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EFFECT  OF  PLUG BASE CONTOUR ON PERFORMANCE OF  A  FULLY 

TRUNCATED  PLUG  NOZZLE WITH TRANSLATING SHROUD 

By Charles E. Mercer  and Bobby L. Be r r i e r  
Langley  Research  Center 

SUMMARY 

An investigation of the effect of plug base contour  on  the  thrust-minus-drag  perfor- 
mance of a fully  truncated  plug  nozzle  with a simulated  translating  shroud  has  been  con- 
ducted  in  the  Langley  l6-foot  transonic  tunnel at static conditions  and at Mach numbers 
f rom 0.50 to 1.30. Two plug base  contours, flat and  semitoroidal,  were  used.  The  jet 
total-pressure  ratio  (i.e.,   the  ratio of jet  exhaust  total  pressure to free-s t ream  s ta t ic  
pressure)  was  varied  from  1.0  (jet off) to 8.0, depending  on  Mach  number.  The  exhaust 
gas  used  in  the  investigation  consisted of the  decomposition  products of 90 percent  con- 
centration  hydrogen  peroxide  and  had a specific-heat  ratio of 1.266. 

The  results show that  the  performance  level of the  fully  truncated  plug  nozzles  with 
the  shroud  retracted is lower  than  that of a comparable  plug  nozzle  having a full-length 
plug.  At  subsonic  speeds, a plug  utilizing a flat base  shape  gave  the  highest  thrust-minus- 
drag  performance  with  the  shroud  fully  retracted,  but  when  the  shroud  was  translated,  the 
semitoroidal base shape  became  beneficial. At supersonic  speeds,  the  plug  using a flat 
base  shape  gave  the  highest  thrust-minus-drag  performance  for all conditions of the 
investigation.  The  flat-base  plug  generally  had  the  highest  force  for all test conditions 
except  those at low jet   total-pressure  ratios.  

INTRODUCTION 

The  operation of aircraft over a wide  Mach  number  range  requires  nozzle  systems 
which perform at high  efficiency  for  varying  flight  conditions. One promising  nozzle  con- 
cept is the  plug  nozzle  for  which  the  outer  boundary of the  exhaust  stream  continually 
adjusts  to  external  stream  conditions. Many investigations of the  performance of var i -  
ous  plug  nozzles  have  been  made at static conditions  and  with  an  external  stream. (See 
refs. 1 to  17  for  examples.)  Some  studies  have  been  aimed at reducing  the  weight  and 
length of plug  nozzles  by  truncating  the  plug at various  lengths  up  to  the  geometric  throat 
and  by  forming  an  "aerodynamic"  central  plug  and are reported  in  references 5 to 8. In 
connection  with  these  truncation  studies,  several base shapes  have  been  investigated  in 
order  to establish  and  maintain  the  aerodynamic  central  plug  (refs. 1, 4, and 5). As 



previous  investigations  have  shown,  plug  nozzles  with  fixed  geometry  have  exhibited  high 
performance  efficiency  over a wide  range of jet total-pressure  ratio  in  quiescent air 
(refs. 9 and 10). Although  competitive  performance  has  been  obtained  with  these  noz- 
z les  at design  operation  conditions  (ref. 3),  poor  performance  has  been  exhibited at off - 
design  conditions  in  the  presence of an  external  stream  (refs.  11 and  12).  Hence, it is 
apparent  that  variable  geometry is needed  for  thrust  modulation. One  method of applying 
variable  geometry  which  has  been  suggested is the  use of a translating  plug or shroud 
(refs. 13   to  15) .  For  plugs  which are not  fully  truncated  (i.e.,  not  cut off at the  geometric 
throat),  the  throat  moves  downstream  on  the  plug  and  increases  in area as the  shroud 
translates  downstream.  For  plugs  which are fully  truncated,  the  throat  remains  at a 
stationary  point on the  plug  but  increases  in area as the  shroud  translates  downstream; 
the resul t  is some  internal  expansion of the  exhaust  flow (refs. 16  and  17). 

