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TIME-OPTIV, AL CONTROL OF GRAVITY GRADIENT SAiTELLITES

WITH DISTURBANCES*

ABSTRACT

The optimal control of spacecraft with gravity gradient coarse stabili-

zation and active libration damping for precision pointing . represents a

promising approach for advanced experiments, e.g. laser communications,

where angular position within .001" must. be achieved and maintained in

the presence of disturbances. This paper deals with the time optimal con-

trol for this case. A suboptimal (i.e. nearly optimal) control law for the

general gravity gradient satellite (GGS) is' obtained by a two-step approxi-

mation: first the general GGS is approximated by a dumbbell satellite

(DS) and secondly a small agile approximation is derived. The optimal

Control law for this case is calculated and applied to two representative

examples of a 24 hour synchronous GGS. The practical results are shoRvn

and discussed. It can be seen how the optimal control law derived for the

DS works for the general GGS as a sulmiptianal control law. The Maximum

Principle, which is used in this paper, is also extended to cover operating

conditions with disturbances. It is shown that .disturbances change the .

optimal control law significantly, a result that is very important for practical

applications of the makimurn principle.

'The work for this paper was accompli shed while the author held o National Research . Counci I
Postdoctoral Resident ResoorcF Associateship supported by the National aeronautics and
Space administration+, Goddard Spice Flight Center. The authar is very much obliged to Mr..
W. tstey and Mr. D. Endres for their valuable suggestions.



NOMENCLATURE

The center of all coordinate systems are at the center of mass (c.rn.) of the

spacecraft. All coordinate systems are right handed.

a ^ ,a , ,a — gravity gradient coefficient for pitch, roll and yaw respectively

C I — linear viscous damping coefficient of the damper rod

C2 - iinear spring coefficient of the damper rod

<t r t — reduced disturbance torque 
Tdt 

/I 
t d, i = x, Y, z

DS — Dumbbell Satellite

GG — Gravity Gradient

r.,GS — Gravity Gradient Satellite

N1 b — 
inertial angular momentum of the main body of the spacecraft,

measured in body-fixed coordinates, i x, y, z

I . — moment of inertia of the damper rod about its . axis of rotation

I i — inertia tensor of the main spacecraft body

— distance from the center of the , earth to the c.m. of the spacecraft

t — time

TC I y - control tomes, i x, y, z

Tdf t , — disturbance torques, i = x, y, z

U t — reduced control torques f-- T/I ), i = x, Y, z
ci	 it

v — inertial velocity of the spacecraft

X0 . y4 . z¢ — attitude reference system (x o has the direction from the center of

the earth to the c.m. of the spacecraft, ya lies normal to x0 and in

the orbital plajn such that the component of V in the yo direction is

greater than zero).

vt



coordinate system fixed to the main body of the spacecraft (x h -

yaw axis, y^., - roll axis, z t, - pitch axis)

coordinate system fixed to the damper rod

- pitch angle

- set value of pitch angle

- earth gravitational constant

^ ►
- orbital angular rate, i.e. rotation of the x6 , y.0 , z0 system in inertial

space, measured in the x t , yb , z ,, system, i = x, y, z

t'	 a
angles of the damper rod_ relatiN a to the body - fixed coordinate system

- time consumed for damping of initial librations

- roll angle

- set value of roll angle

- yaw angle

t t - angular inertial velocity of the t rain body of the spacecraft, measured

in the x  , yt, z b - system, i = x, y, z

- orbital angular rate for a circular, orbit (= /r 3 )

Vii



TIME-OPTIMAL CONTROL OF GRAVITY GRADIENT SATELLITES

WITH DISTURBANCES*

1. INTRODUCTION

The development of control policies for highly precise fine pointing of space-

craft ;s a necessary condition for a number of advanced experiments, e.g. laser

communications. The gravity gradient techuque t 2 offers a good approach for

long "berm coarse stabilization of a spacecraft. However, precise pointing to

certain angles is required for soine experiments, and it may be desirable to

accomplish this in minimum time. Also for these experiments, disturbances

such as the solar torque acting on the spacecraft must be court°eracted by proper

control.

