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A STUDY OF OPTIMUM METHODS FOR 

PREPARING ALUMINUM SURFACES FOR WELDING 

ABSTRACT 

Research was performed to develop and demonstrate prac­

tical techniques for preparing the weld surfaces of aluminum com­

ponents. Two techniques were evaluated: dry machining as the
 

primary cleaning method and electrical discharge cleaning as a
 

supplemental method for use if dry machined surfaces were subse­

quently contaminated. Dry machining proved practical and a pro­

totype device, which was based on this method, was designed and
 

fabricated. Electrical discharge cleaning proved unacceptable
 

under the conditions employed in the program.
 

The prototype device was designed to prepare the abut­

ting edges and two adjacent surfaces simultaneously utilizing dry
 

machining in the face-milling mode. Evaluations of the device
 

showed it to be: (1) practical; (2) capable of preparing surfaces
 

with a low defect potential; (3) adaptable to components of vary­

ing size and configuration; and, (4) capable of maintaining the
 

dimensional tolerances required in advanced aerospace structures.
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A STUDY OF OPTIMUMETHODS FOR
 

PREPARING ALUMINUM SURFACES FOR WELDING
 

I. INTRODUCTION
 

The objectives of this research program were to develop
 

and demonstrate practical techniques for preparing the weld sur­

faces of aluminum components. The aim is to minimize surface con­

tamination which contributes to porosity and nonmetallic inclu­

sions in weldments on space vehicle tankage and assemblies. In
 

previous NASA research it was shown that contamination of weld
 

surfaces contributes significantly-to weld defects. It was also
 

found that currently used practices, such as chemical cleaning
 

followed by wire brushing and/or-scraping, cannot be relied on to
 

produce surfaces with minimum defect potential.
 

This program was undertaken to develop new techniques
 

and construct a prototype device for preparing weld surfaces with
 

lower defect potential than can be achieved with curre~nt practices.
 

To achieve these objectives, a three-phase program was performed.
 

The objectives for each phase follow:
 

Phase I - Conceptual study to evaluate and select
 
surface preparation techniques and sys­
tems.
 

Phase II - Design and fabrication stud-y-to develop
 
and fabricate a prototype d&vice for
 
weld surface preparation of aluminum
 
components.
 

Phase III - Evaluation study to provide an empiri­
cal evaluation of surfaces prepared with
 
the prototype device.
 

The basic concept for the system was to remove dontami­

nated surface layers from weld surfaces and completed parts. There­

fore, all parts must be final machined with reasonably smooth sur­

faces prior to the surface preparation operation. A number of re­

quirements-were developed for the surface preparation methods. Of
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course, the most important is that the technique provide surfaces
 
with low defect potential. Other requirements are as follows:
 

(1) Surfaces must include the abutting edges of
 
the weld grooves and 25.4 mm (1 in.) widths
 
on the adjoining surfaces.
 

(2) Weld edges must be on cylinders (longitudi­
nal and circumferential surfaces) and on
 

'
elliptical and hemispherical domes; welds
 
must be in vertical, horiiontal, and in­
clined curved positions and in combinations
 
of these positions.
 

(3) Groove geometry must include all standard
 
configurations including square grooves,

single V-grooves, double V-grooves, and
 
single U-grooves.
 

(4) Depth of metal removal will be a minimum of
 
0.127 mm (0.005 ip.).
 

(5) The finished surface roughness will be a
 
maximum of 5.08 um (200 pin.) and have a
 
minimum of smeared metal.
 

(6) Thicknesses of the aluminum material should
 
be in the range of 2.54 mm (0.100 in.) to
 
25.4 mm (1.00 in.).
 

(7) No lubricants nor any manual work will be
 
permitted.
 

(8) Other geometrical characteristics will be
 
those that permit the best welding prac­
tices--i.e., minimum waviness of edge; ab­
sence of burrs; no burning, no discolora­
tion or contamination'of surfaces; and no
 
gouges, grooves, nicks, or undercuts.
 

The results achieved in the program are discussed in sub­
sequent sections of the report. To facilitate discussion, the re­
sults are presented to conform to the three phases of the program.
 

