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ABSTRACT

A broad look at the problems of convolutional encoding
and sequential decoding of digital data for reliable trans-
mission over a noisy channel is presented. Various dis-
tance measures for convolutional encoders are carefully de-
fined. A distance measure called the free distance, and
introduced by Massey [9] , McEliece and Rumsey [10] , and
Neumann [ll] , is shown to be a more important parameter
for codes used with sequential decoding than the conven-
tional minimum distance.

The notion of equivalent encoders is carefully con-
sidered, and a new definition of encoder equivalence which
preserves the distance properties of the encoder is given.
For those non-systematic encoders that do not have a system-
atic equivalent which preserves distance properties, a
method is presented for converting the encoder to a better
systematic encoder. Also, general parity-check matrices
and syndrome forming circuits for non-systematic encoders of
all rates are presented.

A new lower bound on_free distance is given, and
McEliece and Rumsey's [10] upper bound is generalized. Also,
a new lower bound on definite decoding minimum distance, for
both systematic and non-systematic codes, is derived, as
well as Gilbert lower bounds on feedback decoding minimum
distance for two simply implemented subclasses of convolu-
tional codes. Finally, some new methods for calculating the
free distance are discussed.

Construction algorithms are given which produce longer
good codes than any previously known. A sedquential de-
coding system was simulated for both the Gaussian and binary
symmetric channels. Various codes were tested over differ-
ent channels for their performance as regards decoding prob-
ability of error and decoding speed (number of computations).
A simply implemented non-systematic rate 1/2 code was found
to be far superior to all other codes tested with the same
constraint length.

Finally, a technique introduced by McEliece [10] for
constructing good convolutional codes from known block codes
was extended, and some convolutional codes discovered by
Wyner [34] and Sullivan [35] were discussed.
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I. Introduction

A, Background

Convolutional codes were first introduced by Elias in
1955 [1] . Recently, Viterbi [2] has shown that a lower
probabiliﬁy of decoding error is achievable with convolu-
tional codes than with block codes of the same rate and com-
parable complexity used over a memoryless channel. Another
advantage of convolutional codés over block codes is the ex~
istence for the former of a general, simply instrumented,
and near-optimal decoding algorithm, called seduential de-
coding, whose evolution began with Wozencraft in 1957 [3] .
Sequential decoding is probabalistic in nature, and the same
basic sequential decoding algorithm is applicable to a very
general class of codes, called tree codes, of which convo-
lutional codes are a subclass. At the present time, sequen-~
tial decoding of convolutional codes represents the best
practical means of employing long codes on the additive
white Gaussian noise channel and on many other memoryless
channels. Algebraic decoding techniques for convolutional
codes, such as Massey's threshold decoding [4] ., also pro-
vide good coding systems for certain channels with memory,
and for short codes on memoryless channels.
B. Review of Convolutional Encoding

It is convenient to define a convolutional code after
first making precise what is meant by a convolutional en-

coder. A more general type of encoder is defined first.



Definition l.1 An (N,K) general convolutional encoder G

is an invertible K-input, N-output realizable linear finite-

state machine (FSM) which is in the zero state in the infin-
ite past.|

Figure 1.1 shows an (N,K) general convolutional en-
coder. At each unit of time the encoder transforms the
block of K input digits into a block of N output digits.
Realizable means that the encoder output cannot depend upon

future inputs. Invertibility [5] means that the input can

be recovered, perhaps with delay, from the encoder output
and is the elementary condition for an encoder to be useful.
Without an inverse, decoding could be ambiguous, even in
the absence of noise. If G is time-invariant, it is called
a fixed convolutional encoder, or simply a convolutional
encoder. When the encoder G is time-invariant, definition
1.1 reduces to Forney's [6] definition of a convolutional
encoder.

Consider a semi-infinite (or one-sided) sequence
a . a qreee of digits over a finite field GF(qg), where
-0 < n< +00, The transform A(D) of this sequence is de-

fined to be the formal power series

_ n n+l
A(D) = anD + a1 D + cee .

If ai = 0 for all i < 0, then the sequence is called causal,
and if the sequence has only a finite number of non-zero
digits, it is called finite. A polynomial in the indeter-
minate D over a finite field GF(qg) is thus seen to be iden-

tified as the transform of a causal, finite sequence. The

degree of a polynomial is the highest power of D in the
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Fig. 1.1. An (N, X) general convolutional encoder.



polynomial, and the delay of a polynomial is the highest
power of D which it contains as a factor. By convention,

the polynomial 0 has degree - ™®and delay +9°.
P(D)

Q(D) '
where Q(D) # 0 and the division is assumed to begin with the

A rational function is a ratio of two polynomials

lowest degree terms of each polynomial. A seduence is called
rational if its transform is a rational function. The ra-
tional sequence with transform g%%% is causal if and only if
n* < n, where n' is the delay of Q(D} and n is the delay of
P(D). Causal rational sequences are called realizable since

they can be produced by an autonomous linear finite state

machine. A realizable function is the transform of a causal

rational sedquence.
The K input sequences to any encoder will be restricted

to be rational sequences. The set of K input sequences will

Znr Enpyye
(K (1) (K) (1)

— (1)
2-{n+2'K°"] - [ N Xn+l  *°° Fnp+l Xn+2

...] , where n is the least integer such that x # 0,

be represented by the semi-infinite row vector x = [x ’

Xn+2

Xy =[:xi(l)... xi(K)j] is the row vector or K-tuple of input
digits at time unit i, and xi(j) is the input digit at time
unit i in the jth input sequence, n < i <, i < j < K. x is
called the information sequence since it represents the data
to be encoded. The transform of the information sedquence

will be written as the K-tuple x(D) = [x(l)(D), x(z)(D), ooy
(j)Dn+l . (3)

(K) ] (i) . _ . () n
X 2(D) , where X (Dy = X D + Xnel o X 49
pte 4 «ve, 1 < j <K, is the transform of the j input

sequence.



Since all encoders are realizable and the input se-
quences are rational, the N output sequences of any encoder

are also rational and may be represented by the semi-infin-

ite row vector y =[zn, zn+l' xn+2' ...] =[Yn(l)...yn(N}
(1) (N) (1) 1)
Ynel ot Yne1 Yne2 o eee Yn+2(N)...] » where y, =[Yi( )

eee Yi(N)] is the row vector or N-tuple of output digits at
(3}

time unit i, and v, is the output digit at time unit i in
i 1%

.t . . .
the j h output sequence, n < i <o , 1 < j <N. y is called

the transmitted sequence or codeword since it represents the

data which is actually to be transmitted over the channel.
The transform of the transmitted sequence will be written as
the N-tuple y (D} =[y(l)(D),y(2)(D),..., y(N)(D)] , where

(3) _ (jYn (j) 0+l (i) n+2 .
y (D) = Y, D D + Y4 © D + eee, 1 <3<

output Sequence.

+ yn+l

N, is the transform of the jth
The encoding equations for a general convolutional en-
coder over the set of all rational input sequences can be
written as
(ee)
Y'i =Z C_;.& (1_)5,) Q_C_i_/?/ ’ (1)
4=0
where g%(u) is a KxN matrix of elements from GF(q), 0 < 4 < oo,
n < u<oo, and all operations are performed over GF(q).
In the remainder of this thesis only causal rational
sequences will be allowed as inputs, except when it is ex-
plicitly stated that all rational sedquences are to be con-

sidered as inputs. In this case n 2 0 and the information

and transmitted sequences will be assumed to begin at time

. : _ _[. (1) (KY (1)
unit 0, i.e., X ~[§0'§1'§2 ...]—[xo e X, Xq ceas



xl(K)...]and y = [xo,zl,zz,...:] = [yo(l)...yo(N)yl(ly...

y (N)yz(l)...yz(N)... ] . Hence the encoding equations for

1
a general convolutional encoder over the set of all causal

rational input sequences can be written as

2 = K Q ’ (2)
where
G,(0) G, (0) g,(0) ... ]
9 g1y g (1) g (1) ...
g =
(¢} (4} 9_0.(2) g, (2 g,(2y ... (3)
l_ . _

is called the generator matrix and

e - —

q&l(l)(u) (zy(u) .ee g%l(N)(u)
(1)'( (2) y (N)( |
dp 5 u) gy 5 u) ... Gy, u)
_G_/?/(U.) = . . . (4)

e —

is a K x N matrix of elements from GF(q), 0 < u 4 < oo,

Definition 1.1 requires that each sedquence goi(j)(u), gli(j)(u),
g2i(j)(u),..., 1 <1<K, 1< j<N, 0L u<Ke©, be realizable.
These sequences are called generator seduences.

The generator matrix for a fixed convolutional encoder

is written as

G G - e e
Gy =1 =2

o)
{

9 6,8 &, --- (5)

0 0 G & & ---




where
_ 9&1(1) g/?11(2).“ g l(N)_.
ng,z(l) 9,9',2(2)1 ng,z(N)
g, = » 0 < <00, (6)
g, o @ e g™ |
and each generator sequence gOi(j)' gli(j)' g (3)

Zi ’ o0

1<i<K, 1< 3j<N, is realizable. It is often convenient

to represent a fixed convolutional encoder by a K x N matrix

G(D) , where

- (1) (2) (N} v 7
Gy (DY Gy (DY ... Gy (D)

g(D) = G (1) (D) G2(2) (Dy ... G (NY (D) (7)

2

2

¢V ¢, ?m ... ¢, ()|

— K K
and
(Y oy _ o (3) (3) 3y 2
G By =gp; Tty D F gy T Dt (8)
: (3) (3)
is the transform of the generator sequence 951 » 994 ,
gZi(J)' see, 1 <1 <K, 1 < j<N. Each Gi(J)(D) is called

a generator function. Then the encoding equations can be
written in D-operator form as
y(D) = x(D) g(Dy , (9)

where all operations are performed over GF(qg).



The following definitions are due to Forney [6] and
apply to both time-varying and fixed convolutional codes.
Definition 1.2 The convolutional code C generated by a
convolutional encoder G is the set of all output sequences
y of G produced by the set of all rational input sequences
X to G.]|

Definition 1.3 Two encoders are said to be equivalent if

they generate the same convolutional code. |

The rate R of a general convolutional encoder is de-
fined to be % . The time-u memory order m(u) of a general
convolutional encoder is defined as

max {i] g; (w # 01} (10)
m(u) = 0<Li<o

0 if no such i exists.

The memory order m of the encoder is then defined as

max { m(u)} if m(u) is finite for all u
0<u < (11)

o] otherwise.

For fixed convolutional encoders, the memory order m of

the encoder is defined as

max {1 ] G, # 0}
0<i €0 (12)

o0 if no such i exists.
All encoders with m = 0 are block encoders. Therefore con-

volutional codes include block codes as a special case.



Let uma

maximuam if m(u) is finite for all u > 0.

be the least value of u such that m(u) is infinite.

< be the least value of u such that m(u) is a

Otherwise let u
max

Then the

number of encoded digits in those encoded blocks inclusive

between the first and last encoded block which depend on the

time--umax block of input digits is defined to be the encoding

constraint length nA.

tional encoders of memory order m,

nA=-'N(m + l)‘“.

For both general and fixed convolu-

(13)

For time-varying encoders of memory order m, the gener-

ator matrix can be rewritten as

G, (0)G; (0)g,(0) ... g (0) QO 0 ...
2 g,(bg M ... ;Mg @ o...
g = (14)
9 g g2 ...g (g ,(2 g (2...
L ) -

and for fixed encoders of memory order m,

?

the generator matrix

becomes
B G ® 0 g A ooo—
Gy & G- & g 2
.G_ = Q go g‘l... _GTH—J_ -G-rn Q e o a (15)
L ] G e a 8
2 g o “n-2  En-1 Sy
| . -
If
= H oo,
go(u) [IK go(u)] , 0 <£ux (16)



10

where IK is the K x K identity matrix and.go(u) is a K x
(N - K) matrix of elements from GF(qg), and
= H . , ’ S OO, > i ’ J
g, (u) [oK gl(u)] 0 < u< 1<ic<oo, (17)
where OK is the K x K all-zero matrix and.gi(u) is aK x
(N - K) matrix of elements from GF(q), then the encoder is

said to be in canonic systematic form. An encoder is said

to be in systematic form if the output terminals can be re-

numbered so that the resultant encoder is in canonic system-
atic form. For systematic encoders some set of K output
sequences are reproductions of the K input sequences, and
for canonic systematic encoders, the transmitted sequence y

can be written as

Y =[Xg: Ryr %Ey» Bys ---] (18)
— (1) (K) .. (K+1) () (1)
—[xo -eeXg Py S Xy
xl(K) pl(K+l)...pl(N)...] . (19)

where B; is an (N - K)-dimensional row vector called a

parity vector, and pi(J) is called a parity digit, 0 < i<oo ,

K+ 1< j<N,

A fixed code is in canonic systematic form if

S =[IK : 90] (20)
and
gi=[0Kzgi],1gi<oo. (21)

This is equivalent to requiring that
c(D) =[IK ; g(n)] , (22)

where
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2
Q(D) =9, + D +QD" + ... . (23)
In this case the transform y(D) of the transmitted sequence

can be written as

Vo, . o o, L Yy ],

(24)

y(D) = [

where

p(;i) (3) (3)

(D) = pq +P; "D+ pz(j)Dz

+ e.. (25)
is the transform of the j'P parity sequence po(j)' pl(j)'
(3)

P, cee, K+ 1 < j <N.
For a time-varying convolutional encoder, if
gi(u) = gi(u +T), 0 <i<oo,0<uso, (26)
the encoder is called periodic with period T. Clearly a
fixed encoder is a periodic encoder with period T = 1.
The most familiar convolutional encoders are the R = N
fixed encoders. In this case the first row of the generator

matrix G is called the generator, and is labeled g. Figure

1.2 shows an example of what Forney calls the obvious realiza-

tion [6]_of a binary R = 1/2 canonic systematic fixed con-
1 + D + D2

volutional encoder with G(D) =1 1 + D . Note that

the encoder is realized with two memory elements even though

the memory order of the encoder is infinite. When G(D) con-.
tains only polynomial elements the number of memory elements

required in the obvious realization is equal to the memory

order of the encoder. However, a rational function g(g)

requires only max { degree [P(D)] ., degree [Q(D)] t memory

elements in its realization. The feedback used to realize a
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rational function accounts for the infinite memory order of
the encoder.

It is usually desirable to eliminate feedback in the
encoder so that an encoding error caused by an equipment mal-
function will not propagate (cause other errors) throughout
the transmitted sequence. Feedback can be eliminated by
multiplying each row of G(D) by the least common multiple of
the denominators of its generator functions resulting in a
matrix G' (D) with only polynomial elements. The resulting
encoder is equivalent to the original encoder. For example,
the encoder given above has G' (D) = [l + D 1 +D+ Dz] .

An input x(D) = [x(l) (D)] = x(D) to G(D) produces the same
codeword as an input IEéE% to G'(D). The obvious realiza-
tion of G'(D) is shown in Figure 1.3. Note that the poly-
nomial encoder has memory order two but is not canonic system-
atic.

C. Review of Algebraic Decoding

Let
— _
_1-_10(0) [o] [¢]
H = _111(0) _110(1) o} (27)
B0 H@1) B2

be a semi~-infinite matrix and
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(1)
oY (D)

X (D)o

S/

»,

(2)

oY (D)

...[:}... = one time unit delay (}) = modulo~2 adder

Fig. 1.2.

Obvious realization of a rational function encoder.

"' (D)

X(D)e

(2)

oY (D)

Fig. 1.3. Obvious realization of a polynomial encoder.
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_ | - _
hal(l)(u) h%l(z)(u)... hﬁl( )(u)

_ (1) (2) ()
'I:I-)Z/(u) = h/P/z (u) h%z (U) PR h/?/z (U) (28)

(2) ()

ok D@y Pan M

be an (N - K) x N matrix of eléments from GF(q), 0 < u, £

<0, such that

rank [Eo(u)] =N - K, 0 S u oo ’ (29)

GH =0, (30)

where E? is the transpose of H, 0 is a semi-infinite all-
(3)

o1 ~ (W, My
cee, 1 i < N=-K, 1 <j<N, 0<uc<o®, is realizable.

zero matrix, and each sequence h i(j)(u), hzi(J)(u),

These sequences are called parity-check sedquences and H is

called a parityv=-check matrix.

The parity=-check matrix for fixed convolutional encoders

is written as

EO 0 0 W
H= El EO [0} (31)
H
BE, & &

where
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[ (1) (2) (N
M1 B .. My )
— (l) (2) (N
B = | B gy e gy
) : : ;0 £ A<oo, , (32)
(1) (2) ()
| Pk Bonx PNk |
rank [go] =N - K, (33)

), p D
S

1<i<<N=~-K,1<3j<N, is realizable. It is often con-

and each parity-check sequence hOi(J)' hli

venient to introduce an (N - Kyx N matrix H(D), where

[ (1) oy (2) oy (Ny i
Hl .(D)‘ Hl (Dy ... Hl ‘(D)
o =5, P ® 5,Po ..o, m (30)
m @ B P o |
and
(3) - (3) (i) (i) 2
H; =" (D) = hy, + hy; D + hy, YUDT 4+ e (?S)
is the transform of the parity-check sequence hOi(J)' hli(J)’

hZi(J),..., 1<i<N-K, 1< 3j<N. Each Hi(J)(D) is
called a parity-check function. Then equations (30), the

parity-check equations, can be written in D-operator form as

e E (D =0, (36)
where Q0 is the K x (N-K) all-zero matrix.
For any transmitted sequence y
YH =x8H =x0=0, (37)

where Q0 is a semi-infinite all-zero vector. For fixed en-

coders equation (37) can be written in D-operator form as
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¥(D) E' (D) = x(D) G(DY H (DY = x(D) 0 =0, (38)
where in this case 0 is the (N - K)-dimensional all-zero
vector. Therefore every transmitted sequence is in the null
space of g?. However if rank.[go] <N - K, the encoder has
no zero-delay inverse [5] . and the null space of H contains

other sequences besides the set of codewords.

Note that
H' = 0 EO El .Iiz E3 .I:I.4 s (39)
0 0o Hy H H, H -
¢ N - K
is a generator matrix for an R = N - encoder. This encoder

is said to be dual to the encoder whose generator matrix is
G. For fixed encoders, H(D) is the matrix of generator func-
tions for the dual encoder.

Figure 1.4 shows a simplified picture of a channel with

additive noise. Let the noise be represented by an error

sequence € =[_e_0,_§l, 22,..0] =[eo(1)...eo(N) el(l)...el(N).

2(1)...e2(N)... ] , where ey

e (3) € GF(qg) for all i and j. The

transform of the error sequence is eg(D) =[e(l)(D),..., e(N)
(D)] , where e(J)(D) = eO(J) + el(J)D + ez(j)D2 S

1 < j £N. Similarly the received sequence t =[£O’ Ly £2,..i
|, (1) (N) (1) (N} (1) (N) ]

—[ro ces Ty ry eee Iy rs cee Iy ..« |and the

1
transform of the received sequence is r{(D) =[r( )(D),...,
r(N)(Dﬂ. Since the noise is additive, the received sedquence
is the modulo-q sum of the transmitted sequence and the error

sequence, i.e.,



@ = modulo-q adder

Fig. 1.4.

Additive noise channel.
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r=y+eg . (40)
In terms of transforms, equation (40) is
(D) = y(D) + e(D) . (41}

Clearly, for all i and j,

ri(J) # yi(j) if and only if ei(J) # 0. (42)
Thus ei(J) # 0 corresponds to an error in transmission,

whereas ei(J) = 0 corresponds to a correctly transmitted

digit.
A common form of algebraic decoding computes the syn-

_ _[. (1) (N-K) (1)
drome sequence s _[§O' §1""]_[é0 -+ 5q S cee

N-K
Sl( )...] at the receiver from the parity-check matrix as
follows:

E=L HT . (43)

From equations (37) and (40) it can easily be deduced that
T

s=eH . (44)
In terms of transforms g(D) =[s(l)(D),..., S(N—K)(D)] ’
where s(j)(DY = So(j) + Sl(j) D + sz(j) D2 + ..., 1 <KL

N - K, and for fixed encoders equation (44) can be written as
s = e B (D) . (45)
Therefore the syndrome depends only on the errors and not on
the particular codeword transmitted. Any decoding function
which estimates the error sequence from the syndrome is

called a gyndrome decoder. Equation (44) and (45) are re-

ferred to as the gyndrome edquations.

It is often necessary to write the encoding edquations

over only one constraint length of transmitted digits. If
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z = [50' 2y, Zy ...] , then let [z] p, denote the truncated
vector [go, Zyr eee gh] . Then the encoding equations for
the first constraint length are

[2] o = [2] 4 [S5(0) & (0).-n G (0 ]

9 gW...g

° . . (46)

= [x], [€]n (47)

where [g]]n indicates that G has been truncated after
(m + 1)N columns.

In syndrome decoding it is usually assumed that the
error digits at time unit u, e, are estimated by looking at
the syndrome digits B, Byppreee S,4m from time unit u
through time unit u + m, 0 < u <%, m is called the decoding
memory, and HA = N(m + 1) is called the decoding constraint
length. Therefore the first constraint length of syndrome

equations can be written as

T T T
(el = (el Hy (0) H, (0) ... E= (0)
T _T }
9 B7 (1) ... EZ (D)

(49)

o
o
|
O
H
EX
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=[e] _ [ET] _ (50)

m m
T
T m T
whereEﬂ ] indicates that H  has been truncated after
m

(m + 1) (N - K) columns. m is often chosen as

m = max max {ilg, (wy #0} (52)
0<u<oo  0<iko® *

o0 if no such i exists.

For fixed encoders equation (52) reduces to

m = | max {ilg, # o} (53)
0<i <©co
o0 if no such i exists.

Choosing m in this way corresponds to defining the decoding

constraint length EA as the number of error digits inclusive

between the first and last blocks of error digits which af-

fect the syndrome at time u + m, where u is the least
max max

value of u which maximizes (52).

For canonic systematic encoders, the generator matrix

can be written as

I, + Q (0) = Oy * g,(0) = 0 : 9_2(0) ...
- Q I ¢ 90(1) : 0K : Ql(l)‘ e
0] [0} Iy :.90(2) : ... |(54)

Clearly, it follows that
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1,:9,(0):0,:8,(0y:0,:9,(0) = ... -9, (0¥ -2, (0y-@,(0) ...

0 IK:go(l)':OK:_Q_l(l) P ee. IN-K ON—K ON-K caa

0 0 IK:QO(Z) S e —90(1)-91(1l... =0
n %o, —

0 Iy, Ogyg -

(55)
_20(2) -

o 0 Tyx "
where IN—K is the (N - K} x (N - K} identity matrix &nd
ON—K is the (N - K) x (N - K} all-zero matrix. Since

T

rank [IN-K 3 Qg (ui]= N -XK, 0<uc<oo, (56)
s T _ )
20" (0):Iy g 2 o

T T
-9, (0) 20 o304 (1) Iy o 0]

H = T T T

"_Q_2 (0) :ON-K:—Q-]_ (l):ON_K : Q4 (2) : IN—K (57)

is a valid parity-check matrix for the encoder with genera-

tor matrix G. For fixed canonic systematic encoders

IK : 90 1 0K 4 gl : 0K H 92 2 e
0 : I, = Q :OK:_l: . (58)
g_:
0 o IK.' 90 P oeen
[ ]

and
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- T
- Q ¢ Iyx 9 o
T T
- 9 ° ON—K - - 90 - IN-K _Q
H= | (59)
T T T
"2 0%k T2 0%k ¢ Iyg,
®e
L ® L 3 ® - [ ] - i

is a valid parity-check matrix. Therefore if the decoding
memory m is chosen according to equation (52) for periodic
encoders or equation (53) for fixed encoders, it can be seen
that m = m for systematic encoders and hence HA = n,.
will be related to G for non-systematic encoders in Chapter

H

III.
The two commonly used modes of algebraic decoding have

been termed feedback decoding and definite decoding by

Robinson [7] . Although usually used with syndrome decoding,
these two decoding modes can be used with any algebraic de-
coding technidque.

If z = [ Zor Zy: Zo ..J, then let [g] denote the
h,h+l
doubly truncated vector [Zh' Zh+l"""§h+%~] . Then the

syndrome equations from time unit u through time unit u + m

can be written as

[s] [e] B
2 -— e H—-
u,u+m u-m, u+m m

°T

u) (60)

Io...ém




22

In feedback decoding, at time unit u + m all blocks of error

digits g ceer £, 9 UP to time unit u are assumed to

o' "e'l'
have been decoded correctly and are "fed back'" and sub-
tracted out of each syndrome equation in which they appear.

Therefore equations (60} become

- T T
[g]'u,u¥ﬁ [e] u,u+m Bo (@ ... Hp (0
0 ... Hy (um) (61)

and e, is estimated from equations (61lY. In feedback de-
coding, the decoding memory M is always chosen to be m and
the feedback decoding constraint length Nppy = N(M + 1) = Ny -
In definite decoding, the error digits up to time unit u

are not "fed back'" and e, is estimated directly from equa-

tions (60). The definite decoding constraint length p is
sometimes chosen to be the number of error digits which can
affect equations (60) for u > W, i.e., npp = N (2m + 1), but
it is often useful to choose it otherwise, as will be seen
in later chapters. Figures 1.5 and 1.6 show a syndrome de-
coder operating in the feedback and definite decoding modes,
respectively, for the binary fixed R = 1/2 encoder with G(D)

L 1+ D] .
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r‘fj ) o {D—
VL@" >c¥

e(1

u-1
@ = modulo-2 multiplier

Fig. 1.5 A syndrome feedback decoder.

rzg1)0 D—-
(2

ra)c >(\S | —{D—

Fig. 1.6 A syndrome definite decoder.



II. Distance Definitions for Convolutional Encoders

In this chapter a number of different distance measures
will be defined for convolutional encoders. Distances be=-
tween codewords in a convolutional code are closely con-
nected with the probability of decoding error. For instance,
it is well known [3] that for an encoder with feedback de-
coding minimum distance dFD (formerly called dmin)' ‘EEE:—;J
errors within a feedback decoding constraint length are guar-
anteed correctable by an algebraic decoder operating in the
feedback decoding mode, where |I] is the largest integer
less than or equal to I. Hence it is usually desirable to
design an encoder with good distance properties. For con-
venience, in the remainder of this thesis only binary codes
will be considered, although many of the results apply to
codes defined over larger alphabets.
A. Feedback Decoding Minimum Distance

The standard definition of distance for convolutional

encoders, feedback decoding minimum distance, dFD’ will now
be generalized to time-varying encoders.

