that conditions (b-2) and (b-3) are

	

satisfied. In fact	

r	
(VO)	 V0

	

det 
LO (Vk) ... Lk ( Vk)	 V 

	

L0 0 ... 0 Lk ( W k)	 0
W k	 =	 -'	

L0 (VC) ... Lk (VO)

det

LC' 	
... 

Lk (Vk)
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WIF

Expanding the numerator ty the bottom row we obtain

I L o (VO) ... L k- 1 ( V O)	 Vo

det

IL 0 (Vk) ... L k- I ( V 4	 VJ
W k 	 L k (Wk)	

Lo (Vo) ... Lk (Vo

det	

rr	
r	 `

LO 1vk) ... Lk \Vk^

Using Equation (2.3-2) we obtain

Lo (VO) ... L k- 1 (VO)

	

det	

ll	 r

L  1Vk/ ..	 Lk- 1\Vk)

W k

v 

v 

LO (vo)	
...	 L k- 1 \ v 0 I

det

LO (VK-1) ... L k-1 ( V I -1)

(2.3-4)

Conditions (a-1), (a-2), (a-3) and (b-1), (b-2) and (b-3) follow from the expres-
sions for N k and W k .

In order to show IL k and {W k t are bases for V' and V we must show they
are linearly independent. Suppose the collection N k } is not linearly independent.
Then there exist constants ( a i i not all zero such that

n

La
i N i = 0.

=o

Let i o 
be the maximum index such that a i 

O 

^ 0. Then, if c i = a i/a 1 O , we can
write

10- 1

Ni = - L c  Ni

=o
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But this implies N i 0 is a linear combination of L I, L 2 , ... , L i 0 - 1 . However,
using Equation (2.3-3) this will imply L i o is a linear combination of L1, L„ ... ,
L i 0 - 1 which is impossible. Therefore (N k ) is linearly independent. In a similar
way we can show {W k ) is linearly independent.	 n

In the next theorem we show {N k ) is the unique dual basis associa ted with
!Wk).

Theorem (2.3.4): The divided differences {N k ) and the Newton polynomials
A k ) satisfy the following relationship:

N  ( W ,)	 =	 S ik .

Proof: Let W; o be a fixed Newton polynimial. We divide the proof into
three cases:

1) Case I. (k > j 0 ). By Theorem (2.3.3) we have

N  (V j ) = 0

for j < k . Since W;
0 is a linear combination of V 1 , V 2 , ... , V; 0 and

since j o < k we have

	

i\'k (V; 
O)	

=	 0 .

2) Case II. (k = j .). Using properties (a-2) and (a-3) in Theorem (2.3.3),
formula (2.3-4) gives

	

LO (VO)	
... Lk- 1 ( V o)	 0

det

(	 l	

LO /V k 1	
Lk- 1 ( V k)	 1

	

Nj o \ W1 o)	 `	 /I
L0 ( V O)	 Lk- 1 (VO).

det

LO 
II
1Vk- 1)	

.. Lk- I kIV k- 1)



4

3) Case M. (k < j o) . By Theorem (2.3.3) we can write Nk in the form

-	 k

N 	 C  L i .
i=0

Therefore, using formula (2.3-4) we obtain

k

Lo (Vo) ... L'o -1 (Vo)	 L C  Li (Vo)
i=0

det

1	
k	

l
Lo (V'o) 
	 Leo -1 (Vi o)	 L C  Li (vi o)J	

i=o
N  (Wj )

o /	 l,u (v0)	
...	 Lj - 1 (Vo)

det	 o

Lo (vio-1) ... Ljo -1 (vjo -1)

k	 Lo (Vo) ... Ljo -1 (vo)	 L i (Vo)

L c det

Lo (V i o)	 . Lj 
-I (v i 0 )	 Li (v;)0	 0

Lo ( Vo)	 • •	 L i o -t (Vo)

•	 det

Lo (vio- 
1) ... 

L j o - 1 (vjo - 1)

I-or each determinant in the numerator above we have two columns alike;
therefore

N  ( W i o )	 = 0 .
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We are now able to obtair the generalized Newton representati-)n formula
for both vectors in V and functionals in V'.

