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TIME-OPTIMAL CONTROL OF GRAVITY GRADIENT SATELLITES
- WITH DISTURBANCES*

ABSTRACT

The optimal control of spacecraft withgravity gx'adiem coarse stabili-
zation and active libration damping for precision peinting. represents a
promising approach for ad‘_rancéd experiments, e.g. laser cémmxuxﬁca;ions,
where angular position within .001° must be achieved and maintained in
the presence of disturbances. This paper deals with the time optimal con-
trol for t.ﬁis case. A suboptimal (i.e. nearly optﬁnal) control law for the
general gravity gradient satellite ‘(G(}S) is obtained by a two-step épproxi-
mation: first the general GGS is approximated by a dumbbell satellite
(DS) And secondlyra small anglg approximation is derived. - The optimal
control law for this case is calculated and applied to two representative
examples of a 24 hour synchronous GGS. The practical results are shovn
and discussed. It can be seen how the optimal control Iaw derived for the
DSwdrks for. the general GGS vas a subioptimal control law. The Maximum
Principle, which is uéed in t‘his papex‘, is alqo extended to céver openratix_ig
conditions with d:sturbances. It is shown that disturbances change the
optimal control law sign§ficantly, a result thatis very importalit for practical .

applications of the maximum principle,

*The work for this poper. was accomplished while the cuthor held s National Research. Council
Postdoctoral Resident Researck Associateship supported by the Natianal Aeronautics and
Space Administration, Goddard Space Flight Center. The author is very much obliged to Mr.
W. isley and Mr. D. Endres for their valuable suggestions. '



NOMENCLATURE
The center of all coordinate systems are at the center of mass (c.m.) of the

spacecraft. All coordinate systems are right handed.

asa,.a = gravity gradient coefficient for pitch, rcil and yaw respectively
C, - linear viscous damping cogfﬁcient of the daﬁlper rod
C, - iinear spring coefficient of the dampér rod
d,, -red,_uéed disturbancetorcjue(=1’di /1..),i=x, y;z
DS - Dumbbcil Satellite
GG - Gravity Gradient -
GGS - Gravity Gradient Sateilite
H, -~ inertial angular mo’méntum of the main body of the spacecraft,
measured in body-fixed coordinates, i- X, V,2
I. - moment of inertia of the damper red about its axis of 'otation
‘1] - inertia tensor of the main spacecraft body

r - distance from the center of the earth to the c.m. of the spacécraft

t - time
o T, — control torques, i =X, y, 2
T. - disturbance torques, i=x, y, z

d¢i

U, - reduced control torgies ¢ T../1,, ),i=X,y, 2
v - inertial velocity of _tbe sp&ecraft

Xq + Yo - z0 - aftitude reference system (x, has the direction from the center of
the earth to the c.m. of the spacecraft, y, Hes normal to xn and in
 the orbﬂalplain suchthatthecomponent of v in the y, direction is

greater than zero)

yi



X, %, .2, = coordinate system fixed to the main body of the spacecraft x -

yaw axis, y, — roll axis; z, - pitch axis)

Xy Y, 2, < coordinate svstem fixed to the damper rod
- — pitch angle

- set value of pitch angle
- earth gravitatienal constant

_- orbital angular rate, i.e. rotation of the X, ¥, 2, éystem in inertial

~ space, measured inthex,, ¥ , z, system,i=X, vy, z
- angles of the damper rod relative to the body - fixed coordinaté system
—.tim‘e consumed for damping of initial librations
- roll angle
- sét value of roll angle
- yaw"angle
; angular inerticl veloci:y of the i.ain body of the spacecraft, measured

inthex_,y ,z, - system, i= X, y, z

.4 — orbital angular rate for a circular orbit (= . /r?)

vii 'v



TIME-OPTIMAL CONTROL OF GRAVITY GRADIENT SATELL]‘"I'ES-

- WITH DISTURBANCES*

1. INTRODUCTION

- The develbp-meﬁt of control po‘licie.s for highly precise fine pointing of space-
craft is a necessary condition for a number of advanced eﬁﬁeriments, e.g. laser
communications. The gravity gradient technique ! ? offers a good approach for
long term coarse stabilization of a spacecraft. However, precise pointing to
certain angles is required for soine expgﬁments; and it may be desirable to
accomplish this in mini;num time. Also for these ;xperiments,-disturbanc‘es
such as the solar torque acting on the spacecraft must be counteracted by proper

cdntrbl.

