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INTERPOLATION FOR FUNCTIONS
OF SEVERAL VARIABLES

CHAPTER 1
GENERAL INTERPCLATION

1.1 INTRODUCTION

The usual method for interpolation of functions of several variables has
been to iterate the interpolation process for each variable taken separately.
By its very nature, this process has forced the base points te be located at the
corners of a rectangular or triangular grid. These are, however, generalizations
of some of the clasrcical interpolation formulas to much larger classes of points.
This report is a summary of some of the algebraic techniques in interpolation
theory with particular emphasis on the application of these techniques to func-
tions of several variables. In particular, we discuss what appears to be the
most natural generalizations of the familiar Lagrange formula, Newton divided
difference scheme and Aitken interpolation scheme to functions of several
variables. We shall show that both the Lagrange formula and Newton formula
can be derived from more general theorems on {inite dimensional vector spaces.
When applied to functions of several variables, these formulae are applicable to
arbitrarily located base points as long as the determinants appearing in the
denominators are not zero. On the other hand, the Aitken scheme does not have
a generalization to arbitrary finite dimensional vector spaces. In this case we
present an iteration scheme, due to Thacher and Milne [19], which is valid for
certain restricted classes ot points.

For the single variablie ~ase, the purpose oi the various interpolation schemes
has been to put the interpolation polynomial in a form which is more convenient for
numerical computation. In the several variable case this is only accomplished to
a much smaller degree. For the single variable case, the Vandermonde deter-
minant plays a fundamental role in the derivation of the various interpolation
schemes and in almost every case the simple single variable formulae can be
derived from the general theorems on vector spaces hy using the evaluation
properties of this determinant. In the several variable case this tool is not
available; for this reason the formulae will be considerably more complicated.

For a more complete discussion of the topics discussed in this report we
refer the reader to the list of papers in the bibliography. Almost all the ma-
terial presented here can be found in one form or another in the work of Milne,
Arntzen, Reynolds, Wheelock ([8]); Thacher ([16], [17], [18]): Milne and Thacher
([19]); Salzer ([11]); and Curry ([1]).




Preliminaries and Notations

We shall assume the reader is familiar with the basic single variable in-
terpolation techniques as fecund in Hildebrand [5] or Householder [7]. In addi-
tion we assume the reader is familiar with the basic techniques of linear
algebra as found in Hoffman and Kunze [22]. We shall briefly recall a few
definitions and results from linear algebra and matrix theory which will be
needed in the sections to follow.

Let Vand W be finite dimensional vector spaces. A linear operator Tis a
function

T:V—>W

which satisfies the property
'I‘(cl u+ c2v) = ¢y (l‘(u)) tc, (T(v)) .

where c, and c, are real numbers and u and v belong to V. When the range
space Wis the vector space of real numbers it is customary to use the term
linear functional. One can easily show the collection of linear functionals de-
fined in V is itself a vector space. This vector space is known as the dual
space for V and is usually denoted by V*. The following results can be found
in Hoffman and Kunze ([22], p. 90-96).

Theorem (1.1): Let Vbe an n dimensional vector space. Then

1) dimV = dimV"*;

2) fv,,...,v, isa basis for V, then, there exists a unique basis L,,
L,,...,L, for V" which satisfies the property

L, (vj) = 8.,

ij *

This basis is known as the dual basis associated with v, ..., v _.

3) V= (V)"




We shall use the following notation:

1) The symbol R will denote the real numbers; R" will denote the usual n
dimensional Euclidean space.

2) Huseoee, u, are members of a vector space V, then

sp{ul. U T

will denote the vector space spanned by these elements.

3) If [a, ] is an nxn matrix, the determinant of [a,.] will be denoted by

1) ]

det[aij] .

Let Aj,;, be the matrix obtained from [a | by removing the i "row

and j thcolumn. Then we shall use the notation
Cof(a . ) = =159 " dat A,
‘olo ‘o

io

One particular matrix occurs quite often in interpolation theory. If x,
., X, are real numbers, we can consider the matrix

n X xz"'x—

n

0 0 0

2 n

1 X, X, Xy
1 X x 2 x.t
n n n
G— —

The determinant of this matrix is known as the Vandermonde determinant. It
can be evaluated by the following formula:



—
2 o
1 X X, X
det |- L ¢ - || (xi-xj)
i>j
1 b x 2 P
n n n
e ey

({71, p. 91).

1.2 GENERAL INTERPOLATION

In interpolation theory we attempt to approximate a function f defined in a
region G of R" by a finite linear combination

m

$(x) = Z a, &, (%), (1.2-1)

i=0

where {ij (;()} is a collection of linearly independent functions defined in G. In
the most restricted form of interpolation we determine the constants {aj} by
choosing a collection of base points X, X,,...,X_ in Gand requiring that

¢(x;) = f£(x,). (1.2-2)

fori=10,1,2,...,m. Applying this condition to Equation (1.2-1) we obtain
the m + 1 equations

m

f(x,) - Z_—:aj¢vj (x;) (1.2-3)

=0
The condition

D - det[¢j (ii)] 70 (1.2-4)



is necessary and sufficient to guarantee that the system (1.2-3) has a unique
solution. Therefore when (1.2-4) is satisfied, we obtain

m D
HF) = Zf’mx). (1.2-5)
120

where D, is the determinant of the matrix obtained by replacing the j th column
of the matrix [.j,j (x l)] by the column vector [f (xi )] ’

Alternately, some authors ([19], [7], p. 186) define #(x) by the formula

A 7 det - . " = 0 (1.2-6)
¢0 (xm)“' ‘im (xm) f(xm)

by (X) *+ ¢ (%) H(X)

If D# 0, formula (1.2-6) defines #(x) uniquely as a linear combination of ®os
fea 1»+ &, Inorder to show ¢(x) defined in this way satisfies the condition

imposed by Equation (1.2-2), we set x ~ §j and expand (1.2-6) by minors of the
last column; we obtain

m

Z f(ii)Cof(f(il)) +Da(x;,) = 0 (1.2-7)

i=0

However, since x = ij we have

(9]



Therefore Equation (1.2-7) becomes
-Dg(x,) = -Df(x,)

#(x,) = f(x)) -

We summarize the preceding discussion in the following theorem:

Theorem (1.2.1): Let¢,, #,,..., ¢, be a collection of linearly independent
functions defined in a region G of R" and let X, x,, ..., X, Dem*1 points in
G. Suppose f is an arbitrary function defined in G. Then, there is a unique
function ¢(x), which is a linear combination of {¢ ; (%)} and which satisfies the
condition

if and only if

If this condition is satisfied, #(X) is given by (1.2-5) or (1.2-6).

Definition (1.2.2): We refer to the interpolation problem considered in
Theorem (1.2.1) as the restricted interpolation problem. The umque function
#(x) is known as the interpolating function for f at the points Xgs Xgp 000 5 Xpo

We relate the preceding discussion to the problem of polynomial interpola-
tion for functions of several real variables.

Example (1.2.3): Let f(x) be a real valued function defined in an interval
(a, b and let x, x,,. .., x, be m+* 1 distinct points in [a, b]. For our basis




functions we take the collection

Po(x) = 1
P, (x) = x
$,(x) = x".

In this case, the determinant in (1.2-4) takes the form

X0 X0
X; X
D . ; - H (x; = x,) . (1.2-8)
' ' i<)
xm PP xmm

Since the points {x,} are distinct, this determinant is not zero and by Theorem
(1.2.1) there is a polynomial



such that

p(xi) - f(xi) i= 0,1,2, " ,m.