Theorem (2.3.5): Let V, {V j } and {L; } satisfy the same properties as in
Theorem (2.3.3). Then for all a in V we have

LU
	 Nk (U) W k .	 (2.3-5)

=0

For all L in V' we have

n

	

L - IT L ( W k) N k	 (2.3-6)

k = 0

Proof: We prove (2.3-5). Formula (2.3-6) is proved in the same way. By
Theorems (2.1.1) and (2.3.3) we have

0	 1	 ...	 0	 W0
i

0	 1	 •••	 0	 W1

det

0	 1	 W n

NOM	 ... Nn (U)	 0
u 	 1	 0 ... 0

0	 1 ••• 0
det

0	 0	 1
tE

Evaluating the determinant we have the result.
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Before we derive a recursion formula analogous to part (3) of Theorem (2.3.1),
we make a number of observations. From Equation (2.3-4) we observe that Wk

depends on the vector space basis V., ... , V k and the functionals L o , ... , Lk
and it is invariant under any permutation of these functionals. In the proof below

W k ( 11 0 e l ..	 ak 1)

to indicate the Newton polynomial depends on the basis V o , V 1 , ... , V  and the
linear functionals L. 1 , ... , L ek . Similarly, from Equation (2.3-3) we can see
N k depends on the basis vectors V O , V 1 , ... V  and the functionals L 0 , L 1 , ...
L k , We shall use the notation

N k (AO, al	 ak)

to indicate dependence on V o , V 1 , ... , V  and L„ o , ... , L e P.

We can now prove the promised recursion formula. Throughout this dis-
cussion we have an ordered basis {V k ) for V which shall remain fixed. Assume
k ? 2. We shall derive a formula for N k (0 1 1 1 ... , k) in terms of N k- 1 10,

k - 1 ) and N k _ 1 (1, ... , k). Let

L 1 1 
 

L 2 , ... , Lk
-1 , Lo. Lk' L k , 1 ... , 

Ln

and

L1, LZ, ... , Lk
-1, Lk , L O , Lk +11 ... . Ln

be two orderings of the linear functionals (Li) and let a belong to V. Using
Theorem (2.3.5) and the first ordering we can write

u	 = N o (1)V o + N 1 (1, 2)W 1 (1) + ...

'	 + Nk-2(1, ...	 k-1) Wk- z(1, ...	 k-2)

'	 + Nk -1 (1, ...	 k - 1, 0) W k- 1 
(1, ...	 k - 1)

i

+Nk(1,	 k-1 0 k) Wk(" k-1. 0)

i
+ ... + Nn (0, 1, 2, ...	 n)Wn (0'

	 11- 1) . (2.3-7)
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Using the second ordering for Cie linear fiinctlonals we obtain

U	 No(1;Vo + N 1 (1, 2)W 1 (1) + ...

+ Nk-2(1, ... , k-1) W k- 2(1, ... , k-2)

+ Nk- 1 (1. ... , k) W k- 1 (1, ...	 k- 1)

+ N k f1, ...	 k 0) W k (1	 k)

+ ... + N n (0, 1, ... , ") W n (0, ... , n - 1) . (2.3-5)

Setting (2.3-7) equal to (2.3-8) we obtain

Nk - 1 (1, ...	 k- 1 0) W k- 1 
(1 ... k- 1)

+ N k (1	 k-1 0 k)W k (1	 k-1	 0)

Nk-1(1, ... ,k) Wk- 1(1, ... 	 k-1)

+ Nk (1	 k 0)Wk (1 ... , k) .

Rearranging we have

(Nk -1 (1, ... , k-1. 0) - Nk-1(1, ... , k)) W k- 1 (1, ...	 k-1)

N k ( 1	 ,k-1 0 k)Wkl^	 k-1 0)

+ Nk (1	 k, 0 W ( 1	 k) .

By the previous remarks, this equation is equivalent to

(Nk-1(0, ...	 k-1) - Nk-1(1	 .. ,k) Wk- 1(1, ...	 k-1)

_	 - N k (0 , ...	k) -Wk (0, ...	 k - 1	 + Wk ( 1	 k)`
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f

f

Applying L k to both sides and Dbserving that

Lk ( Wk (1	 ... , k))	 -	 0 .

we have

(Nk-1(0, ...	 k-1) - Nk-1(1 ... ,k))Lk(Wk-1(1, ... ,k-1))

Therefore, if L k (W k (0 1 ... , k - 1)) r 0 , we have

N k (0. ••• ,k)	 =	 CINk-1(1, ... ,k)-Nk-1(0. ... , k-1)]	 (2.3-9)

where

Lk ( W k- 1 ( 1, ...	 k - l ))

C =
	

(2.3-10)L k ( Wk ( 0 	 k - i ))

We summarize the above remarks in the following theorem:

Theorem (2.3.6): Let V, (L ; ) and (V i ) satisfy the conditions of Theorem
(2.3.2). Furthermore assume k > 2 and

Lk (Wk (0' ... : k - 1)) r	 0

Then, the recursion formula is given by (2.3-9) and (2.3-10).

