FIRST QUARTERLY REPORT

For

PRODUCTION OF UNIFORM NICKEL-CADMIUM BATTERY PLATE MATERIALS

(June 13, 1969 to September 12, 1969)

Contract No.: NAS 5-21045

Submitted By

GULTON INDUSTRIES, INC.
Battery & Power Sources Division
Metuchen, New Jersey 08840

For

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland
First Quarterly Report

for

PRODUCTION OF UNIFORM NICKEL-CADMIUM

BATTERY PLATE MATERIALS

(June 13, 1969 to September 12, 1969)

Contract No.: NAS 5-21045

Goddard Space Flight Center

Contracting Officer: A. L. Essex
Technical Monitor: Gerald Halpert

Prepared by

GULTON INDUSTRIES, INC.
Battery & Power Sources Division
Metuchen, New Jersey 08840

Project Manager: Edward Kantner

for

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>II. EXPERIMENTAL METHODS AND DATA</td>
<td>3</td>
</tr>
<tr>
<td>A. PROGRAM PLAN</td>
<td>3</td>
</tr>
<tr>
<td>B. SLURRY PREPARATION</td>
<td>5</td>
</tr>
<tr>
<td>C. SINTERING EXPERIMENTS</td>
<td>6</td>
</tr>
<tr>
<td>D. POROSITY MEASUREMENTS</td>
<td>8</td>
</tr>
<tr>
<td>E. RESISTIVITY MEASUREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>III. DISCUSSION</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TABLE DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TABULATION OF SINTERING EXPERIMENTS</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>BULK DENSITY OF NICKEL POWDERS</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>SINTERING KILN TEMPERATURES</td>
<td>8</td>
</tr>
<tr>
<td>IV</td>
<td>POROSITY OF SINTERED PLAQUES</td>
<td>10</td>
</tr>
<tr>
<td>V</td>
<td>CURRENT-VOLTAGE RELATIONSHIP, SINTERED NICKEL PLAQUE</td>
<td>12</td>
</tr>
<tr>
<td>VI</td>
<td>RESISTIVITY OF SINTERED NICKEL PLAQUES</td>
<td>13</td>
</tr>
<tr>
<td>VII</td>
<td>RESISTIVITY Vs SINTERING TEMPERATURE</td>
<td>14</td>
</tr>
<tr>
<td>VIII</td>
<td>RESISTIVITY Vs SINTERING TIME</td>
<td>14</td>
</tr>
<tr>
<td>IX</td>
<td>RESISTIVITY Vs SLURRY VISCOSITY</td>
<td>14</td>
</tr>
<tr>
<td>X</td>
<td>EFFECT OF PRIMER ON RESISTIVITY</td>
<td>15</td>
</tr>
<tr>
<td>XI</td>
<td>RESISTIVITY Vs SINTERING ATMOSPHERE</td>
<td>15</td>
</tr>
<tr>
<td>XII</td>
<td>RESISTIVITY Vs BATCH NUMBER</td>
<td>15</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>FIGURE DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEST SETUP FOR MEASURING PLAQUE RESISTIVITY</td>
<td>11a</td>
</tr>
</tbody>
</table>

iii
ABSTRACT

Sample lots of sintered nickel plaque were prepared in a battery plate production facility. This was done in an experiment to determine the effect of material and process variables on their physical characteristics. The variables studied were: sintering time, sintering temperature, slurry viscosity, sintering atmosphere, priming of substrate, and bulk density of nickel powder.

Batch to batch variation in the nickel powder would also be an observable response. Initial evaluation was concentrated on determining trends caused by the aforementioned variables on porosity and resistivity.
I. INTRODUCTION

The objective of this program is to scale up a laboratory process to a production process for the manufacture of uniform and reliable nickel-cadmium battery plate materials for long term aerospace missions. The specific tasks include a study and evaluation of the effect of material and process variables on the uniformity and characteristics of sintered plaques and impregnated plates.

The required lots of sintered plaques and plates were produced in Gulton Industries' battery plate facility in Gananoque, Ontario. This facility is designed to produce battery plates by the continuous slurry technique. Evaluation and testing of the plaques and plates was made in our Metuchen laboratories. The objective is to determine the necessary process and control procedures under which battery plates of high quality and uniformity can be made reproducibly.

The initial experiments were designed to examine all possible variables which may have an influence on the final product. Particular attention is focused on factors which contribute to non-uniformity.
II. EXPERIMENTAL METHODS AND DATA

A. PROGRAM PLAN

In the initial sintering experiments, it was felt desirable to examine all the variables which have an influence on the pertinent characteristics of sintered nickel plaques. Consequently, a program plan was established where the effect of each of six variables on the quality and uniformity of sintered plaques and impregnated battery plates was examined. The variables selected were:

1. Sintering temperature, at 3 levels.
2. Sintering time (rate of travel of coated strip through the kiln), at 5 levels.
3. Slurry viscosity, at 3 levels.
4. Sintering atmosphere, at 2 levels.
5. Bulk density of nickel powder, at 2 levels, and
6. Priming of nickel substrate prior to application of the slurry coating, at 2 levels.

Varying the drying temperature (and rate) after coating, and prior to sintering, was also considered. However, it was felt that this parameter would have little, if any, effect on the plaque characteristics and was, therefore, omitted from these studies.