Definition 2.1

dpp = min min dH( [x¢c] ,

0<u< 0 x X u,u+m
(=], = [¥1
[_}g' g] u,u+m) =021jin<00 25:;21'1 dH( [-}5 Q] u+m, [_}5'9_] u+m) B
[5] u-1 ) [2{-'] u-1
e " dH( (=€) u+m’ (€] u+m)! =02in<oo xmij';:lc '

0 <u<eo x #x !
“u u

24
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dH( [x] A Y, where q,(",°) denotes the Hamming
u+m u+m

distance between the two arguments and the minimization is

1 : ' o0
over all x and x' with x # x,'r0<ul .|

The second equality in definition 2.1 follows from the fact

that d ( [x &) L [x'G] U—l) = 0 if [x] w—r [x'] o

and hence the Hamming distance between codewords is not

affected. The third equality follows from the fact that all

pairs of codewords with [x] Z [x'] were already in-
1 u=-1

cluded in the minimization for some smaller wvalue of u and

hence cannot change the minimum.
For periodic time=-varying convolutional encoders with

period T, definition 2.1 reduces to the following definition

of dFD'

Definition 2.2 = min min ([x¢ ,
dFD 0<uT x #x dH ! J u+m:
“u" =y
[x'¢] ) = min min d.([x] » [x2'] ).
u+m 0<u<T gu%gu' u-+m u+m

For time-varying encoders with finite memory m < & , the
pattern of the first K(m + 1)} rows of G must be repeated some-
where in G. Suppose this pattern is repeated beginning at
row KT (the (XT + l)St row of G}, where T is some positive

integer. Then a periodic encoder with period T can be formed
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by reproducing periodically the first KT rows of G. It can
easily be seen from definitions 2.1 and 2.2 that dFD for the
periodic encoder is at least as great és dFD for the original
encoder. Similar arguments to the above can be given for
each of the distance measures defined in this chapter. Hence
as far as distance properties are concerned it is of no value
to consider non-periodic time-varying encoders. Therefore all
time~varying encoders will be considered to be periodic.
Finally, dFD will now be defined for fixed encoders.

Definition 2.3 4, = min a,([x¢] . [%'€] )=min
Xy * X' m mo xy # Xy

a,([x] -~ [x])-]

Because of the linearify of convolutional encoders, defin-

itions 2.2 and 2.3 can be simplified.

Theorem 2.1 = min min wi([xg] } = min

RIS x, A2 H utm 0 < u < T
min W ( [x] ) , where w_(-) denotes the Hamming weight
x, #2 u+m H

of the argument.

Proof Let x and x' be any two information sequences with _:gu

# _;gu' such that [y] =[x ¢G] and [y'] =[x'G] .
u-+m u+m u-Hm u-+Hm
|).£ g and [zu] o= E"Q. -
‘ u-+m u-+m

=[x¢ + [x'G] =
u-+m u-+m

[T 1 1
and let x X+ x'. Then;{_u

[ +x9 gl =[x G + x'G]
u

u-+m +m

[2] + [y_'] since the encoder is linear. Therefore,

g [¥] (2] ) = () RS2 IR RY L I

+m +m +m u-+Hm
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and the theorem follows immediately. |
For fixed encoders, Wozencraft and Reiffen [3] proved

that

dpp = E:Ln;"5 5 wH( [x¢] m) = T{ln;é Q_WH( [Z]m) . (62)
_O b el __O
A generalization of definitions 2.2 and 2.3 will prove
useful later in the construction of convolutional encoders
with high dFD'

Definition 2.4 The order j column distance, dj' of a period-

ic encoder is given by

g. = min min a ([x g] » [2'€] Y = min

I oocu<T x AX H u+tj utj 0<u<T
min d ([x] , [ 3 Y. j=0,1,2,..., and =
x #x' H u+j [x] u+j S

u u

lim &,. |

J
J'-—+OO

Definition 2.5 The order j column distance, dJ., of a fixed

encoder is given by

d. = min dH([zg]J, [_}S'g'.]) = mi

( ' ‘T ).
Pl x'dﬂ[z]j[z]j

n
i Zy # .98

j=0,1,2,..., and ¢, = lim 4,. I

j—o0
Some simple properties of the column distance will now be
collected. The first property follows as a direct consequence
of definitions 2.2 through 2.5, and applies to both periodic
and fixed encoders.
Property C1  d. = dm.l

The next property can be proved by a slight modification of

the proof of theorem 2.1.
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Property C2 d, = min min Wﬁ( [x g] ) = min
0<u<T x #9 u+j O<ux<T
“u
min w ([x] ) for periodic encoders and 4, = min
x #0 H u+j I x #80
Wy ( [£G] ) =min 0 WH([X] )for fixed encoders,
i B, *L j

j=0,1,2,... .|

Let g =|g (D (2) (N) (1) (2)
1

oi Joi ***9%; g (N)

. g . e
1i 1i gli cue
be the ith row of the generator matrix of a fixed encoder,

1 <i<K. gi contains N generator sequences and is called

(N) (1)

-++90i ---gJ.i ees

gji(N)] be the (j + 1l)N-tuple consisting of the first (j + 1)N

the ith generator. Then let [gi] = [gOi(l)

entries in g; - This notation simplifies the statement of the

next property for fixed encoders.

Property C3 d, < min min w_( [gOi(l)(u)...

(N) (1) oeucs ? )l <icx F
N 1 N) ‘ o
Joi (u)...gji (u)...gji (u)] } for periodic encoders

and d. < min WH( [g;] ) for fixed encoders, j = 0,1,2,... .
J1<i<k 1]

Proof The proof will be given only for fixed encoders in

order to simplify the notation. Let £ be the integer, 1 < 4 < K,

such that WH( [g%] .) < Wﬁ( [gi] _), 1<i<K, i#4f. Then
J

let x = [0...010...0], X =X, = ... =0, where the 1 is

. th
in the 4 position. Therefore [5 g] = [g%] and hence by
J J
3

property C2, 4. < min Wﬁ( [gi] Y. =0,1,2,... .|
J 1<i<k b
Property C4 dj < dj+l' j=20,1,2,..., for both periodic and

fixed encoders.
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Proof [¥]

, X ’ . t mi
utj+l [[ ]u+j Y u+j+l] But min

0<u<T
min w_([y] ) <min min W ([[l] P Y ] )
H . H . +j+1
guﬁg u-+] 0<u<T x #0 u+j
= min min w._([y Y. Therefore 4, < 4, ..,
0<u<T ;ﬁfg H [x] u+j+l J j+l

j=0,1,2... . The proof for fixed encoders is similar and

hence is omitted.l

B. Definite Decoding Minimum Distance

A definite decoding minimum distance, dDD' and a definite
decoding constraint length, Nyne will be defined such that
9pp -

2
are guaranteed correctable for codes being used with definite

Jerrors within-a definite decoding constraint length

decoding. It is convenient to distinguish non-systematic en-
coders from systematic encoders.

l. Non-systematic Encoders

Robinson [7] suggested the following definitions of n -
and dDD' These definitions will be restricted to non-systema-
tic encoders and the definition of dDD will be generalized
to periodic encoders.
Definition 2.6 The definite decoding constraint length Dpp
is the number of error digits which can affect the syndrome

equations from time u through time u + m, u > m, i.e., Nop =

(2@ + 1)N.|

Definition 2.7 dDD = min min
Zm<u<2m+ T x, # %,

a ([5 g] _ I[E'Q] _ _)1 = min _

H u-m,u-+m u=-m,u-+m m<u<2m+ T

min a.¢fx] _ _.[x] _ _y

>. 4 A xE u=m, u+m u-m,u+m
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where the minimization is over all x and x' with X, # Eu,'
2m < u < 2m + 7T.|
For fixed encoders, definition 2.7 reduces to Robinson's

[7] @efinition of dyp-

Definition 2.8 d, = min a(lxe]_ _ [xe]_ D
X em # x! m, 3m- m, 31Tl
2 = 2m
= min ([x)_ _ [ _ ).l
Xom A Xl= qH ] m, 3m [ ]‘m,3ﬁ
m 2m

A similar argument to that used to prove theorem 2.1

results in the following simplification of definition 2.7.

Theorem 2.2 = min min w.l[x6& )
"o m<u<2m+T x, 78 H u-m, u+m
= min min wlx]l - -~ ).
2m < u < 2m+T x, #9 u-m, u+m

Robinson [ 7] has also shown that for fixed encoders definition

2.8 can be simplified to

d = min we([xg)_ )y =min  w([x]_ ).
X5 # 2 m3m X AQ o
(63)

2., Systematic Encoders
For canonic systematic encoders the syndrome equations

from time unit u through time unit u + m can be written as
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[5] =[e] Q- (u-m) ]
u,u+m [ u~-m,u+m —n
* o ® & ® g
On-—x .
9'0 (11) .o -Q_ H (u)
Iyx - On-x
. . (64)
90(u+ﬂ0
[¢] e .
| Inx |-

where each gi(u), 0 <1i¢K« ;, 0 <u<oo, isak x (N - K)
matrix of elements from GF(q). Hence the last (N - K) digits

ine =, e =-— ceer 8y and e i.e., the digits in

=u-m’ =u-m+l’ -2 ~u-1’

the parity positions of all the error blocks previous to

time u, do not affect the syndrome equations. Therefore de-
finitions 2.6, 2.7, and 2.8 can be modified for systematic
encoders as suggested by Massey[:B] .

Definition 2.9 N the number of error digits which can
affect the syndrome eguations from time u through time u + m,

u >m, is N(i + 1) + Km for systematic encoders. |

Definition 2.10 dDD = min _ min
2Zm < u < 2m + T 2§_u;£§u
( [E o ’ E__G_ ’ _}S' _
% [ u-m,u-1 [x €] u,u+ﬁ] F ] u-m,u~-1 ,[z'g]u u%ﬁ])

for periodic systematic encoders.
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Definition 2.11 = min a
dDD x = £ X H([ = H,iﬁ-l,
=2m =2m
[Eg . _],[[;5'] - ’ [gc_'g _ _]) for fixed systema-
2m, 3m m,2m=1 2m, 3m ‘

tic encoders.‘

Again, a similar argumenﬁ to that used to prove theorems
2.1 and 2.2 results in the following simplification of defin=-
ition 2.10.

Theorem 2.3 dyp = min , min Wiy ( [[g] _
2m £ u < 2m+T x, 20

X6 -

[ ] u,u+m] |

For fixed encoders, Massey [ 8] has shown that definition 2.11

can also be simplified to

“op ~ 2:; £0 ke ([[;_;] H,Zﬁ-l'[z ] 2‘:5,35] .
(65)
As discussed in Chapter I, if the decoding memory is
chosen according to equation (52} for periodic systematic en-
coders or equation (53) for fixed systematic encoders, then
the decoding memory is the same as the encoding memory, and
can be replaced by m in definitions 2.9 through 2.11, in
theorem 2.3, and in equation (65).
It can easily be seen from definitions 2.2, 2.7, and

2.10 that for periodic encoders

Iop < %p (66)

a result which is well known [7] for fixed encoders.
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For each definition of dDD in Section II.B, an argu-
ment similar to Robinson's [7] for fixed non-systematic

9op - 1
encoders can be used to show that 2 errors within

a definite decoding constraint length are guaranteed correct-
able by an algebraic decoder operating in the definite de-
coding mode. |
C. Free Distance

For decoding schemes such és sequential decoding, in
which the decoder is not constrained to consider énly one
constraint length of received digits while attempting to de-
code a particular block of transmitted digits, but may search
over a much longer portion of the received sequence, dFD and
dDD are no longer meaningful. Consequently a different dis-
tance measure, called the free distance by Massey [9] , and
studied by McEliece and Rumsey [10] and Neumann [11] , will
be considered. Free distance is defined over the entire en-
coded sequence and hence is appropriate for a decoder which
makes its decisions on the basis of the entire received se-
dquence.

Before defining free distance, a more general distance
measure will be introduced.
Definition 2.12 The order j row distance, rj, of a periodic

encoder is given by

(o8]
r. = min min @Q[@] 'gjgﬁﬁj rQ]G)
I ogucr x x| u+j u+j =
X =x'
[ ] u-1 [ ] u-1
j=20,1,2,..., and r = lim r., where d? represents an

J'-»OO

infinite concatenation of all-zero K-tuples. |
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Definition 2.13 The order j row distance, rj, of a fixed

encoder is given by

r. = min a(I[x] - d?) & | [x'] , Q$) g, j=o0,1,
I x # x! H i i

=0 0
2,00., and . = lim r.-l

o0
r — 00
Some simple properties of the row distance will now be
given. The first property can be proved by again slightly

modifying the proof of theorem 2.1

Property R1 r, = min min Wﬁ( [x] , ﬁm
J o o<u<r x A0 ]

[x] =0

u-1

(0]
for periodic encoders and ry = m;n W, ([[x] , O :]g) for

fixed encoders, j = 0,1,2,... .|

As was seen in property C4, the column distance dj cannot de-
crease with increasing j. Just the opposite is true for row
distance, as will now be shown.

Propertv R2 rj 2 rj+l' j=0,1,2,..., for both periodic and

fixed encoders.

Proof Let Y =3[[§] , Q%]g] [x] =0, x # Qzand
u+j+l u-1 ke
00
v = [25] , O ]g ‘ [z] = 0, X, # Q_; . Then Y con-
(_uif u-=1 1 X
tains 2K I+ (2K=1) elements and Y' contains 2 J (2 -1y
elements. Clearly Y'C Y. Therefore min Wﬁ( [x] ,
x #0 u+j+l
b- 4
X =0
(=]
oo oo
0 |8 < min w. (| [x , 0 |8). Hencer, , <r,,
] x 70 H[[]uﬂ' ] o
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j =0,1,2,..., for periodic encoders. The proof for fixed

encoders follows in a similar fashion. |
Property R3 r, < min min W l_go.(l)(u)...
0<u<T 1<ic<K +

(M) (1) () ] 3
Joi (u) gli (u)...gli (u) ... for periodic encoders and
r. < min Wh(gi) for fixed encoders, j = 0,1,2,... .
3 1<1i<x

Proof The proof will be given only for fixed encoders in

.

ordér to simplify the notation. fo = Wﬁ(gi)-

m
1
Therefore property R2 implies that rj < Ty = min
WH(Q’_l): J = 0,1,2,... . ‘

Now a simple result relating the column distance dj to
the row distance rj will be given.

Theorem 2.4 do < dl < eos K én < r, < ove < rl < rO for both

periodic and fixed encoders.
Proof Again the proof will be given only for fixed encoders

in order to simplify the notation involved. Let y = [[g] '

OOO - Th = 1 ) eeer Y. ,J

& ]Qandz =[x €] J_- enz—[x,zj+l J+m]

j=0,1,2,... . Hence wH(z') < w,(y) and ¢ = ?fﬂm ry = %%T(m
‘ \

min w. (| [x] . Q$) Q) > lim min w.([xg] ) =

« Ao H . oo x Ao B .

£9 X J J Zq h%] J

lim d, = 4_. Clearly property C4 implies that d., < lim

=00 J J jr—o00

dj‘ = d _ and property R2 implies that rj 2 lim rj' =r

jr— oo

for all finite j. The theorem then follows immediately from

these two properties.l
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Now the free distance, dFREE' will be defined as the
minimum weight encoded sequence such that x # 0.

Definition 2.14 dF = min
REE
xX#0Q

Wﬁ(g G) for both periodic

and fixed encoders. |

Note that dFREE is a property of the code itself.

Some properties of dFREE will be presented next.

Property F1 dFREE = d_ for both fixed and periodic encoders.

oo

Proof For fixed encoders, 4_ = lim min w,. [5 g] y =
= ; H ; ,

jo® x, A0 j
min wH(z G). Now let n be the smallest integer such that
X~ # 0
gﬁ # 0. Then let x' be the information sequence whose trans-
form is x'(D) = Dmn x(D) , where x(D) is the transform of x.

Clearly x' # 0, x' is casual, and Wﬁ(g'g) = wﬁ(z G). Hence
o .
every codeword produced by a non-zero input sequence x has
the same weight as the codeword produced by the input sequence

x' with x) # 0. Therefore min w (X G =min w (x @ and
= H
X, # 0 x#0

dFREE = 4, The proof for periodic encoders follows in a
similar fashion. |
The second property follows directly from property Cl, theorem

2.4, property Fl, and definition 2.14.

‘ . . (1)
Property F2 < < min min w_( [g ,
%D * “rrEE 0O<u<T1l1<igcg ©H L0

(v) ... goim) () gli(l) (u) .. .qli(N) (u) .. ] ) for periodic en-
coders and dFD < dFREE < Tig f < Wﬂ(gi) for fixed encoders. |

The third property shows that dFREE is unchanged if the set
of allowable input sequences is expanded to include all
rational sequences. Hence this property serves as an alter-

nate definition of dFREE‘
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Property F3 d = min W , where the minimization
RELLY FREE . 7 o 'Y z

is over all rational input sequences x # 0, for both per-

iodic and fixed encoders.
Proof Let x be any non-causal rational input sequence and

let n be the least integer such that #°0. Then let x' be

X
o kT
the input sequence whose transform is x'(D) =D x(D) , where
x(D) is the transform of x, T is the period of the encoder,
and k is the least positive integer such that kT > - n.
Clearly x' is causal, x' # 0, and WH(Z') = W.(y) , where y'
is the codeword produced by X' and y is the codeword produced
by x. Hence every codeword produced by a non-causal input
sequence x has the same weight as the codeword produced by
the causal input sequence x'. Therefore the set of input
sequences over which the Hamming weight of codewords is mini-
mized in the definition of dFREE can be expanded to include
all rational sequences without changing dFREE'I
The fourth property applies only to fixed polynomial encoders,
i.e., to fixed encoders whose matrix of generator functions
G(D) contains only polynomial elements.
Property F4 For all fixed polynomial encoders with a feed-

forward inverse, dFREE =d =4, = se.=d =r =,,, =

rj-m for some finite j.

Proof A fixed polynomial encoder has a feedforward inverse
if there exists an N x K matrix of polynomials g—l(D) such

that G(D) g‘l(D) = DLIK: where L is called the delay of the



38

inverse. Massey and Sain [12] have shown that L < Km, where
m is the memory of the encoder. Necessary and sufficient
conditions for a fixed encoder to have a feedforward (i.e.,
polynomial)y inverse are given by Olson [13] . Clearly, if
cm ¢m =D'1,, then x(d ¢ ¢HD) =y ¢ (D) =
DLK(D) for any input sequence whose transform is x(D).

In minimizing wh(é G) over all input sequences x # 0,
it is not necessary to consider any input sequence with a
string of m or more blocks of Q's in it since following such
a string with additional non-zero blocks can only add to the
weight of the codeword. Also, property F2 implies that aFREE

can never be more than N(m + 1), the maximum number of 1l's

in an enerator, i.e., 4 is finite.
in any gene FREE £

Now let M be the maximum degree of the polynomials in
§~1(D). Clearly, if y contains a string of (m + M + 1) or
more blocks of 0's, x must contain a string of m or more blocks
of 0's. Hence for each input sedquence x with Xq # 0 which is
capable of producing the minimum free weight codeword, ¥y, #0
and each successive string of (m + M + 1) blocks of encoded
digits must contain at least one non-zero block. Therefore
the first (Nm + N - 1y (M + m + 1) + L + 1 blocks of encoded
digits must have weight at least N(m + 1) for all encoded

sequences capable of producing the minimum free weight code-

word. This implies that dFREE = d_ = min Wﬁ(g G) =
x, # 0
YNm + N - (M +m+ 1) +L and that d .. = 4, = mln% .
Xy 7 X

WH(; Gy = . Hence from

r(1\Im+N-l)- M+m+4+ 1) + L -m
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theorem 2.4, dFREE = dj = dj+l= cee = =0 = 40 =L,
for some finite j.l

Property F4 is a very crude bound on the length of in-
formation sequence needed to produce the minimum free weight
codeword. It is conjectured that this result can be strength-
ened considerably by more detailed arguments. Neumann [ll]
has suggested that the true bound is m, i.e., that dFREE =r -
However, as will be shown in Chapter V, this is not the case
in general although it may be true for R = 1/2 systematic

fixed encoders.

1/2 fixed polynomial encoder

Example 2.1 Congider an R
with

G=111110000 ...

. Clearly do = dl = ees = d,

111100 ...
®
L]

dFREE = 2 and oy = T] = eee = Ly = 4. Since 4 # r- this en-
coder does not have a feedforward inverse. |

Consider an algebraic decoder which decodes in "frames"
of L + 1 blocks of received digits, 4 >> m, and which decodes

each received sedquence [;] into the encoded sedquence [z]

such that dH( [E]‘% [z]‘&)is minimum. A feedback decoder

operating over such a frame will make a decoding error for

dFD + 1
2
as the above algebraic decoder cannot make an error unless

|\r(?/_.m + 1
2

at least one pattern of J errors in the frame where-

J errors occur in the frame.
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Now consider the binary symmetric channel (BSC) shown-
in Figure 2.1. p is the digit error probability. Let q be
the probability that e digits were received incorrectly in n

successive uses of the channel. Clearly
e n-e
g=p (1 -p . (67)

Now let ' be the probability that e + 1 digits were received

incorrectly in n successive uses of the channel. Then

1 -e-1 :
a' = p (- = qu 5 - (68)

If p is very small, i.e., p << 1, then

q' <K g . (69)

Therefore if p is small enough it can be seen that the de-
coding error probability is a function only of the minimum
number of incorrectly received digits in the frame that can
cause a decoding error, since heavier error patterns occur
with negligible probability. Since in general L) em > dFD' the
decoding error probability is lower for the decoder operating
over the whole frame than for the feedback decoder.

Therefore Iy m is the appropriate distance measure for
the decoder which decodes in frames of 4 + 1 received blocks
since it determines the decoding error probability. Property
F4 implies that if £ is large enough, Ly m = dFREE and Ao
becomes the appropriate distance measure for the decoder which
decodes in frames of 4 + 1 received blocks.

A sequential decoder, although not algebraic, does de-

code in frames of many received blocks. Hence dFREE would



Fig. 2.1. A binary symmetric channel.
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seem to be a more appropriate distance measure than either
dFD or dDD for encoders used with sequential decoding. Chap~-
ter VI presents simulation results which corroborate this
reasoning.

D. Reverse Distance

Consider an encoder G with generator matrix

o}
[

(0) g, (0)...g (0) 9..

(1) (1) . (70)

s,
Q _G_‘_O.(l) ..._G.In-l G [ N J

Then for any of the distance measures defined in this chapter,
the following definition holds.

Definition 2,15 The reverse distance of the encoder G is

the distance of the encoder G' with generator matrix
4

(0)-...c_;_o(o)- g ..

0 g, MW...g M g Mol .

If G' = G, then the encoder G is called reversible. Rever-
sible encoders have been studied by Massey [14] and Robinson
[15] .
Reverse distance will prove useful in Chapter V, when

some methods for calculating dFREE are derived.



III. Encoder Equivalence and Syndrome Formation
A, Encoder Equivalence

There is considerable interest in finding systematic
equivalents for non-systematic encoders for the following
reasons: (1) systematic encoders are in general simpler to
implement than non-systematic encoders; (2) the encoded
sequences from systematic encoders possess the "quick look"
property, i.e., the noisy version of the information sequence
is directly available at the receiver.

As will be shown in later chapters, for a given rate
and a given constraint length, non-systematic encoders are
superior to systematic encoders for sequential decoding be-
cause larger free distances are achievable. For some alge-
braic decoding techniques, however, such as feedback de-
coding, where column distance is the important parameter,
non-systematic encoders are no longer superior and it is
usually desirable to use only systematic encoders.

1. Rational Equivalence
Definition 3.1 Two encoders are rationally equivalent if
they have the same set of output sequences over the set of
all rational input sequences. |

Consider a fixed non-systematic encoder with a matrix

of generator functions G(D). Then
¥ (D} = x(D) G(D} (71)
= x(D) R(D) R™Y(py g(p) - (72)

43
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where _Ifl(D) is the K x K inverse matrix of one of the non-
singular K x K submatrices of G(D). (The definition of a con-
volutional encoder guarantees that some K x K submatrix of
G(D} is non-singular,)

Therefore

N
X

(D) GOy (73)

v)

y(D)y =

where f}_?(D) = x(Dy R(D), ’/g\(D) = _lg_-l(D)‘ G(D), and @(D) is in
systematic form. Hence if @(D)‘ is realizable, it is a system-
atic rational equivalent of G(D). However, in general there
is no guarantee that :G\(D) be realizable.

Since R(D) is just a K x K submatrix of G(D), it contains
only realizable functions. Therefore 3—1 (D), the matrix of
cofactors of R(D) divided by det [E(D)‘] , contains only
realizable functions if det [3(D)‘-] has a non-zero constant
term. Hence a sufficient condition for @(D) to be realizable

is that det [_B_(D)] have a non-zero constant term.

Example 3.1 Consider the R = 2/3 fixed binary non-systematic

) 1 1+b_D 1 1+D
encoder with G(D) =|p 314p2 ;| . Choose R(D) = b 1+D2] -
Then det [R(D)| = 1+D and R™1{ [1+D ! ] -

en ce [- ] - and R " (D) = D/1+D 1/14D ] °

a0 [ 1 0 1+D+D°
Hence G(D} = i i i i~
en G (D) 0 1 14D is a systematic rational equi

valent of G(D) .|

Example 3.2 Consider the R = 2/3 fixed binary non-systematic

1+D D T 1 1+
encoder with G(D) = . Choose R(D) = .
D D DJ 5 b D
5 -1 1/D 1+D/D
Then det [B_(D)] =D and R (D) = 2 . Hence
Ll/D 1/D
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Gy =

[1 0 1/D

] is not realizable. But if one
0 1 1+D/D

chooses R(D)

L ]
1 1+D/D ] .

A
In this case G(D) =

14D D -1
, then det [g(D)"] =D and R (D) =
D D

1+D 1 0
is in systematic form
D 0 1
and is realizable even though det [_F_{_(D)] has a zero constant
~
term. Hence this G(D) is a systematic rational equivalent of

cg(py.]