The overall optimal control policy must .meet two hasic objectives: (1)
‘acquisition of the pi'ecision pointing modé in mmxmum time starting from a2
coarse GG mode, and-(2) extended term precision peinting by counteraction of
disturbance torques. This paper will treat only the 4cquisition- reqﬁiremem. The
" optimal control law as developéd t;erein is applied to two represeniative ex&inﬁles
of a synchronous equatorial 24 hour e'ai‘th- spacecraft. The method mploym foi‘
active libration damping is the use of a reaction jet device operating in the micro-
pouxid thrust lé&el regime, which can'be an jon eﬁgine~, résistojet; or pulsed plasma
system. It is envisioned t’hat.axiy use of‘ ;che‘ior.l engine would require special con-
" sideration of control actustions. The.main difficulty with the ion engine is that it
cannot be readi-ly turned on and off for thnisting pnrposes Omé'possibiﬁty is to |

combine libration damping with orbit, corrections. Another pos’sibility is to



provide a balanced couple which cancels out thc orbital effects. The resistojet 3
has already been studied as a means of optimal large angle maneuvering for a
synchronous spacecraft. Pulsed plasma systems appear to offer high promise
for uSe in both acquisition and holding rodes due to their precision impulse bit
capabihty and relatively high specific lmpulse. It is assumed that a minimum
of six thrust directions is provided on the spacecraft to provide control in pitch,

.roll, and yaw axes.

The procedure used to develop these control laws is as follows:
1. The general rotational equations of motion for a GGS including a damping

mec hanism is formulated

2. These equations are linearized for a DS in a circular equatorial orbit
with small iibrations. ' |
3. The optimal control laws are deireloped for this DS. To check the validity

“of these control laws for a more general synchronous GGS, the control

laws are applied to the simulation of the complete GGS.

2. EQUATIONS OF MOTION FOR A GRAVITY GRADIENT S‘ATELIJT’E'
For development of an optxmal comtrol lsw, a GGS which has four rigid GG
-booms and a rigid damper rod is assumed,.

The damper rod will be assumed to rotate in a plane fixed with respect to
‘the main body. The spacecraft-damper rod system therefore represents a |
seven degree of freedom system, For pointing the axes of thespacecra.ft to
‘given angles only the equations of rotational motion are of interest vfor cércnlsr

orbits. These are



RS . -
2 o b | (1)
Alzb I

where
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o My cMcos.gsin -Mgpcos. - M gsino, sine - L H

LY
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The torques M., and M,, caused by the gravity giadient ffect are. for the main
body of the spacecraft |

. ' ' ' ~N
3. ‘ - '
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r
o : o o - (3)
and for the damper rod ‘ S >
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P and Mg, used in (2) are given by:

and @)

where the latter term is the restoring torque exerted on the damper rod by the
spring-damper mechanism.
The a, (i=1, 2, 3) and b‘ (i= 1, 2, 3) used in (3), which give the relations

of the GG torques to the angular positions, are:

~
A COS iCcOS ., :
a, cos Sstn, sin ., . Sina Cos .
a, - COS £ SIN ;cos . - sin 2 sin L.
b, a sin., . a,cos.,cos by v @y COS Ly SN L ” ®)
}>2  LA, Sin . Ay COS
and
ba a4, COS .y - 8y SIN £y €OS o = B3 SN oy SIN .y~ ‘
, J
The erquation of motion for the damper rod is
SIS o S Moy + VMg (6)
~2 yb S1M ., v “;b°°s*1"*sz|*xd“——f—-

Integration of (1) and (6) furnishes = , , ..;iyb y e, and., .
'fhe bitc’h,' roll, and yaw angles, which ér,e the Euler angles between the
body-fixed and the attitude reference system, will be used thrmgh«mt this feport.
' These can be obtained by subtracting 7, , the orbital rate which is the rate s
which the attitude reference system rotates in the inertial system, from ﬁb .

4
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This gives

1 ht
o { ¥ pt RO s Tl COS
{7y
'( v yp) COS o Ty P WEID ‘/’
and
v, 7wl ":.“[n o ]
-
A digital program was written' which allows the calculation of , . ,. ,and . |

according to Equations (1) through (7). This program alse pays attention to
‘elastic collision processes of the dar.or rod against its stops, which limit the |

rotation of the damper rod in the x - z plane.