II. PHASE I - CONCEPTUAL STUDY
 

The objectives of Phase I were to: (1) evaluate surface
 

cleaning methods; (2) evaluate surface cleaning systems; and (3)
 
select cleaning techniques and develop design concepts for the pro­

totype device.
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Two techniques were investigated for preparing aluminum
 

weld surfaces: mechanical cleaning and electric discharge clean­

ing. Primary emphasis was on mechanical cleaning, since the ef­

fectiveness of this method was established in a previous NASA
 

program.) 1 Electrical discharge cleaning was evaluated as a sup­
plementary method to be used only if the mechanically cleaned sur­

faces were accidentally contaminated or exposed to a humid atmos­

phere for a considerable time after cleaning. Under these condi­

tions a second mechanical preparation step might not be permissible
 

because of dimensional tolerance limits (e.g., minimum thickness or
 

gap); consequently, an electrical discharge desorption treatment
 

could be advantageous for restoring the surface. If effective, the
 

electrical discharge desorption treatment would employ either the
 

same power supply and torch used for welding, or an auxiliary power
 

supply and electrode system would be used to achieve the proper
 

electric discharge conditions.
 

A. Experimental Procedures
 

Surface preparation techniques were evaluated by prepar-.
 

ing the surfaces of small specimens, then determining the quality
 

and defect potential of the cleaned surfaces. The specimens, pre­

pared from 6.35 mm (1/4 in.) thick 2014-T6 aluminum alloy plate,
 

were nominally 304.8 mm (12 in.) long and 25.4 mm (I in.) wide;
 

the 25.4 x 304.8 mm (1 x 12 in.) surfaces of the plates were cleaned.
 

Several techniques were used to evaluate the cleaned sur­

faces: visual examination, light microscopy, Proficorder measure­

ments, scanning electron microscopy and horizontal fusion spot-weld
 

tests. The visual and light microscopy examinations provided pre­

liminary data of weld surface quality; the Proficorder measurements
 

were performed to determine surface roughness. The two most useful
 

techniques for studying surface preparation methods are scanning
 

electron microscopy and the horizontal fusion spot-weld test.
 

The scanning electron microscope (SEM), an electronoptic
 

device which permits direct viewing of a surface, produces images
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similar to those obtained with light microscopy but higher magni­
fications, 
a much greater depth of focus, and better resolution
 
are obtained. 
Thus, this instrument is particularly well suited
 
to the examination of fine surface details. 
To provide specimens
 
for SEM examination, samples approximately 9.5 mm2 (3/8 in.) were
 
carefully removed from the cleaned surfaces.
 

The horizontal fusion spot-weld test is extremely sen­
sitive to 
the surface quality of aluminum. Test preparations in­
volved placing the cleaned surfaces of two specimens (as shown
 
schematically in Figure 1) and fusing a spot weld. 
The weld is
 
cnetered on the interface using the gas tungsten-arc welding pro­
cess. The test piece is 
then fractured at the interface, and the
 
weld nugget on each piece examined for evidence of weld defects.
 

The fusion spot-weld test setup is shown-in Figure 2.
 
The samples to be evaluated are positioned in a vise between two
 
heavy pieces of 1100 aluminum so that the 304.8 mm (12 in.) lengths
 
are forward. 
The large pieces of aluminum serve as a heat sink.
 
The spot welds are made with the DCSP/TIG process using the follow­
ing settings with a Sciaky S-4 power supply: 
 constant current
 
mode; arc current, 280 and 320 amps; arc voltage, 18 volts; arc
 
length, 1.59 mm (1/16 in.); gas, high-purity helium (<10 ppm H20);
 
arc duration, 2 see; gas preflow, I min; gas flow, 0.283 mm3/hr
 
(100 cfh); electrode, tungsten-2% thoria, 3.97 mm (5/32 in.) 
dia­
meter; and tip geometry, 320 
taper, 2.37 mm (3/32 in.) blunted tip.
 

The test is extremely sensitive to the properties-of,the..
 
abutting surfaces. The gases liberated from the surfaces by the
 
heat of the arc are trapped by solid contact along the fusion line.
 