In example 3.2, note that dl = 2 for the encoder with

14D 1 O
Gy = while the information sequence [g] =
D 0 1 1
[01,10] produces a codeword [z] =[OO0,00l] with weight 1
| 1 1 14D D
for the rationally equivalent encoder with G(D) = ,
D D D
so that dl = 1 for this code. Hence rational equivalence does

not necessarily imply equivalence of column distances.
2. Causal Edquivalence

Definition 3.2 The set of causally driven output sequences

of the encoder G, (CDDS)G, is the set of all output sequences
produced by causal input sequences.[

A
Definition 3.3 Two encoders G and G are causally edquivalent

if they have the same set of causally driven output sequences,

i.e., if (CDos)G = (CDOS)/G\.

it

Lemma 3.1 For two fixed encoders G and @, if (CDOS)'G
(CDOS)@, then for any two causal information sequences x and

/_2 such that x G = 2@, _go;ﬁ 0 if and only if 3_;_\0 # 0.
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Proof Assume =0, # 0. Let n be the least positive

&

X,
integer such that x #

lo

. Then the information sedquence
whose transform is Dnag(D) is causal and produces the output
sequence whose transform is y(D) = D_ng(D) G(D). Therefore
y (D} = DmHgKD)‘QKD). Since the definition of an encoder
implies that no two information sequences can produce the
same output sequence, D“?gxn) is the transform of the only
input sedquence to 8 which can produce y. But the sequence
whose transform is D_FQ(D) is not causal, contradicting the
causal equivalence of G and 8. The only if part of the
proof follows exactly as above.{

For a fixed encoder G, assume det [3(D{] has a non-

zero constant tefm, i.e., 3- (D) is realizable. Then if

A , -1 , ) .
xX(D} is causal, x(D) = g(D) R (D) is causal and.it follows

from equations (71) and (73) that

. { . 74
(cposyj C (CDOS)G (74)
Also if x(D) is causal, then Q(D) = x(D} R(D) is causal and
(CDOS)G C (CDOS)e . (75)

Hence
(CDOS) ; = (CDOS)é (76)

and the two encoders have the same set of causally driven

output sequences. Therefore lemma 3.1 implies that

A
d- = d-’ i =Oll,2,..., 77
i g0 3 ) (77)
where dj is the order j column distance of G and dj is the

A
order j column distance of G. Theorem 3.1 summarizes the

above results.



47

Theorem 3.1 Let R(D) be aKx K matrix formed with K columns

of g(Dy. If det [B(D)] has a non-zero constant term, then

A -
G(Dy =R l(D) G(D) is a systematic causal equivalent of G(D)

A .
al’ld d. =d.l J =011121000 L]
J J

: N
If det [g(D)] has a zero constant term for all (I()
possible choices of R(D), a systematic causal equivalent may
not exist. In this case, as will next be shown, a ration-

~

ally equivalent encoder E can be found such that dj <d,.,
j=0,1,2,..., and such that E has a systematic causalJ
equivalent. The following procedure will produce the en=-
coder a. (Assume the numerators and denominators of the gen-
erator functions of G are relatively prime polynomials.)

Step 1 Convert G(D) to a polynomial matrix G'(D) by multi-
plying each row of G(D) by the least common multiple of the

denominators of its generator functions.l

Clearly this step preserves rational equivalence.

1. (D) 0 ... 0
g = | *t G (D)
0 LZ(D) ceo 0 ’
S : : (78)
L 0 0 LK(D) i

where Li(D) is the least common multiple of the denominators

of the generator functions in row i, 1 < i < K. Let

'—Ll(D)‘ eea O
L(D) =
‘ (79)

O o o
L]

e

~

g

®
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Then
_1/L1(D)" oo O
) (80)

. i/LK(D)

L o) =

Qe & ¢
®

doeen

is realizable since G(D} realizable implies that each Li(D)
has a non-zero constant term. Therefore if x'(D) is causal,

®' oy 1, (D)]
is causal. Also if x(D) is causél, then x' (D) = x(D) L“l(D)

(K)(D)/LK(Di] is causal. Hence step 1
i

preserves causal equivalence.

then x(D) = x'(D) L(D) = [x(l),(D) Li(D),..., bo
- [xm (D) /Ly (D), .o

Note that since det [3(D{] is assumed to have a zero

N

constant term, det [BO] = O for all( ) possible choices of

K
R(D), where 50 is the K x K matrix of constant terms of
. .
R(D}). Therefore rank [go] < K and since go IKQO, rank
' < a
[e0'] <

Step 2 Convert G' (D) to a matrix G"(D) in which the Kth

row of QS, i.e., the constant terms in the Kth row of Gg" (D),
is all-zero by rearranging the rows of G' (D} and then adding
a linear scalar combination of the first (K-1) rows of G' (D)
to row K.l

Again this step clearly preserves rational equivalence.

After rearranging the rows of G' (D),

1 0 ... O]
g" (D) = o g' (D) , (81)

Q) s & o |

0
Lcl 2 % a e K
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where each c; ¢ GF(2) and Cx # 0., Let

1

coy = |7 o O
: . (82)
Cl e @ o CK -

o

Clearly C(D) is non-singular and the proof that causal
equivalence is preserved is similar to the proof in step 1.
Step 3 Convert G"(D) to a matrix G"'(D) by multiplying

row K of G"(D) by D"l.l

Since the row space of G" (D} over all rational input sedquences
is not changed by multiplying the Kth row of G" (D) by D_l,

G"' (D) is rationally equivalent to G" (D).

g"'(Dy = E(D) Gg" (D), (83)
where
E(D) = [1 0 ... 0 ]
0 1 ... © (84)
o0 o ... pL

is non-singular and non-realizable. Note that

2 - (85)

Os¢ ¢ s+ O

0 0
l - ® 9 0
0

® 8 © D

b

is realizable. Therefore if x" (D) is causal, then x"'(D) =
x" (D) gwl(D) is causal and

(cpos) C (cDos) (86)

GII Gll 1 e
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However, the encoders G" and G"' are not in general
causally equivalent, since x"' (D)} causal does not imply that
x"(D) = x"'(D) E(Dy is causal. Therefore the (CDOS) set is
in general enlarged in step 3, and the encoder G"' is said
to be causally dominant to the encoder G". It remains to
show that d;' 2 dg, j=20,1,2,..., where dﬁ' is the order j
column distance of G"' and d; is the order j column distance
of G".

Case 1 Let x"'(D) be the transform of a causal input se-

x & 0. Then x"(D) = x"' (D} E(D)

quence with 55'# 0,
is causal and has x" # 0. Hence y"(D} = x" (D} @{D) = x"' (D)
_G_"'(D) =Y,"'(D) and WH( [Z"] ) =WH( [zuu].)’ j = (),]_’2’°‘° o‘
Case 2 Let x'"'(D) be the transform of a causal input se-
(K) Tl
quence with XO
5_(:" (D) = Dz" (D) = D;"'(D)‘ E(D) = [Dx(l) I“(D),__,, DX(K_]_) "'(D)%,
(K) T
X

# 0 and let y"' (D} = x"'(D) g"'(D). Then

(D)] is causal, has gg # 0, and produces an output se-
quence whose transform is y"(Dy) = x"(D) g"(D) = x" (D) E’l(D)
g"' (D) =Dy"'(D). Clearly wy( [¥'] ) <wy([x"] ). j=o0,1,2
vl ’ ’
Cases 1 and 2 imply that d}' > dﬁ' j=60,1,2,... . Therefore
causal dominance implies that the column distances cannot be
decreased. Also, equations (83) and (84) imply that m"' < m",
where m'"' is the memory of G"' and m" is the memory of G'.

At this point, steps 2 and 3 are repeated until an en-

coder G is obtained such that rank[§0]= K, m < m, and G

is causally dominant to G. Then a K x K submatrix R(D) of
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é(D) can be found such that det [E(D)] has a non-zero con-
stant term. Hence from theorem 3.1 a systematic encoder é
with é(D) = Eal(D) G(D) can be found which is rationally
equivalent to and causally dominant to G. These results are
summarized in the following definition and theorem.

Definition 3.5 The encoder G"' is causally dominant to

the encoder G" if (CDOS) D (CDOS)G”.l

Gll 1

Theorem 3.2 For an encoder G with a matrix of generator

functions G(D), if no K x K submatrix R(D) of G(D) exists
such that det [E(D{] has a non-zero constant term, then a
systematic encoder é can be found which is rationally equiva-
lent to and causally dominant to G.|

If the above procedure hever results in an encoder G
such that a K x K submatrix E(D) of é(D) can be found with

0
duces a matrix with an all-zero row after at most Km' + 1

det [E ],# 0, then it can be shown that the procedure pro-
applications of step 3, where m' is the memory of the poly-
nomial encoder G'. This follows because each time step 3 is
applied, the memory of one of the K generators must be re-
duced. In this case the original encoder G has no inverse
and dj =0, j=0,1,2,...

Example 3.3 Consider the R = 2/3 fixed binary non-systema-

1 1+D 1+D2

tic encoder G with G(D) = 5
1+D 1+D+D 1 *

g,

= [l 1 l] and rank [go]v= l. After adding row 1 to
1 1 1

-1 ~
row 2 and multiplying row 2 by D , the encoder G with
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~ 1 14D l+D2
G(D) = results. Choosing
1 D D
L
N 1 14D " .ol D 1+D
R(D} = , det[g(Dﬂ =1 and R " (D) = .
1 D 1 1
N .l o~ 1 o pZpS
Hence G(Dy = R " (D) g(D) = 2 is the matrix

0 1 1+D+D
of generator functions for the systematic encoder G which is

rationally equivalent to and causally dominant to G.]

It should be noted here that Forney's [6] method of pro-
ducing a "canonic" non-systematic encoder does not consider
the problém of preserving column distance.

The results of Section III.A can be summarized by stat-
ing that there is no loss of generality in considering only
systematic encoders for algebraic feedback decoding tech-
niques where column distance is the important parameter. How-
ever, in many cases a non-systematic polynomial encoder G'
with encoding memory m' may have a causally dominant, sys-
tematic, rationally equivalent encoder é with infinite en-
coding memory, i.e., é(D) may contain rational functions.
Since it is often undesirable to have feedback in the encoder,
é can be converted to a systematic polynomial encoder é~ of
approximately the same complexity as the encoder G' by trun-
cating each generator function in é(D) after degree m'.
Clearly the encoding memory of é- is m' and éj = 33 2 dj,
j=0,1,..., m'. But the encoder é- is no longer rationally

equivalent to G', and hence may have a lower value of dFREE‘
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Therefore the code produced by the systematic encoder é'
may not perform as well with sequential decoding as the
code produced by the non-systematic encoder G' with the
same encoding memory.
B. Syndrome Formation

The parity-check matrix for all systematic encoders
was given in Chapter I. In this section parity-check
matrices and syndrome forming circuits will be given for
all fixed non-systematic polynomial encoders G such that
rank [go] = K. These are then valid parity-check matrices
and syndrome forming circuits for all rationally equivalent
encoders (cf. equations (30) through (36)). That every
fixed non-~systematic encoder is rationally equivalent to a
fixed non-systematic polynomial encoder G such that rank
[go] = K was shown in the previous section.

The parity-check matrix for R = i fixed non-systematic

N
encoders is given by

(2)
G, (D G

Gl(l)(D) 0 cee 0
(87)

(1)
0] 0 PR Gl (D)

b ]

>0
The syndrome forming circuit for these encoders is shown in

Figure 3.1.
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£

G, (D X

ED)

—-—-GT%D) >(%

1 -
Fig. 3.1. Syndrome forming circuit for R = §§ encoders.
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However for non-systematic encoders with K > 2, E?(D)
contains products of generator functions. Consider for ex-

ample an R = 2/3 fixed non-systematic encoder with

[ (D (2 (3)

( Vo oo ¢ Fm (

i) = (1) (2) gy o (3 88)
_Gz (D) G, (D} G, (D}

and

T (p) a1 (D)

H =

. 12 (p) (89)
LH(3) (D)

Since G(D) H' (D) = O,

(1)
(1) (2) (3) H™ (D) 0

G (DY ¢ (D) ¢ (D)

1(1) 1(2) 1(3) 1(? (p) - (90Y
e, () g, (D) G, (DY g (3) (D) oJ
Therefore
Gl(l) @ 5V +c P o o o+ 61(3’ o 5%y =o,

(91)
Gz(l) (D) gt (Dy + GZ(Z) o 12 @ « G2(3) o u'¥ (D) =0,

(92)
and \

- 6, ) 52 3y + 6, 0y 1 oy
H (D) = 5y (93)

Gl (D)
Hence
e,V 6,2 58?m + e, P e, P o) &?
Gl(l) (D)
+ .20 5@ + 6. @@ 5P =0 (94)

2 2

and
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(3) (3) ) (l)(D’G (3)(D)
H (D) G, (D} + Gl(I)(D)
(2)
H (D} = - -
Gq (D)
Now choose
H(3)(D) = Gl(l)(D)Gz(z)(D) + Gz(l)(D)Gl(z)(D) . (96)
Then
H(z)(D) _ (31(1)(]))(3.2(3)(]3)\= + Gz(l)(D)Gl(3)(D7 . (97)
Finally
o0 e, ‘2 oy [Gl(l) e, P +a,'" e, P (D)]
H (D) =
G (1)(D) (98)
. oV m [Gl(l) me,'? o + ¢, e, ? (D):I
(1) ~ ’
G, (D}
= Gl(z)(D)G2(3)(D) + Gl(3)(D)G2(2y(D) . (99)

Therefore if WM is chosen according to equation (53},

m o= max [m11m22'm21m12'mll 23'M21M13/ 1223 13" 22] . (100)

where mij = degree [Gi(J)(Dﬂ for all i and j,and the de~

coding memory, or syndrome circuit memory, is on the order
of twice the encoding memory.
The syndrome forming circuit for R = 2/3 fixed non-

systematic encoders is shown in Figure 3.2.
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£ (D)

cX(® G, DG, O
XD GO G DG, DH
_ E°(D)
G (D G DG, D
L
G, (D) G,0G OH
=)
G, O S'ocoH
G0 G,DG O

Fig. 3.2. Syndrome forming circuit for R = 3 encoders.
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Example 3.4 Consider the encoder described by

1 1+D 1+D+D2

G(D) = R
D2 1+D+D3 1

Then
D+D4+D5
3

H (D) = | 1+D%+D>+D" i

l+D+D2

In this case the encoding memory m = 3 and, if chosen ac-
cording to equation (53}, the syndrome circuit memory m = 5,

The syndrome equations from time u through time u+5 are then

given by
i 1T 1L @y
Su 110010 011101 000111 €u-5
Susl 110010 011101 00011 1| :
5442 110010 ol110] 000111 .
s,z || 110010 011101 0001 | | S
Su+4d 110010 ol1iol 000111 :
Suss | | 110010 ol1101 000111 | - (q
u+5(2)
u-5
el'1(2)
: (101)
(2
u+5
e (3)
u-5
e:l(3)
th+5(3)
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By generalizing from the R = 2/3 case, the form of the
parity=-check matrix for all fixed non-systematic encoders
can readily be obtained. Let R(D) be the first K columns of
G(D). Assume rank [B*O
and the cofactor of G.(j)(Dy in R(D} by A.j. Then

] = K. Then denote det [B_(D)‘] by A

X X _
(K+l) (K+2)
L B84,6, EA e, ® ... Y 2,10 () ()
i=1 i=1 i=1
K
(R+1) (K+2)
Y 8558 (D) XA 83 Z Bi2% Y oy
i=l ° —_13 -
K - K -~ K °
=) 8,8 5 m Z 6, Dy ... YV a6, M
i=1 = i=1
A 0 0
0 A 0
L0 0 A ]

It can easily be verified that equation (102) reduces to the
familiar form of H (D) for R = 2/3 and R = 1/N fixed non-
systematic encoders and for all fixed systematic encoders.
Note that for fixed systematic encoders A = 1., The syndrome
forming circuits for R = 2/N and R = 3/N fixed non-systema-
tic encoders are given in Figures 3.3 and 3.4, respectively.
Equation (102) has also been implicitly derived by Forney [6]
For a fixed non-systematic encoder G such that rank

E§0]= K, the code produced by G is exactly the same as the

null space of g?e However, as discussed in Chapter I, if

(102)
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Fig. 3.3. Symdrome forming circuit for R = 1‘% encoders.
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| rGHJ®u,GHeH UG,

- G HeHGJ8JHG,

S D
>%-m~o

@

ED

G,H,J.&J,GH.eH JG;

G,J,H.eH,.GJeJH.G,

G; =G, H,=G. D J,;=670D)

Fig. 3.4. Syndrome forming circuit for R =

N encoders.
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rank [90] < K, the null space of g? contains other sequences
besides the set of output sequences of G. 1In some instances,
as in Chapter VII, it is convenient to define a code with a
parity-~check matrix. In order to avoid ambiguity, the code
defined by a parity-check matrix will be taken to be pre-
cisely the null space of g?.

In keeping with standard usage, throughout the re-
mainder of this thesis many of the properties precisely de-
fined for encoders will be referred to as properties of the
code produced by a given encoder. For example, an R = 1/N

fixed systematic code is the code produced by an R = 1/N

fixed systematic encoder.



IV. Bounds on Distance
A, Introduction
A complete set of bounds on the distance properties of
convolutional codes does not yet exist. However, many re=-
sults in this direction have been obtained. Wozencraft and
1

Reiffen [3] proved a Gilbert lower bound on dFD for R = N

binary fixed codes which Massey {4] later generalized to all
rates and to GF(g). Robinson [16] proved an upper bound on
dFD for fixed codes that is asymptotically a Plotkin bound,
and Massey [8] later gave a simple bound that has the same
asymptotic form.

Robinson [7] also obtained a lower bound on dDD for
systematic fixed codes, in which dDD grows only as the square
root of n,,. Kolor [17] , for R = 1/2 systematic binary
fixed codes only, and then Massey [8] for all rates, proved
a lower bound on dDD in which dDD grows linearly with nype

Wagner [18] obtained a lower bound on QDD for non system-
atic periodic codes with R < 1/2., A new lower bound good for
all rates will be given in this chapter. Wagner's results
will also be extended to obtain a Gilbert lower bound on dFD
for a subclass of periodic codes with period T = 2m + 1 which
does not include fixed codes as a special case. Since fixed
codes are a special case of the entire class of periodic codes,

the usual Gilbert lower bound on dFD holds over the whole en-

semble of periodic codes.
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No upper bounds on dDD are known except those that hold
trivially since dDD < dFD.
Since dFD < dFREE' the usual Gilbert lower bound on
dFD is also a bound on dFREE' albeit a weak one. Neumann [11]
proved a much stronger lower bound on dFREE for fixed non-
systematic codes. In this chapter a still stronger lower
bound on dFREE will be given for non-systematic periodic codes
and this result will be used to obtain an improved upper bound
on error probability for non-systematic periodic codes used
over the BSC and with a maximum likelihood decoding rule.
McEliece and Rumsey [10] obtained a Plotkin upper bound
on dFREE for R = % systematic fixed codes. The extension of
this result to all rates, to non-systematic fixed codes, and
to periodic codes will be given in this chapter.
Finally a Gilbert lower bound on dFD for an important
subclass of R = 1/2 non-~systematic fixed codes will be ob-
tained. This bound has application in the chapter on code con-

struction.
B. Bounds on dFD

1. Lower Bounds

A lower bound on distance guarantees that at least one
code can be found with distance greater than or equal to the
lower bound. Wozencraft and Reiffen [3] and Massey [4] have
shown that there exists at least one binary fixed code such

that

%D
lim z=—>H (1 -~ R) , (103}
m—>0C0 "FD
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where H(x) = ~x log2 X = (1 - x) log2 (1 - x) is the binary
entropy function. Equation (103) is called a Gilbert lower
bound because it is asymptotically the same as Gilbert's lower
bound on the minimum distance of a block code [19} .

2. Upper Bounds

An upper bound on distance guarantees that no code can
be found with distance greater than the upper bound. Robinson

[16] and Massey [8] have shown that for all binary fixed codes

drp
lim ——
m — o0 nFD

< (1 - R). (104)

N -

Equation (104} is called a Plotkin upper bound because it is
asymptotically the same as Plotkin's upper bound on the mini-
mum distance of a block code [20] . An upper bound which is
asymptotically the same as Hamming's [21} upper bound on the
minimum distance of a block code is called a Hamming upper
_bound and an upper bound which is asymptotically the same as
Elias's [22] upper bound on the minimum distance of a block
code is called an Elias upper bound. However no Hamming or
Elias upper bounds are yet known on dFD for either periodic
or fixed codes.
C. Bounds on dDD

1. Fixed Codes

Generalizing the work of Kolor [17] , Massey [8] has
shown that there exists at least one binary systematic code

such that

% .11 1-R
* 2 H (lO 14R ) °

(105)
m —> <0 nD.D
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Note that this bound guarantees a linear increase of dDD with
N5pe In Robinson's [7] earlier bound, dDD is guaranteed to
increase only as the square root of None
The Plotkin upper bound on dFD of equation (104) also
holds for dDD since dDD < dFD’ but no other upper bounds on
dDD are known for fixed codes.
2. Periodic Codes

For periodic codes, Wagner [18] has shown that there ex-

ists at least one code such that

dw =1

“lim >~ > H (1 - 2R} , (106)

m — 00 W
where

d = min min a,, ( [z _Ci] , [x'G] ) =

— w— I o —cc . —

m<u<m+T zﬁﬁzu u,u+m u,u+m
min min 4 (z , v } and = n
m<u<m+T guﬁzu' H [ ] u,u+m [ ] u,u+m P FD

are just different definitions of definite decoding minimum
distance and definite decoding constraint length than those
given in Chapter II. Note that this bound is only good for
R < 1/2. A bound which is good for all rates can easily be
derived using Robinson's and Massey's more natural defini-
tions of the definite decoding parameters. First consider
only canonic systematic codes with m = m.
For a canonic systematic code with period T = m + 1,

the equations for the parity sequence from time 2m through

time 3m can be written as

EZm;‘zzmgO (m-l)-+g§2mm19_ (m - 1) +“.,+_>gmgm(m—l)
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Ry = X3 go(m-Z) + Xy g Q(m=2) 4o+ x, 0 (m-2)
where each Q.(u), 0 < i, u < m, is defined as in equations
(16) and (17).

Theorem 4.1* There exists at least one systematic periodic
time-varying convolutional code such that

lim

m — 00 DD 1 +R

dDD "l(l"‘:R)
- > H ———

In particular, there exists at least one periodic code with

period T = m + 1 such that

dpp 1 {1-R

lim - 2H TFR /-

m — o0 DD
P P i init i rewer ’
roof or a given definite decoding coc‘.leword[g.m EZm-l

4 ® ® 3 =§ ? @ 0 8 4 7 1 % & @ ) z7 4 th

XZm z3m2] l m E2m--l §2m p"2m 53m BBm] ere
are (m + 1) X(N = K) unknowns in ecquation (107}). For x., #

=2m
0, equations (107) are linearly independent. Therefore since

there are (m + 1) (N - K) equations, each codeword with o #

2(m+l)2K(N—K)
Q0 has vy = (m+1) (N-k) solutions. Finally, since T =m + 1,
2

each codeword with some x, #0, 2m < u < 2m + T, belongs to
at most (m + 1) vy different codes.
The number of codewords with Hamming weight less than
d
n d
or equal to d isZ ( li)D) < 2"pp H(nDD) when

3] .

4. <1,
oo /

*
This result was obtained independently by Morrissey [23} .
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Hence the number of codewords with x - # 0 and weight less

2
d

than or equal to d is less than 2"pD H(nDD) . Therefore if
d

S

(m + l)anDD H (nDD) is less than the total number of codes,

there exists at least one code with dDD » d. Equivalently,
if 4y, is the smallest integer such that (m + l)anDD N5p

2
+1 ~K) ]
2 2(m ) k(N K), then there exists at least one code with

definite decoding minimum distance dDD° But

[ DD 2 ‘
(m + 1)y2 mK + (m + l)N] H _n;]; > 2(m+l) K (N-K) SO

log, (m +1) + (m + D?RW-K) - (m + 1) O - K +[mK +

(m + l)N} H 22 > 2
nDD_(m+l) K(N ~ K) —
dDD
1og2 (m + 1) - (m + 1) (N - K) +[mK+ (m + 1) N]H —_—1> 0 ——
dDD logz(m+l) (m+1) (N=K)
[IHK -+ (m + l)N] H nDD + HIK+(m+l)N - Imr<\+(m+l)N = —_—
dpp\. (N-K) (m+1) o9 (mtL)
H | —] &m0 N ~ "R {mrlJ N —
H <h>2 i1 -R as m — 00
nDD 4 1 R
g DD s -l (1-R)|
im o °
oo oo Ny < 1 +R

This bound is plotted and compared with the usual Gilbert

lower bound on dFD in Figure 4.1.

Massey [8] has conjectured that his bound on dDD for
systematic fixed codes should be the same as the bound in
theorem 4.1. He claims that the factor of f% in equation (105)

should be eliminated by tighter arguments.
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> .d
O 1 o2 3 4 5b

Fig. 4.1. Comparison of feedback decoding and definite
decoding bounds.
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For non-systematic codes with decoding memory m = m
and period T = 2m + 1, the equations for the transmitted se-

quence from time m through time 3m can be written as

Yo = 58, +x 6, (m + ...+ x.G (m)

— — i — o & o "I 2m ).

¥om 2m O(2 ) 2m~1§1(2m) ' + zﬁfm( ) (108)
: - anna s ? 8 @ G bl P

¥3m 3m—0( 1) 3m_1§l(m 1) + + EZm—m(m 1)

Theorem 4.2 There exists at least one non-systematic per-

iodic time-varying convolutional code such that

9o ) i}
lim 7= 2 min IQH 1 (1 - %R), 1/2 H l(l - R)] .
m—>x DD

In particular, there exists at least one periodic code with

period T = 2m + 1 such that

lim =— > min [H'l (1 - %R), 1/2 H“l(l-R)] )

Proof For a given definite decoding codeword [yﬁ,..., Yom?
oy z3m] , there are (m + 1)2NK unknowns and (2m + 1}N
equations in equations (108). But Zon # 0 guarantees only
that the last (m + 1)N equations are linearly independent.
Information blocks X4 through Xyl could be all=-zero.
Assume Ej is the first non-zero information block,

j=0,1,..., 2m. If j > m, then the usual Gilbert lower bound

on dFD holds for the definite decoding minimum distance, i.e.,
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d d
DD - DD -
lim - 2 H l(l - R) or lim =2 1/2 H 1(1 - R} since
m — O FD m — GO D

m = m implies that L (2m + 1)N = 2(m + 1)N = 2n_ for
large m. However, if j < m, all codewords produced by an
information sequence containing a span of m consecutive all-
zero information blocks inclusive between block j and block
(2m - 1) have Hamming weight at least as great as the mini-

mum weight codeword with x, = ... 0, i.e., at

0T v T Eopa1 T
least as great as dFD° Hence all such codewords need not be

considered since they cannot possibly be the minimum weight
codeword with o # 0. Therefore all of equations (108) are

independent, and for each codeword with Zom # O there are
2NK(m+l)(2m+l)
T = TON(ZED)

solutions to equations (108}).
Finally, since T = 2m + 1 and the information digits can

K
2 -1 o (3m+1}K

be chosen in any of _EK_ different ways, each code-

word with some x #0, 2m < u < 2m+T, belongs to at most

K
2 -1 (3m+1)K

(2m + 1) < (3m+1)YK

v< (2m + 1) 2 v different codes.

