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CLOSED-FORM APPROXIMATE SOLUTIONS TO THE OSCILLATORY

PLASMA CONTINUITY EQUATIONS
by Lester D. Nichols and J. Reece Roth

Lewis Research Center

SUMMARY

Recent experimental observation of continuity-equation plasma oscillations has made
desirable an improved closed-form approximation to the nonlinear differential equations
which describe them. Such an approximation has been found, and is compared with the
less satisfactory approximations previously obtained, and also with the exact solutions
to these equations obtained by numerical integration.

INTRODUCTION

When the mean free paths of electrons and neutrals in a partially ionized gas are
comparable to or larger than its dimensions, Fick's law of diffusion is inappropriate.
One therefore cannot approximate the divergence terms of the continuity equations by the
product of a diffusion coefficient and the Laplacian of the number density. In this case,
the continuity equations assume the general form discussed in references 1 to 3. The
results of experimental measurements of the continuity-equation oscillation (refs. 4 and
and 5) can be described by equations (7) and (8) of reference 1. This specialized form of
the continuity equations may be written

g}. = €X QJ_-_YZ (1)
dr n
o -elya - x) (2)
dr

where, in terms of the parameters used in reference 1, X = N/NO is the dimensionless




neutral number density, y = Ne/Neo is the dimensionless ratio of electron number den-
sity to its initial (extremal) value, the amplitude index 7 = N e/Neo is the ratio of the

average to the extremal electron number density, € = ‘/ IA\Ie/NO is the square root of the

average fraction ionized, and the dimensionless time 7 = wot = I:TeNc)(ov) pels where
(ov) o 18 the ionization rate parameter for electron-neutral jonization. The initial con
ditions of the problem at 7=0 are x(0)=1.0 and y(0) = 1.0.

The first terms in the parentheses on the right side of equations (1) and (2)
follow from the divergence term of the continuity equations when Fick's law is inappro-
priate; (ref. 4, appendix B) the second (interaction) terms in the parentheses account
for the production and loss of each species by the ionization process.

Approximate solutions to equations (1) and (2) were obtained by Lotka (ref. 6) and
Volterra (ref. 7) in the linearized limit for which the peak-to-peak amplitude of the fluc-
tuations of both x and y are small compared with unity. In references 1 to 3 approxi-
mate closed-form solutions to equations (1) and (2) were obtained in terms of Jacobian
elliptic functions for the more general case in which only the fluctuations in x(7) were
assumed small compared to unity. While the method of approximation in references
1 to 3 may be applied to equations of continuity more general than equations (1) and (2),
the closed-form solutions it provides to these equations are defective in several re-
spects. The approximation discussed in references 1 to 3 predicts that oscillatory solu-
tions to equations (1) and (2) occur for the range 2/3 =7 = 1,0, while exact solutions to
these same equations show that oscillatory solutions exist for all n > 0, except the
steady-~state solution at 7 = 1.0. The approximations of reference 1 reproduced the
exact solutions reasonably well over the range 0.80 = 7 =< «, but a better approximation

was clearly desirable.

A NEW APPROXIMATION TO (1)

One can obtain an exact relation between x(7) and y(r) by taking the ratio of equa-
tion (1) to (2), integrating the resulting equation, and applying the initial condition that
x =1 when y=1. This yields a very simple "'phase'' equation,

2 ,
(X“l)'lnX=€—(1-y+771ny) 3) =
n |

Note that a closed curve, indicating oscillating solutions, can be obtained for all 1 > 0,
and that x =1 at both the maximum and minimum values of y. One of these extremal



values of y is the initial value y = 1. If the other extremal value is denoted Yo it is
apparent from equation (3) that Yo is related to the amplitude index 7 by

y -1
n== (4)
In Yo

The parameter y_ is the ratio of the extremal values of y(7r). If equation (4) is used to
replace 7 in equation (1), it becomes evident that if y(y o’ 1) and x(yo, 1) are solutions
to equations (1) and (2), then so are y(l/yo, 77/yo)/yO and x(l/yo,n/yo). As a result of
this transformation, the solutions for n=7>1 (and y o > 1) can be obtained from the
solutions for 1 <1 (and o < 1), and vice versa. The discussion below will be con~

fined to the case for which n <1, and Vo = ymin/ymax < 1.
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a)n = 0. 2. {b) 0 = 0.70.
Figure 1, - Comparison of exact solutions yexactm’ obtained from the noniinear pair of continuity equations (egs, {1} and (2)),
with the approximations y;(1) (from eq, (10)), yo(T} (from eq. (12) for ), and ys(0) (from eq. {17} or 7= nlyy). €=0.01,

The exact solutions to equations (1) and (2) for y(r) with ¢ = 0. 01 are shown in fig-
ure 1 for two values of 7. These solutions were obtained by numerical integration on
a computer. In figure 2 are plotted the frequency and the average value of the solution
7 as functions of the peak-to-peak ratio y. These exact solutions will be compared -
with several approximate solutions for y(7) given subsequently.