The overall optimal control police must meet two h. asic objectives: (1)

acquisition of the precision pointing mode in minimum time starting from a

coarse GG mode, an& (2) extended term precision poring by counteraction of

disturbance torques. This. paper will treat only the acquisition requirement. The

optimal control law as developed herein is applied to two representative examples

of a synchronous equatorial 24 hour earth spacecraft. The method employed for

active libration damping is the use of a reaction jet device operating in the micro-

pound thrust level regime, which can be an ion engine ., resistojet, or pulsed plasma

system. it is envisioned that.any use of the ion engine would require special con-

` sideration. of control actuations. The main difficulty with the ion engine is that it

cannot be readily turned on and off for thrusting purposes. One'pgssibility is -to

combine libration damping with orbit, corrections. Another possibility is to

1
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provide a balanced couple which cancels out the orbital effects. The resistojet 3

has already been studied as a means of optimal large angle maneuvering for a

synchronous spacecraft. Pulsed plasma systeins appear to offer high promise

fkwr use in both acquisition and holding modes due to their precision impulse bit

capability and relatively high specific impulse. It is assumed that a minimum

of six thrust directions is provided on the spacecraft to provide control in pitch,

roll, and yaw aces.

The procedure used to develop these control laws is as follows:

1. The general rotational equations of motion for a GGS including a damping

mechanism is formulated.

2. These equations are linearized for a DS in a circular equatorial orbit

with small Abrations.

3. The optimal control laws are developed for this rd. To check the validity

of these control laws for a maregeneral synchronous GGS, the control

laws are applied to the simulation of the L ofnplete GGS.

2. EQUATIONS OF MOTION FOR A GRAVITY GRADIENT SATELLITE

For development of. an optimal control law, a GGS which has four rigid GG

booms and a rigid damper rod is assumed.

The damper rod wily be assumed to rotate in a plane fixed with respect to

the main body. The spacecraft-damper rod system therefore reprenents a

seven degree of freedom system. For, pointing the aces .of the spacecraft tai.

given angles only the equations of rotational motion are of interest for circular



"xF) A
	

^xb

I '	 [ b	 l^)Y	 `, y b

Akzt)	 4St`

where

'xt)	 Mx b 	 M-x(1	 s i 11	 2	 M ari ` ' ° s	 2 - (':G Yb H zb	 Zb .Hyb } - P cos- ` 2	 T,x	 - Tdx

M	 .w	 cos	 cos
yb	 )Cd	 2

M	 sin
1	 SD

- ;M	 y in	 cos	 - (^1	 H	 -
1	 z 	 2	 i	 zb	 xb .  xbHzb>

Psin	 Cos. . 1 	 T, y 	 `Tay

and

zt)	 M Zh	 M . x deos.	 2 si1s 1 -MSD C os 1	
- MIl dS i l l	 2 sin	 1	 (	 XbHyb - ybHxbl

P s in . 2 sin . 1	 TC z Tdz

The torques Mi. and M id caused by the gravity gradient effect are ,. . for the main

body of the spacecraft

3•^
t1- ,3	 (I	 - I,da2a3 .. ^xYaIa3 

_. j xza 1a2	
Iyz( . 3. - ax), '

x b	 YY
r

M	
3,i.(; I	 }a axx	 1	 3 - t	 a . a 	 I	 ( a^2 - a2 ) +	 d a 1

xy 2 3	 xz	 t	 3	 Yz 1	 2y.b	 3	
zx

r

and

Mjb	
3	 (Ix x - I Yy ) a 1 3 2 - I xY ! 

a2. - 
>>1)	 ^. IXz^2a3	 fyxa^a3^

r3
(3)

and for the damper rod

lM.,d 0,

%I d'
3µ	

,p._.	 Ibzb2

r3

and
IM 1,

3+.	bl b3

r 3`
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P and M., used in (2) are given by:

and	 (4)

MSD 
C1 

'2 `C2'2

where the latter term is the restoring torque exerted on the damper rod by the

spring-damper mechanism.

The n t (i = 1, 2, 3) and b , (i - 1, 2, 3) used in (3), which give the relations

of the GG torques to the angular positions, are:

91 1 Cos	 cos

7 2 cos	 • sin sin - tii n 2 cos

co s 	: sin ; Cos	 Si re :t	 S i. 11	 ,.3

h 1 911
	

S i n	 .. • 2 fit c0S . ` •Cos f 1	 013 cos , 
2. 

sin . 
1

h^. fly	 sin	 1 + 1 3 cos
1

and

b3 a 1 cos	 .` - a, s . in ;.'Z cos . 1 -	 .1	 sin	 ^. 2 sin r"i

(5)

(5)

The equation of motion for the damper rod is

^y^^ + SD
M 2	

l tyb Sin . 1 ,} zb c.os h 1 _ " zd 'txd _^_.
I

Integration of (1) and (6) furnishes ° '̀ xb , .tii yb , a1.zb and t `2 .