Therefore, proceeding as in the proof of theorem 4.1,

if 4 is the smallest integer such that (2m + 1) o (3m+1)K y

2"pDp H:<§§§ )

one code with definite decoding minimum distance dDD“ But

NK (m+1) (2m+1)

2 2 , then there exists at least

(2m + 1y 2(3m*1JK

v 2(2m+l)N H (355) S 2NK(m+l) (2m+1)

log. (2m+l) + (3m+1)K - N (2m+1) + (2m+D)N H (=2 | > 0 — s
2 hp
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a log. (2m+1
DD} ., (3mil)K 9, (2m+1) —_—
(2m + 1)N H nDD B + (2m+1)N + (2m+1)N 20
H (dDD) 1+ 3/2R2>0 > -
et I > as m —
)p)

%o 1

lim o H (L - 3/2 R .

v

Therefore

o) - -
lim 2 2 min [H 1 (L - 3/2 R), 1/2 H
m — ©O DD

La-n|

Note that this bound holds only for R < 2/3.
Theorem 4.2 can be extended to all rates by redefining
dDD and nnpe Assume ngo = (3m + 1)N and T = 3m + 1. Then

dyp = min min Wﬁ( [z ] )}, and after a
3m<u< 3m+T ;ﬁﬁg u=2m,u+m

slight modification of the proof of theorem 4.2, the following
corollary results.

Corollary 4.1 There exists at least one non-systematic

periodic time=-varying convolutional code such that

1

lim D > min {H“l (1 - 4/3 R), 1/3H ~ (1 - R)] . [

m > 00 pD

In general, let nop = (Am + 1)N and T = Am + 1, \ a positive

integer. Then d - = min min Wﬁ([z] ) B
Am<u<Am+T zﬁ#g u+m-Ahm, u-Hm

and there exists at least one nonmsystematig periodic time-

varying convolutional code such that lim 2D 2 min [H

A+l - m - 0 "pp
(1 - ~ R), % H 1 (l—R)] . Note that this reduces to

Wagner's bound when A = 1, to theorem 4.2 when A = 2, and to

corollary 4.1 when N = 3.
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Note also that the above bound holds for any T > Am+l

such that T is some algebraic function of m, i.e., such that
log,T

T grows less than exponentially with m, since ——— still
N (Am+1})

approaches 0 as m approaches ®© . It is well known [24] that
bounds which use a fraction of codes argument in the proof,
such as the above bounds, hold for almost all codes. Hence
letting kR be the value of A which maximizes the above bound
for a given R, the following corollary results.

Corollary 4.2 For almost all non~systematic periodic time-

varying convolutional codes with period T 2 hRm+l such that

T grows less than exponentially with m,

“bp S 1
. - . -1
i{i oo 2 min { H (1 - KR R), X; H (1 - R)Y|.]

Corollary 4.2 guarantees a linear growth of dDD with op for
almost all non-systematic periodic codes, even though the
bound is very weak for high rates. The two functions which
comprise the bound of theorem 4.2 are plotted together with
the usual Gilbert lower bound on dFD in Figure 4.2,

Wagner also proved that the result of equation (106)

holds for an easily instrumented class of systematic codes

suggested by Massey with period T = 3?;1 if m is odd or 3m + 1

if m is even. The R = 1/2 encoder in this class is shown in
Figure 4.3. Once each second the top shift register shifts
once while the bottom one shifts twice. It can also be shown

that there exists at least one of these codes such that

d .
-1 l -R
1im D o5 g ( )
m—>co  Ipp 1 +R
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Fig. 4.2. A lower bound on dpp for non-systematic periodic
codes..
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1 " 3m+l |
Fig. 4.3. An R = = periodic encoder with T = 5 if
mis oda or T = 3m+l if m is even.

™
g 508, g

O 2m M+

Fig. 4.4, An R = % periodic encoder with T = 2m+1l.
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Now a similar class of systematic codes will be pre-
sented for which a Gilbert lower bound on dFD is proved.
These codes do not include fixed codes as a special case and
hence such a bound is interesting. These codes have period
T =2m + 1 and the R = 1/2 encoding circuit is shown in
Figure 4.4. Once each second the top shift register shifts
once while the bottom one shifts twice. This leads to the
following equations for the parity vectors:

(0) Bo =% %
(1) By X By tE 9

(2) By =Xy By v % 23+ % 2,

- = +oeowt
(m=1} By = Hpe1 Zomez * Epe2 Zon-s %o En-1 (109)
“m-1 —2m-1 =0 ~m

(m) B, =X gzm + X Q teoot X Q

= + © % o
(mtl) By T X 2 TR Qy TRy Qo et X Q)

(2m = +=.g+ ’
) EZm §2m me—l * E2m-~l 92m«-~2 Eh gm—l

where each Q.. 0 <1< 2m, is a K x (N = K} matrix of elements
from GF(2).
Lemma 4.1 For each fixed sedquence Yor Xyroeer ym]={§0,
Byr Xy+ Byreeer X0 By with %, # 0, there are
,(2m+1) K (N-K)
TS T ) (WK

solutions to the first m+l of equations (109).

Proof For each codeword {z} with X, # 0, the mth equa-
m

tion fixes one row of Q . The remaining K -~ 1 rows can be
~m
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chosen arbitrarily, along with all the rows of 9m+l' 9m+2’

coss QZm' In the (m - l)St equation, then, only Qm—l has not
been specified. The (m -~ l)St equation fixes one row of gm—l
and the others can be chosen arbitrarily. Similarly in each
of the remaining m - 1 equations, only one row of one matrix
need be fixed. Therefore a total of (m+l) (N-K) digits are

fixed by the first m + 1 of equations (109). Since there are

2(2m+1)K(N~Ky
(2m+1) K (N-K) unknowns, there are 2(m+l) (N-K) solu-

tions. |
Theorem 4.3 There exists at least one systematic code of
the type shown in Figure 4.4 and described by equations (109)

such that

&

lim 2}

-1

Proof Since T = 2m + 1, each codeword [z] with some
u,u+m

x. #0, 0<u< 2m + 1, can belong to at most (2m + 1} v

different codes. Therefore if dFD is the smallest integer
dpp ) (2m+1) K (N=-K)

oo _>__ 2 ’

)

there exists at least one code with feedback decoding minimum

distance dFD' But (dF
D

(2m+1)K(N-K) - (m+1) (N-K) + (m+1) NH 3;5 )> (2m+1} K (N~K)

such that (2m + 1) vy 2"FpH < then

(2m + 1) 2 2
dpp
1og2(2m+1)+(m+1)»NH -ﬁ—F-B»-(m+l) (N -K}) 2 0 ——

|

%p K(meyy — 092(2ml)
(m + N | H \Agpy /- 1 + N(m+I) + 7 N(m+1)

H (F-E)Z 1-R as m—=> -
FDd
FD -1

np, 2H (1-R} .|

lim
m— o0
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Theorem 4.3 guarantees that simply instrumented codes of the
type shown in Figure 4.4 and described by equations (109} can
be constructed with large dFD‘
D. Bounds on dFREE

1. Lower Bounds

a. Fixed Codes

Clearly all lower bounds on dFD are also lower bounds on

dFREE since dFD < dFREE‘ The only other lower bound on dFREE

was given recently by Neumann [ll] for non-systematic codes

only. His result states that there exists at least one binary

non-systematic fixed code such that
1

2H — (1-R) for R > 0.37 .
2R-1 (110)
dFREE 2R (1-2 )
n 2 2R~-1
A H(1-2°R"1y o1 for R < 0.37.

b. Periodic Codes

A stronger bound than (110) can be obtained for binary
non-systematic periodic codes. First a bound similar to pro-
perty F4 must be proved for non~systematic periodic codes.
Lemma 4.2 dFREE = r [N(m+1)—l] [(kR+1)m] for almost all non-
systematic periodic codes with period T 2 RRm+l such that T
grows less than exponentially with m, where KR is defined as
in corollary 4.2.
Proof Corollary 4.2 guarantees a linear growth of dDD with
non and hence dDD > 0. This implies that dFD > 0 and for all
informatiion sequences x with x, # 0, the first m+l blocks of

transmitted digits must contain at least one 1. Assume nDD

and dDD are defined as in corollary 4.2. As in the proof of
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property F4, no information sedquences with m or more consec-
utive all-zero blocks need be considered. Hence dDD > 0 im-
plies that the next (kR+l)m blocks of transmitted digits must
also contain at least one 1. Therefore since dFREE < N(m+1)
and all the possible minimum free weight codewords must have
weight at least N(m+l) after m+l+ [N(m+l)-]lth+l)m] trans-

g [N(m+l)’ —l] [ (KR+l)m] |
Let kmax = [N(m+l)—l ] [(kR+l)m] +1, the bound on the

mitted blocks, dFREE =

length (in blocks of K digits each) of information sequence
needed to produce the minimum free weight codeword. Consider
the ensemble of non-systematic periodic time~varying codes
with T = £max + m. Clearly T is only an algebraic function
of m, i.e., T grows less than exponentially with m. Let S&
be the set of all information sequences of length 4 such that
A e Mt 5
ee. = 0, for some u, 0 < u < T, and which contain no string
of m or more all-zero blocks inclusive between block u and
block u+l-1. Then let F({,d) be the fraction of codes with a

codeword of weight d or less produced by an information se-

quence from the set S%.
d
N (m+1})
Lemma 4.3 T(ZK—l)Z ( . )
j=0 )

F(1,d8) <

2N(m+l)‘
Proof For a particular information sequence of length 1 be-

the number of different ways of choosing a low

longing to Sl'

weight row of G must be specified. Clearly, there are

d

Z ( N (m+1) ) ways of choosing a low weight N(m+1l)}-tuple.
. J

j=0
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Once one row of G has been specified as having low weight,
the digits of the remaining[K—l + (T-l)K] distinct rows can
be chosen arbitrarily. Hence a low weight codeword produced

by an information sedquence from Sl can appear in at most

d d ,
9 [K-1+(T-1)K] N (m+1) Z (N(n.l+l)) _  NKT (m+1) —N(m+1yz (N(“_‘H))
20 ] = 3

j=0

codes. Since there are T(2K-l) ways of choosing such an in-

formation sequence, F(1l,d) is at most

d .
N (m+1) N (m+1}
(2 1) 2NKT(m+l) -N (m+1) Z ( ; ) T(ZK-l)Z ( 5 )
§=0 3=0
NKT (m+1) - N (m+1) |
2 4/ N(m+) 2
Lemma 4.4 T 2K_ 2 ( )
(2%_1) 'Zo j
F(’trd) < Z(N-I-l)& 22K+Nm for ’2/ = 2, 3,..-,/?/max'

Proof For a particular information sedquence of length 4 be-

longing to Sy, the transmitted codeword has a length of m+l

blocks. 3 |
N (m+Ly

§ ) low weight sequences that are

Hence there areZ; (
j=0
possible candidates for low weight codewords. The encoding

equations for u=0 can be written as follows:
Y, = X, §,(0)

= G
Y, = X _O(l) + X 91(1)

¥, = X, Go(2) + x 6 (D +x) g,(2
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v, =% Sm +x ;g + ... +x G (m (111)

Y1 = Xy GW-D v x oG (-l + il 4 g L G (R-1)

Tt = Bpop GpmH-D

Since no information sequences with m or more‘consecutive all-
zero blocks are being considered, and T > m + 4, equations
(111), when put into matrix form, have rank equél to the number
of equations. Therefore, given a particular information se-

quence from S, and letting [1] 4l —1 Pe a particular low weight

2TNK (m+1)
sequence, there are ——ETE;ET“ solutions to equations (111).

K(L-2) (K

Since there are at most 2 2 1) different information

sequences in S&

% (4-2) 2 TR (m+1 N (m+t)
T 2 (25-1) m+1) E: ( j
F(.a < N(m%) 2TNK(m+1)
N (m+d)
T(28-1y 2
07) (M)
Jj=0 |
< .
2JE,(N-K) 5 2K+Nm

Theorem 4.4 There exists at least one non-systematic per-

iodic code such that

d R-1
_ FREE R(1-2" )
lim -

m oo Hp H(1-22"1y 4r-1
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Proof Note that no information sequence with a string of m
or more all-~zero blocks can produce the minimum free weight

codeword. Hence if

“max _
E} FL,ay <1,

4=1
there exists at least one code with dFREE > d. Let FmaX =
max F(,d). Then if & F i
Totet ] ’ max - max < 1, there exists at
~“~“max )

least one code with orp > d. Alternatively, if d p.p is

the smallest integer such thatJ?;.max Fmax 2 1, then there

exists at least one code with free distance greater than or

equal to dE‘REE:‘

First an upper bound on Fmax will be obtained. Since

d 3 -
) (N(Ir.t-k?/))g Nmsdy B (n«’(mm)

]
j=0

2N(m+/P,) H ( d )

F(L,da) < T(2-n? e
! T, 2K+Nm 2,@; (N-K) °

Therefore an

upper bound on Fm

ax Can be obtained by maximizing [N(m+&) H

d \
(N(m+&))"&(N"K)} . Let L be the value of 4 which maximizes

this expression. By setting the derivative of [N(m+£) H

(—'g‘-">~?L(NK" 1t d solvi for 4, it b
N (i) ~-K) equa o zero and solving for 4., it can be

shown that L = ~———§E“I* - m., Therefore
N(1-2" )

. LI2-n" .
max = 2K+Nm d(N-K} __ _ . (n-R) )
N(1-28"1
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Therefore if

d __ m(1-2271
K 2 R .
&max T (27-1) 2 1,81
J2K + hm ' 5 <1,
han 9
~GN-K} m (N-KY)
N(1-28"1y
2 .
then ﬁmax Flax < 1. Hence if &, .. is the least integer such
that dF
REE
s R-1
K... 2 R_l H(l“z )
{hax T (2°-1) , 2 1-2 .
] ) 21 ,
22K 4+ Nm FREE (N K)
- - m{N-K}
N(1-2871
2

then there exists at least one code with free distance greater

than or equal to dFREE'

Therefore the least integer dFREE must be found such that

d (N-K)
IFREE R-1, FREE
K . 2 1 Al=20 - (1-2°"1
3 : P - R~ N 1—2
(M+&maxy&max(2 -1) 2 1-2
2 m (N=K) S5 5 2K +Nm d
log_[(m + 4 44|+ 2 1og. (X == R-1
+ 4 + - e -
2 lOgZ[ " méx}.max] og2(2 b o+ l_zR—l H(1-2 )
dprpg )
- = + m(N=-K) 2K + Nm -
- 2 N(l-2R l) 2 2
(1-R)
1o [(m+& )2 }+ 2 log (zK_l) + m(N=K) - dFREE
92 max max 2 (1_2R'1y
rREE _
+ H (1—2R l) 2 2K + Nm N

R=-1

(1-27 7y
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K
log, [(m+/?’max))e’max] 2 logy(27-1) drREE

= + - + (N-K} +

m(1-28"Y

2K

[H(l-zR‘l) —(l—R)] > 2K Ly
m

d .
FREE [ -2 - (1-m) ]

(N-K) + > N as m — ©0
m (lqu“l)
dFREE [H(l_zR'l) + R-l] A
2 Kasm—o e

m (1-2R"1
d R-1

FREE , K(1-2""7) as m — 00

m g(1-282"Y & r-1

deree = R(1-2871

lim —& > 1 .|
m ~ 0 A H(1-2""Y) + R-1

This bound is plotted in Figure 4.5 along with Neumann's
bound and the usual Gilbert lower bound on dFD‘ It is inter-
esting to note that the bound given in theorem 4.4 is ex-
actly the same as Neumann's bound for R < 0.37 with 2R re~
placed by R.

2. An Upper Bound on Error Probability for Maximum
Likelihood Decoding over a BSC

Viterbi [2] has given upper and lower bounds on the re-
liability function, E(R), for the best periodic code used
with maximum likelihood decoding over a BSC. Theorem 4.4 can
be used to obtain a lower bound on E(R), i.e., an upper bound
on error probability, which is better than Viterbi's bound
for low rates and which meets Viterbi's upper bound on E(R).

at R = 0.
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FD

O 1 5 3

/ﬂ\ = bound of theorem 4.4 L4 = bound of equation (110)

Fig. 4.5. A comparison of lower bounds on dpREE -
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Assume that the length of the information sedquence is
1 and let the period of the code be T. There are then ZK&
possible transmitted sequences beginning at time u, 0 < u
< T. Now label the non-zero codewords beginning at each
time u from 1 to ZK&-l and let wg(u) be the Hamming weight
of the ith non-zero codeword beginning at time u, 0 < u < T.
Gallager»[ZS] has shown that the probability of error

for an R = k/n block code used with maximum likelihood de-

coding over a BSC with digit error probability p is bounded

by ék-l
[Wlll log pl]
P, < E. e i e , (112)
i=1
where p' = 2 YP(1-p) and wj is the Hamming weight of the

.th .o .
i non-zero codeword. Hence for periodic convolutional

codes this bound becomes

KL
2, -t ! 113
i=1
where w! = min { w?(u)z . EBquation (113} can be rewritten as
o<u<lT
2-1
P < TZ pJK w, log p (114)
e ’
j=0

where wj is a lower bound on the Hamming weight of all the
non-zero codewords over their last mt+j+l blocks. Note that
the first 4+m-m=-j=1 = 4L-j~1 blocks of each non-zero codeword
agree with the first 4-j-1 blocks of the transmitted code-

word, and hence the distance contribution of these blocks is
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omitted in (114).

Since the best code satisfies any lower bound on mini-
mum distance, the weight of the last m+j+1 blocks of each
non~-zero codeword in the best code can be underbounded by
both the usual Gilbert lower bound on - (which also applies
to dpppe Since dop < dFREE) and for large enough T by the

lower bound on dFREE given in theorem 4.4. Hence

wj = max [K'N(m+l), hN(j+m+l)] , (115}
9Gree - Rr(1-2871y  %Rer -1
where N' = N(m+1) = and k = Ny = B (1-R).

H(1-28"1) 4r-1
Let jo be the value of j at which A' N(m+1l) = AN(j+m+l).
Then for j < jo, A' N(m+l) is the dominant term in (115) and
for j 2 jo, AN(j+m+l) is the dominant term in (115). Let

j
- 20
Q=—1

Theorem 4.5 For maximum likelihood decoding over a BSC,

1im p < e Pa [ -QR-A' log p!
m —= 0 =

for the best periodic code with large enough T, if K logez +

AN logep'

<0 .

Q+1
2-1

Proof p <T E. 2 K ewj lOgep -

e

5 -1 j=0 -1

0 . . jK N N(j+m+l) log P!
jK A'n, log p' + 2 e e
o cotosg T 2P0 L .
e J=JO
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f?/—_]o—l
(jA+i)K
P_ < 109, T[ZJOK A'n ALl0g P! +Z 2 ‘o
i=0
§ oy ‘ :
e}\N(JO+1+m+1) logep] B .
1 fn i} |} 1 O . N '
Pe < elovgeT [eJONR e}\" 1’1Al°ge‘p +Z e (JO.HL)NR
AN(j _+i+m+ 8 i=0
& N(JO i+m+1} logep ,
where R' = R logez is in nats. Since A'N(m+l) = M\T(j0+m+1) i
' L-3,-1
1 1 1 ] 1 +' Rl
P_ < elogeT leJONR + A nAlogep +z e(JO i)N
i=0

a0 1 + -—-——i_— l]
gy J'O+m+l) log P bej -1 R

log T + j NR' + A'n_log p'[. 0 i NR '
p < e %% 1o Dp 09 P [l +z ot NR

e

. i=0

' —— '
0
log T jg Lej -1
- - = T 0
p<enA( ” -~7 R klogp)[l+2
e A
i=0
}\'nA

JL(NR' + mlogep')] .

0 =i -1

- ” - A1 1 0
lim’ Pe < e "a (-QR A loge_'p )[l +z
Lk i=0
: A'N .
el (KlogeZ +om log P )J .
, A'N

If (Klog2+Q+llogp)<0, o
lin B <€ n, (-OR _}\logp)[ ¥
m—» O i=0

i(Klog 2 + -Lﬂ log_p )]

o0 ‘N (o]
11<1 2 +-—— 'y .
Butz (Klog or gep)=l+z
i i i=1

A'N
Kl 2+.._......
[e( o, Qllogp)‘]

A'N
when (Klog 2 F ot log p') < 0. Hence
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8

i AN o
LK log 2 + 77 log.p) -y | l}\lN

l_e(K loge2 + orL logep )

o~

0

by the geometric series argument. Therefore

i -n_(=Q R' - A' 1 1) 1
l-e(K loge2 + ol logep )

1

T ]: B, a positive constant
l_e(K loge2 + o1 log_p')

depending only on R and p (Q = L%* - 1 for large m}, where

3 <B <0, Then

log B
1im p_ <e™ (- = S - QR'- M\ log.p')
m— Q0 € A >
lim P < e_nAK - QR - A logéPI) .|
m—» 0O e

Corollary 4.3 For maximum likelihood decoding over a BSC,

lim EB(R) > -Q R!' ~ A! logep'

m—-»OO
4
if AN logep'
2 < 0, where E(R) = - -1. log_ D is
K loge + 0+l (R) n, Je Ye

the reliability function for the best periodic code with

large enough T. AN logep'

Let RO be the value of R such that K logez + o1 = 0.

Figures 4.6, 4.7, and 4.8 compare the bound of corollary 4.3

with Viterbi's upper and lower bound on E(R) for all R < RO'
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1 .4A-E-§B-2

1.2}

8 VL

P=0.01

Ro . | R
68 8 10C

N

N

O 2

/ﬁ\ = bound of corollary 4.3.

Fig. 4.6 A comparison of the bound of corollary 4.3 with
Viterbi's upper bound (VU) and Viterbi's lower
bound (VL) for p = 0.01.
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P=0.10

.
*
v v v
W G G > Cm s e Jren Ghe Gien Gwe W AT, WRS SIS WS NOOR MNR WS O maw

S

_ R
4 6 8 10C

%)

O

/ﬁ\ = bound of corollary 4.3.

Fig. 4.7. A comparison of the bound of corollary 4.3 with
Viterbi's upper bound (VU) and Viterbi's lower
bound (VL) for p = 0.10.
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O 2 4

/Q\ = bound of corollary 4.3.

Fig. 4.8. A comparison of the bound of corollary 4.3 with

Viterbi's upper bound (VU) and Viterbi's lower
bound (VL) for p = 0.40.
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with p = 0.01, 0.10, and 0.40, respectively. In each of

E(R)
these figures % is plotted against C , where C = l4p 1og2

p + (1-p) log_ (l-p) = 1 + H(p) is the capacity of a BSC.

2

Table 4.1 gives values of R C,

R
and =% for p = 0.01, 0.10,

o’
and 0.40.

It is easy to see from Figures 4.6 and 4.7 that the
bound of corollary 4.3 is superior to Viterbi's lower bound
on E(R) for low rates and for low values of p. For higher
values of p, near p = 0.50, Viterbi's lower bound on E(R})
coincides with his upper bound on E(R), and hence no improve-
ment is possible, as can be seen from Figure 4.8. Note also
that the bound of corollary 4.3 meets Viterbi's upper bound
on E(R) at R = 0. This can be shown analytically as follows.

Let Eu(R) be Viterbi's upper bound on E(R} and let EL(R)

be the lower bound on E(R) of corollary 4.3. Then

B (R) |,_, =~ 1/2 log_2 V p(l-p} . (116)
E (R) | . == lim {slog [l/2(\/p2 + \I(l-p)‘z)l/s
u R=0 g 00 e (117)

1/s
+1/2 (2 Vp(i-p) ) ]} /s
- - lin  {slog_| 1/2 +1/2 (2409 ) |}

g —®» CO

1/s
= = lim S{loge 1/2 + loge E 1 +( 2:\’p(l-—p)") ]}
(o0

s —> 1/s (119)
1 +-<2 p(1l-p} )
= - lim slog, 5 (120)
g —» OO

1/s
log, 1/2 + logg [l +(2 P(l“P)) ]
- —SJ;:-L;I»noo 1/s ~ (121)
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TABLE 4.1
p = 0.01 p = 0.10 p = 0.40
RO .37 bits .19 bits .013 bits
C .92 bits .53 bits .03 bits
RO
—_— .40 .35 .45
C
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Applying L'Hospital's rule,

1 ( (1-p) )1/5
-\ 2 p(l-p
(e Veoe )7
Eu(R): R=0 l/SA |
loge(2 VPP Jor/s? (122)
® : = OO
. 1/s2 °
(a7
= 2y pll-p) . loge(2 \/ p(l—p)) s =00

[1+ (2 V2D )l/s] (123)
- 1/2 log (24p(-p) ) . (124)

Therefore Eu(O) = EL(O).

it

3. Upper Bounds

McEliece and Rumsey {18] have shown that for R = %
systematic binary fixed codes
d 1
FREE _ 1-R ©9y g L L (125)
N 2 2(m+l) A
Ng
if IIESEEE; > N, where nE = (N=1) (m+1l) is the number of

parity digits in one constraint length of transmitted digits.
Ny
It can easily be shown that 1:3;3;5; > N for some finite value

6f m. For instance, if R = 1/2, (125} holds for all m > 8.

Hence
d
FREE 1-R
lim < (126)
m —= OQ Op 2

for all R = % gsystematic binary fixed codes. It can be shown

that this result extends to systematic binary fixed codes of

all rates. Equation (125) then becomes
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dFREE log,n
1-R 2 E (R+1)
— <S5 At on for (N-K) > 2 (127)
A A
log,n
FREE  1-R 2 E (K+2)
N <5 R T 20 for (N-K) =1 (128)
A
Ng 1
if K + logan 7 R ' where nE = (N-K) (m+l) = nA(l-R)'

Again equation (126) results in the limit as m—>,
In order to extend this result to non~systematic binary
fixed codes, it is convenient to make the following defini-~

tions.
Definigion 4.1 M, = max (J)(D)]} , 1<3<N,
1<i<K ‘

for those fixed codes whose matrix of generator functions

degree [ Gi

G(D) contains only polynomial elements. |
Mj is called the constraint span of the jth encoded sequence.