The  purpose of the  present  investigation  was  to  determine  the  effect of plug  base 
contour  on  the  thrust-minus-drag  performance of a fully  truncated  plug  nozzle  with a 
simulated  translating  shroud. Two plug  base  contours, flat and  semitoroidal,  were  used 
for  this  purpose.  The  investigation  was  conducted  in  the  Langley  l6-foot  transonic  tunnel 
at static  conditions and at Mach  numbers  from 0.50 to  1.30  and at an  angle of attack of 0'. 
The  jet  total-pressure  ratio (i.e., the  ratio of jet   exhaust  total   pressure  to  free-stream 
static  pressure)  was  varied  from  1.0  ( jet   off)   to 8.0, depending  on  the Mach number.  The 
nozzles  with  the  shroud  fully  retracted  were  designed  to  operate at a jet total-pressure 
ratio of 16.5.  The  exhaust  gas  used  in  the  investigation  consisted of the  decomposition 
products of 90 percent  concentration  hydrogen  peroxide  and  had a specific-heat  ratio 
of 1.266  and a stagnation  temperature of 1013' K. 

SYMBOLS 

A 

- 
cP ,b 

cross-sectional area, meters2 

average  plug  base  pressure  coefficient at common  base  radian  position, 

pb - Po3 

L 
Plug  base 

F,plug plug base  thrust  coefficient, I=O 
qmArnax 

Cf ,cy1 skin-friction  drag  coefficient on cylindrical  portion of afterbody, 
Cylinder  skin-friction  drag 

q iAmax 
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d  diameter,   meters 

D drag,  newtons 

F jet thrust,  newtons 

Fbal axial force  measured by  balance,  newtons 

Fi ideal  thrust  for  complete  isentropic  expansion of jet flow, 

M 

Me 

m 

P 

pb 

- 
pb 

Pt 

R 

r 

S 

Tt 

X 

f ree-s t ream Mach  number 

Mach  number at shroud  exit 

mass  flow,  kilograms/second 

static  pressure,  newtons/meter2 

plug base pressure,  newtons/meter2 

average  plug  base  pressure,  newtons/meter2 

total   pressure , newtons/meter2 

dynamic  pressure,  newtons/meter2 

gas  constant,  joules/kilogram-degree  Kelvin 

radius ,   meters  

distance  from  plug  end  to  shroud  end,  meters 

stagnation  temperature,  degrees  Kelvin 

axial distance  from  station  142.75,  positive  downstream,  meters 
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P boattail  angle,  degrees 

Y ra t io  of specific  heats 

Subscripts: 

e shroud exit 

i internal 

j jet flow 

2 lo  c a1 

max  maximum 

Plug  Plug 

t throat 

1,293 r e fe r s   t o  plug  geometry  details 

00 free s t ream 

APPARATUS AND METHODS 

Wind Tunnel 

The  present  investigation  was  conducted in the  Langley  16-foot  transonic  tunnel, 
which is a single-return,  atmospheric wind  tunnel  with a slotted  octagonal  test  section. 
The  tunnel  has a continuously  variable  speed  range  from a Mach number of 0.20 to 1.30. 
Continuous  air-exchange  cooling  permits  jet  simulation tests to  be  made. 

Model and  Support  System 

A  sketch of the  strut-supported  turbojet-engine  simulator  model  used  in  the  inves- 
tigation is presented in figure 1. The  model  consisted of a conical  forebody, a cylindri- 
cal central  body  15.24 cm  in  diameter,  and  an  afterbody-plug  combination  having a cylin- 
drical  section  (including  spacing  rings if applicable), a boattail,  and a fully  truncated plug. 
The  afterbody-plug  combination  was  detachable at the  104.39-cm  station.  A  photograph 
of a plug  nozzle  mounted  on  the  model is shown as figure 2. 
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A'translating  shroud was simulted by the  addition of a metal  ring  spacer  which  was 
either  1.27 or 1.905  cm  wide  to  the  length of the  basic 20' shroud as indicated  in  figure 3. 
Two fully  truncated  plugs,  one of which  had a flat base  shape  and  the  other a semitoroidal 
base shape, were  used in this  investigation. Six configurations  representing  three  shroud 
positions  for  each  plug  were  used.  The  basic  configurations  (those  with  shroud in 
retracted  position)  were  designed  for a jet   total-pressure  ratio of 16.5 (Me = 2.46) and 
for  the  specific-heat  ratio y of 1.266 for  hydrogen  peroxide  and  are  fully  discussed in 
reference 5. 