M
We can now state the divided difference formula for functions of several

variables.

Theorem (2.3.71: Let f be a function defined in a region G of n'. Let
(to 0i ), , , , , ^^, 1 (z) n 2 linearly independent functions defined in G and let
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and

0 \x0)	
... 

¢O \ x n/	 ¢0

det	

11
`fn+1 \ x 0/	 Cbn+I ( xn/	 (^n+1	 =

E(X) _	 [0, 1, 2,	 x]
	 1

4101X0) ... t̂ O	 J
det	

I	 l
qbn \x0/ ... ¢ n (xn/

1=
Proof: Let Xo , ... z n belong to G and let x be an arbitrary point in G. The

result follows from Theorem (2.3.3) by defining L ; (^,) to be the evaluation
functionals

i = 0, 1, 2, ... , n and 1 x (<^) the functional

L X = Q( X) .

n

As in the single variable case we can compute the divided differences ac-
cording to the following scheme

r 0J \

/ [0 1] \

[1]
 \

[0 1 21 \

r_1, 21	 [0, 1, 2, 31

[2] / \[1 2 31/

r computational purposas it is also helpful to keep track of the various de-
minarts in formula (2.3-10) for the constant C.



0

Theorem (2.3.7) shows that Newton's divided difference formula for func-
tions of several variables is considerably more complicated than the correspond-
ing formula for the single variable case. However there are certain special cases
where the formula can be considerably reduced. For divided differences on a
triangular grid the reader should consult [21] p. 372. For divided differences on
a rectangular grid see [19] p. 31.

2.4 AITKEN INTERPOLATION

In interpolation for a single variable we can solve for the interpolation

	

formula according to the following scheme. If P i	(x) is the unique

	

polynomial such that	 1	 P

	

1 ,	 P \	 1/

for i = 1, ... , p , then

P.	 (x)	 x - x.
1 1 	 ''p-2' ^P	 1p-1

1
P a l ,	

iP 
(x) = xi - x l 	 det

P	 p-1
Pi 	 x -Xi

` 1 '	 ' ' ' 1 P- 1	 1P- 1

We can compute PO, 1 , ... , n ( x ) by the following scheme

	

p o	 --_	 — —

	

P1	 Po

	

,l	 —	 —

	

P2	 = PO . 2	
P O , 1 , 2

	

Pn	 PO,n	 PO,n-l,n... P 0,1,2.	 ,n	 _—

It can be shown that the Aitken formula can be derived directly from the
Lagrange formula using the properties of Vandermonde determinants. For this
reason it does not appear that . scheme similar to Aitken's scheme should be
valid for the several variab . case. However, there is an Aitken type scheme,
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for functions of several variables, which is due to Thacher and Milne [19],
which is valid for a restricted class of points. In this generalization, we add
enough points at each step to obtain the polynomial of next highest total degree.
The scheme is valid in R', however for simplicity we consider all the points
in R2.

A sufficient set of conditions to guarantee a generalized Aitken mtthod is
the following.

Definition (2.4.1): A set S in R 2 is called an acceptable set if the following
are satisfied

1) S" has (2 + n) ! /2! n! inhomogeneously degree n independent points

2) S" can be factored into the subsets S1"-1, S n- 1 and S 3"-1 such that

a) S" = SIn-1US2-1US3-1

	

}) S" - U S^' -1 - (X k }	 for
i =1
j9ik

	

k =	 1, 2, 3

c) The set B = (xk} k=1 , 2, 3 defined by (b) is inhomogeneously degree 1
independent

d) If x belongs to S" but not to Sk"- 1 then x is an inhomogeneous degree 1
combination of B - (zk

Each set Sk -1 is an acceptable set by the above definition.