Example (1.2.4): Let G be a region of R? containing the points

X - (-2,0),

Let f(x) be a function defined in G which takes the values

ff(-2.4)) = 4,

For our basis functions we take the polynomials

Py (%, ¥) 1,

¢l (x' y)

[
»




Pp(x,y) T ¥,

Py(x,y) = Xy.

In this case, Equation (1.2-4) becomes

(1.2-9)

Since the above determinant is zero, the conditions of Theorem (1.2.1) are not
satisfied and we cannot produce a unique polynomial in the form

#x,y) = ag+ta,x*ta,ytagxy

which satisfies the condition

fori = 0,1, 2, 3.

Example (1.2.5): In this example we consider the same base points and
function f considered in Example (1.2.4). However, in this example we define

Po(x,y) = 1,
$y (% ¥) = x4
P, (x,y) = vy,
¢y (x,y) = x?.
g




In this case the determinant in Equation (1.2-4) becomes

-2 0
1
= 18 7 0
0 =2
3
1 -3

Therefore, this time the conditions for Theorem (2.1.1) are satisfied. Using
Equatior. (1.2-5) we obtain

Hx,y) = x2 + 2x + 6y + 2.

Remark (1.2.6): The above examples point out a fundamental difference be-
tween single variable interpolation and interpolation for functions of several
variables. In the single variable case we are always guaranteed a unique solu-

tion to the restricted interpolation problem by choosing the functions 1, x, x2, . . .

x™ for our basis functions. However, in the several variables case it may not be

at all clear which monomials we must use in order to guarantee a unique solution.

Except for certain special cases, the author is not familiar with any ""short cut”
techniques for determining whether or not a unique solution does exist. In most
cases one must evaluate the determinant in Equation (1.2-4).

There is, however, a geometric approach to this problem which might be
valuable in some special cases. In Example (1.2.4) we can make the observations
that the four base points lie in the algebraic curve

p(x,y) = ytxy+tx+2 = 0.

This observation is in fact equivalent to the singularity of the matrix in (1.2-9).
We relate the two ideas in the following theorem.

10




Theorem (1.2.7): Let ¢, ¢,,..., ¥ be m* 1 linearly independent functions
defined in a region G of R"and let x,, x,, ..., x_be m+1 points in G. Then

det [l,(il)] =0

if and only if there exists a nontrivial algebraic curve in R" in the form

such that P(fi) =0,fori =0,1,...,m,

Proof: Suppose the points x, . . . , X_ lie on the curve

p(i) - Zai ", (;) -0,

1i=0

where not all the coefficients {a,} are zero. Substituting the points x,, ..., x
in this equation we get the homogeneous system

Z a; ¢, (_’Eo) -0

i=0

Z a; & (il)

i=0 (1.2-10)

1
(=]

[\
B
—
x|
3
N
"
o

11




Since not all the coefficients a, are zero, the above system has a nontrivial
solution. It follows that

det[tj ('x‘,)] = 9

Conversely, if the above determinant is zero the homogeneous system (1.2.10)
must have at least one nontrivial solution a, a;, ..., a_. The curve

m

p(x) - Zai%(i) =0

i=0

satisfies the condition p(x;) = 0 for i = 0,1,2,... m,

1.3 INTERPOLATION ON TWO DIMENSIONAL GRIDS

In most practical problems Theorem (1.2.5) is of little value. However,
for the case of restricted polynomial interpolation we can apply Theorem (1.2.7)
to rectangular and triangular grids of points in order to obtain a sufficient col-
lection of monomials to guarantee a unique interpolatior polynomial.

We shall use the following lemma:
Lemma (1.3.1): Let p(x, y) be a polynomial in two variables and suppose

for a fixed real number x, the polynomial p(x,. y) = 0 for ally. Then there
exists a polynomial g(x, y) such that

P(x,y) = (x~xp)&(x.¥)

Proof: We can write p(x, y) in the form

n

P(x,y) * Z P, (y)x', (1.3-1)

i=0

12




where each coefficient p; (y)is a polynomial iny. Since for each fixed y, the
polynomial p(x,.y) is equal {o zero, we can write

n-1

P(x. y) = (x7x,) Zbim’“- (1.3-2)

i=0

We must show the coefficients b, (y) are polynomials iny. However, compar-
ing the coefficients of x' in Equations (1.3-1) and (i.3-2), we obtain

b.i(yy ® B, (¥)
and
b_; (¥) T P (¥) ¥ x0b .0y

for j = 2, 3,...,n. Therefore, the coefficients b, (y) are polynomials in the
variable y.
[
We now turn our attention to rectangular grids in R?. Let (x i Y;),
(i=0,...,n),(j=0,1,...,mbe (n+1)(m+ 1) points on a rectangular
lattice in R? (nee Figure (1.3.1)).

Let F be a function defined in a region G of R? containing the above rec-
tangular lattice. In the following theorem we obtain a collection of monomials
which is sufficient to guarantee a unique solution to the restricted interpolation
problem on the above grid.

Theorem (1.3.2): Let f be a function defined in region G of R?2 containing
the rectangular lattice in Figure (1.3.1). Then, there exists a unique interpolating
polynomial #(x, ¥)in the form

H(x,y) = ZZai’.xiyj. (1.3-3)
i=0 j=0

13




"1
Yo
xo Xl xi xn
Figure (1.3.1)
such that
¢(xi. yj) = f(xi.yj) -
for(1=0,1,...,n,( =0,1,...,m.

Proof: We prove this theorem by contradiction. Suppose a unique solution
in the form of Equation (1.3-3) did not exist. Then, by Theorem (1.2.7), there

exists a nondegenerate algebraic curve

such that

14




fori = 0,1,...,nandj =0,1,2,...,m Let x = x,, The polynomial

P, (x4, ¥) has degree less than or equal to m in the variable y. Since it vanishes
at the m * 1 points y,, y,, . . ., ¥, 't must vanish for ally. By Lemma (1.3.1),
there exists a polynomial p, (x, y) such that

Po(x¥) = (x=x,)p,(x.¥).

We can apply the above process for the point x; and the polynomial p, (x, y).
Since p, (x,,y) is a polynomial in y of degree less than or equal to m which
vanishes aty,, y,, ..., y,, it must vanish for ally. Therefore, by Lemma
(1.3.1), there exists a polynomial p, (x, y) such that

Po(x,¥) = (x=xp) Py(x, ¥)

(x-xo) (x‘xl) P, (x,y) .

Continuing in this manner, we obtain a polynomial p_ (x, y) such that

n-1

Po(x,y) = H (x=%;) Po-y (%0 ¥) - (1.3-4)

i=0

Since p, (x, y) has degree less than or equal to n in the variable x, the poly-
nomial p__, (x, y) can not depend onx. Therefore, we can write

n=1

Po (X, y) = H (x=x,;) Ppoy () -
i=0
Now let x = x . Since the polynomial p,(x_, y) has degree at most m in the
variable y and since p, (x,.y) is zerofory = y,,vy,,...,Vy,, it follows that
15




Py (X, ¥) = 0 for ally. Furthermore, since

and since p, (y)does not depend on x, it follows that p_ (y)is identically equal
to zero. But then p, (x, y) is identically equal to zero which contradicts our
assumption that p, (x, y) be nondegenerate.