The experiments chosen and the particular variables studied in each experiment are listed in Table I. These experiments, performed in the order shown in Table I, should also yield information on the reproducibility of plaques from batch to batch.
<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>SLURRY BATCH NO.</th>
<th>SLURRY VISCOSITY cps</th>
<th>PRIMER USED</th>
<th>REDUCING ATMOSPHERE</th>
<th>SINTERING TEMP., °C</th>
<th>TIME, Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1*</td>
<td>70,000</td>
<td>Yes</td>
<td>EXO</td>
<td>900</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>"</td>
<td>79,000</td>
<td>"</td>
<td>"</td>
<td>900</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>"</td>
<td>75,000</td>
<td>"</td>
<td>"</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>"</td>
<td>72,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>"</td>
<td>76,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>"</td>
<td>68,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>"</td>
<td>68,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>2.5</td>
</tr>
<tr>
<td>I</td>
<td>"</td>
<td>142,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>J</td>
<td>"</td>
<td>102,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>2*</td>
<td>123,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>"</td>
<td>125,000</td>
<td>No</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>"</td>
<td>112,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>N</td>
<td>"</td>
<td>135,000</td>
<td>Yes</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>O</td>
<td>"</td>
<td>76,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>P</td>
<td>"</td>
<td>76,000</td>
<td>No</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>Q</td>
<td>"</td>
<td>76,000</td>
<td>"</td>
<td>Forming Gas</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>R</td>
<td>"</td>
<td>75,000</td>
<td>Yes</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>S</td>
<td>3**</td>
<td>142,000</td>
<td>"</td>
<td>EXO</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>T</td>
<td>"</td>
<td>109,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>U</td>
<td>"</td>
<td>79,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>4*</td>
<td>144,000</td>
<td>"</td>
<td>"</td>
<td>950</td>
<td>20</td>
</tr>
<tr>
<td>Y</td>
<td>"</td>
<td>144,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td>Z</td>
<td>"</td>
<td>144,000</td>
<td>"</td>
<td>"</td>
<td>1000</td>
<td>10</td>
</tr>
</tbody>
</table>

* Nickel Powder, Lot No. B/3, Bulk density 0.92 gm/cc
** Nickel Powder, Lot No. B/998, Bulk density 0.85 gm/cc
B. **SLURRY PREPARATION**

Four batches of nickel slurry were prepared for the sintering experiments. These consisted of the following:

B1 & B2
- 180 lbs. nickel powder #287, Lot B/3
- 180 lbs. water
- 4 lbs. Methocell

B3
- 180 lbs. nickel powder #287, Lot B/998
- 180 lbs. water
- 4 lbs. Methocell

B4
- 180 lbs. nickel powder #287, Lot B/3
- 170 lbs. water
- 4 lbs. Methocell

The bulk densities of the nickel powders were determined using a Scott Volumeter. Two powder samples were taken from each of the four barrels used, one from the top and one from the bottom, to check uniformity within the same barrel and from one barrel to the next within the same lot.

The values shown in Table II do show a slight variation between top and bottom of the barrels, with the bottom somewhat more dense. This is most likely due to settling of the smaller particles during handling and shipment. The bulk densities of B1, B2 and B4 should be identical, as they have the same lot number. While B1 and B4 are in essential agreement with the manufacturer's value, there is a discrepancy between the measured and reported values for B2 and B3.

-5-
TABLE II. - BULK DENSITY OF NICKEL POWDERS

<table>
<thead>
<tr>
<th>POWDER SAMPLE</th>
<th>MEASURED DENSITY *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gm/cu in.</td>
</tr>
<tr>
<td>1. B1, Top, Lot B/3</td>
<td>15.2239</td>
</tr>
<tr>
<td>2. B1, Bottom, Lot B/3</td>
<td>15.2694</td>
</tr>
<tr>
<td>3. B2, Top, Lot B/3</td>
<td>15.7275</td>
</tr>
<tr>
<td>4. B2, Bottom, Lot B/3</td>
<td>15.8883</td>
</tr>
<tr>
<td>5. B3, Top, Lot B/998</td>
<td>13.2938</td>
</tr>
<tr>
<td>6. B3, Bottom, Lot B/998</td>
<td>13.4074</td>
</tr>
<tr>
<td>7. B4, Top, Lot B/3</td>
<td>15.1394</td>
</tr>
<tr>
<td>8. B4, Bottom, Lot B/3</td>
<td>15.3914</td>
</tr>
</tbody>
</table>

* Bulk densities reported by the manufacturer were 0.92 gm/cc and 0.85 gm/cc for Lots B/3 and B/998 respectively.

Deionized water, at 70°C, was added to wet the powders, and rolled for 10 hrs. in polyethylene lined vessels to uniformly disperse the binder in the nickel powder. The slurry was allowed to stand in a water cooled bath for 14-16 hours to affect dissolution of the binder, "poled"** to adjust its viscosity by the addition of water, and transferred to the feeder for the sintering experiments. The viscosity of the slurry was checked with a Brookfield Viscometer at 2 rpm using a #5 spindle. The initial viscosities of the four slurry batches prepared above were:

B1 - 130,000 centipoises
B2 - 130,000
B3 - 142,000 centipoises
B4 - 152,000

** "Poling" is a method of mixing without introducing air bubbles in the slurry.
C. SINTERING EXPERIMENTS

The sintering experiments were carried out in the order shown in Table I. Grade "A" perforated nickel foil, 0.003 in. thick and 7-1/2 in. wide, was used as the substrate. Where a change in firing temperature was involved in going from one experiment to the next, sufficient time (about 30 minutes) was allowed for the kiln to come to equilibrium. The sintering time was controlled by adjustment of the rate at which the coated nickel substrate travelled through the sintering oven. To change the slurry, all vessels were emptied and cleaned before introducing the new material (either of a different viscosity or a different batch).

Approximately fifty feet of sintered plaque material was run under each of the experimental conditions listed above. The kiln atmosphere was EX0 gas* in each case, excepting experiments Q and R, where Forming Gas (10% H₂, 90% N₂) was used to determine whether the composition of the reducing atmosphere bears an influence on the sintered nickel.

The firing temperatures in the sintering kiln, as indicated by direct readout thermocouples, are shown in Table III.

Samples of slurry were collected for determination of solids content. This was done by first driving off the water in a vacuum oven at about 2 psia and 100°C. The slurry sample was left in the vacuum oven overnight, cooled and weighed. This process was repeated two or three times until no change in weight was noted. The dried samples are then further treated to burn off the binder to determine the nickel content. At this writing, this work is incomplete and the results of these experiments will be reported later.

Following the sintering, the plaque was coined and cut into strips of about three feet in length. Each strip was numbered to enable us to identify its exact position. The strips were divided into three groups in such a manner that each group was identically representative of the full run.