Aitken's generalization takes the following form:

Theorem (2.4.2 	 Let S" be a set of (2 + n 1%1 / 1)1 -1 points satisfying the
above conditions and let f be a function defined in a region G of R 2 containin
the set S	 Then, there exists a unique polynomial P n of total degree n sucl

P" (Xi, YJ	 f (Xi, YJ

—	 —	 — 
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for all (x i , y i ) in S". In this case

- —	
Pn - 1 (X, y)	 (x 1 _ X )	 (Y' - Y)

	

det Pn 1 ( x , Y)	 (x2 x )	 (Y2 Y)

_—	 Pn 1 (x, Y)	 (x3 x )	 (Y3 Y)
Pn (x, Y)-	

_	
1	 (2.4-1)

X 1	
y1 

	

det 1	
x2	 Y2

l = x 3 = Y3

where the set

	

B - { ( x 1 ' Y 1)' ( x 2' Y 2) ( x 3' Y 3)}	 -

	is defined by condition (c) in Definition (2.4. 1) and	 - —

--	 1n-1 ( X i ,Y J 	 f(xi, Y i)	 -	 — -	 - ----

for all (x i, y i ) in kn-1 (k = 1, 2, 3).

Proof: The existence of P n (x, y) follows immediately from Theorem
(1.4.11). We must show formula (2.4-1) is valid. We remark that the determinant
in the denominator 1s not zero since the points in B are inhomogeneously de-
grees 1 independent. Proceeding inductively, we notice since each P^ 1 (X, y )
has total degree n - 1, the polynomial P n (x, y) has total degree at most n. It
remains to show

	

Pn (xi, Y 	 =	 f(xi, Yi)

S

for all (x 	 in Sn. We divide the proof into two cases.
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Case I. ((x i , y i ) belongs to B). Without loss of generality we choose ,,ie
point (x 1 , Y,). Expanding (2.4-1) we obtain

x2-x1	 y2-y1
1

Pn- 1 x 1' Y1 det

	

IX
3 - x 1	 y3-y1

P n ( x 1 + Y 1 )	 -	 (2.4-2)

	

1	 x1	 Y1

	

det 1	 x2	 Y2

	

L1	 x3	 Y3]

Silice (x 1 , y 1 ) belongs to S 1n-1 we have

P nl 1 (x 1 , y 1 )	 -	 f(x 1 , y 1 ) .

Therefore, since the determinants in Equation (2.4-2) have the same value we
have

Pn ( X 1 , y 1 )	 =	 f (x 1 , y1)

Case II. In this case we assume (x i , y i ) belongs to S n but is not one of the
points ( x v y 1) , ( x 21 y2) and ( x 31 y 3 ). By condition (2-bl in Definition (2.4.1)
( x i , y i ) must belong to at least two of the sets S in- ', Without loss of generality
we assume (x py i) belongs to S 1n- 1 and S tn- 1 but not to San- 1, Then

f (xi, Yi )	 ( x1	 xi)	 (Y1	 Yi )	 -
-=_	

detf (xi, Yi )	 (x2 x i) -	 ( Y 2 Y i) -

	

Pn 1 ( xi` Y i) = ( x 3 x i)	 (Y3 Yi)
P n (x i , Y i ) - a	 =	 - --

	

1	 x1	 Y1	 -	 -

	det 1 = x Z = Y2	
=	

-

—	
—	

-	 1 x3 y3	 ---	 --

P
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The determinant In i.i;c mimerator can be rewritten by subtracting the first row
from rows two and three; we obtain

f (x;, Y i)	 (X1	 x i)	 (Y1	 Yi)

det	 0	 ( x 2 X 1)	 ( Y 2 Y 1)

P^3 1 ( x i' Y i) - f \ x i - Y i)	 ( x 3 	 X I)	 (Y3	 Y 1)

	

1	 xl	 Y1

	

det 1	 x2	 Y2

i	 1	
x3	 Y3

1

Expanding the numerator we have

1	 xl	 Y1

det 1	 x2	 Y2

1	 x3	 Y3

P. (Xi, Yi)	 -	f (Xi, Yi)	 1	 X1	 yl

det 1	
x2	 Y2

1	 X3	 Y3

--	 ---	

I xl X1	
Y1 Y ^det

LX 2 X1	 YZ Y1J

+ Pn 1 ( x i' Yi) 1

det 1

1

X1 Y1

X 2 Y2

X3
Y3



r NE
NE

However, since

1	 xi	 yi

	