The pitch, roll, and yaw angles, which are the Euler ales between the

body-fixed and the attitude reference system, will be used throughout this report.

These can be obtained -by subtracting b , -the orbital rate which is the rite Pict

which the attitude reference system rotates in the inertial system,. from 15 b .
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This gives

(7)

and

t n

A digrital program, was written t which allows the calculation of and

accordmi g to Equations f I) through (7^^ :'his program also pays attention to

elastic collision prote-esses, of the dam -,-,-r rod against Rs stops, which limit the

rotation of the damper rod in the x	 z phme.

AP	 OF GRAMY GRADIENIPROXLMATION,	 L T sxrELMES BY A

M73MBELL SATE LLNE

In this secUlon the equations of modor for a DS will be dert .-ed from the

equations developed in the previous section for that of the more general gravity

gradient satellite fuGS). Thus 
it 

wiff be. assumed that nee damper rod exists,

that IV y and I 
t 4 

are the. same* order of magnitude, and that

1; Y	 z 4

Eq. (1) Mid (2) now yield.-

T

	

ISM Xb	 z It	 Yb zb	 3	 4*4	 Vb	 a)

1
	 YES	

(.1 

zz	 zb th	
T 

C-7	 'rdy	 VYb'

and

.

	

zz zb	 .19 It	 yy	 *b	 T kz	 TIf 
z	 V th

5



Equation f3) becomes:

r3

3,..

	

mph	 (Iax	 Ix.x } at `t3
r3

	

a4^	

33 

(I** - IVY j at
 a2

r

and

4
Fair small angles Equations (9 9) and (la) can be	 bar:

I a^	 IYY	 I as - Iyy	 I	 ^cle } '^tx.	
a}

I ^.x	 lax	 INS

	

,, 2 I" INS
	 izz - INS - I^p	TCY + TIfy.

	

4 1 0 _	 -	 '"	
b}.

	

lyp	 Ipy	 Ipy 

and

F	 I
NS	

Tc x + Td:
( C )YY

	

I a:	 I::

*bore ^.. _ ... / r	 b and xb	 b _ 0 for newly c*euiar 	 orbit.

The s* on the rW sWe of Equallon (I is card wMb respect to

(9b); this only mss that torques about the y aids are 	 ne re.
..apgrouch lends to a more connre^tiea: Iol'IIt far the &MIvatiieia dt tl 	 lhiar ng.

offal control cam.

It is RKM assMIned tbst

6



as is true, e.g. for thi ATS-D and ATS-E spacecraft. Thus Eq. (U) beconm

and

a-	 UZ - dz

where

w 	 ^j
i xx

a _ 4 1 I zz '- fxx

gYY

a3 Z yp -xx
s	 0

z z.

TCxT'y	 T-7 S'
^u	 ... .	 y 
a	 ^

^gy	 1.94

F + 
T dx ' . d ^^ and dz Td::

^YY

Vf n ^ .. ^ d _ d7 - 6 9W u , U , xs^ are constant each 4 the	 ia[Ma (13)

to ( 15y obviously givess circles for each of the phase. p►sane frlots	 or

respectively. Simulations of the r" car the ^nme conditions result

in circles for the phase plate p1da	 es) for INgles W to W. Tldrs also

proves the applicability of the aW 	 Aom used to obtafti these eqpatJm6..

4. OP'lIMAL CONTROL FAR THE DUMRSELL SAT ELUM.

Equabons 113 ►, (14), ad (15) gWe a 94 at	 equaUbm for pitc4,

yaw and roll aisles of a D .S. These .cam males the deriratfao of 'app

7



control law usirig- Pcantryagin's Ma idmuin Vle^ale practically iensible. It is

assumed that the reduced cantrol torques E ^ , u , and u are bounded in rrfagrditude,

i.e.

_KM
	 KZ

K,	 tx :	 K,	
E1

and

K u K

4. 1 Optimal Control Laws for Pitch z) with no Disturlance T2!2rs

^.et

and

	

	 (1

x 

Thus (14) bec omes

amid

x 	 - ax  - U2

when d., = 0.

The theory of vptIM&I control 5 shows that a vector

Pt

PZ

is used to cakmJ4z the &A parodwt

H_p•x1.1

9



where

Z

Neml (19) mast be maximized by a proper choice all u. .