The pressure of the gases generated at the melting front is a func­
tion of the amount of surface contamination. At some level of con­
tamination, sufficient pressure is built up to cause the gases 
to
 
escape into the weld pool. Porosity is formed by the ejection of
 
the dissolved gases during solidification and cooling. Heavily
 
contaminated surfaces exhibit porosity throughout the weld fusion
 
zone, whereas cleaner surfaces are characterized by porosity only
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along the fusion line or by the complete absence of porosity.
 

The amount of oxide film present on the surfaces determines the
 

fusibility and depth of penetration along the interface. Oxide
 

inclusions are readily discerned on the parted surfaces, at the
 

fusion line, and in the weld.
 

The degree and location of defects in the spot weld nug­

get were examined by fracturing the pieces through the weld area
 

thereby exposing the interface, fusion line, and fused weld metal.
 

Defect content was determined by optical inspection of the frac­

ture weld at 25X magnification.
 

B. Results and Discussion
 

.Data from past research (1 ) provided the basis upon which
 

mechanical and electric discharge methods were selected for evalu­

ation. Considerable information was available about the charac­

teristics of mechanically cleaned surfaces. Therefore, efforts on
 

mechanically cleaned surfaces were directed primarily to the se­

lection of drive motors and cutters and to the design concept of a
 

mechanical cleaning system. Only'limited data were available on
 

the characteristics of surfaces cleaned by electric discharge meth­

ods and on techniques which produce the most desirable surfaces.
 

Consequently, .evaluations of electric discharge cleaning methods
 

were directed primarily toward determining surface characteristics
 

and cleaning techniques.
 

1. Mechanical Gleaning Methods
 

Past work has shown that an undertutting machine opera­

tion, such as face-milling without a coolant, can provide aluminum
 

surfaces with a very low defect potential. These surfaces are or­

dinarily characterized by the normal surface irregularities (such
 

as tears, pits, waves, and scratches) observed on machined surfaces,
 

and they have a naturally formed hydrated oxide layer of approxi­

mately 100 A or less in thickness. Surfaces that are face milled
 

to a 1.27 to 5.08 mm (50 to 200 pin.) rms finish in an ambient air
 

atmosphere (70'F and 50-60% RH) contain about 
0.01 to 0.05 mg/cm2
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of water in the hydrated oxide. This level of contamination
 

alone does not usually result in significant weld defects and,
 

from a practical standpoint, a dry machined surface represents
 

the best condition for welding.
 

Aluminum alloys are comparatively easy to -machine, and
 

the cutting forces required for chip removal operations are gen-­

erally lower than those for other structural materials at similar
 

hardness or strength levels. Machining operations such as turn­

ing or milling can be carried out at speeds well in excess of
 

304.8 m/min (1000 fpm); conventional cemented carbide tool mate­

rials have very long tool lives at these high speeds. Good sur­

face finish and dimensional control are also readily obtainable
 

under proper machining conditions.
 

The major disadvantage of the mechanical cleaning meth­

ods is that metal must be removed to expose clean surfaces. Thus,
 

multiple cleaning operations may not be possible because of dimen­

sional tolerance requirements in the components being welded.
 

Therefore, precautions must be taken to minimize contamination af­

ter the final mechanical cleaning operation is performed to elimi­

nate the need for additional cleaning.
 

a. PreliminaryStudies 

Preliminary studies of mechanical cleaning methods were
 

performed to evaluate lightweight motors for driving milling cut­

ters, to evaluate cutter types and designs, and to select a cut­

ting mode. With one exception, the drive motors were vertically
 

mounted on a bracket fastened to the spindle of a Boyar-Schultz
 

surface grinder. Test cuts were taken on the surfaces of the spe­

cimens, which were attached to the bed of the grinder. Depth of
 

cut was varied between 0.051 and 0.51 mm (0.002 and 0.020 in.) and
 

the width of cut, with one exception, was maintained constant at
 

18.05 mm (3/4 in.). Cutting speed was varied between 152.4 and
 

3048 mm/min (6 and 120 ipm).
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A number of air motors were evaluated in the preliminary
 

studies. Air motors were selected because they were considered to
 

provide an optimum combination of high speed, high torque, and
 

light weight. Each motor was evaluated in the climb-milling mode
 

on the basis of its power to complete a dry cut of maximum dimen­

sions, its size and weight (adaptability for use on a portable
 

lightweight device), and its low potential for contaminating the
 

workpiece with air from the motor spindle.
 