I''̂ i -x i 	 yi - yi
det	 = det 1	 xi	 yi

	

;; z -x i 	y2-yl

1	 x2	 Y2

and since ( x i , Y i ), ( x 1 , y l ) and ( x 2 , Y2) are inhoriogeneous degree 1 dependent
(condition (2-d)), we have

IX2

l - xi 	yi -yi
Jet 	=0- xi	 Y2 - yi

Therefore

	

Pn (xi. yi)	 =	 f (x i , yi)

5
	 Suppose (x i , y i ) belongs to S i" -1 , Sz - i and S3 - i . Then Equation (2.4-1) gives

1	 x	 xi	 Y1 Yi

f (xi, yi) det 1	 x2 - x i	 Y2 - yi

	

P . (xi, Yi) _

	 Li -x i 	y3 -yi

1	
x1	 Yi

det 1	
x2	 y2

1	 x3	 y3

	

=	 f (x i, yi) .

m

a
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It is difficult to prove whether or not a given set is acceptable. However,
we can prove a triangular grid is acceptable set.

Theorem (2.4.3): The triangular grid in Figure (2.4.1) is an acceptable
set.

Yj

Yn

s

i

s	 -

Y1

YO
x 0 xl	 Xi	 Xn

Figure (2.4.1)

Proof: We prove the theorem by induction. First let n = 1. We must show
the set

S1	 f(XO' y l ), (x01' YO) .(x l . YO)l
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	 is acceptable. Since	
9

^ 	 1	 -

1	 X 0
	 Y7

det 1	 X0	 Y 

1	 xi	 Yo

('i	 X o) ( y i yo)

IF 	 0. (2.4-3)

and since S i has

(2+1)!
32! 1! 

points, it follows that condition (1) is satisfied. If we let

o	 _

S i 	 {(X0I y0)

_S  o	 (X0, ill

S3 0 =	 (Xi, yo)}

then conditions (2-a) and (2-b) are satisfied. For this case Equation (..4-3)
shows that (2-c) is satisfied. The reader can check that (2-d) and (2-e) are
easily satisfied.

Next we assume the theorem is true for the case n - 1 and show it holds
for n. We divide the triangle into three parts a:. shown in Figure (2.4.2).

M
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x O , Yn _1/
	

(x 1 , Yn-1 )
	

(x0 , Yn )

	

(x0 , YO)	 (X,, - 1, YQ ) (x l , YO	 )	 (xn , YO )(x O , Y1 )	 (xn - 1 1 Y1 )

Figure (2.4.2)

Since the triangle has

(2 t n)1
2' n !

in-homogeneous degree n independent points (Theorem (1.3.3) and Theorem (1.4.11)),
it follows that condition (1) ir_ Definition (2.4.1) is satisfied. Define

B -	 (x0, y n ). ( x n . Y0). (x0• y o )^ .

Since

	

1	 x0	 Yn

	

det 1	 x0	 y0

x n 	 y(1

( xn x0 ) ( Y n Y0)

0 .
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we see that B is inhomogeneousl y degree 1 independent. Furthermore from the
definitions for B, Si - 1 , Sa - 

1 a.n6 S3 - 1 , it follows that conditions (2-a), (2-b).
and (2-c; are satisfied. To show condition (2-d) 1s valid, let (x ,, y ) belong to
S n but not S^ - 1 The point (x i , y ^) lies on the straight line between (x 0 , y n ) and

n , y o ): therefore the set

{^ x 0' Y n)	 \xn Y O/	 1xi' y1/}

is inhomogeneous degree 1 dependent. Therefore, (x, Y,) is an inhomogeneous
degree 1 combination of B - i ( x 0 , y 0 ) } which proves (2-d). Condition (2-e)
follows from the induction hypothesis. 	 .

The following theorem shows a non-singular linear transformation of an
acceptable set is acceptable. For a proof we refer the reader to Thacher's
paper ([181, p. 621, 622).

Theorem (2.4. 4): Let T be a non-singular linear transformation. Then the
sets {x i } and Tx ( are hoth (homogeneol ily or inhomogeneously) degree n de-
pendent or degree n independent.
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