Note that m = max [ M.] R
1<j<N J

Definition 4.2 nn =‘2 M. + N is the number of transmitted
J

j=1
digits that can be affected by a non~zerco information block

X, for fixed codes with constraint spans Mj' j=1,c0., N.l

This definition of ng is slightly different from the defini-
tion given by McEliece and Rumsey.
Theorem 4.6 For any fixed convolutional code,

¢ B, L, + 3 if =
dFREE 2 TR *P92 Pg T 7 1f T log, © >R -

Proof Consider all information sequences of length h. The

average weight of a codeword is
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Nh + M.
]

W~

N

Since dFREE is less than or equal to the average weight of

all non-zero codewords,

3

Nh + M.
-é ]
ji=1

2Kh
rrer < JKRZ] 5
or N N
Nh+2 M, Nh+z M,
=1 1 j=1
IrrEE < 2 T oRAT 2 :
Nh DN Kh
Choose h such that =3~ + =3 < 2 -1, Then 4@ < %?
RpoN FREE
tT to-

Now a more explicit way of choosing h will be derived.

15 Kh
Suppose h is chosen such that K =1} ng < 27", Then
v CEY mn 2Ky
SIS T+ 2 .
n Kh n
E . 2 B 1
— % , then > > = since Kh-K < log
R+log.n Kh K+log,n R 2
2"E <h 2"E
g This implies that h < 2;; .  Therefore
n - e ¥
¥hoPE-N Kh-1 , Kh-1 N _ KR % < KBy,

=t T3

since N 2 2 except for the trivial R = % = 1 codes.
if

n
E
Consequently, for =——————e— l, h is chosen such
K+log n R
2 E
that K (h-1) < ny < 2R ¢ is also chosen such that
n_-N
Nh + 2 < 2Kh 1
2 2 T
K+logsn
Finally, since h < —mwfggmg

4
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n_-N
. X L E 1 e logyng
dpper < 2x (K T 109, ng) + T A G = m ok Top t 3 |
n
Corollary 4.4 lim 4 E

m-=oco  FREE < 5

Proof The last two factors in theorem 4.6 become neglig-

n
ible compared with 7? as m—=©c0 ., Also, it can be shown

that
Dg
K + logznE

5 4 for all R as m—=o0 |
R .

Note that theorem 4.6 and corollary 4.4 are completely
general, i.e., they apply to both systematic and non-systema-
tic binary fixed codes of all rates. In the systematic case,
these bounds are exactly the same as the bounds of (125) and
(126) except for the slightly different definition of Ng-
Note that for systematic codes, Ml = M2 e MK = 0.

Hence corollary 4.4 indicates that more free distance may be
available for non-systematic codes than for systematic codes

of the same memory. The bound of corollary 4.4 for non-system-
atic codes is shown together with the bound of equation (126)
for systematic codes in Figure 4.9.

For periodic codes, the constraint spans Mj must be re-

defined as

M. = max max 3 i| the jth column of G.(u) #ZQ .
J 0<u<T 0<idm 1
(129)
Again m = max [ Mj] . Then by a slight modification of the

143N
proofs, theorem 4.6 and corollary 4.4 can be shown to hold

for periodic codes.
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O 1 52 3 4 Bn

systematic bound N S = non-systematic bound

S

Fig. 4.9. A comparison of upper bounds on dgggg for
systematic and non-systematic codes.
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Figure 4.10 sums up the results of Section IV.C. by
plotting together the usual Gilbert lower bound on dFD' and
the bounds of equation (110}, theorem 4.4, equation (126},

and corollary 4.4. Note that the lower bounds on dFREE of

equation (110) and theorem 4.4 for non-systematic codes

cross the upper bound on QF of equation (126) for systema-

REE
tic codes. This fact guarantees that more free distance is

available with non-systematic codes than with systematic
codes.
Example 4.1 For R = 1/2, m = 3, the best fixed systematic

code, viz. the code with G(l)(D) =1, G(z)

(D) =1 +D + D3,

= i = 0, M. = ’ =
has dFREE 4, For this code Ml 5 3, and nE 5.

Now consider the R = 1/2 non-systematic fixed code with m = 3

(1) 3 (2}
and G (D) =1+D+D, G (Dy =1 + D2 + D3. This code

has doppg = 6, My = 3, M, = 3, and np = 8. Hence form = 3,
non-systematic codes are clearly superior to systematic
codes. |

Example 4.2 In this example a fixed code which meets the

bound of theorem 4.6 will be presented. For R = 1/2, m = 4,

let G(l)(D) =1+4+D + D2 + D4, G(Z)(D) =1 + D2 + D3 + D4.
Then 9 n
K E 10 L
ng =), My + 2 =10 and g7 Tog, ny ~ I + 1og, 10 ZR=2%
j=1

n
so the bound is valid and yields dFREE < 7? + é% log2 Ng

+1/2 =5 + log2 10 + 1/2 = 8.8, which implies that dFREE < 8.

It can easily be shown that d ... = 8 for the above code. |
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O 17 o 3 4 5Bn

A = bound of theorem 4.4 [ = bound of equation (110)

=bound of equation (126) = bound of corollary 4.4

S O GEERO WaE® € 0 o4 T EmmmEmsToATmEmemt 0 B e e 8 e e o oo

Fig. 4.10. A comparison of bounds on dpREE -
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The fact that non-systematic codes can produce more
free distance than systematic codes is important when se-
quential decoding is being used. Recall that dFREE is a
more appropriate distance measure for sequential decoding
than dFD or dDD‘ Hence a sequential decoder should exhibit
a lower probability of decoding error for the best non-system-
atic code of a given memory than for the best systematic
code of the same memory. Happily, Bucher [26] has obtained
theoretical results which indicate the possibility of
achieving lower error probabilities with non-systematic
codes than with systematic codes. Experimental verification
of this fact is given in Chapter VI.
E. A Gilbert Lower Bound for an Easiily Instrumented Sub-
class of R = 1/2 Non-Systematic Codes
The usual Gilbert lower bound argument states that there
must exist at least one code with & 2 d if d is the least

integer such that

d no. of codewords with no. of codes which can
Z X | generate a particular >
3=0 % # 0 of weight j codeword of weight j

total no.

of codes (130)

Consider the class of R = 1/2 fixed non-systematic codes

(2) (D) =D + G(l) (D) and go(l) = go(z) = 1., For any

(1)

information sequence and any G(l)(D) with 9 = 1, each

with G
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codeword y always has exactly one 1 in ¥q- Hence the number

of first constraint length code digits which can be chosen
independently is nAml = 2m+1.

For any information sequence x whose transform is x(D},
the sum of the transforms of the two transmitted sequences

is given by

(1)

x(D) G (D) + x(D) [ D + G(l)(D)]= y(l)(D) + y(z)(D) .
(131)
Hence
oxm =y Do +y? (132)
and
TP I TR P I S DR (133)
Therefore a partidular choice of [1] fixes [z} and X

m m-1
can be chosen arbitrarily. Also, for any particular choice

of [X] and [y] ., the matrix of generator functions G(D) =

o m .m

[G(l)(D) D + G(l)(D)] igs fixed. Hence only two codes can

produce any specified choice of [Y] . Note also that there
m

are 2™ possible choices for G(l)(D) and therefore 2m possible

codes. Equation (130) then reduces to

a-1
2
E: < " ) x2>2™ (134)
J
j=0
But g-1 -
Z 2m < (2™ = (Eﬁ_)and (134) becomes
LY O j
= | a-1\ -
(2m) H{75~) > m~1 , (135)
or
lim H (ﬁi-)z z . (136)
m —s= 20 A

This proves the following result.
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Theorem 4.7 For R = 1/2 non-systematic fixed codes with

G(Z)(D) =D + G(l)(D), there exists at least one code such

that

- D
lim 5 > .110.]|
m—» CO

Note that theorem 4.7 is exactly the same as the
Gilbert lower bound on dFD for R = 1/2. Therefore it is guar-
anteed that this class contains good codes. Since non-system-
atic codes are better for sequential decoding than systematic
codes, codes of this type should perform very well. Another
property of these codes is that they can be simply instru-
mented and that they possess the principal advantage of
systematic codes, the so-called 'quick look" capability. The
instrumentation and "quick look" capability of these codes
will be explained in detail along with their construction,

simulation, and performance in Chapter VI.



V. Some Results on Free Distance

A, Bounding the Length of the Information Sequence Which
Produces the Shortest Minimum Free Weight Codeword
Property F4 of free distance implies that a finite num-

ber of blocks of information digits are needed to produce the

minimum free weight codeword for non-systematic fixed codes.

And lemma 4.2 shows that a finite number of blocks are needed

for non-systematic periodic codés,

For the special case of R = 1/2 non-systematic fixed

(1) (2)

codes with G (D) and G-

(D) relatively prime polynomialgs
an improved bound on the length of information sequence needed
to produce the minimum free weight codeword can be obtained.

(1) (2)

Since G (DY and G (D) are relatively prime, there exist

polynomials A(D) and B(D) of degree less than m such that A

(D) G(l)(D) + B(D) G(z)(D) =1 [27] . Hence for any informa-

tion sequence x whose transform is x(D),

=@ am ¢ @ + xm s ¢ (D)

It

x (D) [A(D) G(l) (D) +

B(D) G(z) (D)} (137)

1t

x(Dy . (138)
Since an information sequence capable of producing the
minimum free weight codeword cannot have any span of m con-
secutive zeros, the minimum free weight codeword cannot have
any span of 2m~l1 consecutive all-zero blocks. Therefore at

least one 1 must be produced in every 2m-1 encoded blocks.

105
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But every R = 1/2 non-systematic fixed code has dFREE at
most 2(m+l), and 2(m+l) 1's must be produced in the minimum

free weight codeword within (2m+1l) (2m-1) +1 blocks. Hence

%REE = Tam%em-1 - (139)

Note that the bound of equation (139} is derived in a
similar fashion to the bound of property F4 since the matrix

A (D)

Q"l(D) = is a zero~delay feedforward inverse for
B(D)

G(D) whose polynomial elements have maximum degree M = m-1l.
A similar argument can be used to derive the following bound

for fixed systematic codes of all rates:

GREE P(N-K} (m+1)m (140)

These bounds appear to be very weak since in practice
the minimum free weight codeword is almost always produced
by the first m+l blocks of information digits. This remains an
important problem since a tight bound would greatly simplify
the calculation of dFREE' The difficulty in proving a tight
bound stems from our lack of knowledge about the weights of
products of polynomials. However, for some special cases,

tighter bounds can be obtained. For instance, if dﬁD is the

reverse feedback decoding minimum distance and if

to>
S%p * 9gp 7 Ty
for any i, then

deree = Fom - (141)
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This follows from the fact that any information sequence with
some X, #0, i > 2m, produces a codeword with weight at least
dFD over the first m+l transmitted blocks and weight at least
dﬁD over the last m+l transmitted blocks. Theorem 2.4 then
yvields (141y. If the code is reversible, then (141} holds if
2dFD > ri for any i.

Also, for almost all fixed and periodic systematic codes,
lemma 4.2 can be modified as follows:

d

FREE =~ “(3I) m '
. . <
where I is the least integer such that ry dFD + IdDD for

(142)

any i, dDD satisfies equation (105) with equality in the
fixed case and satisfies theorem 4.1 with edquality in the
periodic case, and dFD satisfies equation (103) with equal-
ity.

As noted earlier, Neumann [ll] has suggested that the
correct bound on the length of information sequence needed
to produce the minimum free weight cheword is m+l blocks,
i.e., dFREE = rm. Unfortunately, the following counter-

example disproves this conjecture.

2 10 11

: 4 5 5
Example 5.1 Let G(l)(D) =1 +D°+D +D +D +0D + D

(2)

3 4
(DY =1 + D2 + D +D + D8 + D9 for an R = 1/2 non-

5
systematic fixed code with m = 11. For x(Djy = 1 + D2 + D +

8 10 11 12 1y 1) 23
D + D9 + D + D + D , y( )(D) = x (D} G( )(D) =1 4+ D

, 2 6 7 9
and y(z)(D) = x(D) G( )(D) = 1 + D3 +D +D + D8 + D + Dlo +

D21 and the weight of this codeword is 10. But for any x(D}

and G

such that X, # 0 and degree [X(D{] < 11 = m, the weight of
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the codeword produced by x(D) is at least 1l1l. Hence dFREE
#r .l
Note that G(l)(D) and G(z)(D) in example 5.1 are relatively
prime, so the conjecture does not hold even when the gener-
ator functions are relatively prime polynomials.

The same conjecture has also been made for systematic
codes only. However consider the following counterexample.
Example 5.2 Let G(l)(D) =1, G(z)(D) = G(B)(D) =1+D +

D2 + D4 + D6 + D7 + D8 for an R = 1/3 fixed systematic code

with m=8. For x(D) =1 + D + D3 + D6 + D8 + Dg, y(l)(D) =

xo) V) =1 +p 403 +0° 0% 10, vP 0 =vP

<0 P M =xm & @ =1 + 07, and the weight of this

codeword is 10. But for any x(D) such that X # 0 and degree
[X(Dﬂ < 8 = m, the weight of the codeword produced by x(D)

is at least 11. Hence dppp # rm.\

It is interesting to note, however, that no counter-
examples to this conjecture have yet been found for R = 1/2
systematic codes. The author has been able to find some
codes for which an information sedquence with degree greater
than m produces a codeword with weight equal to L but none
with weight less than e The difficulty may lie in the fact
that very long codes are needed to provide counterexamples,
and distances are very difficult to calculate for long codes.
Also, no counterexamples have bean found for systematic codes
of rate other than 1/2 whose generator functions are relative-

ly prime polynomials.
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The difficulty in finding counterexamples to this con-
jecture leads one to believe that the true bound is very
close to L perhaps Lom’ at least for codes whose generator
functions are relatively prime polynomials. Hence it is
also likely that T is always very close to the actual free
distance.

B. Calculating dFREE

Unfortunately, there can be no simple, geheral method
of calculating dFREE until a tight bound is obtained on the
length of information sedquence needed to produce the minimum
free weight codeword. Then dFREE can be calculated simply
by computing the minimum row distance over the bounded
length of information sequence. However there are many

tricks which can be used to find or to closely approximate

deREE"

Since di < dFREE < ry for all i, di and r; can be

successively computed. If at some point j, dj = rj, then

dFREE = dj = rj, Property F4 showed that dFREE = dj = rj—m
for some finite j if the encoder has a feedforward inverse.
Sometimes the free distance of the reverse code, i.e.,
the code whose generator matrix is described in definition
2.15, is known. If so, the free distance of the original
code is the same as that of the reverse code. This follows
from the fact that each codeword in the reverse code is the

reciprocal of the codeword in the original code produced by

the reciprocal information sedquence, where the reciprocal
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of the sedquence z =[go, Zq: 52,...] is taken to be [ csey
Zy gl, EO] . Since the weight of a sequence and its re-
ciprocal are the same, the set of codeword weights of a
code and its reverse code are the same. Note that this is

true only for dFREE’ and not for dFD or dDD’

Very good approximations to dFREE can be found by
computing r, or di for as large an i as feasible. For in-
stance, a computer program has been written for use on the
Univac 1107 computer at the University Computer Center which
calculates deq for R = 1/2 fixed codes in just a few minutes.
This usually provides a very good approximation to dFREE for
codes with encoding memory less than about 50. d6l is a
lower bound on dFREE and a reasonable upper bound is usual-
ly known from the weight of the generator or some short low
weight codeword. Hence d6l is often known to be exactly
dFREE' and if not it is easy to make a close approximation.
The values of and bounds on dFREE given in Appendix A were
arrived at in this manner. However, for other rates and
longer codes, good approximations to dFREE become harder to

make.

Example 5.3 Consider them = 71, R = 1/2 fixed systematic
(2) (2) (2)]
» 91,1 eeer 9711

=[g0’ gl,,aa, g7l] is represented three digits at a time

code whose generator sequence [ 99 1

in octal notation, starting with go, as [651, 102, 104,
121, 022, 041, 101, 101] . This code is known to have dFD =
21, But since the weight of the generator is only 21, dFREE

< 21. Therefore dFREE = dFD = 21. This code is one which
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will be constructed in Chapter VI,|

Example 5.4 Consider the following m = 35, R = 1/2 fixed

systematic code with [go, gl, g2,..., g35} = [715, 473, 701,
317] . This code has d61 = 18. But the codeword whose
transform is (1+D) G(D} has weight 18. Therefore dFREE = 18.
This code was constructed by Forney [28} and is presently

being used by NASA in its Pioneer satellite series.|

Example 5.5 The m = 35, R = 1/2 fixed systematic code with

[go, gl,..., g35] = [653, 134, 307, 713] has d6l = 19, Since

the generator has weight 22, 19 < dFREE < 22, This code is

due to Lin and Lyne [29] .|



VI. Constructing Good Convolutional Codes
A, The Minimum Weight Construction Algorithms

In this chapter various algorithms for constructing

R = % fixed binary convolutional codes will be given. 1In
constructing good codes it is desirable that the complexity
of the encoder be kept as small as possible. For example,

if a code is being used to communicate information from a
space vehicle to earth, the encoder is a hardware device on
the space vehicle itself. The usual encoding circuit for an
R = % canonic systematic fixed binary convolutional code is
shown in Figure 6.1. Note that the number of two-input
modulo~-two adders redquired to implement this encoder is ex-
actly WHQg) - N, where g is the generator. Therefore minimiz-
ing Wﬁ(g) for a given distance and constraint length mini-
mizes the number of modulo-two adders in the encoder realiza-
tion. All the codes presented in Section VI.A will exhibit
this property, i.e., for a given distance and constraint
length, wh(g) will have its minimum possible value. As in
Chapter II, [g] i will be used to denote the first (j + 1)N
entries in . g.

1. An Algorithm for Finding Good R = 1/2 Convolutional
Codes

In this section, a simple algorithm will be given which
will be shown to produce good R = 1/2 canonic systematic
fixed binary convolutional codes for all m £ 71. First a
statement of the algorithm is given and then several inter-

esting properties of the codes produced are shown. (For

112
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= multiplication in GF(2) by g§3)-

1
Fig. 6.1. An R = N canonic systematic fixed encoder.
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convenience, let gjl(zj = g,.)

Algorithm Al

(0) set 9y = 1, 4, = 2, and j = 1.
(1) Set 9y = 1.

(2y Compute 4.. If 4., > 4.

5 j-17 9° to (4}.

]
(3) set 9; = 0.
(4 If j = m, stop. Otherwise, set j = j+l

and go to (1).

Property Al-1  w( [g] j) =d for j=0,1,..., m.

J
Proof Wﬁ( [g] y > dj by property C3 of the column dis-
J
tance. However, since wh(goy = dO = 2 and since gj is per-
manently set to 1, i.e., Wﬁ( [g] )} is increased by one, if
J
and only if dj > dj-l’ Wﬁ( [g] J,) £ dj' Therefore Wﬁ( [Q] j) =
da,.]
]

Since properties Cl and C3 of the column distance require

) = > = d__, property Al-l en~-
that w( g ) = w( [g] m) >4 =d. property
sures that WH( g) is minimal and hence the resultant code

requires the minimum humber of modulo-two adders in its en-

coding circuit.

Property Al-2 If gj = 1, then gj+l = 0, for every j # O.

Proof Assume gj =1, j 2 1 (note that algorithm Al sets

9 =9 = 1) . Then set g, 1. The information sedquence

0 j+1 =
(1) _ (1) (1y _ (1) (1>]
X = |X x .eoX, X, =
[ ]J'+1 [0 1 J"'l 3 xj+l = [llopou-l
0,1,0] always produces a codeword with dj+l = dj' There-
fore algorithm Al will set g, = 0.‘

j+1
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Property Al-2 allows us automatically to add a 0 to [g}
after adding each 1 beyond go. This permits a shortcut to
reduce the number of times steps 1 and 2 must be applied to
reach a given length code.

Property Al=-3 Let g be the generator’obtained by using

algorithm Al. Let g' # g be the generator of any other

R = 1/2 canonic systematic fixed code of the same length
such that WH( [g'] .) = dj, i= Q,l,.,., m, i.e., such that
each 1 in the generator increases the column distance by one.
< m, such that 4, > d! and

0~ Jo  Jo

=d', i=0,1,2,000, 4 - 1.
4; = % Jo = 1

Then there exists a g 0 <3

Proof Assume the first point at which the two generators

disagree, ,» 0 < jo <£m, has g, =0, g' =1, Then 4' =

J

d. + 1> dj . But this is impossible, since if the column
0 0

distance can increase at o algorithm Al would make gj = 1.

Therefore, the first point at which the two generators dis-
agree must have gjo =0, g5 = 1, and hence, dj > dj .|

0 0 0
Property Al-3 shows that any other algorithm for generating
R = 1/2 fixed canonic systematic convolutional codes which
increases the column distance by one each time a 1 is added
to the generator differs from algorithm Al in that such 1l's
are not always added at the first opportunity. Note also
that in the computation of step (2), if dj > dj—l' then

d; = dj_ + 1, and if gj is set to 0 in step (3}, then dj = 4,

J 1
and that the codes obtained from algorithm Al exhibit the



116

"nested" property, i.e., for m; < m, . [Q] = [ Lg] , 0,

g ,,..g,o,g *
ml+1 m2 ]

Algorithm Al was programmed on the Univac 1107 com-
puter at the University Computer Center. The most diffi-
cult part of algorithm Al to program is the computation of
d, in step (2). This was done by using a - sequential-de=-
coding-like algorithm suggested by Forney [28] . The flow
chart for this algorithm, called SEAL, is shown in Figure
6.2. The flow chart for algorithm Al is then shown in
Figure 6.3.

The codes obtained from algorithm Al are compared with
Bussgang's [30] optimal codes and Lin and Lyne's [29] near-
optimal codes in Table 6.1. Bussgang's computer search for
optimal codes reached m = 15 before the amount of computa-
tion became too large. Lin and Lyne carried their near-
optimal search out to m = 20 (Forney [28] has extended this
tom = 48). Algorithm Al is sufficiently simple to allow
hand computation out to m = 22 and it was extended to m =
71 by computer., Table 6.1 also compares the codes obtained
with the non-asymptotic Gilbert lower bound [30] , and it
can be seen that the codes remain good out to m = 71. The
adjoints of the codes obtained from algorithm Al, which
are known to have exactly the same set of codeword weights
over the first constraint length [30] , are also given in

Table 6.1.
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start C = branch counter
(:““C) L1l = locad a "1"
gj; L0 = load a "O"
qz IR = information register
g ~ O L_1 CP = compute parity digit
= into P = parity digit
‘F2 W = Hamming weight of path
C%E) T = threshold
> into LID = last information digit

in information register

P=P+1
A
CP
A~

complement
LD 5

unload
LID

Fig. 6.2. SEAL flow chart.
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O rt WR = write
J/ T = threshold

O W = Hamming weight of path

stop

Fig. 6.3. Flow chart for algorithm Al.
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TABLE 6.1

COMPARISON OF R = 1/2 CODES

A
d A
%5 % % % w4 3 9y 5 4y g
0 1 1 2 2 2 2 36 0 0 13 11
1 1 1 3 3 3 3 37 0 1 13 12
2 0 1 3 3 3 3 38 0] 0 13 12
3 1 0 4 4 4 4 39 0 1 13 12
4 0 1 4 4 4 4 40 1 0] 14 12
5 1 1 5 4 5 51 41 0 0 14 13
6 0 (0] 5 4 5 5 42 0 0 14 13
7 0 0 5 5 5 6 43 1 0 15 13
8 1 0 6 5 6 6 44 0 0 15 13
9 0] 0] 6 5 6 6 45 0] 1 15 13
0 0 6 5 7 7 46 0 0 15 14
1 1 7 6 7 7 47 0 1 15 14
0 1 7 6 7 8 48 1 1 16 14
0 1 7 6 8 8 49 0] 1 16 14
0 0 7 6 8 8 50 0 0 16 15
0 0 7 7 ) 9 51 0 1 16 15
1 0 8 7 9 52 0] 0 16 15
0 0 8 7 9 53 1 0 17 15
0] 0 8 7 9 54 0 0 17 15
0 1 8 8 10 55 0 1 17 16
1 0 9 8 10 56 1 0 18 16
0 1 9 8 10 57 0] 1 18 16
0 0 ") 8 10 58 0 1 18 16
0 1 9 9 10 59 0 0 18 16
1 0 10 9 11 60 0 0 18 17
0 0 10 9 11 6l 0] 1 18 17
0 1 10 o 11 62 1 0 19 17
1 0 11 9 11 63 0 0 19 17
0 0 11 10 12 64 0 1 19 18-
0 1 11 10 12 65 1 0 20 18
0 0 11 10 12 66 0 0 20 18
1 1 12 10 12 67 0 1 20 18
0 0 12 11 13 68 0 1 20 18
0 0] 12 11 13 69 0 1 20 19
0 0 12 11 13 70 0 0 20 19
1 0] 13 11 14 71 1 1 21 19
dGILBERT BOUND dLL - dLIN AND LYNE dB dBUSSGANG

</_:}J, = adjoint codes
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An interesting, but as yet unsolved, question is
whether algorithm Al will continue to produce good codes,
i.e., codes whose column distance increases linearly with j,
as j becomes arbitrarily large. The amount of computation
required by algorithm Al, because of the calculation of dj
in step (2), appears to increase exponentially with increas-
ing j, as it does in all known search techniques for finding
codes. However, because of its éimplicity, algorithm Al
requires less computation than other known search techniques.

2. Algorithms for Generating Good R = % and R = % Codes

I mad

For rates R = &, N > 2, an algorithm is sought for gen-

=z

erating codes such that dj = Wﬁ( [9] j}’ j=0,1,2,..., m,
and 1's are added to the generator at the first opportunity
consistent with this constraint. Since there are now N - 1
digits, viz. gjl(z)’ gjl(3)""' gjl(N), to be specified in
each block, there will not be a unique algorithm with the
above property for N > 2. For example, for N = 3 the three
following algorithms each result in a code such that dj =
wh( [g] J.)and "ones" are added to the generator at the

earliest opportunity. For N = 3, it is well known [29] that

d. < dj—l + 1 so that it is unnecessary to test the choice
gjl(2) = gjl(3) = 1 since the column distance can never in-
crease by 2. (For convenience let gjl(Z) = gj(z) and gjl(3)
_ g.(3).)

]
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Algorithm A2
(2) (3)

(0) sSet 9 = dy = 1, do = 3, and j = 1.
(1y set gj(z) =1, gj(3) = 0.

(2} Compute d,. If d. > dj_l, go to (6).

(3) set gj(z) = 0, gj 3 = 1.

(4) Compute Qj, If dj > dj—l’ go to (6).

(5) Set gj(z) = gj(” = 0,

(6 If j = m, stop. 6therwise,set j=3j + 1 and
go to (1l).
Algorithm A3
Steps (0) through (5) are the same as in algorithm
A2,
(6) If j = m, stop. Otherwise, interchange steps
(1) and (3), set j = j + 1, and go to (1).