The air motors that were evaluated are listed in Table I.
 

Except for the Model FND reciprocating machine, which was fed man­

ually, all motors were attached to the spindle of the surface grind­

er for test evaluations. Another exception was the Model HSL motor
 

which was used to cut only 6.35 mm (1/4 in.) width; all other mo­

tors were evaluated for their capacity to cut a 18.05 mm (3/4 in.)
 

wide surface.
 

The four ARO Corporation motors developed adequate power
 

to produce the required cut. However, the 17,000 and 18,000 rpm
 

units produced superior surface finishes compared to those produced
 

with the 4,500 rpm motors. These results, summarized in Table II,
 

demonstrate the suitability of the0.3 and 0.9 hp ARO Corporation
 

motors. The higher speed units produced superior surface finishes.
 

A multiflute end-mill or burr-type cutter also produced a superior
 

surface compared to the four-flute tool.
 

No other motor was considered acceptable for the prepa­

ration of aluminum surfaces within the requirements of the program.
 

The PCB III motor, running at 75,000 rp and using a 6.35 mm (1/4
 

in.) diameter four-flute end mill did not provide sufficient torque
 

to make a 0.0508 mm (0.002 in.) deep cut at 304.8 mm/min (12 in/min)
 

feed. The surface finish produced by climb milling was 0.76-2.28
 

lam (30-90 pin.). The chips were thin, fiber-like splinters approx­

imately 5/16 in. long. This motor was not tested any further as it
 

could not develop sufficient torque to complete a maximum cut. In­

adequate torque also characterized the Model HSL Hyprez rotary unit,
 

and it was eliminated from further testing. With the reciprocating
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TABLE I 

AIR MOTORS EVALUATED 

Supplier Motor and Description 

Metal Removal Co. Model PCB III high speed turbine-drive 
drilling spindle. 75,000 rpm 

ARO Corporation 2200 Series, 7801-2, 0.9 hp, 4500 rpm 
mill motor 

7142-D, 0.3 hp, 4500 rpm motor 

2200 Series, 7801-2, 0.9 hp, 18,000 rpm 
mill motor 

7487 (Series O) 0.3 hp, 17,000 rpm 
motor 

Engis Equipment Co. Model HSL Hyprez rotary, air operated 
hand piece, 5,000 to 35,000 rpm 

Model FND Hyprez reciprocating machine, 
variable speed control to 100 strokes/ 
min 
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TABLE II
 

SURFACE FINISHES PRODUCED WITH ARO MOTORS
 

UNDER CLIMB MILLING CONDITIONS
 

Carbide Approximate

Depth of Cut Milling Feed Surface Finish
 
mm - Cutter mm/min Cm-) Pm (kjn.) 

7801-2-0.9 hp, 4500 rpm
 

0.127 (0'.005) 4 flute 304.8 (12) -3-.18 (,125)
0.127 (0.005) 4 flute 761.0 30) j12.7 G500)
0-.127 (0.005) 1 flute 304.8 (12) 15.08 (v200)
0.254 (0.010) 4 flute 152.4 (6) e3.18 (.125) 

7142-D: 0.3 hl, 4500 rPm 
0.127 (0.005) 4 flute 508.0 (20) -12.7 (G500)
0.508 (0.020) 4 flute 304.8 (12) 417.8 (0700)
 

7801-2: 0.9 hp, 18.000 rpm
 

0.127 (0.005) 4 flute 304.8 (12) 2.54-3.18 (100-125)

0.127 (0.005) 4 flute 508.0 (20) 2.:54 (4i00)

0,254 (0.010) 4 flute 508.0 (20) -3.18 (p125)

0.127 (0.005) Multiflute 508.0 (20) 1.6-2.54 (63-100)

0.127 (0.005) Burr (coarse) 508.0 (20) 1.27-2.54 (50-100)

0.127 (0.005) Burr (coarse) 254.0 (10) 0.82-1.6 (32-63)
 

0.127 (0.005) Multiflute 913.4 (36), 0.76-1.27 (30-50)
 
0.0508 (0.002) Multiflute 1826.8 (72) 1.77 (70)