Table I gives  the  basic  geometric  parameters of the six test  configurations.  A 
sketch  giving  dimensions,  pressure-orifice  locations,  and  general  configuration  details 
is presented as figure 4. A  hydrogen  peroxide  turbojet-engine  simulator  similar  to  that 
described i.n reference  18  was  used  for  the  present  investigation.  The jet simulator  pro- 
duces a hot  jet  which  closely  matches  the  exhaust of a turbojet  engine. 

. 
Instrumentation 

The  instrumentation  included a one-component  strain-gage  thrust  balance  to  mea- 
sure  gross  thrust .minus  drag of the  nozzle,  four  total-pressure  probes  (values  averaged), 
and a total-temperature  probe  located  in-the  tailpipe.  Static-pressure  orifices  were 
located  on  the  plugs,  and a turbine  electronic  flowmeter  was  used  to  obtain  the  mass ' 

flow of the  liquid  hydrogen  peroxide.  Pressures  were  measured  with  pressure  trans- 
ducers.  The  electrical  signals of all instruments  were  transmitted  to  and  recorded by 
an  automatic  magnetic  tape-recording  system. 

Data  Reduction 

Standard  force  and  pressure  coefficients  were  computed  from  the  recorded  data. 
Pressure   forces  on the  plug  were  obtained by assigning  an  incremental  area  projected on 
a plane  normal  to  the  model axis to  each  pressure  orifice and by numerically  integrating 
the  incremental  forces. No correction  was  made  for  strut  interference  because  the data 
from  reference  19  indicate  that  the  effect is small  for  the  support  system  used. 

The  thrust  balance  measured  the  sum of the  following axial forces:  total  momentum 
f l u x  at  nozzle  throat,  plug-pressure  forces,  external  aerodynamic  drag of the  afterbody 
aft of station 104.39,  and  some  internal  tare  pressure-area  forces in the  nacelle.  Thrust 
minus  drag  for  the  nozzle  was  obtained  from  the  following  equation: 

Test  Conditions 

All  configurations  were  investigated at static  conditions and at Mach  numbers  from 
0.50  to  1.30.  The  angle of attack  was  held  constant at 0'. Jet   to ta l -pressure  ra t io   var ied 
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from  1.0  (jet off) to  about 8.0. The  average  Reynolds  number  based  on body length  was 
18.5 x 106. 

RESULTS AND  DISCUSSION 

Plug  Characteristics 

Pressure  distributions.-  The radial distribution of base  pressure  coefficients  for 
the  two  plug  base  contours  (flat  and  semitoroidal) at several  jet total-pressure  ratios  and 
Mach  numbers is presented  in  figures  5  and 6. For  M = 0, the  static base pressure  
coefficients  have  atmospheric  pressure as a reference  and are therefore not numerically 
comparable  with  the  coefficients  for  M = 0.50 to 1.30  which  have  dynamic  pressure as 
a reference. For the  shroud  fully  retracted  (configurations 1F and lS),   the plug base 
pressure  coefficients  generally are approximately  the  same as the  free-stream  values 
at  subsonic  speeds  except  for  M = 0.50; pressure  coefficients  become  increasingly  neg- 
ative  with  increasing  values of p co at supersonic  speeds. With the  exception of the 
higher jet total-pressure  ratios at supersonic  speeds,  the  recirculating flow pattern 
described  in  reference 1 is nearly  nonexistent  for  these  configurations.  Translating  the 
shroud  exit  downstream  (configurations  2F, 2S, 3F, and 3S), which  increased  the  nozzle 
throat area and  allowed  some  internal  expansion,  produces  plug  base  pressure  coeffi- 
cients  greater  than  the  local  free-stream  static  pressure  coefficients  for all jet  total- 
p ressure   ra t ios  at subsonic  speeds  and  for  the  higher jet total-pressure  ratios at super- 
sonic  speeds.  For all configurations  with  the  shroud  translated  downstream,  the  plug 
base  pressure  coefficient  generally  increases  with  increasing jet total-pressure  ratio.  
Distributions  typical of vortex-ring  type flow (ref. 1) are shown for  the  extended  shroud 
configurations,  especially  for  configurations 2F and 2s. As  nozzle  throat area is 
increased by translating  the  shroud,  the  local  pressure  over  the plug base is also  gen- 
erally  increased. 