Eq. (19) yields

H p l x2 fl 2 { - a x e. • u^

which is maximized by

[I_;, K , gn p	 (20)

The theory of optimal control sus farther, that

rip
f { t'	

k	
I 1. 2',

r

which yields

a. p
and ?	(21)

Solving (21) gives

-A 1a,,coS

R -	 (22)

i	 Asin ( ^ t - ^)

where A, > 0 are integration-const"ss. Eq. (20) can now be wAWn as:

9



	

ua - Ka s gn sin ( lrt - w) ..	 ()

The solution of (28) is then:

xt(t)- 	 '^to- }Ka Cos	 -=0 sin ^t
a^	 a2	 as

and	
(24)

x (t)	 16K `	 x
2	 NO - .-- sin IaQt	 cos Jas t .

where

X10 - x t (t = 0)

and

	

x20 _ x2 
t ,_ ^^ _ .t ( t	 0)

.It can be seen that x t (t) and x Z (t)/ f a form a circle in the x t (t) - x2

plane.
M

The center of this circle lies at

x -= for a K.
a

a

and at

K
x = - = for ua a -.Kaa

a'

To find the opUmm switching law we first cider InWal conditions, (X 10

x 2d, which He on a circle which passes through the origin. C ffi ariag E4 P*).

and (24), it in clear that app at1 trajectortas cas>dot stay. 1c®K+er ttisn for M

ld



711

angle i_% t = on a specific circle. Therefore one can obtain the geometric

locus of all points with initial conditions (x 1 , X /y a = 4), which can be transferred

immediately into the origin, to be the two semi-circles shown in Fig. 2.

Now assume initial conditions which require at least- two switching points

according to Eq. (23). Also assume the last trajectory will lie on S_ 1 . Eq. (23)

and (24) show, that the next to the last state with ^,^ = + K s must last for

t-
n

1—2 12

 can be seen further, that this state is represented. by. a semicircle with its

origin at K= /a, , with its endpoint on S_; and its starting point at a semicircle

with Its origin at 3 KM ,/a., and a radius of Ka /a, (see Fig. 3 and Ref. 5 and 6).

When we apply this procedure for all such states leading to-S -1 , we see that the

switching circle for switching from - K a to + K. is given by another semicircle

with its center at 3 K a ^` a,< and a radius of K z / a., When we ccintinue this procedure

for all initial conditions in the x 1 - x2 	 plane, we see that the switching

circles are located as in Fig. 3.	 ft,.

Therefore the centers of the switching circles are located at

2n - 1) 
FCQ	

c^ -	 .. _ 2. - 1-0. 1, 2 -	 (25)
a.

where n is the number of the switching circle.

11



4.2 Qq timal Control Laws for Roll (;) and Yaw (,) with no Disturbance

Torques

When Eq. ( 13), (14), and (15) are compared, no difference in their form is

noted as long as a	 0, a . 0 and az , 0. This is valid for a spacecraft with

different principal moments of inertia. Therefore for this case the same optimal

control law can be applied to Stoll and Yaw as is derived for Pitch in Section 4.1.

This is obtained by substituting ( ate . K am ) by (a . , K , ) or (r K.) respectively.

However, another control law must be derived, when two or three of . the principle

moments of inertia are equal. This will be done in the next section for yaw; when

I yy - Izz

The flow chart of a digital program for the control laws developed in this

section and section 4.1 is given in Fig. 4. In this program a deadband is defined

as

X'2 ,	 X2 z

I

with ;, = a , a ` or a respectively.

Control is switched off completely,. when the state of the system is inside
r

this deadband (l+aop 1). Disturbances or later the application of the exact GGS —

program can drive the .system out of the deadband again (loop 2).

4.3 Optimal Control I.aw for Yaw ( ) for I y. = I ^, with no Dist urbwwe Torques

For asymmetrical spacecraft I yy = I * >> .I ^^ and hence a,, becomes 0. For

this case another optimal control law must .be derived for yaw (tp):



Let

X
1
	 1

and	 (26)

x2	
^1	

t

then (12) becomes

and	 x1 
x2	

(27

x 2 = 
u^b

Using (19) and ( 26) the Hamiltonian becomes H = p l x2 + p2 uy , which is maximized

by

U. = K,t s gn P2

Applying

	

dpi	 _ .H
dt-ii -1:2)

again gives

Pl -0
and	 (28)

P2 - ?I

w'dch• results in

and	
pl B	 '

(29)

P2 = -Bt +C

From Eq. (27) and (29) one obtains

2

	

X1 - K0	 s Rn (C -'Bt) + Dt + E

and	 (3U)

x2 =.K y t sgn (C - Bt) - D

13



Thus all trajectories are parabolas. From (29) it is evident, that p, can change

sign at most once. Therefore the complete optunal trajectory from a given initial

condition in the x 1 - x 2 plane consists of one or two segments of a parabola,

where the second parabola leads to the origin. It is evident, that the Parabolas

leading to the origin are also the switching lines (see Fig. 5 and Ref. 5 and 6).