0.0508 (0.002) Multiflute 3048.0 (120) 5.08 (200)

0.127 (0.005) Multiflute 2286.0 (90) 3.81 (150)

0.0508 (0.002) Burr 2286.0 (90) 3.81 (150)

0.127 (0.005) Burr 913.4 (36) 0.76-1.27 (30-50)

0.127 (0.005) Burr 508.0 (20) 0.76 (30)

0.127 (0.005) Multiflute 508.0 (20) 0.76-1.27 (30-50)
 

.All 
 cutters were 6.35 mm (1/4 in.) diameter.
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unit, surface quality was poor even when visually examined; tests
 

with this unit also were terminated.
 

On the basis of these evaluations, three ARO Corpora­

tion motors were selected for use in evaluating the effects of
 

cutting tool type, cutting tool geometry, and machining mode on
 

surface quality:
 

l. 	2200 Series, Model 7801-2, 2.42MJ (0.9 hp),
 
4500 rpm mill motor
 

2. 	2200 Series, Model 7801-2, 2.42MJ (0.9 hp),
 
18,000 rpm mill motor
 

3. 	7487 (Series 0), 0.81MJ (0.3 hp), 17,000 rpm
 
motor.
 

A series of tests were performed with these air motors
 

to evaluate their effectiveness under several cleaning conditions.
 

For these evaluations the 2014-T6 aluminum alloy specimens were
 

chemically cleaned for I min in 5 w/o NaOH at 1800-1900F, rinsed
 

in demineralized water, agitated 15 sec in 50 v/o HN03 to remove
 

smut, followed by a I min rinse in demindralized water to provide
 

a surface with a high defect potential; the specimens were subse­

quently machined.
 

After machining, the prepared specimens were subjected
 

to the fusion spot-weld test to evaluate surface quality. The
 

surfaces were machined using combinations of the three motors,
 

seven types of milling cutters, and three machining modes for the
 

evaluation. A minimum of three fusion spot-weld tests were per­

formed for each condition. The weld defect potential of each
 

condition was determined by rating each surface of the fractured
 

test pieces. Each spot weld was rated from 0 to 50: a rating of
 

less than 5 represents a very low defect potential, values of 5
 

10 are acceptable, and ratings in excess of 10 are unacceptable.
to 


Results from the fusion spot-weld tests are summarized
 

in Table III and clearly show that face milling and climb milling
 

the 	basis of defect potential,
produce acceptable surfaces on 


whereas conventional milling under the conditions employed does
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TABLE III
 

WELD-DEFECT POTENTIAL RATINGS FOR VARIOUS CUTTING CONDITIONS
 

~a tinsfor Each Type of ARO Milling Motor 

2.42 MJ: 2.42 MJ: 0.81 MJ: 
0.9 hp 0.9 hp 0.3 hp


4500 rpm _ _2QO rpm OQOOrpm 

Type of Cutter Climb Conv. Face Climb Conv. Climb Conv.
 

1/2 in. Burr
 
(carbide) 16 10 12
 

1/4 in.-2F 
(carbide) 14 45 3 35 5 7 

1/4 in. -4F
 
(carbide) 12 40 5 13 4 20
 

1/4 in.-4F-LT
 
(carbide) 10 23 2 27 4 10
 

3/8 in.-2F
 
(carbide) 8 25 3 12
 

3/8 in.-4F
 
(carbide) 10 22 5 18
 

1 1/4 in. -6F 
(HSS) 1 

.1 1/2 in.-6F
 
(HSS) 1
 

Depth of cut 0.127 mm (0.005 in.)
 

Travel speed 814.4 mm/min (36 ipm)
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not. This difference in weld defect potential is attributed to
 

the mode of chip removal from the surface. Inthe face- and
 

climb-milling modes, chips are removed cleanly from the surface
 

as fine slivers; in the conventional milling mode, the chips drag
 

over the surface and tend to become embedded rather than being
 

cleanly cut away. The data in Table III also show that the high­

er cutting speeds, as represented by cutter diameter and drive
 

motor speed, resulted in surfaces with the best defect potential
 

ratings.
 

This preliminary study provided a basis for developing
 

a mechanical surface preparation system; the important results
 

are summarized below:
 

1-. 	 The ARO Corporation motors provide suf­
ficient torque and -cutting speed to pre­
pare aluminum weld surfaces.
 