t ,j/P 

Base  thrust.-  The  pressure  distributions  on  the  plugs  presented  in  figures  5  and 6 
were  integrated  over  the  plug  base areas to  obtain  plug  base  thrust.  The  variation of 
plug  base  thrust  coefficient  with jet total-pressure  ratio  for  various  Mach  numbers is 
presented  in  figure 7. At M = 0,  results  are  presented  in  the  form of static  coefficients 
which are not numerically  comparable  with  those  obtained at other Mach numbers.  The 
flat-base  plug  generally had  the  highest  force  for all test conditions  except  for low jet 
total-pressure  ratios pt j /pm < 2.5) and  for  configuration  3s at M = 1.30.  The  base 
thrust   for  the  semitoroidal plug  with  the  shroud  in  the  fully  retracted  position  (configu- 
ration  IS)  remains  near  the  jet-off  level at subsonic  speeds.  The  fact  that  the  base 
thrust  for  the  flat-base  plug  with a fully  retracted  shroud  (configuration 1F) nearly 
always  exceeds  the jet-off level at subsonic  speeds  indicates  that  some of the  momen- 
tum  thrust   lost  as a resul t  of exhaust flow  convergence is recovered  on  the plug. At 

( 7  
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supersonic  speeds,  configurations 1F and 1s both  show slight  increases  in plug thrust  at 
low jet total-pressure  ratios; a further  increase  in  jet   total-pressure  ratio  results in 
decreased plug thrust   unti l   some  higher  pressure  ratio is reached. (See fig.  7(a).) When 
the  shrouds are extended  downstream  (configurations 2F, 2S, 3F, and 3S), the  plug  base 
thrust  exceeds  the jet-off level  for  M > 0 (figs. 7(b) and 7(c)).  At supersonic  speeds, 
plug base  thrust   remains  nearly  constant at lower  pressure  ratios ( ~ ~ , ~ / p ,  < 3.0) prob- 
ably as a resul t  of the jet exhaust  annulus  being  too  small  to exert changes  on  the flow 
field  around  the  plug base. 

Thrust-Minus-Drag  Nozzle  Performance 

Variation  with  pressure  ratio.-  The  variation of thrust-minus-drag  ratio  with  jet 
total-pressure  ratio  for  various Mach  numbers is presented  in  figures 8 to 10. Thrust- 
minus-drag  performance  increases  with  increasing jet total-pressure  ratio  for all Mach 
numbers,  but a maximum  value  was not  obtained at any of the Mach numbers of the  pres-  
ent  investigation. When the  shroud is fully  retracted  the  performance of the  flat-base 
plug  nozzle  (configuration 1F) is always  higher  than  that of the  semitoroidal-base  plug 
nozzle  (configuration  IS)  except  for  M = 0. The  semitoroidal  base  shape  becomes  bene- 
ficial at low  Mach numbers  when  the  shroud is extended.  For  example,  when  the  shroud 
is translated 1.27 cm,  the  semitoroidal  base  (configuration 2s) gives  the  highest  perfor- 
mance  for  M S 0.70 (fig. 9). When the  shroud is translated 1.905 cm  (full  translation), 
the  semitoroidal  base  (configuration 3s) is more  efficient  for  M 5 0.90 (fig.  10). At 
Mach  numbers  greater  than 0.70 for  configurations 2F and 2S, and  greater  than 0.90 for  
configurations 3F and 3S, the  flat-base  plug  (configurations 2F and 3F) produces  the  high- 
est   thrust-minus-drag  performance. 