For initial conditions with x 20 = 0 the time consumed for reaching the origin

can be calculated to be

Figure 6 shows the flow chart for a digital program of this control law.

4.4 Consideration of^rent &efereace.Valnes

The optimal control laws in the- above sections lead 	 and f to 'the origin.

	

We will now consider the case for reference values (set values) s , ^ ,^	 0.
.	

r
Considering Eq. (13) through (151 with ay , 3

0 , a,G =/ 0 one ,sees that the follow

ing new equations can be written, which contain an additional control term of thrust

to balance the gravity gradient torque at the set value

+a L a t k f a:^`;S

+ at , r K + a4. ^S	
(31)

and

X +as 'rz= t•Ka+ all ay .

But Eq. (31) also can be written as

i } aL `^1 -- f K+G

-w +

14



and

^ I - a. %,	 t Ka ,

where

and

I 
= ',x - It S .

Therefore Eq. (17) - (24) can be applied as before, now leading 	 and to 0

and therefore	 and a to the desired setpoints. In Fig. 3 the switching lines

will shift and also the optimal trajectories. Tb,4s results in Fig. 7.

A similar approach is valid for yaw (w) when a .^ 0. The switching lines

of Fig. 5 must simply be shifted so that they lead to :,,'., .

4.5 Consideration of Disturbmwes

The spacecraft usually is subjected to various disturbances, which are

different, in magnitude and time history. However, there are two typical kinds

of disturbances, which should -be considerim: 2% co"Itant bias torque and a dis-

burbance torque with a 24 hour period. A constant disturbance torque can be

caused. e .g., by attitude thruster . misalignments: station keeping thrusters can

introduce disturbance torque' s where the thrust vector is not aligned through the

center of mass. A disturbance torque with a 24 hr,
r 
periodis caused, e.g. by

solar pressure acting -on the synchronous spacecraft.

First a constant disturbance torque will be considered.' Eq. (15) now .is

+ ad a ua +
	 (32)

15
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where (1, is the constant disturbance torque divided by I Z Z . There are two

approaches to solve this problem theoretically. First d,, 	 be measured by

observing the shift of the trajectories and then counteracted by a control torque

of the same magnitude. The total red-.iced control torque would be now:

ua T=z * Ka - da	 (33)

IZZ

This would lead to the same switching lines for optimal control as in Fig. 2, 3

and 7. However the practical hardua .re constraints show that control torques

according to Eq. (33) are much more difficult to implement than control torques

of the form

N

T
.:	 ±KM	 I	 a
Z:

Therefore a modification of the switching . lines of Fig. 2, 3 and 7 is found as

follows:

From (32) one proceeds as was done for (17) - (22):

it	 x2,

x2 - as x  + ua + d(

and

H!f^l x'2 
+ P2 ( -Ha xl + UQ + da )

which again results in condition (23).

16.
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Subst toting f Kz by t KZ + d , in Equation (24y shows that al.l trajectories are

shifted by r1z ' a z in the direction of the x'
t 
-axis and tkat the radii chotage. Similar

considerations which led to Figure 2 and 3 give Fig. R for the optimal switching

lines.

Similar considerations hold for optimal control of ., when a _ 0. We only

have to substitute* K; by t K rf in Eq. 130). The equations for the sw tchvi g

lines read now:

^^f - KY -	 >	 a  x^	 .

and	 ()

for

It is obv u 's,. that the aloe- c	 are only vaP_d for K , d for i

For slowly changing disturbances optimal contr ol could be implemented by,

changing the swAch ' lines accordimg to Fig. s and according to the momentary

valve of d i . T' a interactions of chi: disaarbaace$ =W changing of switching

lines b,,.u*, up serum problems of identification of disombances and prOlems

of stability, which are presently under lave gabon. Two approaches to optimal

control while the disturb torque is raryitlg are shown in Fig. 9. it is assumed

that the dal trajectory starts wthont disturbance at x to , x 2 
/ i(g. and. reaches

S,. and F, and follows S. after swtitclfing coriArol •from - K to + 10 va til a . diis

turbance• d occurs at the i 	 the state is at PZ . The t ;factorynow champs

f	 than of S* to S + , wbere S4, depeada upoft the di^t'le. The y, tra

vctories are circles with tlfr orlon wed by d / a in dkeetlon of x . Two

procedures; ww east=

" s .. rept^=e* So, 5_ rep aac^s 5^^ . ^ mow+ 4' l
IT



a. Retention of+ K at P thereby following trajsctory R ,,, to P. and there

swttcfdng to - K. When S,4 .+ to retched at P. , control Is switched back to + K and

followed to the origin, or

b. After occurence of the disturbance d at P , control Is switched Immediately
2

to - K, until S,, 4, is reached at P'. S,1+ then is followed to the origin by changing

the control back to + K.