The previous theorem does not guarantee a polynomial of lowest possible
total degree. For example, consider the grid in Figure 1.3.2. If f is any function

(XIIYO) (xllYl) (XIIYZ)

¢ .- -

-9 9 9

(xolYo) (xol)'l) (xor)'z)

Figure (1.3.2)

defined in a region G containing the above grid, then the previous theorem
guarantees an interpolation polynomial of the form

H(x,y) = a,+a x+ a2x2 tajy tagxy+ asxzy

16




such that #(x, y) and f(x, y) agree at the points on the above grid. The poly-
nomial #(x, y) has total degree 3. There are, however, six monomials 1, x,y,
x 2, xy, y? with total degree at most 2; unfortunately unique interpolation with
these monomials is impossible. One can easily check that the points in Fig-
ure (1.3.2) lie on the nondegenerate algebraic curve

P(x.y) = (v-vyo)(vy-v,) = 0.

By Theorem (1.2.7), interpolation with the minimals 1, x,y, x2, xy, y? is
impossible.

The following theorem shows the above problem does not occur on triangular
grids. By interpolating with the base points on a triangular grid we can obtain
an interpolating polynomial of lowest possible degree.

Theorem (1.3.3): Let f be a function defined in a region G containing the
triangular grid in Figure (1.3.3). Then, there exists a polynomial of total

v @

mIN

' \
| Y
N
' N
"1 ’ —Q "
y —&— .4
Xg X, X, X
Figure (1.3.3)
17




degree n such that f and ¢ agree at the points of the above triangular
lattice.

Proof: We shall prove the theorem by contradiction: Suppose a unique
polynomial #(x, y) of tctal degree n did not exist. Then, by Theorem (1.2.7),
there exists an algebraic curve p(x, y) of total degree a which vanishes at the
points on the above triangular lattice. Let us write p(x. y) in the form

is a polynomial in the variable x which vanishes at the n* 1 points x,, x,, ...,
x .. Therefore, since p(x, y,) has degree n, it follows that p(x, y,) is zero for
all values of x. In particular, the coefficient A_ (y) which, as a polynomial iny,
has degree zero must vanishat y = y,. It follows that A (y)is identically
zero. Nextwe set y = y,. In this case, the polynomial p(x, y,) will vanish

at the n points x,, x,, ..., x,_,. Therefore, since p(x, y,) has degree n -1
in the variable x, it must be identically zero. Now we recall that A _, (y) has
the form

An_l(y) = oy +td.

However, from the above remarks we have

|
o

Ay (yo)

A, (yl) = 0,

18




which implies A _, is identically zero. In a similar way, one can show A __, (),
A-3(¥),..., A, (y)are all identically zero. Therefore, p(x, y) is identically
zero which contradicts the fact that p(x, y) be nondegenerate. -

The above techniques can be used to find monomials sufficient to guarantee
a unique solution for points arbitrarily located at certain vertices of a rec-
tangular grid. We illustrate the technique in the following example.

Ex umple (1.3.4): Consider the problem of finding a sufficient set of monomials
which will guarantee a unique interpolating polynomial for functions defined in a
region containing the grid in Figure (1.3.4).

Y2

71

xo X1 X2

Figure (1.3.4)

We shall show that the monomials

y, y2ax,
Y' yx' yx2|
1, X, x2

are sufficient to guarantee a unique solution to the prublem. Suppose a solution
did not exist. Then, by Theorem (1.2.7), there exists nondegenerate algebraic
curve

p(x, y) = (az+b2Y) x2+ (al+bly+cly2)x
+ (80 + by + co) (1.3-5)

19




which contains all the points on the above grid. Let y = y,. Then p(x, y,)is a
polynomial of degree 2 in the variable x which vanishes at the three points x,
x, and x,. It follows that p(x, y,) is identically zero for all values of x. In
particular since a, * b, y is the coefficient of x? we have

a, +b,y, = 0. (1.3-6)

In a similar way we can set y = y, in Equation (1.3-5) to obtain

a, *+ by, = 0. (1.3-7)

Combining Equations (1.3-6) and (1.3-7) we obtain the homogeneous system

|
o

a, * by,

a, +b,y, = 0.

Since y, 7 v, it follows that a, = 6 and b, = 0. We can use a similar tech-

nique to show the constants a,, b, and c, are zero. Infact, ifwelety = y,,

y, and y, and look at the coefficients for x in cach case we obtain the homogeneous
system

2 =
a; tyoby *ygcy 0
2 =
a, fy, b, tyle 0
2 =
a, + y2bl ty,c, 0. (1.3-8)
20



Since

1 Yo Yo
det| 1 Y, vz
1 ¥y, ¥
- (yl-yﬁ) (yz_yx) (y,-yo)
7 0,

the system (1.3-8) has the unique solution

a, = 0,

b, = 0,

c, = 0.
In a similar way, one can show

a, = 0,

b, = 0

c = 0,

Therefore, ~(x, y) is identically zero which contradicts the fact that p(x, y)= 0
was a nondegenerate algebraic curve. Therefore, by Theorem (1.2.7) we can use
the monomials y?, y?x,y, yx, yx?,x,x?, and 1 to interpolate any function f
defined in a region containing the grid in Figure (1.3.4).

21




In a similar way, it can be shown for the grid in Figure (1.3.5).

ﬁ
S I
.

Figure (1.3.5)

A correct choice of monomials is

y2?, y2 x3,
Y, yx?, yxd ,
1, X, x3 .
Or possibly
y2, y2 x2, y2x3,
yX , yx3 ,
1, X, x3.

1.4 GENERALIZED LINEAR INDEPENDENCE
In this section we briefly introduce the concept of generalized linear in-

dependence. In particular, we introduce the concept of homogeneous and in-
homogeneous degree n independence of points and show how this idea relates

22




to interpolation for functions of several variables. In Section 2.4, we use this
notion to determine a sufficient set of conditions under which an Aitken type
interpolation scheme is valid. For notational convenience we consider points
n B2,

Definition (1.4.1): A point X, = (xo, xo', ..., x," in R™"! is said to be

a homogeneous degree n combination of the points x,, . . ., X, if there exists
a collection of scalars a;, (i = 1,2,...,P) such that

m

ﬁ (xe)" Zp:ai 1_[("ji)"i (1.4-1)

=1 i=0

for all sets of nonnegative integers {n,: i = 0,1,..., m} such that

En.:n.
1

i=0

Example (1.4.2): If m = 2 andn = 2, then a point (x,, ¥4, z,) is a homo-
geneous degree 2 combination of the point (x,, y,, z,) and (x,, ¥,, z,) if and
only if there exist constants a and b such that the following six equations are
satisfied:

X, xaxl2 + bx22
yo2 = ay12 + by22
g; = 8212 + b222
Xo¥Ve -~ ax,y, tbx,y,
X2y = ax;z, * bx, z,
Yo2o - ay,z, tby,z,.
23
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Definition (1.4.3): A collection of points X,, X,, ..., X in R™! is homo-
geneously degree n dependent if and only if there exist a , a,, ..., a_, not all
zero, such that

for all sets of positive integers {n,: i = 0,..., m} such that

Definition (1.4.4): A collection of points x,, . . ., X is homogeneous
degree n independent if it is not homogeneous degree n dependent.

Homogeneous degree n dependence is a natural generalization of the familiar
concept of linear dependence. Many of the linear concepts such as basis and
dimension have natural extensions to the more general case. For a more com-
plete discussion the reader should consult the original work of Thacher [16].

Example (1.4.5): For the case n = 1 Equation (1.4-1) becomes

fori =0,1,2,...,m Itfollows that x, is a homogeneous degree 1 combina-

tion of the points x,, X,, ..., x_ if and only if X is a linear combination of

X, Xy, « « . X_in the usual sense.