Performance at scheduled  pressure  ratio.- The variation of thrust-minus-drag  ratio 
with  Mach  number  for a typical  turbojet  total-pressure-ratio  schedule is presented  in  fig- 
u re  11. The  level of gross  thrust-minus-drag  performance  shows  varied  trends  at low 
subsonic  speeds  but  generally  decreases  with  increasing  Mach  number  up  to  M = 1.00 
for  all configurations. At supersonic  speeds a general   increase in  performance is noted 
for  all configurations  except  the  semitoroidal-base  plug  nozzle  with  the  fully  translated 
shroud  (configuration 3s) which  exhibits no change  with  Mach  number. 

~ ~~ 

The  variation of thrust-minus-drag  ratio  with  nozzle-throat-area  ratio is shown  in 
figure  12  for  several  Mach  numbers.  The  data  are  presented  for jet total-pressure  ratios 
typical of those of a turbojet  engine  operating  schedule as shown  in  figure 11. As nozzle 
throat area is increased by shroud  translation  an  increase  in  performance is noted  for all 
Mach  numbers  except  M = 0 where  mixed  results  occur.  Some of this  increase in per-  
formance is probably  due  to  internal  expansion  (ref. 16); however,  most of the  increase,is  
probably a resul t  of increasing  exhaust  mass  flow'and of decreasing  drag  relative  to  the 
ideal  thrust.  This  increase  in  performance is opposite  to  the  results  given  in  reference 7 
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where a decrease in  performance  occurred  for a nozzle  which  had a constant  throat area 
and  an  internal area ratio  that  increased  with  shroud  translation. 

The  thrust-minus-drag  performance  level  for  both  configurations  with no transla- 
tion is low when  compared  with  the static performance  level of plug  nozzles  with  full- 
length  plugs  (ref. 5) or similar  annular  nozzles  with a concave  central  base  (ref. 1). 
Data  presenting  the effects of plug  truncation  in  reference 8 show  that  for a fully  trun- 
cated  plug  the  performance  level is similar  to-that  presented  herein.  (See fig. 12 ,  
M = 0.) 

The  data of the  present  investigation  indicate  that  when  the  shroud is fully  retracted, 
the  flat-base  plug  nozzle  (configuration 1F) gives  the  highest  performance at subsonic 
speeds; when the  shroud is translated,  the  semitoroidal base shape  becomes  beneficial. 
At supersonic  speeds,  the  flat-base  plug  nozzle  gives  the  highest  thrust-minus-drag 
performance. 

CONCLUDING REMARKS 

An investigation of the effect of plug  base  contour  on  the  thrust-minus-drag  perfor- 
mance of a fully  truncated  plug  nozzle  with a simulated  translating  shroud  has  been  con- 
ducted  in  the  Langley  16-foot  transonic  tunnel at static conditions  and at Mach numbers 
f rom 0.50 to  1.30.  The effects of two plug  base  contours, flat and  semitoroidal,  on  the 
nozzle  performance  were  determined.  The  performance  level of the  fully  truncated  plug 
nozzles  with  the  shroud  retracted  was low  when compared  with  that of plug  nozzles  having 
a full-length  plug.  At  subsonic  speeds, a plug  utilizing a flat base  shape  gave  the  highest 
thrust-minus-drag  performance  with  the  shroud  fully  retracted,  but when the  shroud  was 
translated,  the  semitoroidal  base  shape  became  beneficial. At supersonic  speeds,  the 
plug  with a flat base  shape  gave  the  highest  performance  for all conditions of this  inves- 
tigation.  The  flat-base  plug  generally  had  the  highest  force  for all test  conditions  except 
those at low jet total-pressure  ratios.   Plug  base  pressures  generally  increased with 
increasing jet total-pressure  ratio when  the  shroud  was  translated. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton,  Va.,  December 1, 1969. 
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TABLE 1.- IMPORTANT  GEOMETRIC  PARAMETERS OF TEST CONFIGURATIONS 

[All dimensions are in centimeters) 

Configuration 

1F 
1s 
2 F  
2s 
3 F  
3 s  

Base  shape 

Flat 
Semitoroidal 

Flat 
Semitoroidal 

Flat 
Semitoroidal 

s /dm, 

0.020 
.020 
.083 
.083 
.125 
.125 
-~ ~ 

At 

. .  
\ I 

"-4 
dplug/  dm= 

0.70 
.70 
.70 
.70 
.70 
.70 

(inclined  annulus) t 
re 

P ,  deg 

20 
20 
20 
20 
20 
20 
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Propellant  lines  and 
instrumentation  channel 

"" 

Figure 1.- Sketch of plug nozzle  with  shroud in retracted  position  installed  on a nacelle model. Al l  dimensions  are in centimeters. 