* 17% H₂, 83% N₂
<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BOTTOM</th>
<th>CENTER</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1640</td>
<td>1660</td>
<td>1640</td>
</tr>
<tr>
<td>B</td>
<td>1620</td>
<td>1660</td>
<td>1650</td>
</tr>
<tr>
<td>C</td>
<td>1735</td>
<td>1740</td>
<td>1730</td>
</tr>
<tr>
<td>D</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>F</td>
<td>1820</td>
<td>1835</td>
<td>1820</td>
</tr>
<tr>
<td>G</td>
<td>1820</td>
<td>1835</td>
<td>1820</td>
</tr>
<tr>
<td>H</td>
<td>1830</td>
<td>1840</td>
<td>1810</td>
</tr>
<tr>
<td>I</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>J</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>K</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>L</td>
<td>1825</td>
<td>1840</td>
<td>1840</td>
</tr>
<tr>
<td>M</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>N</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>O</td>
<td>1830</td>
<td>1840</td>
<td>1840</td>
</tr>
<tr>
<td>P</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>Q</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>R</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>S</td>
<td>1820</td>
<td>1835</td>
<td>1820</td>
</tr>
<tr>
<td>T</td>
<td>1830</td>
<td>1835</td>
<td>1820</td>
</tr>
<tr>
<td>U</td>
<td>1830</td>
<td>1835</td>
<td>1820</td>
</tr>
<tr>
<td>X</td>
<td>1735</td>
<td>1740</td>
<td>1730</td>
</tr>
<tr>
<td>Y</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
<tr>
<td>Z</td>
<td>1830</td>
<td>1840</td>
<td>1830</td>
</tr>
</tbody>
</table>
Two groups were impregnated, converted to Ni(OH)$_2$ and Cd(OH)$_2$, and set aside for a subsequent determination of weight gain and active material distribution.

The third group was blanked into individual plates (2.75" x 5.90") for characterization as plaque material.

D. **POROSITY MEASUREMENTS**

Porosity measurements were made using 2 inch square samples of plaque material. The test specimen was weighed dry, and then reweighed while suspended in a liquid (kerosene). Some time (2-3 minutes) was allowed for the liquid to penetrate the pores before making the weight measurement. The saturated specimen was removed from the kerosene and again weighed after the excess liquid had been removed from the surface using a slightly moistened piece of cotton cloth, being careful not to withdraw any liquid from the pores.

The porosity of the test sample was calculated using the formula:

\[P = \frac{W - D}{W - S} \times 100 \]

where
\(D \) = dry weight (before immersion),
\(S \) = Suspended weight, and
\(W \) = saturated weight in air

Duplicate measurements were made on each experimental run with the results listed in Table IV.
<table>
<thead>
<tr>
<th>EXPERIMENT AND STRIP NUMBER</th>
<th>THICKNESS (Inches)</th>
<th>POROSITY (%)</th>
<th>EXPERIMENT AND STRIP NUMBER</th>
<th>THICKNESS (Inches)</th>
<th>POROSITY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>.025</td>
<td>72.9</td>
<td>M-10</td>
<td>.031</td>
<td>72.6</td>
</tr>
<tr>
<td>A-9</td>
<td>.028</td>
<td>72.8</td>
<td>N-2</td>
<td>.033</td>
<td>72.8</td>
</tr>
<tr>
<td>B-1</td>
<td>.027</td>
<td>72.5</td>
<td>N-11</td>
<td>.033</td>
<td>72.6</td>
</tr>
<tr>
<td>B-10</td>
<td>.027</td>
<td>73.1</td>
<td>O-1</td>
<td>.032</td>
<td>72.7</td>
</tr>
<tr>
<td>C-2</td>
<td>.028</td>
<td>71.9</td>
<td>O-9</td>
<td>.031</td>
<td>73.6</td>
</tr>
<tr>
<td>C-11</td>
<td>.028</td>
<td>71.5</td>
<td>P-2</td>
<td>.030</td>
<td>72.4</td>
</tr>
<tr>
<td>D-2</td>
<td>.027</td>
<td>73.7</td>
<td>P-11</td>
<td>.032</td>
<td>73.5</td>
</tr>
<tr>
<td>D-11</td>
<td>.027</td>
<td>73.0</td>
<td>Q-1</td>
<td>.031</td>
<td>72.4</td>
</tr>
<tr>
<td>F-1</td>
<td>.030</td>
<td>73.8</td>
<td>Q-9</td>
<td>.032</td>
<td>73.5</td>
</tr>
<tr>
<td>F-11</td>
<td>.031</td>
<td>73.7</td>
<td>R-1</td>
<td>.033</td>
<td>73.5</td>
</tr>
<tr>
<td>G-2</td>
<td>.033</td>
<td>74.8</td>
<td>R-10</td>
<td>.032</td>
<td>72.9</td>
</tr>
<tr>
<td>G-11</td>
<td>.034</td>
<td>74.2</td>
<td>S-2</td>
<td>.034</td>
<td>73.2</td>
</tr>
<tr>
<td>H-1</td>
<td>.034</td>
<td>74.3</td>
<td>S-11</td>
<td>.034</td>
<td>73.6</td>
</tr>
<tr>
<td>H-10</td>
<td>.035</td>
<td>74.9</td>
<td>T-1</td>
<td>.033</td>
<td>73.8</td>
</tr>
<tr>
<td>I-1</td>
<td>.032</td>
<td>74.0</td>
<td>T-10</td>
<td>.034</td>
<td>74.1</td>
</tr>
<tr>
<td>I-10</td>
<td>.031</td>
<td>73.5</td>
<td>U-1</td>
<td>.033</td>
<td>73.9</td>
</tr>
<tr>
<td>J-2</td>
<td>.032</td>
<td>71.7</td>
<td>U-10</td>
<td>.034</td>
<td>73.3</td>
</tr>
<tr>
<td>J-11</td>
<td>.033</td>
<td>72.4</td>
<td>X-1</td>
<td>.033</td>
<td>72.6</td>
</tr>
<tr>
<td>K-1</td>
<td>.034</td>
<td>73.9</td>
<td>X-10</td>
<td>.035</td>
<td>72.5</td>
</tr>
<tr>
<td>K-10</td>
<td>.035</td>
<td>73.8</td>
<td>Y-1</td>
<td>.033</td>
<td>72.1</td>
</tr>
<tr>
<td>L-1</td>
<td>.034</td>
<td>73.8</td>
<td>Y-10</td>
<td>.032</td>
<td>72.0</td>
</tr>
<tr>
<td>L-9</td>
<td>.033</td>
<td>73.1</td>
<td>Z-2</td>
<td>.035</td>
<td>73.2</td>
</tr>
<tr>
<td>M-1</td>
<td>.032</td>
<td>72.9</td>
<td>Z-11</td>
<td>.031</td>
<td>73.0</td>
</tr>
</tbody>
</table>
E. RESISTIVITY MEASUREMENTS