2. 	Both face- and climb-milling modes are
 
acceptable for preparing aluminum sur­
faces.
 

3. 	High cutting speeds are desirable.
 

4. 	Carbide and high-speed steelcutters are
 
satisfactory.
 

b: Preprototype Device Studies
 

The preliminary studies provided information on drive
 

motors, cutter types, cutting modes, and cutting speeds that were
 

satisfactory for preparing weld surfaces of aluminum components.
 

Originally, additional Phase I tests were not planned until after
 

the design and fabrication of the prototype device was begun.
 

However, it was considered desirable to fabricate a simple, inex­

pensive preprototype device to provide further evaluations of me­

chanical preparation-methods before undertaking the design of the
 

mare sophisticated prototype device which was fabricated in the
 

Phase II studies.
 

Two preprototype devices were designed and fabricated.'
 

Both were designed to prepare three surfaces (abutting edges and
 

adjacent surfaces) simultaneously. One device was designed to
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operate in the face-milling mode--the "face-milling device." The
 

other unit was designed to operate with all three cutters in the
 

climb-milling mode or with two cutters in the climb-milling mode
 

and one cutter in the face-milling mode--the "climb-milling
 

device."
 

A photograph of the face-milling device is shown in
 

Figure 3. This device consisted of a frame for mounting the drive
 

motors and Teflon-lined guides that extended the length of the de­

vice and straddled the plate to hold the device alignment with the
 

plate edge. The device was equipped with three ARO, 2200 Series,
 

7801-2, 2.42MJ (0.9 hp) motors; one motor was mounted in a verti­

cal position to clean the abutting plate edges, the other two
 

motors were mounted horizontally to clean the surfaces-adjacent
 

to the weld. The 2.42MJ (0.9 hp) motors were selected rather than
 

the smaller motors because they provide higher torque and have a
 

heavier motor shaft and bearing. This, in turn, provides smoother
 

cuts, and the motors are less subject to vibration than the smaller
 

motors. Both devices were designed for manual feed, and the motors
 

were held in a fixed position after adjustments for proper depth
 

of cut. Each device weighed about 9.98 kg (22 lb) without the air
 

hoses or chip-collector system.
 

Both the face- and climb-milling preprototype devices
 

were used to prepare the edges of flat and curved plate simulating
 

a square butt joint configuration. In these tests, the face-milling
 

device proved superior to the climb-milling device because of the
 

greater ease of operation, quality of prepared surface, and deflec­

tion of the cutter during cutting and stall conditions. On the
 

basis of these tests, further work with the climb-milling device
 

was terminated.
 

Tests were continued with the face-milling device to
 

finalize the design concepts for the prototype unit. Tests with
 

the device showed the feasibility of preparing three surfaces
 

These tests also showed the need for several im­simultaneously. 


provements. Cutting operations performed on curved surfaces with
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varying curvature of radii, showed that rollers rather than con­
tinuous shoes were required to align the device with the plate.
 

Examination of prepared surfaces indicated that a mechanized sys­
tem was desirable to improve the uniformity of the prepared sur­

face. Cutting on brake-formed parts which did not possess uni­

form radii of curvature showed the need for a new system to con­
trol the depth of cut.
 

Two improved systems--mechanized drive and controlled
 

depth of cut--were evaluated with the face-milling preprototype
 

device. Mechanized feed was obtained by fabricating an electric
 
motor powered unit which was attached to the cutting unit. Pow­
er from the motor was transmitted through a gear train to rollers
 

which were spring loaded to exert pressure on both sides of the
 
plate. Friction between the powered rollers and the plate sur­

faces was sufficient to pull the cutting unit along the plate
 

edge. A photograph of the drive system is shown in Figure 4.
 

A number of arrangements were considered for obtaining
 

a positive control over the depth of cut. The major requirement
 

was that the depth of cut must be controlled from the surface of
 

the component. Adaptive controls such as those utilized on trac­

er lathes were considered, but their use adds to the cost and
 

weight of the unit. It was decided, therefore, that a simple me­
chanical system should be developed.
 