3. APPROXIMATION OF GRAWH GRADIENT SATELLITES BY A
DUMBBELL SATELLITE |
| In this section the ‘eqm:tiou's of meotion for a DS mﬂ be deri-ed from the
equations developed in the previous section for that of the more general grzwity
gradient satellite (GGSy. Thus it will be assumed that ro damper rod exists,
that1 am&lu mehe same order of magnitude, and that | |

1 | JUEEEE S 3)

¥y zz e
Eq; (1y and (2) now yiekf:
: ~

I:x zh (Iyy - lxz) 1) O -gr:x B Tdt - be : (&Y

yy gk (IZZ - I:e':t) ek b T ch - Triy . "95“ (B > (9
and

Izz ek (!x‘ - 'y,ﬁ "V"‘b‘ ;‘yh - 'Ta‘z - T’e!z - ”zb ey

: J

w



Equation (3) becomes:

3. Y
I‘b<-_.;(l . | a, ay .
r
N 3. :
1 ;?(Izz - lu) ay 35 . _
v . (1.0)
3. | ” ‘
“ﬁ) r_;(lm‘ - lvy ¥ ai 32 1
and
My u‘zd - 0
For small angles Equations (9) and (10) can be approximated by
~.
e L Lyt 2 Tt T ( a)
Tte T - N .
Inn X I::
. 3 !.'.1 - l:u. xr.z - Iun - ‘yy o Tcy * Tdy( b '
- i - ¢ “a {by | Ay
va Tyy ¥y >
and
p g2 e te Tt T a S (ey
’ Izz . ‘ Itt ‘ ' J. :
where W2= ;m/g-}-»—_,f:b :ind ‘o L £y = owrnwlyeircuhr egmorialorlit.

Thengnontherightsxdedﬁmion(llb)ischngedwﬁbremmm

: (%ythisoﬂymmthatwrmabuttheyaﬁsmccmedme. This
..‘approachleadstoamoreconvenien formfcrthederivdiondtbeiolhning |
optmxalcomrolcmcepw

B is now assumed that

P va Rt S | ' : . (12)




as is true, e.g. for the ATS-D and ATS-E spacecraft.

- sa .
Y
and
a_, x
where
I
a 2
. oS
- 2
a. -4 .;
2
a_ 3‘0
TC!
U7
i
=X
T
d. ;o220
!zn

Thas Eq. (11) become

-d . | (13)
L odL 4
.d . (15
2 b 4
i Iyy
xe
zz In:_e
Iyy '
-1
vy xx
- :
tz
T T
L ,_(,:_! um = .:_z
. L.
4 T
) X ane d <z
gy Izz

When ¢ =d. = d, ='0-anﬂu ruL Uy areconsit’anteuchdtheﬁqmﬁm‘uz)

to (la;obnwslv gives circles for euchafthephnsepmne plots (-, - ), (z,: )or

L) respectively. Simlﬂimm of the GGCS under the same conditions result

in circles for the phase plane plots trajec’.cries) for ®egles vp to 16°.

This also

proves the applicability of the approximations used to obtain tx;ese equation:.

2 OP"'IMAL CONTROL I"OR THE WIIEBELL SATELLITE

Exuations (13), (14),M(15)giveasaddecmledmmlﬁch
' yawandrollangles ofaD.S. mvw.mmmmdmww

. ’



control law using Pontryagin's Maximum Prineiple practically feasible. Rt is
assnmed that the rednced controi torques u_, u, and u_ are bounded in magnitude,

i.e.
N
-K, —u, o K_ .
~-K.zu, K. > o . (16)
and '
K -u K .
| | s
- 4.1 Optimal Control Laws for Pitch ( :) with no Disturbance Torques
¥- 3
o o |
and % an
X, = i J
Thus (14) becomes
- ,
- , LI S f '
and | (18)
x2 -— ax; - U‘t | ’

when d, =0,

The theory of optimal control ° ¢ shows that a vector -

H=p % (19)



where

]

kol
]
el
Next (19) must be maximized by a proper choice of u_.
' Eq. (19) vields
H pyx, -9, ( - 3% YY),

which is rmaximized by

u, K segn P, - (20),
The theory of optimal control shows fﬁrther, that
ip .
—_ —'-l- 1 1.2
e x
| which yields
. | "’I Sa,p, .
and ‘ : ' ' : , (21)
‘ e
. Selving 21) gives
- A ya_ cos ( {”—a.t - %)
' 22

i

L

where A, ¢ > 0 are integnum—consunts Eq. (20) can now be written as:



ua:lﬁasgn{sin(ﬁ:t-fé):. (23)

The solution of (18) is then:

a P8
a 2 a
and | | ey
A\,

x,(t) K\ %20 ,

N T ) © R : >
where |

Rig ~ X (t = 0)

'xm s 1y (- 0) -.:‘ (t =0y

)
ltéanbeseentha‘t x, (t)and x, &)/ yva, form aciréleinthe x, @) - x, &)/ B, -
plane. - ' '

”»

The center of this circle lies at

K
x — foru, - K
a . G a’h
Q
and at
<
XK=~ fOl' o
-ac' u“ ‘a

' To find the optimum switching law we first consider initial conditions (x
X ,,), which He on a circle which passes through the origin. Compering Eq. 23)
and (24), it is clear that q:nmal trajectories cannot stay longer than for an

10




angle ya_ t =~ on a specific circle. Therefore one can obtain the geometric
locus of all points with initial conditions (x_ ,x /¥a_ = 0), which can be transferred

immediately into the origin, to be the‘t.wo semi-circles shown in Fig. 2.