Algorithm A4

Steps (0) through (5) are the same as in algorithm
A2,
(6) If j = m, stop. Otherwise, if dj increased
during step (2}, interchange steps (1) and
(3, set j = j +1, and go to (1). 1If dj
increased during step (4) or remained the
same, set j = j + 1 and go to (1}.
The codes obtained from algorithms A2, A3, and A4 are
shown in Table 6.2 and are compared to Bussgéng's codes,
Lin and Lyne's codes, and to the non-asymptotic Gilbert lower

bound. FEach algorithm was carried out to m = 35 by computer.
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TABLE 6.2

COMPARISON OF R = 1/3 CODES

Algorithm A2 Algorithm A3 ~ Algorithm A4

| (2)  (3) (2) (3) (2) (3)
I % 9 % 9 95 4 95 95 4 9y 95 g
0 3 3 3 1 1 3 1 1 3 1 1 3
1 4 4 4 1 0 4 1 0 4 1 0 4
2 5 5 5 1 0 5 0 1 5 0] 1 5
3 6 6 6 0 1 6 1 0 6 1 0 5
4 6 7 7 1 0 7 1 0 7 1 0 7
5 7 8 8 0 1 8 1 0 8 1 0 8
6 8 9 9 0 1 ° 0 0 8 0 0 8
7 8 ] 0 1 10 1 0 9 0 1 9
8 9 10 0] 0 10 0 1 10 1 0 10
9 9 11 1 0 11 0 0 10 0 0 10
10 12 1 0] 12 1 0 11 0] 1 11
10 12 0 0 12 0 1 12 0 1 12
11 13 1 0 13 0] 0] 12 1 0 13
11 14 0 0 13 0 0 12 0 0 13
12 15 1 0 14 0 1 13 1 0 14
12 15 1 0 15 1 0 14 0 0 14
13 16 0 0] 15 1 0] 15 0 1 15
14 16 1 0 16 0 0 15 0 0 15
0] 1 17 0 1 16 1 0 16
0 0] 17 1 0 17 1 0 17
1 0 18 0 0 17 1 0 18
0 0 18 0 1 18 1 0 19
1 0 19 0 0] 18 0 0 19
0 1 20 1 0] 19 0] 0 19
0 0 20 0 0] 19 0] 1 20
0 0 20 1 0 20 1 0 21
1 0 21 0 1 21 0 0 21
1 0 22 0 0 21 0 0 21
0 1 23 0 1 22 0 1 22
0 0 23 0 1 23 0] 0. 22
0 0 23 0 0] 23 1 0 23
0 1 24 0 0 23 1 0 24
0 0 24 1 0 24 0] 0 24
1 0] 25 1 0] 25 1 0 25
0 0 25 0 0 25 0 1 26
1 0] 26 1 0 26 0 0 26

= = d L = d
GILBERT BOUND LL LIN AND LYNE dB BUSSGANG
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Again the codes are quite good and are considerably longer
than other known good R = 1/3 codes. Note that the codes ob
tained from Algorithms A2, A3, and A4 exhibit about the same
distance properties. Indeed it seems the many variations of
the algorithm available for R = 1/3 will have little effect
on the distance properties of the resulting codes. The two
adjoints of each of the codes obtained from Algorithms A2,
A3, and A4 are given in Table 6. 3.

Note that at m = 7, the code obtained from Algorithm A2
has greater feedback decoding minimum distance than Lin and
Lyhe's near-optimal code. It can be shown that this code
meets the Plotkin upper bound [8] on feedback decoding mini-
mum distance at m = 7. |

(2) (3) (4)
To generate R = 1/4 codes, . , .
g / ng ng , and gjl

must be specified for each j, and it must be recognized that

an increase of either one or two in the column distance for
each j is possible. Only one algorithm will be given for

generating R = 1/4 codes with the property that dj = W

H
qg] j) and 1l's are added to the generator at the earliest
opportunity. (For convenience, let gjl(z) = gj(Z), gjl(3)=
gj(3)' and gjl(4) _ gj(4)_)

Algorithm AS
(0) sSet go(z) = g0(3) = 90(4) =1, dO 4, and j
(1) set gj(Z) = gj(3) =1, gj(4) =0, 1i=1, and

go to (8).
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(2} set gj(3) =0, gj(4) =1, i = 2, and go to (8).
(3y set gj(Z) =0, gj(3) =1, i = 3, and go to (8).
(4) set gj(3) =0, i = 4, and go to (8).

(5) sSet gj(3) =1, gj(4) =0, 1 =5, and go to (8).
(6) set gj(z) =1, gj(3) =0, i = 6, and go to (8).
(7Y set gj(z) = 0 and go to (9).

(8) Compute dj“ If dj = djml’ go to (i + 1).

(9) If j = m,stop. Otherwise, set j = 3j + 1 and
go to (1).

Table 6.4 compares the R = 1/4 codes generated by Al-
gorithm A5, Lin and Lyne's codes, and the non-asgymptotic
Gilbert lower bound. Algorithm A5 was carried out to m = 35
by computer and again good codes were found. The three ad-
joints of the code produced by Algorithm A5 are given in
Table 6.5. Clearly properties Al-1l and Al-3, as well as the
"nested" property, also hold for the codes of Algorithms A2
through A5.

3. An Algorithm for Generating R = 1/2 Codes with

Large Free Distance

Clearly, it is of considerable interest to find codes
with known dFREE' especially codes for which dFREE > dFD“ A
slight modification of the preceding algorithms can be used
for this purpose. Algorithm A6 indicates the necessary modi-

fication of Algorithm Al.
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TABLE 6.3

ADJOINTS OF R = 1/3 CODES

Algorithm A4

lst adj.

Algorithm A3
lst adj.

(2)
J

Algorithm A2

2nd adj. 2nd adj.

2nd adj.
(2)

93

1st adj.

(2)

(3)  (2) (3) (2y (3) (2} (3
9 95 95 95 95 9

93

(3)

95

(3}

95
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AHH OO~ A~ O0O00 000000000 AMOO0O0COHO™MO
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TABLE 6.4

COMPARISON OF R = 1/4 CODES
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. (2) (3} (4)
] 95 9 95 él.J ds dr
0 1 1 1 4 4 4
1 1 1 0 6 6 6
2 1 0 1 8 7 8
3 0 0 1 9 8 9
4 0 1 0 10 9 10
5 0 0 1 11 10 11
6 0 0 1 12 11 13
7 1 0 1 14 12 14
8 0 0 1 15 13 15
9 0 1 0 16 13 16

10 0 1 0 17 14 17

11 0 0 0 17 15 18

12 1 1 0 19 16 19

13 0 0 1 20 21

14 0 1 0 21 22

15 0 0 1 22 23

16 0 0 1 23

17 0 0] 1 24

18 0 1 0 25

19 0 1 0 26

20 1 0 0 27

21 0 0 1 28

22 0 0 1 29

23 0 0 1 30

24 0 1 0 31

25 0 0 1 32

26 0 1 0 33

27 0] 1 0 34

28 0 0 0 34

29 0 0] 1 35

30 0 1 0 36

31 0 1 0 37

32 0 0 0 37

33 1 1 0 39

34 0 0 0 39

35 0] 0 1 40

d; = 4 dLL - dLIN AND LYNE

GILBERT BOUND
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TABLE 6.5

ADJOINTS OF R = 1/4 CODES

2nd adjoint 3rd adjoint

1st adjoint

(3) _(4)
93 j

(2)
j

(4)
]

(3)

J

(2)
J

(3) _(4)
95

J

(2)

J

SO0~ O - -HOOHOCOOHO~--~HO~rM~O0O~-I4~~NO~O0H
OO~ O0O~HO0OO0OHHH 10 0rM 000~ HHMHMFMHMMHMHAASN~SO~SO0OO

SHHOOO0OHHNMHOOMHOOOHOOHHOHHOHOAHOMHEMOSHO

A~ O~MOO0O~N~-HO-HO0O00O0O~101-H 00O~ O0O--O0O~0O0
A~ O0OHOHA~A~ OO0 ~1HOOHAH1O-OHOHHHOMOO0O

HOMMOONHMOO0OO0OMOO0O0O0OHOO0OOHOOHOOOOHOMOAHO

A~ OO0 OO0 MH A0~ O O0HNHOO0O0OHOO-HOOHOOO

MO~ OHOMHMOO0OO0OHHOHHOOHHFHOOHOHOOSO

Ol NNFIINN OO OANM<H WO~
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23
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33
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N O~
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Algorithm A6 (Assume L 2 m.)

(0y set Jdo = 1, D = 2, and j = 1.

0
(1) set 95 = 1.

> D , set D
(2) Compute dL. If dL -1 3

i
L_P.n

and go to (4).

3) Set g. =0and D, =D, ..
(3 93 j j=1

(4) If j = m, stop. Otherwise, set j

i
Ca.

+

=

and go to (1).
The following properties of the codes resulting from
Algorithm A6 will be presented without proof, since the
proofs are similar to those used to prove the properties of

Algorithm Al.

Property A6-1  w._( [g] ) = D, for all j.
Property A6-2 In the computation of step (2), if dL > Dj-l'

then Dj = D,

3=1+1'

Property A6-3 The codes obtained from Algorithm A6 exhibit

the '"nested" property.
Theorem 6.1 Wﬁ( [g] j) = Dj = dFREE for all j, where dF

is the free distance of the code with memory order j.

REE

Proof Wﬁ( [g} _) = Dj < dFREE by property A6-1 and theorem

L] L] < g i L]
2.4 dFREE < Wﬁ( [g] J-) by property F2 of the free distance
Therefore dFREE = Wﬁ( [g] j) for all j.|

Theorem 6.2 For all the codes obtained from Algorithms Al,

A2, A3, A4, and A5, dpepr = %p = dma

P = d = i -
roof dFD o wH( [g] ) is a property of the codes ob

tained from Algorithms Al, A2, A3, A4, and A5, and Wﬁ( [g] )
m
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= dFREE follows from property F2.|

In general Algorithm A6 will result in generators with
greater weight than those obtained from Algorithm Al. There-
fore, dFREE for the codes obtained from Algorithm A6 will be
larger than dFD for the same length codes obtained from
Algorithm Al. Clearly, it is wise to choose L as large as
is computationally possible in Algorithm A6.

Table 6.6 shows the results of applying Algorithm A6 to
the construction of an R = 1/2 fixed canonic systematic
binary code with m = 35 and L = 71. The adjoint of this code
has dFREE = 18 and is also given in Table 6.6. It is inter-
esting to note that Algorithm Al produced a code with m = 35
and dFREE = dFD = 13. Algorithm A6 resulted in a code with

m = 35 and dFREE = 17. dFD was checked for this code and

found to be 13. Therefore, Algorithm A6 produced a code with

the same length and the same dFD' but with a larger dFREE'
Although the two codes have the same dFD' the code obtained

from Algorithm A6 should exhibit a lower probability of error
when used with sequential decoding. This was verified by
simulating a ssquential decoder for use on a binary symmetric
channel on the Univac 1107. The results of this simulation
will be presented in Section VI.C.

Note that all the codes constructed in Section VI.A have
distances considerably better than the non-asymptotic Gilbert
lower bound and are longer than any previously known good

codes. Also, each code has the property of minimizing the
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TABLE 6.6

CODES OBTAINED FROM ALGORITHM A6

A

] 93 %FREE 93
0 1 2 1
1 1 3 1
2 1 4 0
3 0 4 1
4 1 5 0
5 1 6 1
6 0 6 0
7 1 7 1
8 0 7 1
9 1 8 0
10 0 8 0
11 0 8 1
12 1 9 0
13 1 10 0
14 0] 10 1
15 0 10 0]
16 0] 10 0
17 0 10 0
18 1 11 0
19 1 12 0
20 1 13 1
21 0 13 1
22 0 13 1
23 0 13 0
24 0 13 0]
25 1 314 1
26 1 15 0
27 1 16 0
28 0 16 0
29 0 16 1
30 0] 16 0
31 0 16 0
32 0 16 1
33 0 16 1
34 0 16 1
35 1 17 1

A ai s
g. = adjoint codes

J
NOTE: The adjoint code with m = 35 has dFREE = 18.



131

number of modulo-2 adders needed in the encoding circuit for
codes of a given distance and constraint length.
B. More Construction Algorithms for R = 1/2 Codes

It was shown in theorem 6.2 that the codes produced

by Algorithms Al through A5 have e — dFD. This is a

direct result of minimizing the number of modulo-2 adders
needed in the encoding circuit. Hence this prop=zrty must be
abandoned if codes with dFREE cénsiderably larger than dFD
are to be obtained. 1In this section a number of algorithms
are presented for producing fixed R = 1/2 binary codes with
large free distance.

1. Systematic R = 1/2 Codes

Since a low density of 1l's in the generator necessarily
produces a code with low dFREE’ the following algorithm was
designed to produce a high density of 1's in the generator.

For convenience, let g, = g.s
( 951 95-)

Algorithm A7

(0) set 9y = 1, dO = 2, and j = 1.

(1) set gj = 0.

2 C te d,. If d, > 4, -, to (4).

(2) Compute i : je1 9° (4)

(3) set gj = 1 and compute dj‘

(4) If j = m, stop. Otherwise, set j =3 + 1
and go to (1).

This code and its adjoint are shown for m = 35 in Table 6.7

along with the non-asymptotic Gilbert lower bound. Note that
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CODES OBTAINED FROM ALGORITHM A7
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dj must be recomputed in step (3) since, unlike Algorithm
Al where only the choice g__j = 1 can increase dj' either gj
= 0 or gj = 1 can increase dj'

Since it is known that a randomly constructed code is
with high probability a good code [31] , the following
algorithm was designed to keep the number of 1l's and O's in

the generator sedquence [gOl(zy, gll(z), 921(2%...] about

equal. (For convenience, let g, (2) gj')

jl

Il

Algorithm A8
(0) setg,=1,d,=2, w=0, and j = 1.
(1) set 9; = 0.
(2) Compute dj' If dj > dj- , go to (7).
(3) set gj = 1.

w + 2

(4y Compute dj' If dj > dj- set w

1
and go to (7).
(5) If j > w, set w=w + 2 and go to (7}.
(6) set 9y = 0.
(7) If j = m, stop. Otherwise, set j =3 + 1
and go to (1}.
This code and its adjoint are given for m = 35 in Table 6.8
along with the non-asymptotic Gilbert lower bound. Again
note that either gj = 0 or gj = 1 can increase dj'
Algorithm A8 can be modified to provide merely an ex-
tension of Bussgang's optimal codes from m = 15 to m = 35.
Both of Bussgang's optimal m = 15 codes were extended using

Algorithm A8 and the resulting codes, along with their ad-

joints and the non-asymptotic Gilbert lower bound, are given



CODES OBTAINED FROM ALGORITHM A8

TABLE 6.8
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in Table 6.9. PFinally dFD and dFREE are given for each of
the eight codes constructed in this section in Table 6.10.
Again, dFD is the same for a code and its adjoint, but dFREE
is not necessarily the same since the set of codeword weights
are identical only over one constraint length. For all ex-
cept the code of Algorithm A7, it is possible to give only

a range for dFREE° Note, however, that for each code dFREE

is considerably larger than dFD and tha£ dFD is about the same
as for the m = 35, R = 1/2 codes constructed in Section VI.A.
Hence it is reasonable to expect that these codes should
perform considerably better with sedquential decoding than
those of the previous section. That they do will be demon-
strated in Section VI.C.

2. A Non-systematic R = 1/2 Code

It has been noted that non-systematic codes are capable
of providing a lower probability of decoding error than
systematic codes for sequential decoding. However it is also
desirable that the "quick-look!" and ease of implementation
properties of systematic codes be retained. Massey [32] has
shown that the class of fixed binary R = 1/2 non-systematic

codes for which a Gilbert lower bound on dFD was proved in

Section IV.D has these properties. For these codes

6, % =p+e, D ore?m =n+cP . e

Therefore, for any information sequence whose transform is

x (D),
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TABLE 6.9
EXTENSIONS OF BUSSGANG'S OPTIMAL M = 15 CODES
BUSSGANG 1 BUSSGANG 2
A A
j . . d, . . .
] % % 9 3 ¢ % %
0 2. 1 1l 1 1
1 3 1 1 1 1
2 3 0] 1 1 0]
3 4 1 0 0] 1
4 4 0 1 1 0
5 4 1 1 1 1
6 4 0] 0 0 0
7 5 1 1 1 1
8 5 1 0] 0 1
9 5 0 1 1 0
10 5 0 0 0 0
11 6 1 0 0 1
12 6 0 1 1 0]
13 6 1 0 0 1
14 6 1 0 0 1
15 7 1 0] 9 0 1 )
16 7 0 0] 9 1 1 9
17 7 0 0 9 1 1 9
18 7 0 1 ] 0 0 ]
19 8 1 1 9 0 1 10
20 8 1 1 10 1 0 10
21 8 0 1 10 1 1 10
22 8 0] 1 10 0 0 10
23 9 1 1 10 1 0 10
24 o 0 1 11 0 1 10
25 9 1 0 11 0 0 11
26 9 0] 1 11 1 0 11
27 9 1 0 11 1 1 11
28 10 0 0 12 1 1 12
29 10 1 1 12 0 0 12
30 10 0 1 12 0] 1 12
31 10 0 1 13 1 1 12
32 11 1 1 13 0 1 12
33 11 1 0 13 0 0] 13
34 11 0] 0] 13 1 1 13
35 11 1 1 13 1l 1 13
A ..
g, = adjoint codes

d d
G GILBERT BOUND
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TABLE 6,10
DISTANCE PROPERTIES OF 8 m = 35 CODES

CODE dFD dFREE
Algorithm A7 13 16
A7 adjoint 13 18 < dFREE < 22
Algorithm A8 13 16 < dFREE < 20
A8 adjoint 13 18 < dppon < 22
AB8-BUSSGANG 1 13 16 < dFREE_S 20
A8-Bl adjoint 13 18 < dFREE < 20
AB8~BUSSGANG 2 13 18 < dFREE < 20
A8-B2 adjoint 13 17 < dFREE < 23




138

Yo+ v P 0 = xm P+ xmy 6P

(1)

(D) = x(D)

[G(ly(D) +D + G (D{] = D x(D} (144)

and the information sequence can be obtained from the two
encoded sedquences with a delay of one time unit simply by
adding together y(l)(D) and y(Z)(D)u This allows a quick
look at the data sequence to be made before submitting the
received sequence to error correction, i.e., this code has
the "quick-look" property. (Clearly, the first K received
sequences alone provide the “quick-look" for canonic system-
atic codes.)

Consider the following realizable function:

XiQL =——>—==1+D+D +4... +D . (145)
x (D) 1 +D

Form (145) it follows that

v(D) + Dy(D) = x(D) + Dm+l x (D) {146)
or

y(D) = x(DY + D [y(D) + D" x(Di} . (147)

A linear sedquential circuit (LSC) which realizes equation

(147) is shown in Figure 6.4. If 3(3Y by is the complement

of G(j)(D), then

Y(j)(D) = x(D) G(j)(D) = x(D) [E‘j)(D) +1+D +‘..£dn].
(148)

A circuit which realizes equation (148) is shown in Figure
(3)

6.5. Hence if G (D} has a high density of 1's and therefore
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140

requires many modulo-2 adders in its realization, E(j)(D),
which requires few modulo-2 adders in its realization, can

be implemented instead and the output complemented to produce
y(j)(D). This fact will be used to greatly reduce the com-
plexity of the class of R = 1/2 codes with G(z)(D) =D + G(l)

(DY. A code of this type will now be constructed. (For con-

- (1) (1) (2) (2)
venience, let g, = g, d g, =
Algorithm A9
1 1)y ,
(0) set go( ) = gl( Y - 1, dl = 3, and j = 2.

(1) set gj(l) 7 0.

(2) Compute d4,. If dj > dj«l' go to (4).

(3) set gj(l) = 1,

(4y If j = m, stop. Otherwise, set j =3 + 1
and go to (1).

Note that the set of weights of the codewords [z] with

(1) = 0 or gj(1) = 1 since com-

(1)

plementing Xj cancels the effect of complementing gj .

X, # 0 is the same whether gj

Hence there is no need to recompute dj in step (3} as in

Algorithm A7 since if setting g.(l)

= 0 does not increase 4.,
(1) J

then neither does setting gj l. Also, an increase of
two in d, at any step is clearly impossible, since if ¥ =
[l,l] for some input sequence [5] , then ¥ = [0,0] for the

input sedquence [_}glJ ; = [[5] j=17 _}EJ] , and the column
distance does not increase at all. Hence at each step in the
algorithm, dj either increases by 1 or stays the same. The

code produced by Algorithm A9 with m = 35 is given in Table

6.11 along with the non-asymptotic Gilbert lower bound.



TABLE 6.11

CODES OBTAINED FROM ALGORITHM A9
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The free distance for this code is known to be at least
17, and is probably much higher. The complete encoding cir-
cuit is shown in Figure 6.6. Note that only 11 modulo-2
adders are needed in the encoding circuit. This is exactly
the same number needed to implement the m = 35 code of
Algorithm Al which has dFREE = 13, Hence a substantial gain
in dFREE (and therefore in decoding probability of error)} has
been achieved without sacrificing anything in encoder com-
plexity or "quick-look" capability. A truly surprising re-
sult!

Most of the codes presented in this section could have
been easily extended out to about m = 60. However m = 35
seems to be a convenient length for many applications.

C. Performance of Codes with Sequential Decoding

1. Brief Description of the Simulated Sequential Decoder

In order to test the codes constructed in this chapter
along with other known good codes, a sedquential decoder was
simulated on the Univac 1107 at the University Computer Center.
Two simulations were made, one for a BSC and one for a
Gaussian channel. Each program consists of four parts: a
main program DECODE for reading in data and printing out re-
sults, a subprogram RANGEN for generating random noise, a sub-
program TABSET for converting the random noise into tabular
form suitable for the sequential decoder, and a subprogram
SECO for the sequential decoding algorithm. Special thanks
are due to Dr. K. Vairavan, who programmned both the RANGEN

and TABSET subprograms, to Mr. John Geist and Mr. James Wruck
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for their numerous contributions to the efficiency of the
programs, and to Mr. J. Chang and Mr. John Brennan for the
preparation of the Gaussian program.

Each subprogram was written in assembly language to
make the program as fast as possible, while the main program
was written in FORTRAN to facilitate the input-output. Input
information needed for therperation of the BSC program is
as follows (for a complete discussion of sequential decoding
parameters and notation, see Gallager [25] y:

(1Y channel error probability p;

(2) the memory m of the code;

(3) the generator of the code being tested;

(4) the threshold increment H of the se-
quential decoding search:;

(5) a constant CONMET used to spread the
difference between the metric values;

(6) bins for the number of computations.

Rcomp and the metric values are then computed from p

and CONMET. The threshold increment H used in the production
runs was determined experimentally. The value of H which
optimizes the bound on computation is known to be 2 [3] .
Since CONMET was chosen as 8, the '-optimum" H is 16, How-
aver, through testing a single code for different values of
H, it was determined that choosing H to be 32 was a better
choice from both a computational and probability of error

standpoint. These results are shown in Table 6.12.



TABLE 6.12 145
EFFECT OF VARYING THE THRESHOLD INCREMENT H

Code No. 1 Code Name  Minimum Weight Code

Memory = 35 Rate = %4 Type _ Systematic

Generator Sequences (Octal): L0O0000000000

651102104421
Known Distance Properties:
dPD = 13 dFREE = 13
Nature of Construction: Algorithm A1l
Simulation Results: Total Error Erased
(1) Channel BSC: p = .033 H 4 Frames 4000 Frames 1p Frames 0
Computation: Total Error Bits: 3u
N 2921 3101 3505400 gu75 §550 4§ 700§12532500i5000] 10K§20K § 50K
# Frames ° '
with #C Z N 1000|1000[1000}1000{1000] 999 | 986|607 | 15442 | 15 | 4 | 0
Total Error Erased
(2) Channel BSC: p = .033 H 8 Frames 1000  prapes 10 Trames O
Computation: Total Error Bits: 34
N 2921 310§ 35014003 4750550 ) 700§1250}125005000§ 10K | 20K} 50K
# Frames
with #C 2y 1000] 1004100011000 3911957 | 756{226 | 55 16} 5 0 0
Total Error Erased
(3) Channel BSC: p = .033 H 16 Frames 1000 Frames 11 Frames 0
Computation: Total Error,Bits: 37
N 2921310 | 350{400 | 4751550 | 700112501 25005000 10K J20K | 50K
# Frames
with #C 2y 1000§1000§4000] 989869 | 6653369 | 85 23 10 0 0 0
Total Ervor Erased
(4) Channel BSC: p 8 .033 H 32 Frames 1000 Frames 16 Frames O
Computation: , Total Error Bits:u45
N 2921310 | 350]400 | 4751550 ] 700§12502500f 500G10K § 20K | 50K
# Frames
with #C zy 10001 1000 992|880 585§397 | 206| 53} 16 4 1 0 0
Total Error Erased
(5) Channel BSC: p = .033 H 64 Frames 1000 Frames 26 Frames 0
Computation: Total Error Bits: 62
N 2921310 350]400 | 47515501700 §11250250015000 10K] 20K | 50K
# Frames
with #C Z N 1000] 100Q 9931886 | 642§ 502 {315 85| 29 7 3 1 0
Total Error Erased
(6) Channel BSC: p = .033 H 128 Frames 1000 TFrames_ 177 Frames 0
Computation: Total Error Bits: 488
N 292|310 | 350{ 400 § 47515501 70081250G2500]1500G 10K] 20K |50K
# Frames
with #C Z N 1000 10061000 997 | 9823954 ¢ 891565} 227} 86| 22 9 1
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Each production run consisted of 1000 frames of 256
branches (blocks of information digits) each for a particular
code and a particular channel error probability p. A frame
was cut off and considered to be "erased" if it reached
50,000 computations. If a frame was decoded perfectly, it
took (256 + m) computations since 256 information blocks gen-~
erate (256 + m) transmitted blocks and the algorithm would
count one computation for each correctly decoded block.

Hence the computational bins are just numbers inclusive be-
tween (256 + m) and 50,000 which record how many frames
reached or exceeded that number of computations for decoding.
Usually 13 computational bins were chosen for each produc-
tion run. Eb

In the Gaussian program the signal-to-noise ratio N

0]
must be read in instead of p, where Eb is the energy per

information digit and N, is the noise power spectral density.