However, for the further investigatiwe of the optimal control law In Ibb

paper 
it 

Is assumed, that T<, - - K for all three axes. Thus, 
it 

is not necessary

to apply the refined control .law given in Fig. 8 and 9. The approach to the origin

in presence of small disturbances can be seen from Fig. 1-0.

I can te seen from Fig. 10, that the positive x t axis may serve as an ad-

ditional mvitetzing line vixen the trajectory intersects from the negative x, dimc-

tiom The negative x, - axis forms the aidttitioAal sw#c ,tdng Due in the case when

the trajectory Intersects coming from positive x. -valves. A more sophisticated

control law in Lhe presence of disturbMwee; to suggested for future work to this

area as follows: switching from + K to - K or viceverva, shall be Implemented,

when the distance from the set PoW (here e: origin) starts; to Increase. This

should at Least jive stable performance under WU working c1L Shuns.

•. APPUCATIDN OF TKE DG-COM"L-CONTROL TO THE GRAMY

GRADEM SATELLUE

.. This section will discuss the resuka of applying the AB' control to the GGS

cmnpoter ,sign	 n. Two GCS - figumirk M. , acre used. The first, which will

be called GGS 1, is characterized by I = I ,> I and no damping if

the second . (GGG 2) is chiumeterized by the momente at hwrtia of the .ATS.-D sateUlte.

N
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5.1 Data of the G8

a. For- the symmetric case (GGS I)

1	 4AFY €1	 (in %lug W)..

R 4R00f1

1	 0 and C 1 - C2 . 0

b. for the nnsynmetric case ( 	 2)

F3190 0	 0

1	 0 13600 251	 ( in slug ft2

0	 251 16700

1	 540 s I ug ft 2.

53,4°,

C 1 1. 322 s tug W , sec

and

C2 4.7 y 1 I 2 stuff f t 2 j secI

5.2 Choice of Control Torques

In order to choose the proper	 of control torte it sold be noted,

that a oecess my codditioo for coutrollahMy of a ► gravity gradiedt sateUlte is,

that in the thole pointiM regfva for each axis

1g

i



where T,, is the control torque exerted by the Ion thruster, T s Is the restaring

torque due to the gravity gradient effect for a particular set of value and T l is

the disturbance torque. To point in a particular directic.n	 a certain T K

has to he counteracted; this torque can be c alculater by Eq. (10). Since T^ w

changes only when the set values of ; . , and _ are changed and therefore m-,,ch

'E^ss often than T, , counteraction of T 99 by a, control torque of the same rnagnitutie

can be assumed. Pointing is desired to every point an the earth disc as seen from

a synchronous spacecraft. Therefore -8.5 - 	 8.5' is valid, and a maximum

gravity grachert torque. in this region few the pitch (:) axis of the asymmetric

spacecraft in .given by

^x sm,x

A disturbance torque 1 , assumed to be caused by solar pressure with a peak valve

of 10 ft #: Eq. (35) now vfelds

	

Tea	 - 35 , 10
-1, ft M.

To give the same T, /I' ratios on-the other awes of the asymmotric spacecraft

and on all axes of the symmetric spacecraft, the fallowing torches are chosen

for the asymmetric spacecraft

	

TC	 * 28.5 , 10-#' f t it)
and

= 1 6, 6	 I0-6 . ft fig.

and for the symmetric spacecraft:

Tca = - 10-4 f t lb .

