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CLOSED-FORM APPROXIMATE SOLUTIONS TO THE OSCILLATORY 

PLASMA CONTINUITY EQUATIONS 

by Lester D. N icho ls  and  J. Reece Roth  

Lewis Research Center  

SUMMARY 

Recent experimental observation of continuity-equation plasma oscillations has made 
desirable an improved closed-form approximation to the nonlinear differential equations 
which describe them. Such an approximation has been found, and is compared with the 
l e s s  satisfactory approximations previously obtained, and also with the exact solutions 
t o  these equations obtained by numerical integration. 

When the mean f ree  paths of electrons and neutrals in a partially ionized gas a r e  
comparable to  o r  larger  than its dimensions, Fickls law of diffusion is inappropriate. 
One therefore cannot approximate the divergence t e rms  of the continuity equations by the 
product of a diffusion coefficient and the Laplacian of the number density. In this case, 

the continuity equations assume the general form discussed in references 1 to 3. The 
results  of experimental measurements of the continuity- equation oscillation (refs. 4 and 
and 5) can be described by equations (7) and (8) of reference 1. This specialized form of 
the continuity equations may be written 

where, in t e r m s  of the parameters used in reference 1, x = N/No is the dimensionless 



neutral number density, y = Ne/Neo is the dimensionless ratio of electron number den- 
* 

Sity to  its initial (extremal) value, the amplitude index I )  - N /Nee is the ratio of the 
e 

average to the extremal electron number density, E = quare root of the 

average fraction ionized, and the dimensionless time (av) net, where 
(ov) ne is the ionization rate parameter for electron-neutral ionization. The initial con 
diGons ô f the problem at  T = 0 a r e  x(0) = 1 . 0  and y(0) = 1.0. 

The f irs t  t e rms  in the parentheses on the right side of equations (1) and (2) 

follow from the divergence t e r m  of the continuity equations when Fick's law is inappro- 
priate; (ref. 4, appendix B) the second (interaction) t e rms  in the parentheses account 
for the production and loss of each species by the ionization process. 

Approximate solutions to equations (1) and (2) were obtained by Lotka (ref. 6) and 

Volterra (ref. 7) in the linearized limit for which the peak-to-peak amplitude of the fluc- 
tuations of both x and y a r e  small compared with unity. In references 1 to 3 approxi- 
mate closed-form solutions to  equations (1) and (2) were obtained in te rms of Jacobian 
elliptic functions for the more general case in which only the fluctuations in X(T) were 
assumed small compared to  unity. While the method of approximation in references 

1 to  3 may be applied to equations of continuity more general than equations (1) and (Z), 

the closed-form solutions it provides to these equations a r e  defective in several re-  
spects. The approximation discussed in references 1 to 3 predicts that oscillatory solu- 
tions to  equations (1) and (2) occur for the range 2/3 5 q r 1. 0, while exact solutions to 
these same equations show that oscillatory solutions exist for all q > 0, except the 

steady-state solution at r = 1.0. The approximations of reference 1 reproduced the 
exact solutions reasonably well over the range 0.80 r 7 5 m, but a better approximation 

was clearly desirable. 

A NEW APPROXIMATION TO y ( ~ )  

One can obtain an exact relation between X(T) and y(r) by taking the ratio of equa- 

tion (1) t o  (2)) integrating the resulting equation, and applying the initial condition that 
x = 1 when y = 1. This yields a very simple "phase1' equation, 

E 
2 

( x -  1) - l n x = - ( 1  - y + q l n y )  
r 

Note that a closed curve, indicating oscillating solutions, can be obtained for all  r > 0, 
and that x = 1 at both the maximum and minimum values of y. One of these extremal 



values of y is the initial value y = 1. If the other extremal value is, denoted y it is o7 
apparent from equation (3) that yo is related to the amplitude index q by 

The parameter yo is the ratio of the extremal values of ~ ( 7 ) .  If equation (4) is used to 
replace q in equation (I), it becomes evident that if y(yo, q) and x(yo, 7 )  a r e  solutions 
to  equations (1) and (2), then so  a r e  y(l/yo, q/y,)/yo and x(l/yo, q/yo). A s  a result of 
this transformation, the solutions for n = q > 1 (and yo > 1) can be obtained from the 
solutions for 17 < 1 (and yo < I), and vice versa. The discussion below will be  con- 
fined to  the case for which 17 < 1, and yo = ymin/ymax < 1. 