24




Example (1.4.6): Consider the points

X, © (xo. yo) = (1,1)
%X, = (xl. yl) = {1,0)
X, ("2‘ yz) - (0, 1)

In this case we show X, is not a homogeneous degree 2 combination of x, and

x,. If x, were a degree 2 combination of x, and x,, there would exist constants
"a'" and '"b'" such that

xo2 = axl2 + bx22
Xo¥o ~ ax;y,; t bx,y,
yo = ayl +tbyl. (1.4-2)

Upon substitution, the second line of Equation (1.4-2) becomes

1 = a(1)(0) + b(0)(1) = 0.

Therefore, the point (1, 1) cannot be a degree 2 combination of (1, 0) and (0, 1).

Many of the results for generalized linear dependence can be derived from
known results in the linear case. We shall use the following well known lemma
(see [6], {19]).

Lemmsz (1.4.7): There are (n+m)!/m! n! monomials in m + 1 independent
variables of total degree equal to n,

Proof: A monomial in the n +1 variables x°, x!,, .., x™ with total de-
gree n has the form

IT .

i=Q

25




where

Zni =, (1.4-3)

i=0

Therefore, the number of such nionomials is given by the number of nonnegative,
integer valued solutions of Equation (1.4-3). It is well known that the number of
nonnegative, integer valued solutions of (1.4-3) is given by (n +m)!/n! m! (see
(4], p. 36).

[ ]
Notation: We shall use the notation
_ _ (ntm)!
Wo(m) = —Jrmr
Consider the mapping
¢, :R"1—> R
defined by
m
¢n ((x‘)) - H (xi)nl )
i=0
where the collection {n,} ranges over all positive integer valued solutions of
the equation
m
R
i=0
26
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Example (1.4.8): Forn = 2 andm = 2 we have

<152:R3———>R6

defined by

¢, (x,y, 2) - (xz. y2, 22, xy, vz, xz) -

The following theorem relates homogeneous degree n independence in R™*!

” . 5 W
to linear independence in R " o

| %|

Theorem (1.4.9): Let x,,..., x_ be a collection of points in R™ 1, Then

R Yp is homogeneous degree n independent if and only if the collection

n (X)), .+ ., ¢, (x,)is linearly independent in R" ™,

_ _ W
Proof: Suppose ¢, X, ..., #, X, is linearly independert inR " = . Then,

there are constants a,, ..., a,, nct all zero, such that
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It follows immediately from the definition that the points x,, X,, ..., ?p are
homogeneously degree n independent in R™" !, The converse follows in the same

way .
|

In order to relate the above material to multivariate interpolation we need
the following definition.

Definition (1.4.10): A collection of points (X,) in R" is inhomogeneously

degree n dependent (independent) if the collection

;“ = (l‘le'sz' ..-'xim)

is homogeneously degree n dependent (independent) in R™* 1,
We can now present the main result of this section:
Theorem (1.4.11): Let f be a real valued function defined in a region G

of R and let {x,}be a collection of W_ (m) points inG. Then there exists a
polynomial ¢ of total degree n such that

fori=1,2,...,W (m), if and only if the collection is inhomogeneously de-
gree n independent.

Proof: Let {x,} be a collection of W_ (m) inhomogeneously degree n in-
dependent points in R". By Theorem (1.4.9), the vectors {¢n (i i')} are linearly
independent in R"» ‘™, Eut since the vectors {¢, (X,')} are the rows of the
determinant in Equation (1.2-4) when the basis functions are taken as all
monomials in m variables of total degree less than or equal to n, the existence
of the polynomial ¢ follows immediately from Theorem (1.2.1). The converse
follows in a similar manner. a

Corollary (1.4.11): A collection of W_(m) points {X,} in R" is inhomogeneously
degree n independent if and only if there exists a nondegenerate algebraic curve
#(x) = 0 with total degree n, such that

$(%;,) = o

fori=1,2,...,W (m).
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For some further geometric results for degree n independence the reader
should consult the paper by Whaples [20].

1.5 INTERPOLATION IN VECTOR SPACES

Let ¢, ¢,,...,¢, be a collection of functions defined in a region G of R™
and let V be the vector space of functions generated by this collection. Ify is
a point in R", the evaluation function defined by

E- () = &Y) (1.5-1)

is a linear operator from the vector space V to the real numbers. In fact if ¢
and Y are members of V and if ¢, and ¢, are real numbers we have

E; (c;84c,¢) = (c;8+c,¥) ()

¢, #(F) *+ ¢y W(F)

¢ By (#) + ¢, By (¥) -

It is not necessary to restrict our attention to linear functionals defined by
Equation (1.5-1). In fact any collection ¥ m + 1 linearly independent func-
tionals on V is sufficient to guarantee a unique solution to the interpolation
problem. For example, if the functions {¢;} and f are sufficiently smooth, we
might consider a linear functional defined by

_ 0% (#) -
L) - aTaL,%(Xo)

or possibly one in the form

L(¢) = J'¢>di.
G
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In fact the above methods can be generalized considerably. For arbitrary
vector spaces Theorem (1.2.1) takes the following form:

Theorem (1.5.1): LetV be an m + 1 dimensional vector spare with basis
vy viyeew,v b andletL ,L,,...,L bemt1 linear functionals defined
in V. The following conditions are equivalent:

1) The collection { Lj} is linearly independent.

2) For all collections of real numbers r, r , T, the condition

) AL

L, (v) ~ r;

for j = 0,1,...,mdefines a unique vector in V.

3) The determinant det [Lj ("s)] is not zero.

Proof: (1)= (3). Suppose det [Lj (v, )] # 0. Then the homogeneous system

o o
& Ly
—~ ~
< <
Bl —

~ ~
1 "
o o

has a nontrivial solution. Since

»
=
~

<
~

|
L=

for i = 0,1,...,m, it follows that

Zaij(v) = P

1%0
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for all v in V. However, this means the collection {L j} is linearly dependent
which contradicts (i). Therefore det[L’. (v, )] = 0,

(3) = (2). A vector v inV has the form

Consider the system

(1.5-2)

|
e
3
~~
<
~
i"
-3
3

Since
det[L, (v))] 7 o0,

the system (1.5-2) has a unique solution for the coefficizntsa,,a,,...,a_.
The unique vector
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satisfies the property
Lj (v) = r
for; =0,1,...,m,

(2)== (1). Suppose the collection {L,} is not linearly independent. Without
loss of generality we assume

L, - chLj. (1.5-3)

For a collection of real numbers r, ..., r_ we have a unique vector v in V
such that

Lj (v) = r

i °

Furthermore, by Equation (1.5-3)

Ly(v) = chrj. (1.5-4)

Choose a new set of constants s, . . . , s, such that
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for 1 <j <m. Because of Equation (1.5-4) we cannot find a vector v such that

L’.(v) = .3

for 0 <j <m. Therefore, the collection {L,}, is linearly independent.
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CHAPTER 1II

INTERPOLATION FORMULAE FOR SEVERAL VARIABLES

2.1 THE FUNDAMENTAL FORMULA

Almost all interpolation formulas can be derived from the following ele-
mentary theorem on finite dimensional vector spaces.