To measure the resistivity of the sintered plaques, a device was fabricated where copper bars were attached to opposite sides and across the full width of the test sample. With a measured current flowing through the test sample, the voltage drop between two points, a known distance apart, and parallel to the direction of the current flow, was measured. The voltage probes were spring loaded to maintain a constant contact pressure on the surface of the sinter. The test setup for making these measurements is shown in Figure 1. From the measured voltage drop, the current, and the cross-sectional area of the test sample, the resistivity, \(\rho \), was calculated using the formula:

\[
\rho = \frac{EA}{I \ell}
\]

where:
- \(E \) = measured voltage drop
- \(A \) = cross-sectional area
- \(I \) = current flowing through test sample, and
- \(\ell \) = distance between voltage probes

To check out the device, measurements were made on a sample plaque at several different currents ranging from 2 amperes to 20 amperes. At first, the current probes were attached to the plaque substrate. The same measurements were then repeated with the current probes attached to the sinter. The results of these measurements, shown in Table V, indicated that an ohmic relationship exists between current and voltage, and that the results of the measurement were not influenced by whether the current probes were attached to the substrate or the sinter. Further, the current did not cause heating that would result in errors in the determination. Plaque resistivities of all the experimental runs were measured in triplicate; one at the beginning, one in the middle, and one at the end of the run. The results are shown in Table VI.

-11-
TABLE V.

CURRENT-VOLTAGE RELATIONSHIP, SINTERED NICKEL PLAQUE

<table>
<thead>
<tr>
<th>CURRENT FLOW THRU TEST SAMPLE</th>
<th>VOLTAGE DROP CONTACT MADE TO SUBSTRATE</th>
<th>VOLTAGE DROP CONTACT MADE TO SINTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Amps</td>
<td>17.25 mV</td>
<td>17.50 mV</td>
</tr>
<tr>
<td>10 "</td>
<td>8.75 "</td>
<td>8.75 "</td>
</tr>
<tr>
<td>8 "</td>
<td>7.00 "</td>
<td>7.00 "</td>
</tr>
<tr>
<td>6 "</td>
<td>5.25 "</td>
<td>5.25 "</td>
</tr>
<tr>
<td>4 "</td>
<td>3.50 "</td>
<td>3.50 "</td>
</tr>
<tr>
<td>2 "</td>
<td>1.75 "</td>
<td>1.75 "</td>
</tr>
</tbody>
</table>

The three values for each of the experimental runs were averaged and listed in Tables VII to XII to show the effect of sintering temperatures, sintering time, slurry viscosity, primer, sintering atmosphere, and batch number (reproducibility) on plaque resistivity.
<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>RESISTIVITY, ohm-cm x 10^{-5}</th>
<th>IDENTIFICATION</th>
<th>RESISTIVITY, ohm-cm x 10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>7.2</td>
<td>M-3</td>
<td>8.1</td>
</tr>
<tr>
<td>A-11</td>
<td>6.9</td>
<td>M-9</td>
<td>8.1</td>
</tr>
<tr>
<td>A-14</td>
<td>7.3</td>
<td>M-18</td>
<td>8.1</td>
</tr>
<tr>
<td>B-3</td>
<td>7.3</td>
<td>N-1</td>
<td>8.7</td>
</tr>
<tr>
<td>B-8</td>
<td>7.8</td>
<td>N-7</td>
<td>8.9</td>
</tr>
<tr>
<td>B-15</td>
<td>7.8</td>
<td>N-13</td>
<td>8.1</td>
</tr>
<tr>
<td>C-1</td>
<td>7.7</td>
<td>O-5</td>
<td>8.1</td>
</tr>
<tr>
<td>C-10</td>
<td>7.6</td>
<td>O-11</td>
<td>8.1</td>
</tr>
<tr>
<td>C-19</td>
<td>8.2</td>
<td>O-20</td>
<td>8.1</td>
</tr>
<tr>
<td>D-4</td>
<td>7.6</td>
<td>P-1</td>
<td>7.9</td>
</tr>
<tr>
<td>D-10</td>
<td>8.2</td>
<td>P-10</td>
<td>8.1</td>
</tr>
<tr>
<td>D-16</td>
<td>7.6</td>
<td>P-19</td>
<td>7.9</td>
</tr>
<tr>
<td>F-3</td>
<td>8.8</td>
<td>Q-2</td>
<td>8.1</td>
</tr>
<tr>
<td>F-10</td>
<td>7.6</td>
<td>Q-8</td>
<td>7.6</td>
</tr>
<tr>
<td>F-22</td>
<td>7.6</td>
<td>Q-14</td>
<td>7.6</td>
</tr>
<tr>
<td>G-4</td>
<td>9.0</td>
<td>R-3</td>
<td>8.7</td>
</tr>
<tr>
<td>G-16</td>
<td>9.3</td>
<td>R-6</td>
<td>7.8</td>
</tr>
<tr>
<td>G-25</td>
<td>9.0</td>
<td>R-12</td>
<td>8.4</td>
</tr>
<tr>
<td>H-3</td>
<td>9.5</td>
<td>S-1</td>
<td>8.4</td>
</tr>
<tr>
<td>H-12</td>
<td>9.3</td>
<td>S-13</td>
<td>8.6</td>
</tr>
<tr>
<td>H-21</td>
<td>9.7</td>
<td>S-19</td>
<td>8.6</td>
</tr>
<tr>
<td>I-3</td>
<td>8.4</td>
<td>T-3</td>
<td>8.3</td>
</tr>
<tr>
<td>I-9</td>
<td>7.8</td>
<td>T-19</td>
<td>8.6</td>
</tr>
<tr>
<td>I-18</td>
<td>8.4</td>
<td>T-18</td>
<td>8.4</td>
</tr>
<tr>
<td>J-1</td>
<td>7.9</td>
<td>U-3</td>
<td>7.8</td>
</tr>
<tr>
<td>J-10</td>
<td>8.1</td>
<td>U-9</td>
<td>8.1</td>
</tr>
<tr>
<td>J-19</td>
<td>8.1</td>
<td>U-18</td>
<td>8.0</td>
</tr>
<tr>
<td>K-3</td>
<td>8.7</td>
<td>X-3</td>
<td>7.8</td>
</tr>
<tr>
<td>K-12</td>
<td>8.9</td>
<td>X-9</td>
<td>7.6</td>
</tr>
<tr>
<td>K-18</td>
<td>8.1</td>
<td>X-15</td>
<td>7.6</td>
</tr>
<tr>
<td>L-2</td>
<td>8.4</td>
<td>Y-3</td>
<td>7.1</td>
</tr>
<tr>
<td>L-11</td>
<td>8.4</td>
<td>Y-9</td>
<td>7.1</td>
</tr>
<tr>
<td>L-17</td>
<td>8.4</td>
<td>Y-15</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z-1</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z-7</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z-13</td>
<td>7.9</td>
</tr>
</tbody>
</table>