Now assume initial conditions which require at least two switching points
according to Eq. (23). Also assume the last trajectory will lie oh- S_,. Eg.(23)

and (24) show, that the next to the last state with u, =+ K must last for

m

t —

1A,

It can be seen further, that this state is represented by a semicircle with its
origin at K, 7a_ , with its endpoint on S_, and its starting point at a semicircle
with its origin at 3 K, /2, and a radius of ka /a_ {(see Fig. 3 and Ref. 5 and 6).
When we apply this procedure for all such states leading to'S_,, we see that the
swnchmg circle for switching from -K to‘ + K, is given by another semicircle
with its center at 3 K /a anda radm;us ofK_/a_ When we ccmtinue this procedure
t‘or‘ all initial conditions in the x, -x, /2. plane, we see that the switching

circles are located as in Fig. 3. -

Therefore the centers of the switchihg circles are located at
(2n - 1)=.a-----2 -1.0.1,2..., - 25)

a.

where n is the number of the switching circle.

11




4.2 Optimal Control Laws for Roll () and Yaw (,) with no Disturbance

Torques

When Eq. (13), (14), and (15) are comparéd, ﬁo difference in their form is
noted as long as a #0,a, #0 and a_ # 0. This is valid for a spacecraft with
different principal moments of inertia. Therefore for this case the same optimal
control iaw can be applied to Roll and Yaw as is derived for Pitch in Section 4.1.
This is obtained by substituting (a_ . K,) by (a,K, )or (a .K;) respectively.
However, another control law must be derived, wheﬁ two or three of thé principle
moments of inertia are equal. This will be done in the next section for yaw, when

I =1 .

Yy zz

The flow chart of a digital program for the comtro! laws developed in this
section and section 4.1 is given in Fig. 4. In this program a deadband is defined

as

~ with a =a_,a  ora respectively.

Control is switched off completely, when the state of the system is inside
this deadband (loop 1). Disturbances or’later the application of the exact GGS -
program can drive the system out of the deadband again (lfoqp 2). |

4.3 Optimal Control Law for Yaw () for 1. =1, with no Disturbance Torgues

b

For a eymmetrical spacecraft Iyy =1 _ >> I, and hence becomes 0. For -

this case another optimal control law must be derived for yaw ()

12



_ x, ., |
w ol e

2. 1)
then (12) becomes
X, X ‘ ' ‘
and . b 1 R @7
_ i¢2 Cuy, J

Using (19) and (26) the ﬁam.iltonian becomes H = P, X, +P, u, which is maximized

by
u, = K'z sSgn p,2 .
Applying :
dp, -H ..
T P
again gives
- ‘ ‘ pl -0 ) o
and ' ) g , -(28)
« » p2 - ?'. : , .
wiich results in
, | p, =B N | .
and o : _ o (29)

Pzz‘st-*c'

From Eq. (27) and (29) one obtains

. o2 , .
%, =K, t‘:‘z‘sg-n (C-Bt) + Dt + E
| (30)

A

and

x, =K, t sgn(C-Bt) -D

13



Thus all trajectories are pa,r#bolas. From (29) it is eﬁ-ident. that p, can change
sign at most once. Therefore the complete optimal trajectory from a given initial
éondition inthex - x 2 . plane consists of one or two segments of a parabola,
where the second parabola leads to the origin. It 18 evident, that the parabolas
leading to tﬁe 6rig:in are also the sw-l’tcl'ﬁng"lir‘;es (see Fig. 5 and Ref. 5 and 6).

For initial conditions with x 20 = 0 the time consumed for reaching the origin
can be calculated to he

Figﬁxfe,ﬁ shows the flow chart for a digital program of this control law.