Theorem (2.1.1): (Fundamental Theorem of Interpolation Theory) Let V
be an n + 1 dimensional vector space with basis vy, v,,...,v andletL, ...,
L _ be a basis for the dual space V'. Then any v in V can be expressed in the
form

—Lo ("o) o L (Vo) V:

dat . . .
c LO (vn) e Ln (vn) Vn

Lo(v) o0 L, (v) 0
v = - . (2.1-1)

det (L, (v))]

Proof: The expression on the right is a linear combination of Vor s s o5V,

and hence is a member of V. Let us denote this expression by v'. If we apply
the linear functional L; to v' we obtain

L, (."o) et Ly (."o) L; (.Vo)—!

s L, (."n) = = ("'n) L, (."n)

Sty 1= {V) 0

iy = =
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In the determinant in the numerator we subtract the i'" column from the last
column and obtain

—Lo ("o) "L, ("o) 0
Ly (va) o Lo(va) O
Lo(v) R Ln(v) -Li(va

L vy = =

det[Li (vj)]

Expanding the numerator by the last column we cobtain

- (L () det L, (v})]
det[Li (vj)]

L, (v).,

L, (v")

i

fori =0,1,2,...,n. By Theorem (1.5.1-2) we have

By interchanging the roles of V and V* we obtain

Theorem (2.1.2): Let V* be the dual space of an n + 1 dimensional vector
space V. LetL,...,L beabasisinV® andv,,...,v_  beabasisinV.
Then any Lin V* can be written

l

Lo (Vo) *** Lo (va)

det
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In the determinant in the numerator we subtract the i'" column from the last
column and obtain

—Lo ("o) L, (Vo) 0 =
L (v) o L(va) 0
Ly(v) *** L (V) =L, {v)

L'y ==

det[Li (vj)]

Expanding the numerator by the last column we obtain

= (- Li (v)) del:[Li (vj)]
det[Li (vj)]

L, (v),

L, (v")

fori =0,1,2,...,n. By Theorem (1.5.1-2) we have

By interchanging the roles of V and V* we obtain

Theorem (2.1.2): Let V" be the dual space of an n + 1 dimensional vector
space V. LetL,,...,L beabasisinV® andv,,...,v_ beabasisinV.
Then any LinV* can be written

det




In other words, the Lagrange coefficients Jﬂ; (x) are the unique dual basis in
V*" = V associated with the basis E,, E,, ..., E_ in V". It is actually possible
to obtain a formula for a general vector space which is similar to Equation

(2.2-1). If we expand the determinant in the numerators of Equation (2.1-2) by
the bottom row and then rearrange the columns we obtain

n

¢ = ZLi(v)wi (2.2-3)

i=0

where
L, ("o) e Loy ("o) Vo bisi (Vo) L, ("o)T
B
. I"0 (Vn) = Li"l (vn) Vn Li+l (vn) e Ln (vn_)_‘ (2 2_4)
¥, © det[Li (vj)] ats

Formula (2.2-3) is known as the generalized Lagrange interpolation formula and
the ¢, are the generalized Lagrange interpolation coefficients. One can easily
check that

L (¥;) = 8-

For polynomial interpolation in several variables the Lagrange formula
takes the following form:

Theorem (2.2.1): Let f be a function defined in a region G of R" and let x,
Xy, 400, X bem+1 points inG. Let ¢ (%), ¢, (X), ..., %, (X)be m+1
monomials in nvariables such that

det[d:i (xj)] 0.




]
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‘
;
i
E

Then, the unique interpolation polynomial is given by

m

p(i) = Z f(i,) 'f’j (’_‘) ’ (2-2'5)

i=0

where
d)o(-’_‘o) ¢0(T‘i-l) by (%) ®o (§j+1) s (-in)
det| : f : :
=4 b (50) () AT 4 (F) 4 (%)
y X = det[cﬁi(i,-)]

Proof: The proof is an application of Theorem (1.5.1) and the preceding
discussion.

In the case of single variable interpolation, we can use the properties of
Vandermonde determinants to reduce the Lagrange coefficients to the form found
in Equation (2.2-1). Except for special cases, such a reduction for the several

variables case is not possible.

Lagrange Interpolation on a Two Dimensional Grid

One case, where a simplification of the Lagrange coefficients is possible,
occurs when the points are located on a rectangular grid as shown in Figure

2.2.1).

Let f be a function defined in a region G containing the above grid. By
Theorem (1.3.2), we can obtain a unique solution to the iuterpolation problem

by using the monomials

& X, =
Y, yx , v yx° (2.2-7)
ym = ym X, ", ymxn
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Then, the unique interpolation polynomial is given by

m

p(x) = Zf(ij)féj ) (2.2-5)

i=0

where
%o (io) ¢0(§j-l) by (%) ¢, (§j+l) Tt d (in)
det
£ (x = ¢n (io) -y <bn (ii'l) ¢n (i) d)n (ii*l) e d)n (in)
(%) = det[qSi('i’.)]

Proof: The proof is an application of Theorem (1.5.1) and the preceding
discussion.

In the case of single variable interpolation, we can use the properties of
Vandermonde determinants to reduce the Lagrange coefficients to the form found
in Equation (2.2-1). Except for special cases, such a reduction for the several
variables case is not possible.

Lagrange Interpolation on a Two Dimensional Grid

One case, where a simplification of the Lagrange coefficients is possible,
occurs when the points are located on a rectangular grid as shown in Figure
(2.2.1).

Let f be a function defined in a region G containing the above grid. By
Theorem (1.3.2), we can obtain a unique solution to the interpolation problem

by using the monomials

) 59 e =
Y, yR, *°* , yx* 2.2-7)
y‘“'. y:"‘x. ve, ymx?
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The polynomial p(x, y) is a linear combination of the monomials in (2.2-7) and
it satisfies the property

p(xivv;) = f(x.y)) -
Furthermore, the coefficients /Ci (x) 4 i (y) sh’bfy the fundamental property

{i("i){i (y,.) =1

bpdagpd ys ) =l T p g

Alternately, we may derive Equation (2.2-8) fiom Equation (2.2-6). Although
this approach is more complicated we include it to illustrate the techniques
needed to derive results from the general formula (2.2-6). We shall use the
following lemma.

Lemma (2.2.3): Let (x;,¥;) (1=0,1,...,n), (j =0,1,...,m) be the
(m+1)(n+1) points on the grid in Figure (2.2.1). Then for each fixed set of
indices (i', j!) we have

72 =
1 %o Yo "oz Xo Yo
2 n
e ! 3 Yo " X Yo
1 xl'l ym xnz xn ymm

"
—
>
-~
]
»
il
—
<
-l
.
]
.-"<
~——
0
o
—
*
-
<
-5
N

- =
i¥il ji#jl
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Proof: Consider the matrix

1 X0 Yo Xq Xo Yo
2
P - 1 | Yo %4 Xy Yo (2.2-9)
1 %, ¥ X2 xSy

Replace the pair (x,+,y+) in P by the variable points (x, y) and let P(x, y) de-
note the polynomial obtained by taking det[P] with this substitution. Let x = Xge

It follows that P(x,, y) is a polynomial of degree m in the variable y which
vanishes at the m+ 1 points y,, v,, . .

. » ¥, and therefore for all y. Therefore,
by Lemma (1.3.1), there exists a polynomial Q, (x, y) such that

P(x,y) = (x=%,)Qp(x.y) .