Figure 2.- Photograph of p lug  nozzle, conf igurat ion IS, mounted on a nacelle model. L-66-4083 
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Flat-base  plug 

' . , I Semitoroidal-base  plug 
""_ Geometric  throat 

Configuration 1F 

\ \ \ \ \ \ \ \ \ \ \  
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\ \ \ \ \ \ \ \ \ \ \ \  

Configuration IS 

Configuration 2 F  

1.270 

Configuration 3F 
\ \ \ \ \ \ \ \ \ \ \  

/ 

J======F$Z$- Configuration 3s 

Figure 3.- Sketch illustrating  translating shroud. A l l  dimensions  are in centimeters. 
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Center 

5.08 
3.81 
2.54 

(a) Flat-base plug  configurations  (configuration 1F shown). 

Figure 4.- Sketch of plug  and  shroud  with  orifice  locations  indicated. Al l  dimensions  are in centimeters. 
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4.67 4.09 1.50 
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8.64 
8.89 
9.15 
9.40 
9.65 
9.91 

10.16 
10.37 
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4.88 4.39 1.27 
5.03 

- 5.13  .13 
5.26 - - 

5.16 .28  5.31 
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.51 5.13 5.36 

.66  5.08 5.33 

.81 4.95 5.28 

.94 4.80 5.21 
1.09 4.62 

.03 " 

Orifice  locations 

22.5' and 202.5' 
112.5Oand 292.5' 

(b) Semitoroidal-base  plug  configurations  (configuration 1s shown). 

Figure 4.- Concluded. 
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Froction of moximum  model diometer, r/dmax 

(a) M = 0, 0.50, and 0.70. 

Figure 5.- Effect of jet  total-pressure  ratio on pressure  distributions of flat-base  plug  at  various  Machd  numbers. 
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(b) M = 0.80 and 0.90. 

Figure 5.- Continued. 
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(c) M = 1.00 and 1.15. 

Figure 5.- Continued. 
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Figure 5.- Concluded. 
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(a) M = 0 and 0.50. 

Figure 6.- Effect of jet total-pressure  ratio  on  pressure distributions of semiforoidal-base plug at various  Mach  numbers. 
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Figure 6.- Continued, 
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Figure 6.- Continued. 
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Figure 6.- Concluded. 
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Figure 7.- Variation of plug base thrust coefficient  with jet total-pressure  ratio for various  Mach  numbers. 
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(b) Configurations 2F and 2s. 

Figure 7.- Continued. 
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Figure 7.- Concluded. 
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I 2 3 4 

Jet totol-pressure  ratio, p . pa 
t,,/ 

(a) M = 0, 0.50, and 0.70. 

Figure 8.- Variation of thrust-minus-drag  ratio  with jet  total-pressure  ratio  for  shroud  retracted. 
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Figure 8.- Concluded. 
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Jet total-pressure ratio, p . pm 

t,,/ 

(a)  M = 0, 0.50, and 0.70. 

Figure 9.- Variation of thrust-minus-drag  ratio  with jet total-pressure  ratio  for  shroud  translated 1.27 centimeters. 
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Figure 9.- Continued. 
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(a)  M = 0, 0.50, and 0.70. 

Figure 10.- Variation of thrust-minus-drag  ratio  with jet  total-pressure  ratio  for  shroud  translated 1.905 centimeters. 
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Figure 10.- Continued. 
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Figure 11.- Variation of thrust-minus-drag  ratio  with Mach number for  typical  turbojet  total-pressure-ratio schedule. 
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