4.4 Consideration of Different Reference Values

The optimal control .laws_;in the above seétions leada , & and?;f to the origin.
We will.now consider the case fbr referen.ce'} values (sét values) a_, 2,  # 0.
vConsi.de'ring Eq. (13) through (15) w:th a,,a, A, a, # 0 one szes that the follow-
ing new ’equétions can be written; which contain an additional control term of thrust

to balance the gravity gradieixt» torque at the set value:

~
T % L= tKy, ey, | |
b+ a, ¢ = ik«b +a, 7, 7 v ', (31)
and L
1 +ad'a-:-qu +.aa @ . )

But Eq. (31) also can be written as
_ k"l ta, v - 4 K,

14



and

. where
and

Therefore Eq. (17) - {24) can be applied as before, now leading /,. ¢,.and 2,t0 0
and therefore by it and o to the desired sethoi_nts. In Fig. 3 the sw'itch.ihg lines

will shift and also the optimal trajectories. This results in Fig. 7.

A similar approach is valid for yaw (v) when a, = 0. The switching lines
~ of Fig. 5 must simply be shifted so that :they lead tov Wy e

4.5 Consideration of Disturbancé's |

The spacecraft usually i< subjected to vérious' disturbances, which are
different in magnitude and time history. However there are two typical ldnds
of d.xsturbances which shouldbe considersa: a LUuboant bias toi‘que and a dis-
- turbance torque with a 24 hour period A constant disturbance torque can be
| caused e.g., by attitude thruster misalignments: station keeping thrusters can
introduce dlsturbancro torques where the thrust vector is not aligned through the |
- center of mass. A disturbance torque with a 24 hr. period is caused e.g. by

solar pressure» acti.ng on the synqhmnous spacecr,aft.
First a constant disturbance torque will be considered. Eq. (15) now is

a +a¢'a _-‘ua'.)_d»a" v o o (32)

15



where d_ is the constant disturbance torque divided by I,,. There are two
approaches to solve this problem theoretically. First d_ could be measured by
observing the shift of the trajectories and then counteracted by a'control torque

of the same magnitude. The total reduced control torque would be now:

u, —_— K ~d _ (33)
[
zz
This would lead to the same switching lines for optimal control as in Fig. 2, 3
and 7. However the practical hardv.are constraints show that control wi'ques

according to Eq. (33) are much more difficult to implement than control torques

of the form
TCI
. . I.._ - + Ka. .

Therefore a modification of the switching lines of f‘ig. 2, 3 and 7 is found as

follows:

From (32) one proceeds as was done for (17) - (22):

Xl bt xz,

Xy "~ - oag X Uy +da
and
»

H::pl X, + Py ( -aaxl+u¢+da)

which again results in condition (23).

16 .




Sabstituting + K, by + K, +d_ in Equation (24) shows that all trajectories are
shifted by 4, / 2_ in the direction of the x -2xis and tLat the radii change. Similar
considerations which led to Figure 2 and 3 give Fig. # for the optimal switching

linea.

Similar cmsideraﬁms hold for optimal comtrol of . when a =0, We only
have to substitute + K bysz K - d!‘ in Eq. (30). The equations for the switching

lines read now-

- ,
, '2(—‘1‘ - d ) x ‘or X, LY

and - S > B9

*, . ﬁ(K.-, -d ) % ftore, 20 J

I,; is obvious, that the above'calculzﬁbm are only vali'.i for K d;. fori= ., ; ,
For slowly changing d:stnrbances opﬁmal_ comrol could be mvlemented by
. changmg the switching lines according to Fig. 8 and according to the m.ome:'tary
value of d,. The interactions of changing disturbances amt changing of switching
lines bring up serious prpbléms of ﬂeﬁiﬁcaﬁm of disturbances and prchlems
of stability, which are presemly under mﬁigzﬁm. Two woaches to optimal
conmtrol w!ule the dismrhance torque is varymg are sbown in Fxg. 9. Ris assutned

thattheopﬁmaltrzyectorystartswﬁhouﬁdnsturbanceatx ' X, /ﬁ. and reaches

0
S andfP andfo}lmtss gaﬂerswﬁclﬁngcaﬁroltmm-l(to+lﬁwtﬂadis~
turbmwedoccursattheiwthemmatl’ Thetr'ejectorvmwchages
fromthaafs ms{,,,ms dependswonthedwmmmce TheS tra-
w&rwsmcﬁckswﬁbtbeirmmby ci/aindirecﬁmofx. T\m-

procedures now exist:

*$ replaces Sy, S_replaces S_, in section 41 |

17



a. Retention of + K at P, , thereby following trajectory R ,, to P, and there
svitchingto K When S,, is reached at F, , comrolisswitchedbacktoﬂ(and
S” !ollowedﬁathe origin, oc

b. After occurence of th¢ disturbance d at P control is switched immediately
to - K, until S,, is reached at P/. S,, then is followed to the origin by changing

f2 B

the control back to + K.