Repeating the above procedure for each i 7 il and each j 7 j! we obtain

P(x,y) - H (x-x,) H (vy-vy;) cxy) -

ivi' i7i

To determine C(x, y) we note that

IT =) T o+

i#i’ i*i

contains a term x"y™ and therefore C(x, y) must be the coefficient of x" y™ in
P(x, y). Expanding the determinant of the matrix which defines P(x, y) by the
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last column we see that

C(x,y) - Cof(xi“, y"':)

)

Therefore

P(x,y) = H (x-xi) H (y-yj)Cof(xi“ly"‘;) -

)
i’ i?j

Letting x = x,» and y = y;' we obtain the result of the lemma.

Theorem (2.2.4): The Lagrange coefficients for interpolation on a two di-
mensional grid are given by

ll (x =) II (v-v,)

i¥)

Proof: Evaluating the determinants for the Lagrange coefficients in Equa-
tion (2.2-6) by the previous lemma we have

H (x-xi) H (y'yj) Cof (x"y"’)

idi! i‘j

H (xi‘ "xl) H (yjl -y,) Cof(x;; yj";).

ifi’ ‘"
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However, since
Cof(x" y"‘) = Cof (x_“, y ":) 7 0,
1
we obtain the result.

2.3 DIVIDED DIFFERENCES FOR SEVERAL VARIABLES

In this section we present a generalization to functions of several variables
of Newton's fundamental interpolation formula in terms of divided differences.
The early definitions for divided differences of functions of several variables
(see [8]) where based on an iteration of the difference operations for each
variable taken separately. By there very nature, these processes place the
base points at the corners of an n-dimensional rectangular grid. A different
definition is given by Whittaker and Robinson [21] where the points are located
on a two dimensional triangular grid. Salzer (see [10]) presents two more gen-
eral schemes, however neither scheme gives a polynomial of lowest possible
degree and in both cases we obtain polynomials with more coefficients than base
points.

The generalization of divided differences that we present was first explicitly
given by Salzer [11], however a more geueral scheme which can easily be applied
to the several variable case had been given earlier by Curry [1] and more recently
by Davis [3]. We present a variation of Curry's method and apply it to polynomial
interpolation in several variables to chtain some of Salzer's results. The gen-
eralization presented here is applicable to arbitrarily located points as long as
the determinants appearing in the denominators are not zero.

To motivate the several dimensional approach we briefly list some of the
main properties of divided differences and Newton's fundamental formula.

Let f be a function defined on an interval [a, b] which contains the points

Xgs Xqs e« + , X« Since the polynomials
L 1
. (x-xo)
n=1
vn = ]] (x-xi)
i=0
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are linearly independent, they form a basis for the vector space V spanned by
the monomials 1, x, x2, ... ,x". Let E, (#) be the evaluation functional on V

defined by
E; (&)
Since
1
0
det[E, (v))] = det ’
0

ZF 0o,

= ¢(xi).

("1"‘0)

I s

(anXO)

=3

i=0

—

it follows from Theorem (1.5.1) that there exists a polynomial

) = )V (x)

such that

i=v

p("i) = f("i)

fori =0,1,2,..

2.3-1)

. , n. In Equation (2.3-1) the coefficients a; are called the
divided differences of order j and are usually denoted by [0, 1, . ..

. R

x;] or [f(x4),...,f(x;)]. The polynomials {Vj (x)} are known as the Newton

Polynomials.
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Three important properties of these differences are summarized in the
following theorem.

Theorem (2.3.1):

1) The divided difference [0, 1, ..., j] can be considered as a linear
functional on

. sp{l. X, X2, "'.x"}

o 3Ky

which is a linear combination of the evaluation functionals E.,E,.. i

It is given explicitly by
1 g Tt xoi‘l E0(¢>)
det : ;

1 X, **° x‘j"'l E’(¢)

(0, 1, **: 3l (@) =

det

2) The divided difference [0, 1, 2, . .

[0,1,+-+,j] (x¥) = o k < j

3) The divided difference can be computed by the following recursion
formula

- thy 3y =1 =0, ¥ jw}]
(0, 1.+, = ST

Proof: Statement (1) is proved in Householder ([7], p. 203) and is also a
special case of Theorem (2.3.3). Statement (2) follows directly from statement
(1). Statement (3) is discussed in almost any book on numerical analysis.
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In a similar way the Newtou polynomials possess 2 number of important
properties.

Theorem (2.3.2):

DE; (V,) = 0 for -2 k.

2)V; is a linear combination of 1, x, x?, . .. ,x’.

1 X

0 X'
det :
! 1 X, **° x,’
3)L, (Vj) = 1 (x; %) = Fl = e

det

Proof: All three properties follow directly from the definition and the
properties of Vandermonde determinants.

With this motivation we have the following general theorem in finite di-
mensional vector spaces.

Theorem (2.3.3): Let V be a finite dimensional vector space with basis V,
Viseeo,V,. LetLy,L,,..., L be a collection of linear functionals on V such

that the subcollection Ly,Ly, ..., L is linearly independent when considered
as linear functionals over

=ty 1

Then, there exists a uni~ue basis N, N,, ... ,N_ for V* satisfying the properties

a-1) N, is a linear combination of L, ..., L,
a-2) N, (V;) =0 for i <k

a-3) N, (V,) = L
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Similarly, there exists a unique basis W, . .

lowing properties

b-1) W, is a linear combination of L, . .

b-2) L, (W) = Oforallj <k

Lo (Vo)

det

. , W, of V which satisfies the fol-

O,Lk

b-3) Ly (W) = -
0 0

det

—

1 L (Vo
_Lo (.Vk) Ly ivk)
[ Ly (V) Ly

. (2.3-2)
vo)_l

LO(V;-I) "t Ly (vk- 1)

The functionals N, are known as the generalized divided differences for V and
the vectors W, in the generalized Newton Polynomials.

Proof: We shall just determine the generalized divided differences N,. Con-

sider the subspace

Vk - sp{vo' v]' s ’vk} =

By our hypothesis, the functional L, . .

N, in V.’ satisfying the property
N (V) = 0

N (Vi)

|
—

. , L, are linearly independent when con-
sidered as functionals over V. By Theorem (2.1.2), there exists a unique vector

47
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In fact N, is given by

L, (V) Lo (V) L]
det ;
L, (Vo) K (Vi) L,
I = 0 c0 1 0]
3 L, (vo) Ly (vk)
det ; :

L, (Vo) = Ly (v.)
Expanding the numerator of N, by the bottom row we obtain
Lo (Vo) "+ Lo (Viey) L,
e ——
L, (vo) Ly (vk-l) Ll_:

L, (Vo) - Lo(vkﬂ

(2.3-3)

L, (.vo) T Ly (vk)

To obtain the Newton polynomials we apply the exact saine process. Since the
functionals L,, ..., L, are a basis for (V¥)* we can apply Theorem (2.1.1) to
obtain the existence of a vector W, in V such that conditions (L-2) and (b-3) are
satisfied. In fact

?"o (vo) "o Ly (vo) V:

det : - =
Lo (Vk) =t (Vk) Vi

i



Expanding the numerator by the bottom row we obtain

L, (Vo) Ly (Vo)

.
.

Using Equation (2.3-2) we obtain

ﬁ‘o (vo) SR S (Vo) Vo
det : : :

Lo

)
W, -
L, (vo) Ly (vo)
det
Lo (vk-l) Lk-l(vk-l)

Conditions (a-1), (a-2), (a-3) and (b-1), (b-2) and (b-3) follow from the expres-
sions for N, and W,_.