Dimensionless time, T 

(a) 77 = 0. M. (b) 7 = 0.70. 

Figure 1. - domparison of exact solutions yeXact(s), obtained from the nonlinear pair of continuity equations (eqs. (1) and (2)), 

with the approximations yl(b (from eq. (lo)), y2(r) (from eq. (12) for w), and y4(d (from eq. (17) or = ~ly,). 6 = 0.01. 

The exact solutions to equations (1) and (2) for y(r) with E = 0.01 a r e  shown in fig- 

u r e  1 for two values of q. These solutions were obtained by numerical integration on 
a computer. In figure 2 a r e  plotted the frequency and the average value of the solution 
17 a s  functions of the peak-to-peak ratio y. These exact solutions will be compared 
with several approximate solutions for y(r) given subsequently. 

If it is assumed that the neutral density fluctuates only very little compared t o  its 
average value, then x is near I,  and the left side of equation (3) approaches 



Peak-to-peak amplitude ratio, yminlymax 

(a) Average amplitude q = ji ly (Amplitudes of (b) Dimensionless period of oscillation. 
yexact, yl, and y4 are equaTTar' 

Figure 2. -Average amplitude and period of oscillation as funct ions of peak-to-peak amplitude ratio for the exact and approximate 
solutions. 

1/2(x - I ) ~ ,  This requirement of small amplitude oscillations of x(7) can be  guaranteed 

by proper choice of E and q. The right side of equation (3) takes its maximum value 
at y = q .  Therefore, if one chooses E and q such that 

then one i s  assured that 



which implies that x - 1 << 1. After expanding the left side of equation (3), one may 
solve for (x - 1) and obtain 

Substituting this approximation into equation (2) yields an approximate equation in t e r m s  
of the single variable y ( ~ ) ,  

This approximate equation fo r  y may be  integrated by adopting an integrable ap- 

proximation to f(yo, y): 

4(1 - 1) + 1) ln) 
f1(yo, Y) = (In Yo - In y)ln Y 

(ln yo)2 

which satisfies the requirement that f l  have the same maximum a s  f, and be zero  at 

y = 1 and y = yo. The solution obtained by substituting equation (9) into equation (8) is 

where the parameter wl is 

Note that yl(r) reproduces the peak-to-peak amplitude of the exact solutions and is the 

same function regardless of whether 1) o r  { is used. This  approximation is plotted in 
figures 1 and 2. It does not appear separately on figure 2(a) because equation (9) was 
chosen so that the relation between 1) and ymin/ymz is exact. The approximate fre-  
quency given by equation (11) differs from the exact value by no more than a few percent 
over the range shown. 



OTHER APPROXIMATIONS TO y(r) 

The preceding approximation may be compared to the two "small amplitudew ap- 

proximations discussed in reference 1. The approximation using q may b e  written in 

the dimensionless form 

where SN is the Jacobian elliptic sine, and 

with the elliptic modulus given by 

This approximation is shown in figure 2, and is seen to fail for q < 2/3. A second ap- 

proximation taken from reference 1 is obtained by using 6 = q/y in the expressions 
0 

where 

(1 8) 



This approximation exists over the entire range of 17. However, the relation between 

77 and yo differs from the exact value by a maximum of about 20 percent and the fre- 

quency differs by a maximum of about 15 percent. 

The approximations y2(7) and y3(7) can be improved by defining an equivalent small 

amplitude index q,, which is that value of 17 which gives the correct peak-to-peak 

oscillation amplitude. This value of = is then substituted in equation (12) for an 7 s  
improved approximation y4(7), which is shown in figure 11. 

CONCLUDING REMARKS 

In summary, it has been shown that the approximations given in reference 1 can be 

modified to improve their usefulness and accuracy. A new approximation y1(7) has also 

been developed which uses  trigonometric functions and gives the frequency a s  a function 
of the peak-to-peak amplitude ratio yo. This approximation is the most accurate of 

those considered, does not require the use  of Jacobian elliptic functions, and provides 

sufficient accuracy for most applications. 

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio, November 7, 1969, 

129-02. 
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