* Measurements made at 10 amperes
TABLE VII. - RESISTIVITY VS. SINTERING TEMPERATURE

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY (cps)</th>
<th>SINTERING TEMP./TIME</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>B₁</td>
<td>70,000</td>
<td>900/20</td>
<td>(7.6 \times 10^{-5})</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>75,000</td>
<td>950/20</td>
<td>(7.8 \times 10^{-5})</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>72,000</td>
<td>1000/20</td>
<td>(7.8 \times 10^{-5})</td>
</tr>
<tr>
<td>X</td>
<td>B₄</td>
<td>144,000</td>
<td>950/20</td>
<td>(7.7 \times 10^{-5})</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>144,000</td>
<td>1000/20</td>
<td>(7.2 \times 10^{-5})</td>
</tr>
</tbody>
</table>

TABLE VIII. - RESISTIVITY VS. SINTERING TIME

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY (cps)</th>
<th>SINTERING TEMP./TIME</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>B₁</td>
<td>72,000</td>
<td>1000/20</td>
<td>(7.8 \times 10^{-5})</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>76,000</td>
<td>1000/10</td>
<td>(8.0 \times 10^{-5})</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>68,000</td>
<td>1000/5</td>
<td>(9.1 \times 10^{-5})</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>68,000</td>
<td>1000/2(\frac{1}{2})</td>
<td>(9.5 \times 10^{-5})</td>
</tr>
<tr>
<td>Y</td>
<td>B₄</td>
<td>144,000</td>
<td>1000/20</td>
<td>(7.2 \times 10^{-5})</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td>144,000</td>
<td>1000/10</td>
<td>(8.1 \times 10^{-5})</td>
</tr>
</tbody>
</table>

TABLE IX. - RESISTIVITY VS. SLURRY VISCOSITY

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY (cps)</th>
<th>SINTERING TEMP./TIME</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B₁</td>
<td>142,000</td>
<td>1000/10</td>
<td>(8.2 \times 10^{-5})</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>102,000</td>
<td>1000/10</td>
<td>(8.0 \times 10^{-5})</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>76,000</td>
<td>1000/10</td>
<td>(8.0 \times 10^{-5})</td>
</tr>
<tr>
<td>K</td>
<td>B₂</td>
<td>123,000</td>
<td>1000/10</td>
<td>(8.6 \times 10^{-5})</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>135,000</td>
<td>1000/10</td>
<td>(8.6 \times 10^{-5})</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>76,000</td>
<td>1000/10</td>
<td>(8.1 \times 10^{-5})</td>
</tr>
<tr>
<td>S</td>
<td>B₃</td>
<td>142,000</td>
<td>1000/10</td>
<td>(8.5 \times 10^{-5})</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>109,000</td>
<td>1000/10</td>
<td>(8.4 \times 10^{-5})</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>79,000</td>
<td>1000/10</td>
<td>(8.0 \times 10^{-5})</td>
</tr>
</tbody>
</table>
TABLE X. EFFECT OF PRIMER ON RESISTIVITY

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY</th>
<th>PRIMER</th>
<th>SINTERING TEMP./TIME</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>B_2</td>
<td>123,000</td>
<td>Yes</td>
<td>1000/10</td>
<td>8.6×10^{-5}</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>125,000</td>
<td>No</td>
<td>1000/10</td>
<td>8.4×10^{-5}</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>135,000</td>
<td>Yes</td>
<td>1000/10</td>
<td>8.6×10^{-5}</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>112,000</td>
<td>No</td>
<td>1000/10</td>
<td>8.1×10^{-5}</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>76,000</td>
<td>Yes</td>
<td>1000/10</td>
<td>8.1×10^{-5}</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>76,000</td>
<td>No</td>
<td>1000/10</td>
<td>8.0×10^{-5}</td>
</tr>
</tbody>
</table>