'However, for the further investigaticns of the optimal control law in this
paper it is assumed, that T, - K for all three axes. Thus, it is not necessary
to apply the refined control law given in f’ig. 8 and 9. The approach to the origin

in presence of smaﬂ disturbances can be seen from Fig. 10.

I can be seen from Fig. 10, that the positive x axis may serve as an ad-
dihomlswitchingﬁnewhenthemmryimenectsffmmenepﬁvex direc-
'mm, The negaivex ~ axis forms the additional switching line in the case when
the &= ajectory intersects coming from positive X, -values. A more sophisticated
cmollzwia.mepresenceofdmmbncesmmgpstedforfuureworkmm
area as follows: switching from + K to - K or vice versa‘slnll'beimpleme!ted,
whmthediﬁmekmthewm(heres origm)startatoilmme This

should at least give stable performance mdgr all worﬁng conditions. |

5. APPLICATION OF THE DS-OPTIMAL-CONTROL TO THE GRAVITY
GRADIENT SATELLITE o |
. This section will discuss the results of q)plyingthe DB'eodfol to the GGS
computer simulaﬁon. Two GGS - conﬁgmﬂm are used. The first, which wﬂl
becalledGGSl mcharactenzedbyl 1=,~“ > I' ’ andnodnmpimmeclunism

' thesecaad (GGSZ)mcRnractenzedbythe momeuso(inerﬁzonheAﬁwnmnﬁe

18



5.1 Data of the GGS

a. For the symmetric case (GGB 1)

1non O g
S SR | ) 48000:. 0 (tn shug ft2)

0 0 48000 |

e ced

I, 6andC -C, 0.

)
b. for the unsymmetric case (GGS 2)

3180 o o |
I 0 136060 261 | (inslug ft?)

0 261 16700

I 540 slug ft2.

. ) 0
053,40,

€, - 1.322slug ft2/ sec
and ' - |

c, 471972 stug fe2 /sec?.

5.2 Choice of Control Torques

_ MOrder‘wcimosetheprwngniMeoica‘roltm'me-i! shmldbended,' |
that a necessary coridition for‘ controllability o! a gravity gradiem satellite is,
that in the whole pointing region for each axis

T > T . T, . o (35}

€ ge T d

15



where T is the contrel torque exerted by the ion thruster, 1'“ is tlie restoring
torque due to the gx'avity gradient effect for a particular set of value and T is

the disturbance torque. To point ip a particular directicn . . . /' a certain 1'"
has to hbe counteracted: thié torque can he calculater hy Eq. (10). Since T ,
changes only when the set »vakues. of :. :,and . are changed and therefore muoch
less often than T, counteraction of T, by 2 control torque of the same magnimﬂe
can be assumed. Pointing is desired to every point on the earth disc as seen from
a synchronous spacecraft. Therefore -8.5" - . ,: . 8.5" is valid, and a2 maximum
gravity gradient torque in this region f~r the pitch ( ) - axis of the asymmetric
spacecraft is given by |

2.5. 1075 fe Ih.

g€ Imaxn

A disturhance torque i - 2ssumed to be caused by solar pressure with a peak value

of 10 ° /£ 4. Eq. (35) now vields

T -35. 10°% ft Ib.

To give the same ch /1 ratios on the other axes of tbe asymmetric spacecraft
and on all axes of the symmetric spacecraft, the foilowing torques are chosen
for the asymmetric spacecraft

T,,-t28.5-107 ft Ib
and _
T, =:6.6.107 ft Ib.
and for the symmetric spacecraft:

= 107% fe Ib |

1t

TC‘G.
T, =107 fe 1b
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and

T -2.09. 10% ft Ib

~

5.3 Comparison of Time Consumed for Damping Librations to

- = : =, =0 for GG Satellites and DS

The optimal switching lines given in Fig. 3, 5 and 7 are'appi.ied to all threé
axes simultaneously. To compare the fesults obtained for a GGS with the ideal
| case of a DS, the time consuxized for reaching an angle of 0° after a certain initial
condition is plotted in Fig. 11 and 12. For Fig. 11 the time consumed for a DS is
calculated by applying the optimal con!:x:ol law derived in Section 4 to the equation

are

X +ax=uwherea=a, andu=zx K, . Two different a_,called a_, and a_,

1
used for GGS 1 and GGS 2, respectively. Therefore two different DS must be used

ior comparison. DS 1 uses a_ , , whereas DS 2 uses a_, . The lower time consumed

2
by a GGE for higher initial conditions can be explained as followsﬁ the coupling of
: ail three axes transfers some of the energy of the pitch axis to roll and y-aw_axes'
where optimal control is alse heing applied. Therefore energy is taken out of

the whote system t’aster‘than~ for the uncoupled case of a DS.. The region of ., be-
tv ~n 15" and 60" for GGS 2 shows on the ather hand, that this effect is owtweighed
by the less exact apbréximazim of zn asymmetric GGS by a DS. Thereforé a

slightly higher time is consumed for this tegianthan is predicted.