(2.3-4)

In order to show {N,} and {W,} are bases for V' and V we must show they
are linearly independent. Suppose the collection {N,} is not linearly independent.
Then there exist constants {a,} not all zero such that

Let i, be the maximum index such that 8, 70, Then,#c, = ai/aio,we can

write £ s
0

N‘o = -ZciNi.

i=0
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But this implies N; 5 is a linear combinationof L,, L,,...,L; o- 1. However,
using Equation (2.3-3) this will imply L; is a linear combinationof L, L,, ...,
Liy-1 which is impossible. Therefore {lsk} is linearly independent. In a similar
way we can show {W,} is linearly independent. -

In the next theorem we show {N,} is the unique dual basis associated with
{w,}.

Theorem (2.3.4): The divided differences {N,} and the Newton polynomials
{W,} satisfy the following relationship:

N (W) = 3.

Proof: Let W; 5 be a fixed Newton polynimial. We divide the proof into
three cases:

1) Casel. (k >j,). By Theorem (2.3.3) we have

N (V) = o

for j <k. Since Wiois a linear combination of V,,V,, ..., N and
since j, <k we have

N(V;) = 0.

2) CaseIl. (k = j,). Using properties (a-2) and (a-3) in Theorem (2.3.3),
formula (2.3-4) gives

Njo (wjo) =
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3) Case I''l. (k <j,). By Theorem (2.3.3) we can write N, in the form

k el
L, (vo) Lio-x (vo) Z c; L, (vo)
i=0
det
K
Lo (v’o) l".o'l (vjo) L (vlo)

LO (vlo-l) - Ljo-l (v]o-l)
Tor each determinant in the numerator above we have two columns alike;
therefore
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We are now able to obtain the generalized Newton representation formula
for both vectors in Vand functionals in V°,

Theorem (2.3.5): LetV, {V,} and {L,} satisfy the same properties as in
Theorem (2.3.3). Then for all uin V we have

For all L in V* we have

c
1
J
Z
B
~~
c
s
=
=

s
]
e
—
=
=
—
Z
=

(2.3-5)

(2.3-6)

Proof: We prove (2.3-5). Formula (2.3-6) is proved in the same way. By
Theorems (2.1.1) and (2.3.3) we have

0 1 0 W,
0 1 0 W,
0 1 W,

|No(u) et N_ (u) 0|

Fyr=—g vy

0 1:--0
det

-0 o .o h

Evaluating the determinant we have the result.
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Before we derive a recursion formula analogous to part (3) of Theorem (2.3.1),
we make a number of observations. From Equation (2.3-4) we observe that W,
depends on the vector space basis V,, ..., V, and the functionals L,, ... ,L,
and it is invariant under any permutation of thes¢ functionals. In the proof below

W (a0 8y "7 Ay

to indicate the Newtor polynomial depends on the basis V,, V,, ... ,V, and the
linear functionalsL,,, ..., La. Similarly, from Equation (2.3-3) we can see
N, depends on the basis vectors V,, V,, ..., V, and the functionalsL , L,,...,
L,.. We shall use the notation

Ny (“o' By *°° '8k)

to indicate dependence on V,, V,, ...,V andL,,,...,L,,.

We can now prove the promised recursion formula. Throughout this dis-
cussion we have an ordered basis {V,} for V which shall remain fixed. Assume
k > 2. We shall derive a formula for N, (0,1,...,k)intermsof N,_,0,1,...,
k-1)and N,_,(1,...,k). Let

LyvLgy *t Ly g Lgo Lo Ly o*t W L

n

le Lz' LA ‘Lk'l' Lk' Lov Lk*l' b vL

n

be two orderings of the linear functionals {L,} and let u belong to V. Using
Theorem (2.3.5) and the first ordering we can write

u = Ny (1)Vy + N (1, 2)W (1) + ==+

+Neg (1, o0 k=DIW_, (1, =** , k=2)
Ny (1000 k=1, 0)W_, (1, ++* ,k=1)
N (1, *r ,k=1,0, k)W, (1, =+, k=1, 0)
+ 000 + N (0,1,2,°°°,n)W (0, *** ,n=1). (2.3-7)
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Using the second ordering for the linear functionals we obtain
u = Ng(1)V, + Ny (1, 2)W, (1) + *-~
# Nyag (L, **° s k=1)W g (1, *** , k= 2)
B Ok 5% BV () 0 s k= 1)
+N (1,00 k,0)W, (1, *** , k)
+ ¢+« +N (0,1, ,n)W (0, ,n=1). (2.3-8)
Setting (2.3-7) equal to (2.3-8) we obtain
Moui (1520 i k=1, O3 o (3, = k=1)
FMAL *= =LY () v s E=1.0)
B PR F Y. WIS o s,
FRE O SN0 K)
Rearranging we have
(N = 2= 0 =8 L= 1, k1)
8= Nl k=1 -0 KWL, = —e=1,-0)
=Nk N (L, K) .
By the previous remarks, this equation is equivalent to
(8., (0, E=1y=N_ O =~ B0 _ {1 -~ k]

= -Nk(O."'.k) _wk(o'....k_l +w|‘(l."‘.k))-
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Applying L, to both sides and »bserving that

L, (w (1, k) = o,
we have
[Bamy L0, 553 k=) = B 1 22 o k) e AW e (- m o k= 1))
=R R L T LR

Therefore, if L, (W, (0,...,k-1)) 7 0, we have

N, (0, *** , k) C[Np-y (1, *o* v K)=N,_, (0, **+ , k-1)] (2.3-9)

where

L (¥ (. . k)

: LT 7 k= 1) ' (2.3-10)

We summarize the above remarks in the following theorem:

Theorem (2.3.6): LetV, {L,} and {V,} satisfy the conditions of Theorem
(2.3.2). Furthermore assume k > 2 ana

L, (W €0, :- . k-1)) 7 0.

Then, the recursion formula is given by (2.3-9) and (2.3-10).

»
We can now state the divided difference formula for functions of several

variables.

Theorem (2.3.7): Let f be a function defined in a region Gof ®". Let
. =z: o= = ; (x) nt2 linearly independent functions define.d in G and let
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¢o (;o) ¢o (_’En) ¢o
det
Pasr (§o) =%a (in) Pas1

Ex) = [0,1,2,°,x] — —
d’o ("o) — ¢o (xn)

Proof: Let X, ..., x_ belong to Gand let x be an arbitrary point in G. The
result follows from Theorem (2.3.3) by defining L, (¢) to be the evaluation
functionals

Li#) = #(x).

i=0,1,2,...,nandL_(¢) the functional

L. = &%).

As in the single variable case we can compute the divided differences ac-
cording to the following scheme

(0]
\[o 1]
[1]/ \[o 1 2]

\rx 2] \[o 1,2, 3]
[2]/ : \[1?31/ '

.
.
.

For computational purposes it is also helpful to keep track of the various de-
terminants in formula (2.3-10) for the constant C.
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Theorem (2.3.7) shows that Newton's divided difference formula for func-
tions of several variables is considerably more complicated than the correspond-
ing formula for the single variable case. However there are certain special cases
where the formula can be considerably reduced. For divided differences on a
triangular grid the reader should consult [21] p. 372. For divided differences on
a rectangular grid see [19] p. 31.

2.4 AITKEN INTERPOLATION

In interpolation for a single variable we can solve for the interpolation
formula according to the following scheme. If P, (x) is the unique
polynomial such that 2

osd

forj =1,...,p, then

PO

Pl P0 1

P2 P0.2 P0.1.2

Pn P()n O,n-l,n...Po,l,z ..... n

It can be shown that the Aitken formula can be derived directly from the
Lagrange formula using the properties of Vandermonde determinants. For this
reason it does not appear that . scheme similar to Aitken's scheme should be
valid for the several variab . case. However, there is an Aitken type scheme,
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for functions of several variables, which is due to Thacher and Milne [19],
which is valid for a restricted class of points. In this generalization, we add
enough points at each step to obtain the polynomial of next highest total degree.
The scheme is valid in R", however for simplicity we consider all the peints

in R?,

A sufficient set of conditions to guarantee a generalized Aitken method is
the following.