TABLE XI. RESISTIVITY VS. SINTERING ATMOSPHERE

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY</th>
<th>PRIMER</th>
<th>ATM.</th>
<th>SINTERING TEMP./TIME</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>B_2</td>
<td>76,000</td>
<td>Yes</td>
<td>EXO.</td>
<td>1000/10</td>
<td>8.1×10^{-5}</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>75,000</td>
<td>Yes</td>
<td>F.G.</td>
<td>1000/10</td>
<td>8.3×10^{-5}</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>76,000</td>
<td>No</td>
<td>EXO.</td>
<td>1000/10</td>
<td>8.0×10^{-5}</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>76,000</td>
<td>No</td>
<td>F.G.</td>
<td>1000/10</td>
<td>7.8×10^{-5}</td>
</tr>
</tbody>
</table>

TABLE XII. RESISTIVITY VS. BATCH NUMBER

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>BATCH</th>
<th>VISCOSITY</th>
<th>SINTERING TEMP./TIME</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>B_1</td>
<td>142,000</td>
<td>1000/10</td>
<td>8.2×10^{-5}</td>
</tr>
<tr>
<td>K</td>
<td>B_2</td>
<td>123,000</td>
<td>1000/10</td>
<td>8.6×10^{-5}</td>
</tr>
<tr>
<td>S</td>
<td>B_3</td>
<td>142,000</td>
<td>1000/10</td>
<td>8.5×10^{-5}</td>
</tr>
<tr>
<td>Z</td>
<td>B_4</td>
<td>144,000</td>
<td>1000/10</td>
<td>8.1×10^{-5}</td>
</tr>
<tr>
<td>U</td>
<td>B_1</td>
<td>102,000</td>
<td>1000/10</td>
<td>8.0×10^{-5}</td>
</tr>
<tr>
<td>N</td>
<td>B_2</td>
<td>135,000</td>
<td>1000/10</td>
<td>8.6×10^{-5}</td>
</tr>
<tr>
<td>T</td>
<td>B_3</td>
<td>109,000</td>
<td>1000/10</td>
<td>8.4×10^{-5}</td>
</tr>
<tr>
<td>F</td>
<td>B_1</td>
<td>76,000</td>
<td>1000/10</td>
<td>8.0×10^{-5}</td>
</tr>
<tr>
<td>O</td>
<td>B_2</td>
<td>76,000</td>
<td>1000/10</td>
<td>8.1×10^{-5}</td>
</tr>
<tr>
<td>U</td>
<td>B_3</td>
<td>79,000</td>
<td>1000/10</td>
<td>8.0×10^{-5}</td>
</tr>
</tbody>
</table>
III. DISCUSSION

The characterization of the experimental plaques is in progress, hence, the discussion must be limited to trends shown by the results obtained to data.

Perhaps one of the more surprising results obtained is the relatively narrow range of porosities found in these experiments. These values ranged from 71.5% (C-11) to 74.9% (H-10).

The method used to determine porosity has one inherent source of error; namely, removing the excess liquid from the surface before weighing the liquid saturated sample in air.

The degree of sintering is a function of both time and temperature. The highest porosity measured was in the samples fired at 1000°C for the shortest period (2-1/2 minutes). This is not unexpected considering that the firing time is in all probability insufficient to allow strong particle-to-particle bonding to take place.

The lowest porosity was measured on the samples fired at 950°C for 20 minutes, rather than those fired at 1000°C for the same period, as one would expect. No explanation is offered for this observation at this time. The effects of viscosity and batch, as examples, also affect response to experimental variables.

The resistivities of the samples measured ranged from 6.9×10^{-5} ohm-cm to 9.7×10^{-5} ohm-cm, with the lowest value being observed on samples A (900°C, 30 min.). The observed trends were as might be expected. Increasing either the firing time or the firing temperature tended to decrease resistivity. The effect of slurry viscosity on plaque resistivity was not discernible from the number of samples studied. These measurements will be repeated with a larger number of samples to determine any real effects.
The data in Table IX suggest that the effect of the primer is to slightly increase resistivity. Possibly, this material leaves some residue which acts as a resistive barrier between the substrate and the sinter.

The effect of the sintering atmosphere (forming gas vs. EXO) appears negligible. This conclusion, however, should be reaffirmed by a larger sampling.

Batch-to-batch uniformity, as determined by plaque resistivity, appears to be good, as shown by the results in Table XI.

The results thus far indicate that uniformity of plaques in a production facility is, indeed, achievable. It remains to be seen whether improved uniformity is obtained in impregnation, and later, in cell performance. This is the work planned for the next interval.
OFFICIAL DISTRIBUTION LIST
FOR BATTERY REPORTS
AUGUST 1969

National Aeronautics
and Space Administration
Scientific and Technical
Information Center: Input
P. O. Box 33
College Park, Maryland 20740
2 copies + 1 reproducible

Mr. Ernst M. Cohn, Code RNW
National Aeronautics
and Space Administration
Washington, D. C. 20546

Mr. A. M. Greg Andrus, Code SAC
National Aeronautics
and Space Administration
Washington, D. C. 20546

Dr. Steven J. Glassman, Code UT
National Aeronautics
and Space Administration
Washington, D. C. 20546

Mr. Gerald Halpert, Code 735
Goddard Space Flight Center
National Aeronautics
and Space Administration
Greenbelt, Maryland 20771

Mr. Thomas Hennigan, Code 716.2
Goddard Space Flight Center
National Aeronautics
and Space Administration
Greenbelt, Maryland 20771

Mr. Joseph Sherfey, Code 735
Goddard Space Flight Center
National Aeronautics
and Space Administration
Greenbelt, Maryland 20771

Mr. Louis Wilson, Code 450
Goddard Space Flight Center
National Aeronautics
and Space Administration
Greenbelt, Maryland 20771

Mr. John L. Patterson, MS 472
Langley Research Center
National Aeronautics
and Space Administration
Hampton, Virginia 23365

Mr. M. B. Seyffert, MS 112
Langley Research Center
National Aeronautics
and Space Administration
Hampton, Virginia 23365

Dr. Louis Rosenblum
Lewis Research Center
National Aeronautics
and Space Administration
21000 Brookpark Road
Cleveland, Ohio 44135