Figure 12 shows the equivalént comparisons for initial conditions # 0 only on’
roll (- ). Approximately the same. a, is used for botk GGS. 1 and GGS 2. Therefore
approximately the same equivalent DB is valid for co:;‘jparison of both GGS
Similar explanations for the shape of the plot hold as for pitch.



Since the yaw angle is not significant for pointing to certain points on the
surface of the earth, plotting of the graphs for ys v equivalent to Fig. 11 and 12
are not given here; It is just mentioned, howeve., that for GGS 1 consistency
with predicted values is achieved, whereas for GGS 2 some deviations .f predicted
values are observed.. An exact explanation of this problem would involve a dis-

cussion of the exact equations (1) to (7) and goes heyond the scope of this paper.

5.4 Investigations of the Influence on the Settling Time - of Initial

Conditions not Equal to Zero on all Three Axes

To show the influence oni - of other initial conditions than in Section 5.3
N # 0 and 10 = '.'v,‘ = l-o_ = 0 are chosen. Fig. 13 shows - for pitch
for GGS 1 and GGS 2 \in cdmparison to the DS. Fig. 15 presénts the graphé- for

roll. For yaw the same remarks are valid as in Section 5.3.

5.5 Pointing to Directions Other Than : = : = 0°

. In the previous investigations, iﬁ always was assuméed the pointing should lead
to.: = : =0°. Now pointiné tox, ,:, with-85°_ + , i < 8.5° is considered.
The simulations show that application of the control law derived in Section 4.4 for
reference values # 0 gives no difference in - when pointed to set values -_,

,other than = 5 =0°. This assumes that :, - 1

3

, OF i - £, now has the
same value as : or :; respectively in Sections 5.3 and 57.4., This assumes furthei'
that the same control tofﬁue TC is still available and the torque necessary to
counteract the graw{ity gradient torque T l g' at the set value is stv.pplied in additmn
o T . - is increased if counteracting of T, is provided‘by control thrust whi_le‘
decreasing the thrust T. available for actual coatrol pui-pos'es. Fig. 15 gives -

for the DS as a function of K= T /1. The paﬁmeter 6 is.éhe difference between

initial condition and the set v:i.ue.
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5.6 Influence of Disturbances on the Time Consumed (- ) for

Damping of Librations

Iwestigations concerning control under the influence of a sinusoidal disturbance
torque with a 24 hour period were carried out. The peak value of T, is assumed
tobe 105 # 1b. - is plotted in Fig. 16 for pitch (i # 0, ., = ., = 0) and in

Fig. 17forroll (: # 0, . =, =0)with: =_: =0 in both cases.

Two phases for the disturbance torque are chosen, the first is 0° and the

second is 180° relative to the starting point of control application.

It can he seen that under favorable phases of the disturbance torque the effect
on control action nets in no increase of -. One can also consider cases, where
- could be decreased; whereas it can be seen from Fig. 16 and 17, tﬁat under

unfavorable circumstahces - is increased by 50%.

6. CLOSING REMARKS
It has been shown, that the time-optimal control law for a dumbbell satellite

can he applied to a gravity gradient satellite as suboptimal control.

The next major consideration must be developmmi of a control policy for
the extended teim précision pointing :node. Of ~sbeciél interest is the fbrmulatim
of an adaptive disturbance torque computer for operation in a scallcsp mode limit
cvele. It is also intended to expand the perfm'mance index for the a.,qmsition |
mode to include hYoth time and fuel weighting factors Methods of state determina-

tion will also be assessed during follow—on application studjes,
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gg—GRAVITY GRADIENT BOOM

Figure I-Grdvity-grad'iénc satellite x, and y, lie in the plane of the fo‘qv booms and
together with z, establish o right-handed coordinate system fixed to the main body of
the spacecraft. x,, y,, z, establish o right-honded coordinate system fixed to the

damper rod.