Definition (2.4.1): A set SinR? is called an acceptable set if the following
are satisfied

1) S” has (2 +n)!/2! n! inhomogeneously degree n independent points
2) S" can be factored into the subsets S;""', §,""! and S 'such that
S ==t E=c R

P S" -

ST o= (%) for
)
i

)

®NCee

1
k
=E===F

¢) The setB = {X,},_, , ; defined by (b) is inhomogeneously degree 1
independent

0 0 0t L e

d) If x belongs to S” but not to S,"" ! then X is an inhomogeneous degree 1
combination of B- {x,}.

-) Each set S ! is an acceptable set by the above definition.

Aitken's generalization takes the following form:

Theorem (2.4.2): Let S" be a set of (2+n)!/2! n! points satisfying the
above conditions and let f be a function defined in a region G of R? containing
the set S”, Then, there exists a unique polynomial P_ of total degree n such that

P,(xirv,) = f(x;.¥))

:
:
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for all (x,, y,) in S". In this case

Pni_l(x.y) (xl-x

)
det|P2, (x,y) (x,-x) (v,-v
)

l'*’ﬂ:’_1 (x,y) (xs“x
Pix, y) = — 5 : (2.4-1)

det |1 X, Y,

where the set
{("1' v (%50 ¥a)» (%3 ys)}

is defined by condition (c) in Definition (2.4.1) and

Pnk‘l(xi'yi) = f(xi'yi)

for all (x;,y,)inS""! (k = 1, 2, 3).

Proof: The existence of P_ (x, y) follows immediately from Theorem
(1.4.11). We must show formula (2.4-1) is valid. We remark that the determinant
in the denominator 1s not zero since the points in B are inhomogeneously de-
grees 1 independent. Proceeding inductively, we notice since each = - L(xy)
has total degree n - 1, the polynomial P_ (x, y) has total degree at most n, It

remains to show

P, (x0y) = f(x.v))

for all (x;, y;) in S". We divide the proof into two cases.
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Case I. ((x,, y;) belongs to B). Without loss of generality we choose ..ie
point (x,, y,). Expanding (2.4-1) we obtain

=5 Y™ Y,
Pnl-x("x'yx)det
= Y3© V¥,
P, (%, v,) * = 2.4-2)
det |1 X, Y,

l_l %3 Y3

Since (x,, y,) belongs to $,""!, we have
Py ("1’ == f(xy AE

Therefore, since the determinants in Equation (2.4-2) have the same value we
have

= (xl'yl) = f("ryx)‘

Case II. In this case we assume (x;, y;) belongs to S" but is not one of the
points (x,, ¥,), (X, V,) and (X, ¥;). By condition (2-b) in Definition (2.4.1)
(x;, ¥;) must belong to at least two of the sets S,"”!. Without loss of generality
we assume (x,,y;) belongs toS,""! and S,"" ! but not to S;"” !, Then

[ f(xi0v)) (xi7%)  (vi=vi)]

2 det f(xi'yi) ("2-"1) (va-v,)
— ("1' yi) ("3 "‘i) (ys _yi)

Pn (xi’ yi) z - 1 "1 y1 =

det |1 X, ¥,
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The determinant in thic numerator can be rewritten by subtracting the first row
from rows two and three; we obtain

E £(xi0 v4) (% = %) (yl'yi)—]

det 0 (x5 = x,) (v,-v,)

Pl (% y)-fix;. v,) (x5 - x,) (vs-v,)
Po(xi0vy) = — =
det 1 x, vy,
1 %, ¥

Expanding the numerator we have

1 - Y,
det |1 X, 2
1 X3 Y3
Pl © fon)
1
det |1 X, Y,
1 23 Y3
—"1-"1 Y17 Y i
det
X2~ X%, Y™,
3 -
= = —= -
X, 1
det |1 xz yz -
1 X3 Y3 |
é
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However, since

[
*
<
o

det = det |1 X, Y,

and since (x;,¥;), (x,,¥,) and (x,, y,) are inhomogeneous degree 1 dependent
(condition (2-d)), we have

Therefore
P, ("i' yi) = f("x' yi) :

Suppose (x;, y;) belongs to $,"°!, §,""! and S,”"!. Then Equation (2.4-1) gives

-

X°X Y1°Y

|

He v Jdst = ~x 3. -3

X3 X Y3~ Y

o { o

P, ("i' yi)

et

000 D00 4 L



It is difficult to prove whether or not a given set is acceptable. However,
we can prove a triangular grid is acceptable set.

Theorem (2.4.3): The triangular grid in Figure (2.4.1) is an acceptable
set,

Figure (2.4.1)

Proof: We prove the theorem by induction. First let n = 1, We must show
the set

= {("o' ¥1)r (Xo-¥o)+(xy: y°)}




is acceptable. Since

1 X, Yo
det |1 X, Yy
1 5 Yo

= (x4 %) (v1-¥0)
F 0, (2.4-3)
and since S! has

(2+1)!
2! 1!

points, it follows that condition (1) is satisfied. If we let

8 = {("o'yo)}

Sy = {("o'-'n)}
52 = {(xuva)} -

then conditions (2-a) and (2-b) are satisfied. For this case Equation (2.4-3)
shows that (2-c) is satisfied. The reader can check that (2-d) and (2-e) are
easily satisfied.

Next we assume the theorem is true for the case n -1 and show it holds
for n. We divide the triangle into three parts ac shown in Figure (2.4.2).
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(XOIY"_I) (xl lYn—l) (XOIYn)

AN

(Xo + Y0 ) (xn—ll Yo )(Xl r Y0 ) (Xn r Yo )(Xo r Y1 ) (xn-ll Y1 )

Figure (2.4.2)

Since the triangle has

(2 +n)!

2' n!

inhomogeneous degree n independent points (Theorem (1.3.3) and Theorem (1.4.11)),
it follows that condition (1) ir: Definition (2.4.1) is satisfied. Define

B = {(Xo' yn)‘ (xn' yo)’ (xo. yO)} .

Since

det |1 X

1]

M
o

66



we see that B is inhomogeneouslv degree 1 independent. Furthermore from the
definitions for B, S""', 7! and 8,7 !, it follows that conditions (2-a), (2-b).
and (2-c} are satisfied. To show condition (2-d) 1s valid, let (x;, y,) belong to
S™ but not Sl’".l The point (x,;,y ;) lies on the straight line between (x,, y,) and
(x_,¥,): therefore the set

{("o' v,) (xn- Yo) ("a‘ yj)}

is inhomogeneous degree 1 dependent, Therefore, (x,. ¥;) is an inhomogeneous
degree 1 combination of B~ {(x,. y,)} which proves (2-d). Condition (2-e)
follows from the induction hypothesis. m

The following theorem shows a non-singular linear transformation of an
acceptable set is accepiable. For a proof we refer the reader to Thacher's
vaper ([18], p. 621, 622).

Theorem (2.4.4): Let Tbe a non-singular linear transformation. Then the
sets {x;} and {Tx;} are hoth (homogeneou sly or inhomogeneously) degree n de-
pendent or degree n independent.
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