0
Then the procedure outlined in Jacobs [33] is followed to
compute the metric values needed by the sequential decoder.

Output information available from the BSC program in-
cludes the following:

(1) the actual branch metric wvalues and Rcomp7

(2) for each decoded frame:

(a) the number of computations;

(b) the number of decoding errors;

(c¢) the last branch decoded if the frame

is erased;
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(d) the received sequence;
(e} the decoded sedquence;
(3) for the entire 1000 decoded frames:

(a) the number of erased frames:;

(by the number of incorrectly decoded frames;

(¢} the number of correctly decoded frames;

(dy the distribution of computation into

bins. .

Clearly the total number of error digits can be easily cal-
culated from (2b). When the number of computations reached
50,000, decoding was terminated and the frame declared
"erased". The output then recorded how far the search had
progressed into the code tree when decoding was terminated.
The printout of the received sequence and the decoded se-
quence for each frame is optional in the program.

For each computational bin, the number of frames which
reached or exceeded that amount of computation is recorded.
For example, the bin labeled 50,000 always contains the
number of "erased" frames, and the bin labeled (256 + m)
always contains the total number of frames.

In the Gaussian program, additional output information
about the channel is available.

In the RANGEN subprogram, a library subroutine is used
to generate a noise sequence distributed according to the
channel error probability p for the BSC program. In the
Gaussian program, the noise sequence is distributed accord-~

ing to the quantized channel model given by Jacobs [33] .
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TABSET merely converts the noise sequence into tabular data
for use by SECO.

SECO is the actual sedquential decoding algorithm. The
version used is thoroughly discussed by Gallager [25] . A
flow chart for SECO is shown in Figure 6.7. It is always
assumed that the all-zero sequence has been transmitted.
Since this was known to the programmer, SECO was always
biased to look out on a 1 branch before loocking out on a 0
branch in case the metric values on the two branches were
tied. (Here the discussion pertains only to R = é codes,
in which there are only two branches emanating from each
node in the code tree.) This undoubtedly resulted in slight-
ly more computation than would be required normally, but of
course this deficiency was common to all runs and would be
expected to have no effect on the comparison between differ-
ent codes.

A computation was counted as a '"forward look", i.e.,
every time the decoder looked forward on a branch, and at
no other time, a single computation was counted. Each com-
putation, including the calculation of the parity digits,
took about 100 psec of computer time.

The SECO algorithm is capable of handling both system-
atic and non-systematic codes with m < 72. Programs actually
available are for R = 1/2, R = 1/3, and R = 1/4 only. How-
ever, only results on R = 1/2 codes will be reported here,

since they are sufficiently representative of all rates.
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Also, data was taken for only three values of p and one

E

value of ﬁb' These values are very typical, though, of
0

a practical randomly distributed space channel. For p =

, each production run of

.033, i.e., R =1/2 = (0.9} Rcomp

1000 frames took about two minutes of computer time. For

p = .045, i.e., R =1/2 = R each run took about four

comp’
minutes. For p = .057, i.e., R =1/2 = (1.1) R , each

comp
run took about 20 minutes. And for g— = 2 or 3 db, each
run took about five minutes. °

2. Comparative Analysis of Codes

In Appendix A charts are given which have complete
information on 13 different codes. A name and number is
assigned to each code for identification purposes, and the
means of construction for each code is briefly explained.
Simulation results are given for the four channels des-
cribed above. Not all the codes were tested with p = .057,
since the computation time was so long.

An interesting comparison can be drawn between code 1
(from Algorithm Al) and code 3 (from Algorithm A6). Note
that there are fewer error frames for code 3. This appears
to be due to the fact that dFREE is larger for code 3,
since dFD is the same for both codes, and substantiates
the previous statement that 4

FREE
eter than dFD for sequential decoding.

is a more important param-

Also compare code 11 (the non-systematic code from

Algorithm A9) with code 12 (from Forney [28] Y. The non-

systematic code is clearly superior in number of error
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frames, although it has more erased frames. For the noisi-
est BSC, p = .057, code 11 makes no decoding errors while
code 12 incorrectly decodes about 10 percent of the frames.
However code 11 erases about 15 percent more frames than
does code 12. But of these frames it appears that about
half of them were incorrectly decoded by code 12. Massey
[32] has termed this a "fools rush in where angels fear to
tread" phenomenon. The slight computational advantage of
code 12 over code 11 is clearly due to this phenomenon.
Since code 1l is more easily implemented than code 12 and it
has the "quick-look'" property, the conclusion is that it is
far superior to code 12 in system performance as well as
system complexity. In fact, code 11 did not make a single
decoding error in all four simulations. To the author's
knowledge, code 12 is generally considered the best m = 35
systematic code available for sedquential decoding. The per-
formance of code 11 verifies the earlier statement that
better results can be obtained for non-systematic codes than
for systematic codes when used with sequential decoding (since
more free distance is available for non-systematic codes).
Finally, compare the performance of code 2 with code 1.
This indicates the advantage of using longer codes. However,
encoder complexity increases with code length, which is an

important consideration in many applications.



VII. Deriving Good Convolutionalmcédes
from Cyclic Codes

For completeness, this chapter will summarize at-
tempts to derive good convolutional codes from good block
codes, or at least to bound the distance of a convolu-
tional code from known distance bounds on block codes.
Some of these attempts have been dquite successful, such as
the codes due to McEliece’[lo] bresented in Section VII.A,
others relatively unsuccessful, such as those in Section
VII.B, but still of some interest for their structure. 1In
Section VII.D a possible new approach to this problem is
discussed, and some limitations inherent in deriving con-
volutional codes from block codes are given in Section VII.E.
In Section VII.C a method is presented for converting a code
described by a parity-check matrix into a rationally equiva-
lent generator matrix which is then reduced to Forney's [6]
canonic generator matrix.
A, McEliece's Codes

The following result was obtained by McEliece [10] for
fixed R = 1/2 systematic codes only. If g(x) is the gen-
erator of a cyclic code with minimum distance dg and h(x) is
the dual generator of g(x) with minimum distance dh, then

(2)

the fixed R = 1/2 systematic code with G (D} = g(D) has

dppgg 2 Min [ 1+d, 2+ ah] . (149)

Note that in order to assure a large free distance a

cyclic code must be chosen which has a large minimum distance

152
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and whose dual code also has large minimum distance. Hence
very low rate cyclic codes are not a good choice, since

their dual generators have very low distances.

Example 7.1 Let g(x) =1 + x2 + x5 + x8 + x9 + xlo + xll‘+

xlz, the dual generator of the Golay code. Then dg = 8,

h(x) =1 + X2 + x4 + x5 + x6 + xlo + xll, and dh = 7. Hence

the fixed R = 1/2 systematic code with G(z)(D) =1 + D2 + D5

1 2
+D8 + D9 + D 0 + Dll + Dl has dFREE 2 9. Since the weight

of the generator is 9, dFREE = 9°l

5 9 10 11
Example 7.2 Let g(x} =1 + x4 + X + X + x + X 4+ xl3

14 16 17 18 20 21

22 23
+ X + X + X + X + X + + x + x , the gener-

X
24 . _ _ 4 5
ator of an R = 47 cyclic code. dg =11, h(x) =1 + x + x +

8 9 11 12 15 18 2 23 24
X b X FX A X A x txe o+ x4 x +x ,and 4 = 12.

2 0y =

g(D} has dFREE > 12. But since all parity sedquences p pro-

Therefore the fixed R = 1/2 systematic code with G

duced by an information sequence x with Xb # 0 either have
weight at least 11 or x has weight at least 12 and p has weight
at least 2, the only possible weight 12 codeword is produced
by the information sequence x = [1,0,0,...} . But this code-
word has weight 16. Hence dFREE > 13. Also the only possible
codewords of weight 13 are those with weight 2 information
sequences. But it can easily be shown that no information
sequences of weight 2 can produce a codeword of weight 13.
Hence dFREE > 14. But if the sequence whose transform is h(D)

is chosen as the information sequence, a codeword of weight

] i . = 14,
14 is obtained Therefore dFREE |
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These codes are comparable to those constructed in
Chapter VI, and it appears that long medium rate cyclic
codes with good distance properties will produce good
fixed R = 1/2 systematic convolutional codes for sequen-
tial decoding.

McEliece's result will now be extended to the im-
portant class of fixed R = 1/2 non-systematic codes and
also to fixed R = 1/3 systematic codes. Let g{(x) and h(x)
be two relatively prime polynomials such that g(x)

h(x) = x™-1. Clearly g(x}) and h(x) each generate a cyclic
code of length n, and they are each other's dual genera-
tors. Let dg be the minimum distance of the cyclic code
genherated by g(x) and let dh be the minimum distance of the
cyclic code generated by h(x).

Now consider the fixed R = 1/2 non-systematic convolu-
tional code with G(l)(D) = g(D) and G(Z)(D) = h(D). Using
the Euclidean division algorithm on an arbitrary informa-

tion sequence x whose transform is x(D) implies that
x(D) = h(D) qi(D) + rl(D) = g (D) q2(D) + r2(D7- (150)
Therefore

v @ = xm ¢V = g0 @D + (D) gy

(151)
\ )
v 2o = xm ¢'? @ = gy ©"1) + £, (D niD)
and, since the remainder cannot have higher weight than the

dividend after division by p*-1 for any n,
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Wi [y(ly (D)’] + Wy [Y(Z)\ (D):] 2 W [rl(D) g(D)] +

Wiy [rl(ny h(D)] , (152)

where the Hamming weight of a polynomial is defined to be
the number of non-zero terms in the polynomial. Then, since
degree [rl(D)] < degree [h(D)] and degree [rz(D{]< degree
[g(D)] , rl(D) g(D) has weight at least dg' r,(D) h(D) has

weight at least dh’ and

dprEE 2 dg + dh (153}

unless rl(D) = 0, rZ(D) = 0, or rl(D) = r2(D) = 0.

Assume rl(D) = 0, r2(D) #Z 0. Then w [y(z)(D)] 2 4

H
and Wiy [y(l)(D)] > 2 since all multiples of D'-1 must have
weight at least 2. Hence
dFREE 2 2+ d’h . (154)

Assume rl(D) # 0, rz(D) = 0. Similarly

dprgg 2 2 * 9y - (155}
Assume rl(D) = rz(D) = 0. Then h(D} qi(D) = g(D} q,(D) =

x(Dy. Since h(D) and g(D) are relatively prime,

a, (D)
ql(D) = g(D} oy g(Dy £(D) , (156)
a,(Dy = h(D) £(D) , (157)
and
y Mo = £ 9o 01

(158)
v (D) = £(m) nD)y D*-1) .

Again using the Euclidean algorithm, let



156

£(D) = g(D) Ql(D) + R, (D) = h(D) Q, (D) + R, (D). (159)
Then
vy (D) = o, (D) -1} + R.(D) g(D) (D"-1)
2 2 (160)
P =0, ©*-1) +r, (D) BO) DD,
and
W, [Y(l)(D{] > 2d_ since degree [R (D) g(Dﬂ <n
H g 2 (161)
Wiy [Y(z)(D{] > Zdh since degree [Rl(D) h(Di]< n
implies that
Gppp 2 2(q, *+ dg) (162)
unless Rl(D) =0, R2(D) = 0, or Rl(D) = RZ(D) = 0.
Assume Rl(D) = 0, Rz(D) # 0. Then
dFREE 2 2dg + 2. (163)

If Rl(D) # 0, RZ(D) = 0, then

dFREE 2 Zdh + 2. (164}

And if Rl(D) = RZ(D) = 0, then £(D} = g(D) Ql(D) = h(D)

Q2(D). Since g(D) and h(D) are relatively prime,

Q. (D)
= h = :
Q, (D) (D) 50} h(D) F(D), (165)
QZ(D) = g(D} F(D), (166)
and
vy = ro g 0P-1)
, (167)
v = Fm ho 0P-1).

Again applying the Euclidean algorithm, F(D) can be

written as
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F(D) = h(D} g (D) + r;(D) = g(D} qé(D) + (D) (168)

and

y(l)(D)

il

qj @ ©°-1)° & xy @) g ©7-1)

: 3 (169}
v (m) = @ (D (0"-1)° + ry@ h(D) @y |

Since (Dn-1)3 # D3n—l, it is not immediately clear how to

bound dFREE in this case. However, as is shown in Appendix

B, if
y P =0, @-1F + r (D) g -1
(170)
y(z)(D) = Qz(D)(Dn-l)k + R, (D) h(D)(Dn-l)k-l
for any positive integer k, then
vy [y P @] 2 a, maw, [vP @) 1, (171)

where L = Wiy

Theorem 7.1 For the class of fixed R = 1/2 non-systematic

[(Dn-l)k_l] . This proves the following result.

codes defined above, dpnp 2 2 + min [dg’ dh] .|

Note that there is very little improvement over the R = 1/2
systematic codes.

Now consider the fixed R = 1/3 systematic convolutional
code with G(l)(D) =1, G(2)(D) = g(D}, and G(3)(D) = h(D}.
Following the same line of proof used to derive theorem 7.1

and again employing the results of Appendix B, it is easy to

arrive at the following result.

Theorem 7.2 For the class of fixed R = 1/3 systematic con-

volutional codes defined above, dFREE'z 2 + min [dg + dh -1,

24, 2dg] .
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Example 7.3 Again consider the Golay code and let

6 1
(2)(D) =1 + D2 + D4 + D5 +D + D © + Dll, and

s =1, ¢

G(3)(D) =1+ D2 + D5 + D8 + D9 + DlO + Dll + Dlz. Then

dFREE > 16. |

The extension of these results to other rates appears to
be unrewardingly tedious. Furthermore, R = 1/2 and R = 1/3
codes are of the most practical interest. Edquation (149) and
theorem 7.2 guarantee that-good long fixed R = 1/2 and R = 1/3
systematic codes can be found for use with sequential decod-
ing. The result of theorem 7.1 for fixed R = 1/2 non-system-
atic codes, however, is somewhat disappointing.
B. Wyner-Sullivan Codes

A class of very high rate fixed codes with dFD = 5,
based on the structure of BCH codes, was discovered by Wyner
[34] . Sullivan [35] has introduced simple encoding and al-
gebraic decoding procedures for these codes and has shown
that they do not exhipit the error propagation effect [36]
characteristic of certain convolutional codes.

Consider a parity check métrix of the following form:

Tl 2 ce. @ 1 0 0 0 0
(GB)N—l (GB)N—Z - a3 T s a i P
0 0 cen 0 0 (T L3N, 1 ee.
0 0 ...0 0 © 0 o 0
0 0 ...0 0 O 0 0 0
: : .. o0 o ... o o

(172)
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where a is a primitive element of GF(Zr). Since each power
of o can be expressed as a binary r-tuple, each successive

block of parity check digits is shifted down r rows. Hence
there are r parity checks per time unit and 2F -1 distinct

_ 25 p-1

non~zero powars of a. Therefore N-K = r and R = .
2 -1

The convolutional code defined by an H matrix is taken
to be precisely the set of sequences in the null space of
E?, and no other sequences. Wyner showed that dFD = 5 for
all the convolutional codes in this class by noting that the
first 2r rows of (172) are also a parity check matrix for a
double error correcting BCH code. ( Wyner and Ash [37] have
defined dFD as the minimum number of columns of H which can
add to zero, including at least one column from the first
block.)

The decoder looks at three blocks of syndrome digits before
estimating a block of error digits. Hence the decoding mem-
ory M = 2 and the decoding constraint length EA = 3N = 3
(Zr-l). Clearly as r -9, R - 1 and in the limit infinite
constraint length R = 1 codes with dFD = 5 are approached.
Sullivan [35] has shown that d,, for all these codes lies
well above the non-asymptotic Gilbert lower bound on dFD“

The chief disadvantage of the Wyner-Sullivan codes is
that no method has vet been found to extend the results to
other than m = 2, dFD = 5 codes. Clearly this is a serious

limitation on the usefulness of the codes.
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C. Forney Canonic Form
Forney [6] has outlined an interesting procedure for

converting an encoder into what he calls a minimal canonic

encoder, which is rationally equivalent to the original en-

coder. An example will be given for the Wyner-Sullivan code

with r = 3 which is described by the following parity check

matrix:
_l 110100 i
0l11010
1101001
10111001110100
111092100111010
= (173)
00101111101001
000000010111 001110100
0000000111001 00111010
0000000001011 11101001
. _ ) .
This is an R = 7 code with dFD =5, m= 2, and n, = 21.

The first step is to write the parity-check matrix H
as an (N-K) x N matrix of parity-check functions H(D). This

results in the following matrix:

[ 14D D 1
gT(D) = 1 14D 1
14D 1+D D
D 1 1 (174)
1+D 0 D
0 1+D D
| o 0 4D | .




l6l

Then convert H(D) into canonic systematic form by performing

elementary column operations on ﬂ?(D} which do not change

its null space.

H' (D)

~

1
1/1+D
1

D/1+D

D/1+D

Now H(D) can be converted to

1/1+D

l+D+D2/l+D

D/14D

1

OO

This results in the following matrix:

(175}

the generator matrix

G(D), as detailed in Wyner [38] , where

G(D)

-

10001
0100 1/14D
00101

000 1D/1+D

D/1+D
i
1
1/1

+D

1/1+D%

l%D%D%/l+D

D/1+D

1

2

(176)

Multiplying each row of G(D) by the least common multiple

of its denominator terms results in the following matrix:

1402 0 0
o 1+D° 0
0 0 1+D
0 0 0

0

0

1+D
1+D
1+D

D

2 2

D+D
1+D2
1+D

1

1+b
D

1+D

1

+D2

(177)

In Forney's [6] procedure, the greatest common denomina-

tor of the determinants of all the K x K submatrices of G(D)



is calculated.

This is found to be (1+D)2,

162

Then a ration~-

ally equivalent matrix which is a basis for the row space

of the above matrix can be constructed.

following matrix:

This leads to the

[ 14D 14D 0 0 D 1 D |
0 14D 1 0 0 D 14D
Gg(Dy = (178)
0 0 1+D 0 14D 1+D 0
e 0 0 1+D D 1 14D |

Finally G(D) is converted to what Forney [6} calls the mini-

mal canonic matrix which is rationally edquivalent to each

of the above matrices.

This results in the following matrix:

[ 14D 0 1 0 D 14D 1]
a(D) = 0 14D 1 0 0 D 14D
0 0 14D O 14D 14D D (179)
0 0 O 14D D 1 14D |

Note that Forney's canonic form does not necessarily mean
the code is in systematic form.

Hence the Wyner-Sullivan code with r = 3 has a ration-

ally equivalent encoder with encoding memory m = 1 and en-

coding constraint length n, = 14.

A
circuit for the code can be implemented with only one-stage

Therefore the encoding

shift registers.
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D. Codes Dependent on the Length of Information

Sequence Bound

In Section VII.A, it was shown that the free distance
of certain convolutional codes depends on the cyclic code
properties of the polynomials in the matrix G(D). 1In this
section a different view of this relationship will be taken.
Consider an R = 1/2 systematic fixed code with G =[;xﬁ9] ,

where I, is a semi-infinite identity matrix and

”go(z) gl(z) gz(2) gm(z)- )
go(z) gl(2) o m~1(2) gm(z)
Q= go(z) gmuz(z) gm-l(Z)‘ gm(z)
gO(Z) gl(2)‘= 92(27‘“. gm(2)
L

(180}

Note that (180) truncated after k rows could also serve
as the generator matrix of an (n,k}) cyclic code. Therefore
if the length of the information sequence needed to produce
the shortest minimum free weight codeword is known to be
less than or equal to Xk, dFD of the cyclic code provides a
lower bound on dFREE of the convolutional code. Hence if
the length of information sequence bound were known to be m
for R = 1/2 fixed systematic codes (cf. Chapter V), dFD for
all cyclic codes with generator g(x) and R > 1/2 would
provide a lower bound on dFREE for the fixed R = 1/2 system-

(2)

atic convolutional code with G (DY = g(D). This would
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mean that the BCH bound on minimum distance [39] could be
applied to convolutional codes as well as to block codes.
But, of course, this conjecture has yet to be proved.
E. Some Upper Bounds on Free Distance

Besides providing lower bounds on the distance pro-
perties of certain convolutional codes, cyclic codes also
provide upper bounds on distance for certain convolutional
codes.
Theorem 7.3 Given an R = 1/2 systematic fixed code with

G(z) (DY =G(D) =1 + ng + ae. + Dm and WH [G(D):I > 2, then

FD ~

() dggy € 2 + Wy [HODY]

where H(D) is the lowest degree polynomial such that H(D)

G(p) = D" - 1.

(1Y 4 <1+ W [H(D)] ,

Proof
(1) Let h be the information sequence whose transform
is H(D). Clearly hy = 1 and WH([L gl y=1+

m
Y = < ®
Wﬁxh) Therefore dFD dm <1 + Wy [H(D{]

(2) Wﬁ(h Gy = 2 + Wﬁ(h). Therefore dFREE < 2 + Wiy
[H(D)] |
Theorem 7.3 indicates that generators of low rate cyclic

(2)

codes make poor choices of G (D} for R = 1/2 systematic
fixed codes. However, since the maximal length polynomials

are "pseudo random", it might be inferred that they would
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make very good choices for G(Z;(D) because Shannon [31]
showed that a randomly constructed code has a very high
probability of being a good code. Example 7.4 will prove
this conjecture to be incorrect. However the distance pro-
perties of the other "pseudo random" generator sequences
are still open to investigation.
Example 7.4 Consider the class of R = 1/2 fixed systematic
codes with G(Z)(D) = g(D}, where g(x) is the generator of a

maximal length code, given in Table 7.1.

TABLE 7.1
Rate of the Maximal Memory of the Upper Bound on
Length Code Convolutional Code the Free Distance
2/3 1 5
3/7 4 6
4/15 11 7
5/31 26 8
6/63 57 °
7/127 120 10

Clearly, the convolutional codes get very bad as the rate
of the maximal length codes decreases.l

Now a theorem will be given whose proof is similar to
the proof of theorem 7.3(2), and hence will be omitted.

Theorem 7.4 Given an R = 1/2 systematic fixed code with

G(z)(D) = G(Dy + L(D), where G(D}) is a polynomial and



166

L(D) is a very low weight polynomial, then dFREE < 2 +
{Wﬁ [L(Dﬂ + 1 } Wy [H(Di] , where H(D) is the lowest de=~

gree polynomial such that G(D) H(D) = D"

- 1.
Theorem 7.4 provides a tight bound on dFREE for those codes
whose generator is very close to the generator of a code
tightly bounded by theorem 7.3.

The results of theorem 7.3 and theorem 7.4 can be ex-
tended to fixed systematic codes of all rates and to fixed

non-systematic codes, but the bounds are the tightest in

the R = 1/2 systematic case.



VIII. Summary, Conclusions, and Recommendations

for Further Research

In Chapter I, the formalism for convolutional encod-
ing was introduced and various problems associated with
convolutional codes were discussed. Two different nota-
tional systems were presented, the D-transform approach
introduced by Massey [4] and extended by Forney [6] , which
is used only for fixed codes, and an extension of the vec~
tor notation of Wozencraft and Reiffen {3] , which is used
for both fixed and time-varying codes.

From Chapter II onward, only binary codes, i.e., codes
defined over GF(2), were considered, primarily for conven-
ience since many of the results are easily extended to non-
binary codes. In Chapter II, feedback decoding minimum
distance, definite decoding minimum distance, free distance,
and reverse distance were defined for both fixed and period-
ic codes. Also two new distance measures, column distance
and row distance were introduced. It was claimed that dFREE
is a more appropriate distance measure for sequential de~
coding than dFD' a fact verified in later chapters. A gen-
eral definition of definite decoding minimum distance, wvalid
for systematic and non=-systematic codes of all rates, is
still being sought. 1In Chapter IV, it was necessary to give
an alternate definition of oo and dDD in order to obtain a

lower bound on dDD for non-systematic periodic codes.

167
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In Chapter III, a new definition of encoder equiva-
lence, called causal equivalence, was given which not only
guarantees that the encoders produce the same output se-
quences, but that they have the same column distance proper-
ties when only causal information sedquences are allowed.
This is slidghtly different from Forney's [6} definition,
termed rational equivalence here, where two equivalent en-
coders can have different values of column distance. Then
a mefhod was given whereby a non-systematic encoder with no
causally equivalent systematic encoder can be simply con-
verted to a systematic encoder without decreasing column
distance. Such an encoder is called causally dominant to
the original encoder. Hence systematic encoders are always
as good as non-systematic encoders as far as distance pro-
perties are concerned. However, if a non-systematic poly-
nomial encoder is converted to a causally dominant or a
causally equivalent systematic encoder with rational func-
tions and then each generator function is truncated to pre-
serve the encoding memory, dFD is preserved but dFREE is
not. Finally, general parity-check matrices and syndrome
forming circuits were obtained for non-systematic encoders
of all rates.

In Chapter IV, bounds were obtained on various distance
measures. A lower bound on dDD was shown for both systema-~
tic and non-systematic periodic codes. It is conjectured
that these bounds hold also for fixed codes, but this remains

unproved. Also a Gilbert lower bound on dFD was given for a
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simply implemented subclass of periodic codes with period

T =2m + 1. A strong lower bound on dFREE was obtained for
non-systematic periodic codes, and the result was used to
prove an upper bound on error probability for maximum like-
lihood decoding over a BSC which is superior to Viterbi's [2]
upper bound for low rates and which meets Viterbi's lower
bound at R = 0. An upper bound on dFREE for all fixed codes
which is essentially the same as McEliece and Rumsey's {10]
bound for fixed R = % systematic codes was also shown. It
was indicated how this result can also be extended to per-
iodic codes. Finally, a Gilbert lower bound on a simply
implemented subclass of fixed R = 1/2 non-systematic codes
was obtained. However, a complete set of bounds on the
distance properties of convolutional codes, most noticeably
a Hamming upper bound on dFD’ is still missing.

A major consequence of the results of Chapter IV was
the demonstration that more free distance is available from
non-systematic codes than from systematic codes of the same
length. Hence it was conjectured that non-systematic codes
would perform better with sequential decoding than systema-
tic codes of the same constraint length, a fact verified
experimentally as reported in Chapter VI.

In Chapter V, some partial results were presented on
the still outstanding problem of bounding the length of the
information sequence needed to produce the minimum free

weight codeword. Also some methods of calculating the free
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distance were given, a problem which would be greatly simpli-
fied by obtaining a tight length of information sequence
bound.

In Chapter VI, simple and efficient algorithms were
given for constructing fixed systematic convolutional codes
with dFD considerably larger than the non-asymptotic Gilbert
lower bound out tom = 71 for R = 1/2, and m = 35 for R = 1/3
and R = 1/4. The algorithms always retained the property
of minimizing the number of modulo-2 adders needed in the
obvious encoding circuit for codes of a given length and
minimum distance, an important consideration in many appli-
cations. In addition, an algorithm for constructing fixed

systematic R = 1/2 codes with known dFREE was presented.