Mr. Harvey Schwartz
Stop 500-201
Lewis Research Center
National Aeronautics
and Space Administration
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. J. Stewart Fordyce
Stop 6-1
Lewis Research Center
National Aeronautics
and Space Administration
21000 Brookpark Road
Cleveland, Ohio 44135
Mr. Charles B. Graff, S&E-ASTR-EP
George C. Marshall Space Flight Center
National Aeronautics
and Space Administration
Huntsville, Alabama 35812

Mr. W. E. Rice, EP5
Manned Spacecraft Center
National Aeronautics
and Space Administration
Houston, Texas 77058

Mr. Jon A. Rubenzer, Code PBS
Ames Research Center
National Aeronautics
and Space Administration
Moffett Field, California 94035

Dr. Sol Gilman, Code CPE
Electronics Research Center
National Aeronautics
and Space Administration
575 Technology Square
Cambridge, Massachusetts 02139

Mr. Paul Goldsmith, MS 198-223
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Mr. Alvin A. Uchiyama, MS 198-223
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

Dr. R. Lutwack, MS 198-220
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

U. S. Army
Electro Technology Laboratory
Energy Conversion Research Division
MERDC
Fort Belvoir, Virginia 22060

Mr. G. Reinsmith, AMSWE-RDR
U. S. Army Natick Laboratories
Rock Island Arsenal
Rock Island, Illinois 61201

Mr. Leo A. Spano
U. S. Army Natick Laboratories
Clothing and Organic
Materials Division
Natick, Massachusetts 01762

Mr. Nathan Kaplan
Harry Diamond Laboratories
Room 300, Building 92
Connecticut Ave. & Van Ness St.
Washington, D. C. 20438

U. S. Army Electronics R&D Labs
Attn: Code AMSEL-KL-P
Fort Monmouth, New Jersey 07703

Director, Power Program, Code 473
Office of Naval Research
Washington, D. C. 20360

Mr. Harry Fox, Code 472
Office of Naval Research
Washington, D. C. 20360

Dr. J. C. White, Code 6160
Naval Research Laboratory
4555 Overlook Avenue, S. W.
Washington, D. C. 20360

Mr. J. H. Harrison, Code M760
Naval Ship R&D Center
Annapolis, Maryland 21402

Mr. Milton Knight, Code AIR-340C
Naval Air Systems Command
Washington, D. C. 20360

Mr. D. Miley, QEWE
U. S. Naval Ammunition Depot
Crane, Indiana 47522
Mr. William C. Spindler
Naval Weapons Center
Corona Laboratories
Corona, California 91720

Mr. Philip B. Cole, Code 232
Naval Ordnance Laboratory
Silver Spring, Maryland 20910

Mr. C. F. Viglotti, 6157D
Naval Ship Engineering Center
Washington, D. C. 20360

Mr. Robert E. Trumbule, STIC
Building 52
U. S. Naval Observatory
Washington, D. C. 20390

Mr. Bernard B. Rosenbaum, Code 03422
Naval Ship Systems Command
Washington, D. C. 20360

Mr. James E. Cooper, APIP-1
Aero Propulsion Laboratory
Wright-Patterson AFB, Ohio 45433

Mr. Francis X. Doherty, CRE
and Mr. Edward Raskind (Wing F)
AF Cambridge Research Lab
L. G. Hanscom Field
Bedford, Massachusetts 01731

Mr. Frank J. Mollura, EMEAM
Rome Air Development Center
Griffiss AFB, New York 13442

Dr. W. J. Hamer
National Bureau of Standards
Washington, D. C. 20234

Mr. Raymond J. Moshy
and Mr. Milton S. Mintz
A.M.F.
689 Hope Street
Stamford, Connecticut 06907

Aerospace Corporation
Attn: Library Acquisition Group
P. O. Box 95085
Los Angeles, California 90045

Dr. R. A. Haldeman
American Cyanamid Company
1937 W. Main Street
Stamford, Connecticut 06902

Dr. R. T. Foley
Chemistry Department
American University
Mass. & Nebraska Ave., N. W
Washington, D. C. 20016

Dr. H. L. Recht
Atomics International Division
North American Aviation, Inc.
8900 DeSota Avenue
Canoga Park, California 91304

Mr. R. F. Fogle, GF 16
Autonetics Division, NAR
P. O. Box 4181
Anaheim, California 92803

Dr. C. L. Faust
Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201

Mr. B. W. Moss
Bellcomm, Inc.
955 L'Enfant Plaza North, S. W.
Washington, D. C. 20024
Mr. D. O. Feder
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Carl Berger
13401 Kootenay Drive
Santa Ana, California 92705

Mr. Sidney Gross
2-7814, MS 85-86
The Boeing Company
P. O. Box 3999
Seattle, Washington 98124

Dr. Howard J. Strauss
Burgess Battery Company
Foot of Exchange Street
Freeport, Illinois 61032

Dr. Eugene Willihnganz
C & D Batteries
Division of Electric Autolite Company
Conshohocken, Pennsylvania 19428

Prof. T. P. Dirksce
Calvin College
3175 Burton Street, S. E.
Grand Rapids, Michigan 49506

Dr. H. Goldsmith
Catalyst Research Corporation
6101 Falls Road
Baltimore, Maryland 21209

Mr. Robert Strauss
Communications Satellite Corporation
1835 K Street, N. W.
Washington, D. C. 20036

Dr. L. J. Minnick
G. & W. H. Corson, Inc.
Plymouth Meeting, Pennsylvania 19462

Cubic Corporation
Attn: Librarian
9233 Balboa Avenue
San Diego, California 92123

Mr. J. A. Keralla
Delco Remy Division
General Motors Corporation
2401 Columbus Avenue
Anderson, Indiana 46011

Mr. J. M. Williams
Experimental Station, Building 304
Engineering Materials Laboratory
E. I. du Pont Nemours & Company
Wilmington, Delaware 19898

Director of Engineering
ESB, Inc.
P. O. Box 11097
Raleigh, North Carolina 27604

Dr. R. A. Schaefer
ESB, Inc.
Carl F. Norberg Research Center
19 West College Avenue
Yardley, Pennsylvania 19067