U, =—k

(44 «

SEMICIRCLE S_,

. T %
—K o ' :
a. SEMICIRCLE S,
Ua =+ka

Figure 2-Geometric locus of all in.itinlﬂ"copdiﬁ-bn's X100 *20 a,, whichcan be
transferred to the origin immediately either by applying +K  for'S, or K- for
S_, ' : ' ‘

-1
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Figure 3-=Switching lines S_,, S_,, S_., S S., §., with a trajectory starting from (x,n, X0, ’
. 3 3-2 3~y 3¢ Oy 32 | 10 *20°
l/?a). The switching points for the particulor examrle illustroted are P ., P, and P3.
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F|gure 4-Simplified flowchart for frmectones with ophmul cormol according to qu 3 for

gravity gradient coeﬂscuems 9, 04,0, ° 0.
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Fi 'gure 5-Switching fines S _ond §_ for oprimal contral of x, -, and xg = . in the case of
a,:0 Two escmples of opﬁmf mx:ufwres are shown with swirching pmms P and P're-
spccrrvcfy S rsgwcﬁbynz e W ,S Eynz . W T

-




%mw. cowomous/ |

| CALCULATION OF; AND,j: “
APPLY EQU. (30) IN
stepsofFar |
' LOOP 1
(ENTER
'DEADBLHD)
. |
LOOP 2
(ExIT
DEADBAND)

Figure 6—Simplified flawchort fur optimal comrel ef.yw () for o y= 0 using the

s:heme presented in Fig. 5. Similer explanctions hold os for Fig. 4.



Fryn 7—Svnfchmg lines gad opﬂm! trajectories for x =." 1, ter v and x4y = 3, tor i« respec-
: nvely Also ‘e, K) = (a,, K ), (a,, t) or ( K) respectively.
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Figure 8-Switching lines for optimal control of 1, .Zor , in the case of 6,d,00a, = 0, respec-
tively, and in the presence of a constont disturbance torque. =, - 1, 2eor ,, >, 5 tor, K =
K. K,or K, 8 =a, a, ora and d=d_, dt or dl: nspocﬁ«vcly.‘
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X20

' Figure 9-Ogtimal trajectories under the influence of chunging disturbances. The optimal
frajectory storts at (x4, %aq +a) without disturbance. A disturbance d uccurs when the
state is at P,. The switching lines S, and S_ are then replaced by S,, and S respec-
tively. Two posublc cantrol procedures fhaf iead the state to the origin ave: (a)a pahcy
that yields the poth P,, P, P, origin, or (b) a policy that yvcids the poth P;, P3, Pe
origin. For K, a, d, x; ond x, see Fig. 8.
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Figure lffCampurism of time consumed (7] for damping of initiai pitch angles (au) 10 0°.
The initial conditions on roll (£,) and yow (Jq) are 0°, 15 = #9 = g =0.

GGS 1 -- GGS with two principal moments of inertic equal

+ GGS 2 ~ GGS with all principal moments of inertia different
DS 1 - Dumbbel! satellite with a_ond K as GGS 1
DS 2 - Dumbbell sateilite with a , and K  as GGS 2
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Figure 12..Comparison of 7 for dampmg of initial roll angles (¢°) 1o 0°. The sther initial
conditions are: “10 7 yg 0 ig =ty - ¢° =0. G, ond K, are equal for both GGS and there-
fore the same D35 is appiied for comparison.
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Figure 13~Comparison of 7 for damping of initicl pitch angles lag) to 0° considering initial
conditions on the other axes not equal 1o 0°. The other initial conditions are ¢y =/ = ay,
19ty “%p 0. DS 1 again is for comparison with GGS 1, DS 2 for comparison with GGS 2.
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Figvure 14—Comparison of T for dampingof initialroll angles (£g) to 0° with initial conditions
on the other axes not equal to 0°. These other initial conditions are ag =Yg =g, &g = Zp =
49 = 0. Both GGS'1 and GGS 2 can be compared with the same DS. ‘
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Figure 15-Time consumd by a DS for changmg the direction of pomtmg by 0 -2°,6°, and
8° as a function of the reduced torque K =T_"I. L , :
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t/h

aba DS
2| 0GGS2 WITH DISTURBANCE (PHASE 0°)
X GGS2 WITH DISTURBANCE (PHASE 180°)

ol -t 1411 1 ]
4 8 12 16 20 24 28 32
| ay/DEG

Fugwe |6 Influence of disturbances on T for initial pitch angles for GGS 2.-
;0 =0. The disturbances are sinuscidal with o peak

ve iue of 10 ft Ib a pernod of 24 hours and a phasing of 0° relative to the

- start of the control in the first case and 180° in the second case.
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" 0GGS2 WITH DISTURBANCE (PHASE 0°)
© XGGS2 WITH DISTURBANCE (PHASE 180°)
I R N R U NN N
8 12 16 20 24 28 22

#0/DEG |

Fw l?—luﬁuga of distwbonces en 7 for initiol rell engles for GGS 2.
aaz'ﬁ‘zﬁ,&’:ft. =Yy =0. The distwrbances ere the seme es for Fig. 16.
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