Y !t , r t0"+ ft lb

d
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and

T	 - 2. 09 - 10 1̀ ft Ib

3.3 Comparison of Time Consumed for Damping Librations to

- - = 0
" 

for GG Satellites and DS

The optimal switching lines given in Fig. 3, 5 and 7 are applied to all three

axes simultaneously. To compare the results obtained for a GGS with the ideal

case of a DS , the time consumed for reaching an aisle of 0 ^ after a certain initial

condition is platted in Fig. 11 and 12. For Fig. t2 the time consumed for a Ds is

calculated by applying the optimal control lava deri7ed in Section 4 to the equation

x + a x = u where a = a_ and u = t k, . Two different a, , called a_ I and a^ ` are

user! for GGS 1 and GGS 2, respectively. Therefore two different DS must be used

;or com. parison. Ds 1 uses ;l: t , whereas DS 2 uses a. .. The loaner time consumed

by a GGS for higher initial conditions can be explained as follows: the coupling of

all three axes transfers some of the energy of the pitch axis to roll and yaw axes

where optimal control is also hieing applied. Therefore energy is taken out of

the whale system faster than. for the uncoupled case of a DO.. The region , of ,, be-

t'^ ^n 15' qnd 60° for GGS, 2 shows on the other hand, that tins effect is outweighed

by the less enact approximation of an asymmetric GGS by a DS. Therefore a.

slightly higher time is consumed for this region than is predicted.

Figure 12 shows the equivalent comparisons for initial conditions # 0 only on

rollE .^ r^. Approximately the same a t. is used for both GGS. I and GGS 2. Therefore

approximately the same equivalent DB is valid -for comparison of both GGS.

Similar PAplantlona for the . shape of the . plot h9ld as for pitch.

N
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Since the yaw angle is not significant for pointing to certain points on the

surface of the earth, platting of the graphs for ys v equivalent to Fig. 11 rnd 12

are not given here. It is just mention-A, howevee, that for GGS 1 consistency

with predicted values is achieved, whereas for GGS 2 some deviations ,.)f predicted

values are observed.. An enact explanation of this problem would involve a dis-

cession of the exact equations (1) to (7) and goer, beyond the scope of this paper.

5.4 Investigations of the Influence on the: Settling Time • of Initial

Conditions not Espial to Zero on all Three Axes

To show the influence on of other initial conditions than in Section 5.3

and '^ -	 _	 - 0 are chosen. Fig. 13 shows for pitch
1

for GGS 1 and GGS 2 in comparison to the DS. Fig: 15 presents the graphs for

roll. For yaw the same remarks are valid as in Section 5.3.

5.5 Pointing to Directions Other Than 	 01,

In the previous investigations, it always was assumed the pointing should lead

tb.:z y = = = 0'. Now pointing to q % , }', with -8.5' `- 'x^ ,	 <_ 8 .5' is considered.

The simulations show that application of the control law derived in Section 4.4 for

reference values 0 gives no difference in - when pointed to set values 1 ' ,

other than z^ _ %, = 0". This assumes that z^ - ^, or h^ - ^ , now has the

same value as : 0 or to respectively in Sections . 5.3 and 5.4. This assumes further

that the same control torque T is still available and the torque necessary to

counteract the gravity gradient torque T^ q at the set value is si;pplied in addition

to T, . - is increased if counteracting of T is provided by control'thru.,st while

decreasing the thrust T. available for actual control purpoees. Fig. 15 gives

for the DO as a function of K = T, /I. The parameter 0 is the difference between

initial lion and the suet vt-aue.
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:5.6 Influence of Disturbances on the Time Consumed (-) for

Damping of Librations

Investigations concerning control under the influence of a sinusoidal disturbance

torque with a 24 hour peri-or1 were carried out. The peak value of T, is assumed

to be 10  ft lb.	 is plotted in Fig. 16 for pitch ( z o	01 :  _ . = 0) and in

Fig. 17 for roll (: j 0, h = , = 0) with : :^ - t	 = 0 in both cases.

Two phases for the disturbance torque are chosen, the first is 0° and the

second is 180' relative to the starting point of control application.

It can be seen that under favorable phases of the disturbance torque the effect

on control. action nets in no increase of - . One can also consider cases, where

- could be decreased; whereas, it can be seen from Fig.. 16 and 17, that under

unfavorable circumstances - is increased by 50%.

6. CLOSING REMARKS

It has been shown,. that the time-optimal control law for a dumbbell satellite

can he applied to a gravity gradient satellite as suboptimal control.

The next major consideration mast be development of a control policy for

the extended term precision pointing itiode. Of special interest is the formulation

of an adaptive disturbance torque computer for operation in a.-scallop mode limit

cycle. It is also intended to expand the performance index for the acquisition

rhode to include N th time and fuel weighting factors. Methods of state determina-

tion will also be assessed during follow -on application studies.
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Figure 1—Gravity-gradient satellite x b and yb lie in the plane of the four booms and
togethaIr with z b establish a right-handed coordinate system fixed to the ntoin bady of
the spacecraft. x d , yd, z d establish a riot-hooded coordinate system fixed t© the
damper rod.