Mr. E. P. Broglio
Eagle-Picher Company
P. O. Box 47
Joplin, Missouri 64801

Dr. Morris Eisenberg
Electrochimica Corporation
1140 O'Brien Drive
Menlo Park, California 94025

Mr. R. H. Sparks
Electromite Corporation
2117 South Anne Street
Santa Ana, California 92704

Mr. Martin G. Klein
Electro-Optical Systems, Inc.
300 North Halstead Street
Pasadena, California 91107

Dr. W. P. Cadogan
Emhart Corporation
Box 1620
Hartford, Connecticut 06102
Energetics Science, Inc.
4461 Bronx Blvd.
New York, New York 10470

Dr. Arthur Fleischer
466 South Center Street
Orange, New Jersey 07050

Dr. R. C. Osthoff
Research and Development Center
General Electric Company
P. O. Box 43
Schenectady, New York 12301

Mr. K. L. Hanson
Spacecraft Department
General Electric Company
P. O. Box 8555
Philadelphia, Pennsylvania 19101

Mr. W. H. Roberts
Battery Business Section
General Electric Company
P. O. Box 114
Gainsville, Florida 32601

General Electric Company
Attn: Whitney Library
P. O. Box 8
Schenectady, New York 12301

Mr. John R. Thomas
Globe-Union, Inc.
P. O. Box 591
Milwaukee, Wisconsin 53201

Dr. J. E. Oxley
Gould Ionics, Inc.
P. O. Box 1377
Canoga Park, California 91304

Mr. J. S. Caraceni
Grumman Aircraft Engineering Corp.
Plant 25
AAP Project-Future Missions
Bethpage, Long Island
New York 11714

Dr. H. N. Seiger
Alkaline Battery Division
Gulton Industries
1 Gulton Street
Metuchen, New Jersey 08840

Honeywell Inc.
Attn: Library
Livingston Electronic Laboratory
Montgomeryville, Pennsylvania 18936

Dr. P. L. Howard
Centerville, Maryland 21617

Mr. M. E. Ellion
Building 366, MS 524
Hughes Aircraft Corporation
El Segundo, California 90245

Dr. H. T. Francis
IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

Dr. G. Myron Arcand
Department of Chemistry
Idaho State University
Pocatello, Idaho 83201

Mr. R. Hamilton
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202

Dr. R. Briceland
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202

Mr. William C. Mearns
International Nickel Company
1000-16th Street, N. W.
Washington, D. C. 20036
Mr. Richard E. Evans
Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland 20910

Dr. A. Moos
Leeson-Moos Laboratories
Lake Success Park, Community Drive
Great Neck, New York 11021

Dr. James D. Birkett
Arthur D. Little, Inc.
Acorn Park
Cambridge, Massachusetts 02140

Mr. Robert E. Corbett
Department 62-14, Building 154
Lockheed Missile and Space Company
P. O. Box 504
Sunnyvale, California 94088

Mr. R. R. Clune
Mallory Battery Company
South Broadway & Sunnyside Lane
Tarrytown, New York 10591

Dr. Per Bro
P. R. Mallory & Company, Inc.
Northwest Industrial Park
Burlington, Massachusetts 01801

P. R. Mallory & Company, Inc.
Attn: Technical Librarian
3029 East Washington Street
Indianapolis, Indiana 46206

Messrs. William B. Collins, MS 1620,
and M. S. Imanura, MS 8840
Martin-Marietta Corporation
P. O. Box 179
Denver, Colorado 80201

Mr. A. D. Tonelli, MS 7C
McDonnell Douglas, Inc.
3000 Ocean Park Blvd.
Santa Monica, California 90406

Dr. George Moe
Astropower Laboratory
McDonnell Douglas, Inc.
2121 Campus Drive
Newport Beach, California 92663

Dr. James Nash
S&ID Division
North American Rockwell Corp.
Downey, California 90241

Rocketdyne Division
North American Rockwell Corporation
Attn: Library
6633 Canoga Avenue
Canoga Park, California 91304

Mr. D. C. Briggs
Space Power and Propulsion
Department, MS W-49
Philco-Ford Corporation
3825 Fabian Way
Palo Alto, California 94303

Mr. Leon Schulman
Portable Power Sources Corporation
122 East 42nd Street
New York, New York 10017

Power Information Center
University City Science Institute
3401 Market Street, Room 2107
Philadelphia, Pennsylvania 19104

Prime Battery Corporation
15600 Cornell Street
Santa Fe Springs, California 90670

RAI Research Corporation
36-40 37th Street
Long Island City, New York 11101

Mr. A. Mundel
Sonotone Corporation
Saw Mill River Road
Elmsford, New York 10523
Southwest Research Institute
Attn: Library
8500 Culebra Road
San Antonio, Texas 78206

Dr. Fritz R. Kalhammer
Stanford Research Institute
820 Mission Street
South Pasadena, California 91030

Dr. E. M. Jost
and Dr. J. W. Ross
Texas Instruments, Inc.
34 Forest Street
Attleboro, Massachusetts 02703

Dr. W. R. Scott (M 2/2154)
TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278

Dr. Herbert P. Silverman (R-1/2094)
TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278

TRW Systems, Inc.
Attn: Librarian
23555 Euclid Avenue
Cleveland, Ohio 44117

Dr. A. C. Makrides
Tyco Laboratories, Inc.
Bear Hill
Hickory Drive
Waltham, Massachusetts 02154

Union Carbide Corporation
Development Laboratory Library
P. O. Box 5056
Cleveland, Ohio 44101

Dr. Robert Powers
Consumer Products Division
Union Carbide Corporation
P. O. Box 6116
Cleveland, Ohio 44101

Prof. John O'M. Bockris
Electrochemistry Laboratory
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. C. C. Hein, Contract Admin.
Research and Development Center
Westinghouse Electric Corporation
Churchill Borough
Pittsburgh, Pennsylvania 15235

Mr. J. W. Reiter
Whittaker Corporation
3850 Olive Street
Denver, Colorado 80237

Dr. M. Shaw
Whittaker Corporation
3540 Aero Court
San Diego, California 92123