If it is assumed that the neutral density fluctuates only very little compared to its
average value, then x is near 1, and the left side of equation (3) approaches
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Figure 2. - Average amplitude and period of oscillation as functions of peak-to-peak amplitude ratio for the exact and approximate
solutions.

1/2(x - 1)2. This requirement of small amplitude oscillations of x(7) can be guaranteed
by proper choice of € and 7. The right side of equation (3) takes its maximum value
at y =1n. Therefore, if one chooses ¢ and 7 such that

_ 1/2
P =nrnlnm " ooy (5)
n
then one is assured that
x-1)-Inx<<1 (6)




which implies that x - 1 << 1. After expanding the left side of equation (3), one may
solve for (x - 1) and obtain

1/2 1/2
(x - 1)~ xe [2(77 Iny-y+ 1)] / = +€ [3 f(mY)] / (7)
n n

Substituting this approximation into equation (2) yields an approximate equation in terms
of the single variable y(7),

2
—1—<9y-> wg[nlny-(y-l)}gf(n,s’) (8)
y2 drt Nt Som

This approximate equation for y may be integrated by adopting an integrable ap-
proximation to f(y_, y):

15,9 = 220411 gy gy 9
(ny)

which satisfies the requirement that fl have the same maximum as £, and be zero at
y=1 and y= Vo The solution obtained by substituting equation (9) into equation (8) is

- 2
v (7) = y(()1 cos wl'r)/ (10)
where the parameter wyq is
8(1 1 /2 =
w, () =[8 IR - ) (11)
n(in v,)

Note that yl (1) reproduces the peak-to-peak amplitude of the exact solutions and is the
same function regardless of whether 1 or n is used. This approximation is plotted in
figures 1 and 2. It does not appear separately on figure 2(a) because equation (9) was
chosen so that the relation between 7 and ymin/ym ax is exact. The approximate fre-
quency given by equation (11) differs from the exact value by no more than a few percent
over the range shown.




OTHER APPROXIMATIONS TO (1)

The preceding approximation may be compared to the two ''small amplitude'' ap-

proximations discussed in reference 1. The approximation using 1 may be written in

the dimensionless form

2
yz(f) =1+ ZSSN sz

where SN is the Jacobian elliptic sine, and

: 1/2
Wq = —E_2.>/
2 61

ORES @ - syl - (2/zﬂ(n+z>]

Zytn) = - :<z -n) - y/[n - @/3) 0+ z)]

with the elliptic modulus given by

k" ==
Z

9 %3
2

12)

(13)

(14)

(15)

(16)

This approximation is shown in figure 2, and is seen to fail for 1 <2/3. A second ap-

proximation taken from reference 1 is obtained by using n=n /yo in the expressions

where

(7)

(18)




Zo = Zo(7) (19)
Zg = Zg(T) (20)

23~ 29

This approximation exists over the entire range of 1. However, the relation between
n and ¥y o differs from the exact value by a maximum of about 20 percent and the fre-
quency differs by a maximum of about 15 percent.

The approximations yz('r) and y3('r) can be improved by defining an equivalent small
amplitude index Mg which is that value of n which gives the correct peak-to-peak
oscillation amplitude. This value of 7 = Mg is then substituted in equation (12) for an
improved approximation y4(T), which is shown in figure 11.

CONCLUDING REMARKS

In summary, it has been shown that the approximations given in reference 1 can be
modified to improve their usefulness and accuracy. A new approximation yl(T) has also
been developed which uses trigonometric functions and gives the frequency as a function
of the peak-to-peak amplitude ratio y o’ This approximation is the most accurate of
those considered, does not require the use of Jacobian elliptic functions, and provides
sufficient accuracy for most applications.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, November 7, 1969,
129-02.
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