2.5



X2
U fY = — k iti
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Figure 2—Geometric locus of al l initial conditions x 10, *20r , ca. which can be
transferred to the origin immediately either by applying +Kafor'SO or —K-,,for
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W-51

Figure 3—Switching lines 5_3, S_z, S . 1 , S Q, S 1 , Sz, with a trajectory starting from {xto, x20,

Q )• The switching paints for the particular exame ►l• illustrated are P,, PZ and PX

Xi
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Figure 4—Simplified flowchart for trajectories with optimal 'control according to Pig. 3 for
grovity gradient coefficients . a., o,,, o ,.k 0.

S
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Fib .6e; Simplified flowctart''hof optimal con*'cf . of yow (0) kv a,l# = 0 using
si tme presented in Fig. S. Similar expkwwtions bald as fa Fug. 4.

r
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Figure 7—Switching [iyws a. ,O optimal traivocries for * I :x, Per f "-d S2

tively. A66 (a, K) :-- (*-201 K ,.,) e (a t , K,,) or (a,,,, K ) fooectively.

x I



X^

X n%

a►

Figure 8-Switching lines for optimal control of L, .-,'or in the case of a te, a ^ or a ^.^ ^, respec-

tively, and in the presence of a constant disturbance torgLw, x	 x, or r,	 ., or K

K Z , K or K ,, a = a l, a It or a L, and d - d 11 d,. or d  respecCVely.
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a	

x 10 , x 20

^a
S--

i	 Sd-- 	 P k k $ d

	

3 a	 a
X 10

_k d—k	 j	
la

a	 ar	 Rd

4	 P2 
	 Sd+

3'

Figure 9-Optimal trajectories under the influence of ch,;nging disturbances. The optimal
trajectory starts at (x 1O1 x2.0 ,ei) without disturbance. A disturbance d Occurs when the
state is at P2 . The switching lines S, and S- are then replaced by Sa+ and S.- respec-
tively. Two possible cantrol procedures that load the std to the origin are: (a) a policy
that yirrlds the path P^, P^, P,t , origin, or '('b)a policy that yields- the path P1, P,; P4,
origin. For K, a, d, x 1 and x2 see Fig. S.
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DS1

IGSI

DS -2 
GGS2----*

40

36

12

1,2

4

I	 L	 t	 I	 I

4	 8 12 1F 20 24 28 32 36 40 44 48 52 56 60 64 68 72 -76 84
ab/ DEG

Figure 11 —Comparison  of time consumed (-r) for damping of initial pitch angles (ao) to 0*
The initial conditions an roll' (;to) and yaw (4o) are 0* , AO = ^ Z ^O =0.

GGS 1 — GGS with two principal moments of inertia equal,

GGS 2 — GGS with all principal moments of inertia different

DS I — Dumbbell satellite with o,,ond K as GGS I

DS 2 — Dumbbel l sate llite with a s and K rx as GGS 2
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Figure 12 , -Comparison of -r for damping of initial roll angles (0) to V. The other initial
conditions are: ao ^- ^:O =° 0, 10 	 0 y0. 6,, and K t are *quo Ifor bath GGS and there-

for* the some DS is applied for comparison.
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Figure 13—Comparison of r for damping of initial pitch angles (a-0) to 0° considering initial
conditions . on the othtr'axes not equal to 0°. The other initial conditions are ^b = ^ O = ao,
'10	 - `O 0. DS 1 again is for comparison with GGS 1, DS 2 Ror comparison with GGS 2.
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Figure 14-Comparison of •r for dompingof initial roll angles (.40) to 0° with initial conditions
on the other axes not equal to 0°.. These other initial conditions are a o = 4j - , '
410 = 0. Both GGS`i.and GGS 2 can be compared with the some DS.
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Figure 15—Time consumad by a DS for changing the direction of . pointinq by A = 2°, 6°, and
V as a function of the reduced torque K =T C /I.
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o'^0 o DS
G GGS2 WITH DISTURBANCE (PHASE
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Figure 16-Influence of disturbances on 'r for initial pitch * ongles for GGS 2..

-'0 ^ ` O 0, ,x„ -- 0 " y'p - " 0. The disturbances are sinusoidal with a .peak
value of 10- ft lb, a period of 24 hours and a phasing of 0° relative to the
start of the control in the first ca ge and 180° in the second case.
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