Other algorithms for constructing R = 1/2 fixed codes
which do not minimize the number of modulo-2 adders in the
encoding circuit were also given. 1In particular a construc-
tion algorithm was presented for the class of fixed R = 1/2
non-systematic codes for which a Gilbert lower bound was
obtained in Chapter IV. These codes have been shown by
Massey [32] to possess the "quick=-look" property of systema=-
tic codes, and to have a very simple encoding circuit. The
code of this type which was constructed was shown to have
a very large dFREE’ a consequence of its being a non-
systematic code. A very strong result would be obtained if

any of the algorithms presented in Chapter VI could be shown

to produce good codes of arbitrary length.
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Finally, a brief description of the simulated sequen-
tial decoding program was given, and a comparative analysis
of sequential decoding performance for various codes with

memory 35 was presented. Four channels, a Gaussian channel
B

. b ,
with §~ = 2.0 and three BSC's with R = 1/2 = 0.9 R ,
0 comp
R=1/2 =R , and R = 1/2 = 1.1 R , respectively, were

comp comp
simulated. The fixed R = 1/2 non-systematic code was far

superior to all the other codes tested as regards system
performance. Indeed it did not make a single decoding error
over any of the four simulated channels. This was due, of
course, to the advantage in free distance which non-systema-
tic codes possess over systematic codes. Also, because of
its simple implementation, it was very desirable as far as
system complexity is concerned.

In Chapter VII, McEliece's [10] result obtaining fixed
R = 1/2 systematic codes with large.d.FREE from cyclic codes
was extended to fixed R = 1/3 systematic codes and fixed
R = 1/2 non-systematic codes. The results for the latter
case were disappointing, but good fixed R = 1/3 systematic
codes were found. Some codes discovered by Wyner [34] and
Sullivan [35] were presented via the parity-check matrix, and
a method was given for converting a parity-check matrix in
non-systematic form into a rationally equivalent generator
matrix. However the codes considered have not been gener-
alized beyond m = 2 and dFD = 5., A new approach to con-
structing good convolutional codes from cyclic codes was

introduced, but it was seen to depend on proving a tight
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length of information sequence bound. Finally, some limita-
tions on constructing convolutional codes from block codes
were presented. The problem 6f finding some construction
technique which yields good codes as the memory gets arbi-
trarily large remains unsolved for convolutional codes, as

indeed it is still unsolved for block codes.
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APPENDIX A



Code Name Minimum Weight Code

174

Computation:

Total Error Bits:

Code No. 1
‘Memory = 35 Rate = % Type Systematic
Generator Sequences (Octal): 400000000000
651102104421
Known Distance Properties:
dFD = 13 dFREE = 13
Nature of Construction: Algorithm Al
\
(1) Channel Gauss: b0 °°° H 32 Frames1000 Frames 16 Frames 3
Computation: Total Error Bits: 91
N 2921400 1 4501500 1 6003700 1 850§10001120011500140008 10K 125K
# Frames °
with #C &N 1000} 969|906 | 822|681 { 552 u426] 352¢ 275§ 20341 62 | 16 7
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames 1000 prames 16 Frames U
Computation: Total Error Bits: 45
N 2921310 | 350 J400 | 475 {550 § 700 j1250§250085000] 10K{20K | 50K
# Frames
with #C 2 N 100011000f 9921880 | 5851397 | 206 53 | 16 L 1 0 0
Total Error Erased
(3) Channel BSC: p = .0L5 H 32 Frames 1000 Frames 73 Frames 1
Computation: Total Error,Bits: 355
N 2921310 { 350|400 § 4751550 | 700{125012500150001 10K 120K [ 50K
# Frames
with #C 2 N 00011000} 9991991 1 9001769 |} 551§ 2611110} u0 {17 6 1
Total Erased
(4) Channel BSC: p B .057 H 32 Frames 1000 Frames U428 Frames 9
Computation: Total Error Bits: 6406
N 292 {400 | 5501700 § 85041000}1500l 20001 25005000f 10K | 20K {50K
# Frames
with #iC Z N 10001000{ 938 {846 | 775 | 719| 587 508 u50} 287150 | 56 | 9
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N
Total Error Erased
(6) Channel H Frames Frames Frames

N

# Frames
with #C 2 N
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Code No. 2 Code Name Minimum Weight Code

Memory = 71 Rate = % Type  Systematic

Generator Sequences (Octal): 400000000000000000000000
651102104421022041101101
Known Distance Properties:

dFD = 21 dFREE =21

Nature of Construction: Algorithm Al

Simulation ReSUltS:E /N = 2.0 Total Error Erased
(1) Channel Gauss: b’ o " H 32 Frames 1000 TFrames 9 Frames L
Computation: Total Error Bits: 2p
N 292§ 40oOJ 450 § 5001600 {700 §850 {1000812001500] 4000 10K] 25K
# Frames °
with #C z N 1000f 9951970 | 904 {727 160714558372 {12821 212 57 13 5
_ Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames 1000  ppames 11 Frames 0
Computation: Total Error Bits: 16
N 2921 400}550 1700 1850 §11000§15002000i250015000¢ 10K 1 20Ki 50K
F e
iitiazcsé N 100q 9781507 {249 1u4j 81 37§ 231§ 16 5 1 0 0
Total Error Erased
(3) Channel BSC: p = .0u5 H 32 Frames 41000 Frames 62 Frames 1
Computation: Total Error,Bits:3ng
N 2821 400§ 550] 7001850 311000j15001 200012500 5000 10K1 20K 150K
# Frames
with #C Z Yy 100011000} 8321589 {458 1363} 217;146 103 |29 11 |5 1
Total Error Erased
{4) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C Z N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N .
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N




176

Code No. 3 Code Name_ Minimum Free Weight Code

Memory = 35 Rate = % Type Systematic

Generator Sequences (Octal): 400000000000
732460703401
Known Distance Properties:

dFD = 13 dFREE = 17

Nature of Construction: Algorithm A6

Simulation Results:, N =2.0 Total Error Erased
(1) Channel Gauss: b’ o °° H 32 Frames 1000 Frames 5 Frames 1
Computation: Total Error Bits: o7
N 2921 400 4501 500} 600 §700 § 850 1100011200415001 4000 10Ki 25K
F :
fitﬁaggsg v |1ooof 973 Je0o | 800|651 | 521 u07| 336f 264 210 60f 20| 8
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_1000 Frames 1 Frames O
Computation: Total Error Bits: 5
N 2921400 § 5501700 | 8501100011500§2000}25005000] 10K | 20Kt 50K
# Frames
with #C 2 N 10001873 | 3794183 { 121} 84§ 33 {21 R 8 2 0 0
Total Error Erased
(3) Channel BSC: p @ .045 H 32 Frames_ 1000 Frames 17 Frames 3
Computation: Total ErrorgBits: 174
N 2921400 | 5501700 | 850 §1000] 15032000125005000} 10K | 20K} 50K
# Frames
with #0 2 N 1000] 992f 746 {522 | 400327 | 196|147 | 107{ u5 |23 | 13| 3
Total Error Erased
(4) Channel BSC: p = .057 H 32 rppames 1000 Frames 234 Frames 93
Computation: Total Error Bits: 5226
N 292 1400 | 550700 {850 §1000] 1500200052500 5000 10Kj 20K 150K
Frame
zith #ng N 1000|1000} 9271823 | 7u6| 683] 547§ u81j 437§ 3091 2023107 | 33
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N




Code No. n Code Name Minimum Free Weight Adjoint
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Memory = 35 Rate = % Type Systematic

Generator Sequences (Octal): 400000000000

653110162147
Known Distance Properties:
dFD = 13 dFREE = 18
Nature of Construction: Adjoint of code no. 3
Simulation Results: p o _ , Total Error Erased
(1) Channel Gauss: b’ o " H 32 Frames 1000 Frames 3 Frames 4
Computation: Total Error Bits: 25
N 2921400 | 450}500 | 600§700 § 850511000 120011500} 4000 10K] 25K
Frames °
ﬁith 4C Ty 1004972 ] 904|815 1 668§537 | 407§ 328 263{194 661 221 10
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames 1000 Frames ¢ Frames ¢
Computation: Total Error Bits: 0
N 2921400 | 5501700 | 85011000§1500120001250060001 10Kl 20K 150K
# Frames
with #C 2z N 1000§ 8804378 § 190§116 | 83 36 {18 13 17 2 0 0
Total Error Erased
(3) Channel BSC: p = .045 H 32 Frames 1000 Frames 6 Frames L
Computation: Total ErrorgBits:65 _
N 2921 400 {550 | 7001850 3100011500 2000i2500¢ 50001 10Ki 20K | 50K
# Frames
with #C > N 1000991 {744 515 410337 § 2071141 | 116§ 581 23 |14 L
Total Error Erased
(&) Channel H Frames Frames Frames
Computation: _ Total Error Bits:
N .
# Frames
with #C Z N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C T N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Prames
with #C Z N
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Code No. 5 Code Name Maximum Weight Code

Memory = 35 Rate = % Type Systematic

Generator Sequences (Octal): 400000000000

736677773575
Known Distance Properties:
dpp = 18 deper = 16
Nature of Construction: Algorithm A7
Simulation Results: /N = 2.0 Total Epror Erased
(1) Channel Gauss: b'’o H 32 Frames 1000 Frames 3 Frames 2
Computation: Total Error Bits: 10
N 2921400 | 450}) 500§ 600 §700 ]850 j1000{1200§1500] 4004 10K} 25K
# Frames °
with #C 2y 10001974 | 902] 809 6521539 j 41434y | 2781202 § 65 26 8
Total Error Erased
(2) Channel BSC: p = .033 H 32 Erames 1000 Frames 0 Frames 0
Computation: Total Error Bits: 0
N 29231400 | 5504700 | 850[1000§15002000 {25008 50001 10K {20K { 50K
# Frames
with #C 2z N 10001878 1 372]195 § 121] 89 | 36 19 1 17 9 3 0 0
Total Error Erased
(3) Channel BSC: p =.045 H 32 Frames 1000 Frames 8 Frames 5
Computation: Total Error,Bits: 40
N 2921400 } 5501700 §850 [1000115002000§ 250005000} 10K§ 20K] 50K
# Frames
with #C 2 N 1000|992 § 7631534 § 4151327 | 205{140 | 110} 56 § 25 1515
Total Error Erased
(4) Channel H Frames Frames Frames
Computation: _ Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C Z N
Total Error Erased
(6) Channel H Trames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N
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Code No. 6 Code Name  Maximum Welght Adjoint

Memory = 35 Rate = % Type Systematic

Generator Sequences (Octal): “00000000000

656374423651
Known Distance Properties:
- = =
dFD_ 13 18 = dFREE = 22

Nature of Construction: Adjoint of code no. 5
‘Simulation Results:p o _ , Total Error Erased
(1) Channel Gauss: b’ o H 32 Frames 1000 Frames 0 Frames 7
Computation: Total Error Bits: 0

N 292§ 400} 450} 5001600 {700 §850 {1000{1200f 1500 4000f 10K 25K

# Frames °

with #C 2y 1000§ 971 ] 902}818 ) 662§ 541 §ju21{ 335267 % 207165 17 {11
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_1000 _ Frames__0Q Frames 0
Computation: Total Error Bits: 0
N 2921 L00f 550|700 § 850 §1000§1500}2000:12500] 5004 10Kj} 20K} 50K
# Frames ,
with #C 2 N 1000 880§ 385} 193 | 122} 86 34 211 17 8 2 0 0
Total Error Erased
(3) Channel BSC: p = .0u5 H 32 TFrames 1000 Frames_ 7 Frames 4
Computation: Total Error,Bits: 72
N 2921400 | 550§ 700 {850 ©000}150012000j2500{5000f 10K120K | 50K
# Trames
with #C 2 N 10001991 7571534 {427 | 354 2108451 11u4]53 28 12 L
Total ‘ Error Erased
(4) Channel H Frames Frames Frames
Computation: _ Total Error Bits:
N
# Frames
with #C 2 N
Total Error Erased
(5) Channel _ H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C T N
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Code No. 7 Code Name Balanced Code

Memory = 35 Rate = L4 Type Systematic

Generator Sequences (Octal): 100000000000

653125446515
Known Distance Properties:
= € €
dFD = 13 16 dFREE 20
Nature of Construction: Algorithm A8
Simulation Results: N = 2.0 Total Error Erased -
(1) Channel Gauss: b o *“H 32 Frames 1000 Frames 3 __Frames__ 5
Computation: Total Error Bits: 33
N 2921400 | 450500 § 6001700 | 850[10007312001500f 400QF 10K] 25K
# Frames ° '
with #C zy 1000] 9711908 } 8149665 § 537j410§ 399i263 4 193f 681 18 {10
Total Error Erased
(2) Channel BSC: p = .033 H _382 Frames_1000 Frames 0 Frames 0
Computation: Total Error Bits: 0
N 292§ 400} 550 700} 850 |1000§ 150Q2000]250035000§ 10K j20K § 50K
# Frames .
with #C 2 N 10001880 378 193] 126} 85 1 33 21 15¢% 10 3 0 0
Total Error Erased
(3) Channel BSC: p = .045 H 32 Frames 1000 Frames 12 Frames 2
Computation: Total Error,Bits: 103
N 2921400 § 550 {700 | 850 §1000§1500§2000{2500{5000] 10K {20K { 50K
# Frames
with #C 2 N 10001991 § 74331516 { 4171 344 2063151 § 116} 581 25 |14 2
Total Error Erased
(4) Channel H Frames Frames Frames
Computation: _ Total Error Bits:
N
# Frames
with #C 2 N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(8) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N
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Code No. 8 Code Name Balanced Adijoint

Memory = 35 Rate = %4 Type Systematic

Generator Sequences (Octal): 400000000000

732453703632
Known Distance Properties:
- 4 <
dFD = 13 18 = dFREE 2 22
Nature of Construction: Adjoint of code no. 7
Simulation Resul'l:s:E N = 2.0 Total Error Erased -
(1) Channel Gauss: b’ o " H 32 Frames 1000 Frames 0 Frames 3
Computation: Total Error Bits: 0
N 292t LoojLu50 | 5004600 1 7003850 §1000§12001500]400F 10K} 25K
# Frames °
with #C 2y 1000] 973 300 { 800649 {536 ju12 | 32u4F 266 211f 59§ 21 8
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_ 1000 Frames 0 Frames 0
Computation: Total Brror Bits: 0
N 292 1 u400]550 1 7001850 10001500} 20002500} 5000 10K} 20K | 50K
# Frames
. . 0
with #C 2 N 10004 873 ] 376} 191 1114 |87 37 201 15 7 2 0
Total Error Erased
(3) Channel BSC: p = .0u5 H 32 TFrames 1000 Frames 5 Frames 6
Computation: Total Error.,Bits: gy
N 292{ 400 1550 | 7001850 10001 150G2000125005000110K 120K 150K
# Frames
with #C 2 N 1000] 992f 746§ 5231410 334}203 § 1uniils | 54 130 15 5)
Total Error Erased
(&) Channel H Frames Frames Frames
Computation: , Total Error Bits:
N
# Frames
with #C Z N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: _ Total Error Bits:
N
# Frames
with #C Z N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C Z N
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Code No. 9 Code Name Balanced Bussgang 2 Code

Memory = 35 Rate = %4 Type Systematic

Generator Sequences (Octal): 400000000000
732443151623

Known Distance Properties:

d = 13 18

FD FREE

Nature of Construction: The code obtained by using Algorithm A8 to extend one

of Bussgang's optimal codes.

Simulation Results: /N = 2.0 Total Error Erased -
(1) Channel Gauss: b’ o H 32 Frames 1000 Frames 1 Frames 3
Computation: Total Error Bits: 7
N 29215400 | L50]500 | 600700 | 8501000 20011500000] 10K | 25K
# Frames * ) A ‘
with #C N 1000} 973 | 899] 799 j6u48 521} 3951326 ¢ 2621199 % 57 |18 10
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames 1000 Frames 0 Frames 0
Computation: Total Error Bits: '
N 2921 400 § 5504700 ] 850]100Q150042003250015000f 10K ] 20K} 50K
# Frames
with #C 2 N 1000} 8731 371} 181114 {78 30 {17 14 7 2 0 0
Total Error Erased
(3) Channel BSC: p = ,045 H 32 Frames 1000 Frames L4 Frames 3
Computation: Total Error,Bits: 38
N 2921 400] 550 [700 | 850 {1000J1500§200012500(5000{ 10K |20K | 50K
# Frames
with #C 2 N 100049921 739) 512 ] 3911307 § 192] 133 105f 43} 25 {13 3
Total Error Erased
(4) Channel . H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C Z N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C ¥ N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N
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Code No. 10 Code Name Balanced Bussgang 2 Adjoint

Memory B 35 Rate = %4 Type Systematic

Generator Sequences (Octal): 400000000000

653137244673
Known Distance Properties:
= < <
dFD = 13 17 2 dFREE = 23
Nature of Construction: Adjoint of code no. 9
Simulation Results: p o _ , 4 Total Error Erased _
(1) Channel Gauss: b’ o H 32 Frames 1000 Frames 1 Frames 4
Computation: Total Error Bits: 19
N 292§u00 | 450{500 | 600{700 | 850{1000{1200]1500/4000] 10K | 25K

# Frames 1000} 971 | 906)81u | 662)550 | 408} 33u | 2561185} 69 |22 | 1u

with #C Z N
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_ 1000 Frames_0 Frames O
Computation: Total Error Bits: 0
N 2921400 |550 {700 | 850]10001500]2000}2500] 5000 10K} 20K § 50K
# Frames
with #C 2 N 1000} 880 §1370 §189 | 118} 78] 32 21 R 9 2 0 0
Total Error Erased
(3) Channel BSC: p =.045 H 32 Frames 1000 Frames_ 3 Frames 7
Computation: Total Error,Bits: 22
N 2921400 ] 550700 | 850§1000150042000§250015000§ 10K 120K | 50K
# Frames
with #C T N 1000] 991 | 7u0] 506 | 402|317 {187 | 138 | 117 us| 24 |12 | 7
Total Error Erased
(4) Channel H Frames Frames Frames
Computation: , Total Error Bits:
N
# Frames
with #C & N
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C Z N
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Code No. 11 Code Name Non-systematic Code

Memory = 35 Rate = % Type_Non-systematic

Generator Sequences (Octal): 733533676737

533533676737
Known Distance Properties:
= <
dpp = 11 17 = dpger
Nature of Construction: Algorithm A9
Simulation Results: N = 2.0 Total Error Erased -
(1) Channel Gauss: b’ o **H 32 Frames 1000 Frames 0 Frames 5
Computation: Total Error Bits: g
N 2921 400J 450} 500§ 6001 700} 850 1100041200§1500}J4000] 10K| 25K
# Frames 3 s
with #C ®y 1000] 968909 | 835§ 676] 567 [ 445§ 358{ 292225 | 70 17 9
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_1000 Frames__ 0 Frames O
Computation: Total Error Bits: 0
N 2921 100} 5501700 | 850110001500 20005005000 10K]20K | 50K
# Frames
with #C 2 N 1000] 883 | 405}223 | 135} 92} u7 26 1 18 5 2 0 0
Total Error Erased
(3) Channel BSC: p = .0U45 H 32 Frames 1000 Frames ¢ Frames g
Computation: Total Error,Bits: g
N 2921400 | 550700 ! 8504100041500:2000P500850001 10K120K 1 50K
# Frames
with #C 2 N 1000|991 785 581 { u77}) 382 240] 167} 134 63 | 36 2318
Total ' Error Erased
(4) Channel BSC: p = .057 H 32 Frames 1000 Frames Q Frames__oug
Computation; Total Error Bits: g
N 292 §400 | 5501 700} 85011000§150012000/250050001 10K J20K 50K
# Frames
with #C Z N 10001 100Q 949{863 | 802753 | 6401585 § 543 juL40 { 358303 {249
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C ¥ N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: ' Total Error Bits:
N
# Frames
with #C € N
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Code No. 12 Code Name NASA Code

Memory = 35 Rate = % Type Systematic

Generator Sequences (Octal): 400000000000
715473704317
Known Distance Properties:

dFD =14 dFREE = 18

Nature of Construction: The adjoint of the code Forney obtained by using the

Lin-Lyne algorithm to extend one of Bussgang's optimal codes.

Simulation Results: N = 2.0 Total Error Erased
(1) Channel Gauss: b0~ “°"H 32 Frames 1000 Frames ¢ Frames u
Computation: Total Error Bits: 0
N 2921 400J450 ] 50056001 7001850 j1000{1200[1500}4000 10K} 25K
Frames
ﬁith #ng N 1000 9691900 | 8101652 | 523404 } 327|254 § 188} 60§ 19 9
Total Error Erased
(2) Channel BSC: p = .033 H _32 Frames_1000 Frames_ 0 Frames 0
Computation: Total Error Bits: O
N 292 | 400{550 | 700}850 11000}15002000]25005000J10K § 20K} 50K
# Frames
with #C Z N 1000| 88u 387 189111 [79 | 26 {18 | 16| 8 | 2 | 2 {0
otal Error Erased
(3) Channel BSC: p = .0u5 H 32 Frames 1000  Frames 2 Frames 4
Computation: Total Error.Bits: 12
N 292 JH00 ] 550} 7001850 1 000}1500}2000§2500] 5004 10K} 20K} 50K
ﬁiiiaggsg v [1000] 991 756|510 [uo3 | 320 f187 | 138 | 1ou| us| st [11 | u
Total Error Erased
(4) Channel BSC: p = .057 H 32 Frames 1000 Frames 87 Frames 108
Computation: _ Total Error Bits: 2071
N 2521400 | 5501 700§ 8504100011500{ 200d2500{50003 10K | 20K} 50K
ﬁiiﬁazgsg N 1000k000f 932 | 817] 731 673|532 | u55{u12 | 319|237 | 181} 108
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C T N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C 2 N
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Code No. 13 Code Name Lin-Lyne Code

Memory = 35 Rate = L Type___ Systematic

Generator Sequences (Octal): 400000000000

653134307713

Known Distance Properties:

dPD = 14 19 FREE

ik
[al)
1A

22

Nature of Construction: Forney's extension of the Lin-Lyne algorithm.

Simulation Results:E /N = 2.0 Total Error Erased
(1) Channel Gauss: b’ o ""H 32 Frames 1000 Frames O Frames 5
Computation: Total Error Bits: 0
N 2924400 J U450} 500§ 6001700 | 850 j1000{1200[1500kL000]J10K | 25K
# Frames
with #C zy 1000|971 1 907} 814 6651538 | 403] 334 2621189 | 65 }20 11
Total Error Erased
(2) Channel BSC: p = .033 H 32 Frames_1000 Frames 0 Frames 0
Computation: Total Error Bits: 0
N 2921310 | 350|400 | 475|550 | 70011250] 25005000 10K |20K | 50K
Frames
iith 40 2y 1000J]1000§992 | 880fj565 | 3701185 { 44 14 7 2 0 0
Total Error Erased
(3) Channel BSC: p = .0Uu5 H 392 Frames 1000 Frames 3 Frames 3
Computation: Total Error,Bits: 31
N 2921 3101350 1 LOOj4L75 1 5501700 1250125005000 10K | 20K| 50K
# Frames
with #C Z N 1000 {1000{999 | 991{895 | 735{506 | 232|111 | 50 {22 |9 | 3
Total Error Erased
(4) Channel BSC: p = .057 H 32 Frames 1000 Frames 80 Frames 118
Computation: v Total Error Bits: 1824
N 292 | 4004550 ] 7001850 |10001450020001250055000}110K | 20K] 50K
Frames
ﬁith #C Z N 10001000927 | 8091738 § 666] 547 4773432 | 330|272 | 2061118
Total Error Erased
(5) Channel H Frames Frames Frames
Computation: Total Error Bits:
N
# Frames
with #C E N
Total Error Erased
(6) Channel H Frames Frames Frames
Computation: ' Total Error Bits:
N
# Frames
with #C 2 N
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APPENDIX B

Generalizing from equations (151), (160), and (169),

y(l)(D) and y(z)(D) can always be written in the following

form:
y Do) =g O - ¥ +r D g @ - nFT (e
v =g, O -1F + R, B O - nF?
for some positive integer k.
Clearly if k is a power of 2, then
o - 15 =D -1 (B2)
and
(Dn - 1)k'l = D(k-l)n + D(k-Z)n + D(k=3)n + ... + 1. (B3)
Therefore
1
WH[Y( )(D)] 2 k dg
%[f”mﬂzkﬁl (B4)
since

degree [Rl(D)J < degree [h(D)]

degree [RZ(D)] < degree [g(D)] . (B5)

Let 0, (D) = P (D) + P (D) D" + P (D) D +

3n
+

p,(D) D ..., where degree [Pi(D)} < n for all i. Then

for k = 3,

y(l)(D) = [PO(D) + Pl(D)Dn + P2(D)D2n Foee ][jDBn + D2n +
D2n (B6)

D + 1| + R, @ g [+ 1]
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=[p,@ + B @ am)| + [p @ + P (D) | D",
[ 2n

P, (D) + P (D) + P (D) + R (D) g(D):l Dt . [po(ny
+ Pl(D) + Pz(D) + P3(D)] p3n +[P1(D) + P2(D)'+ P3(D)
4dn

+ P, (D) ] D™ +...+ [91“3(D) + P, (D) +P,_; (D)

+ Pi(D)] 1> el A (B7)

Let Ci(D) be the coefficient of Dlns Then
D) + ¢ (D) + C (DY +... = R, (D D
C, (D) 1D+ C D) + Co(D) + Cg(D) + Cy _ 1 (D) g(D)

(B8)
and

CZ(D) + C3(D) + C6(D) + c7(D) + clo(Dy + Cll(D) +eeo = Rl(D) g(D) .

Therefore (B9}
Wiy L Co(D)] + Wy [Cl(D)] + W [04(D)] + Wy [CS(D)] +oeee 2
Wy Ry (@) g(D)] (B10)
and

W :CZ(D)] + Wy [C3(D)] ul [C6(D)] + Wy [C7(D)]+,,,,2

W ’Rl(D) g(D)] (B11)

since a sum of the weights of a set of polynomials is always
greater than or equal to the weight of the sum of the poly-

nomials. Hence
[Y(l)(D)] 2 24 . (B12)

Similarly
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w v P @] 2 2a - (B13)

This same argument can be employed for all values of k.
The number of coefficient equations similar to (B8) and
(B9) is always equal to the weight of the polynomial

- k=1
(Dn-l)k l. Therefore if L = Wi [(Dnml) ] ., then

AV4

Wiy [y(l)(D)] Ldg
wy [vP @] 2ra (B14)

for all values of k. Note that this agrees with equations

(B4) when k is a power of 2.
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