The system that was selected to control the depth-of-cut
 

consists of spring loading the motor assembly and providing a
 
small thrust button which extends slightly beyond the cutting face
 
of the cutter and bears on the surface of the plate. A schematic
 
illustration of the basic concepts of the technique is shown in
 

Figure 5. With this arrangement, the cutting surfaces are not in
 

contact with the plate when the cutter assembly is normal to the
 

surface. When the assembly is tilted, however, the trailing edge
 
of the cutter engages the plate. The angle of tilt, extension of
 

the thrust button beyond the cutting edge, and radius of curvature
 

of the surface determine the depth of cut.
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Fig. 4 - Drive Unit to Provide Mechanized Feed for 
the Preprototype Device.
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Fig. 5 - Schematic Illustration of System Used -for 
Depth-of-cut Control. 
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The technique that was developed for controlling the
 

depth of cut proved to be satisfactory for the prototype device.
 

Initially, the spring-loaded cutter assembly was mounted on the
 

face-milling device. The quality of the surface prepared with
 

the spring-loaded device was excellent, but fine adjustments on
 

the tilt angle were not possible. Subsequently, the assembly was
 

mounted on the spindle of a milling-machine to provide more accu­

rate control over the tilt angle.
 

Two limitations were found with the iepth-of-cut con­

trol system. One is that the tilt angle must be carefully con­

trolled. To achieve this control, the cutting unit must be pre­

cisely and rigidly aligned with the edges of the plate. The sec­

ond limitation is that the surface of the cut conforms to the
 

contour of the trailing edge of the cutter and is slightly con­

cave. Thus, the depth of cut varies and is greatest along the
 

centerline of the cutter. If the center of the cutter is located
 

a significant distance below the edge of the plate, maximum thin­

ning of the material may be located in an area that will subse­

quently form the weld hea-t-affected zone. Such a condition is
 

undesirable; therefore, care must be taken to align the cutter so
 

that the centerline is located in an area that will be within the
 

fusion zone of the weld bead and thinning will be compensated for
 

by the weld reinforcement.
 

Surfaces that were prepared with the controlled depth­

of-cut assembly were evaluated with the scanning electron micro­

scope and with fusion spot-weld tests. Two cutters with different
 

diameters, 31.8 and 38.1 mm (1 1/4 and 1 1/2 in.), were used to
 

prepare the surfaces. Micrographs obtained with the SEM are shown
 

in Figures 6 and 7. These surfaces are similar to the dry ma­

chined surfaces observed in the previous study. I) A typical
 

fractured fusion spot weld is shown in Figure 8. All spot welds
 

contained fine scattered porosity but were free from oxide inclu­

sions and lack of fusion. Defect potential ratings varied from
 

1 to 5.
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Fig. 6 -Scanning Electron Micrographs of Surface Prepared with
 

31.8 mm (1 1/4 in.) Diameter Cutter. 

I 2 

(a) (b)
 

S Fig. 7 -Scanning Electron Micrographs of Surface Prepared with 

I 38.1 mm (1 1/2 in.) Diameter Cuttei. 
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The information obtained in the final studies on me­

chanical cleaning methods showed the feasibility of fabricating
 

a mechanical cleaning device to prepare three weld surfaces si­

multaneously with close control over depth-of-cut and excellent
 

surface quality. On the basis of these studies, work was initi­

ated on the design and fabrication of the prototype device for
 

Phase II.
 

2. Electric Dischar e Cleaning Methods 

Electric discharge methods were evaluated as supplemen­

tary cleaning methods should the machined surfaces be accidentally
 

contaminated before welding. Electrical discharge cleaning has
 

been recognized for many years and is credited with the success
 

achieved in welding aluminum alloys in the alternating current
 

mode. Cleaning occurs during that portion of the cycle when the
 

workpiece is at negative potential with respect to the torch elec­

trode (reverse polarity). In this mode, cathode spots tend to
 

form on surface oxides, which usually have superior emitting pow­

ers than the pure metal. The localized charge present at the
 

cathode spot removes the oxide either by ion flow, as suggested
 

by Pattee et el.,(2) or by superheating the metal substrate below
 

the oxide until it is exploded from the surface. Both mechanisms
 

explain the cleaning action that is possible with this method.
 

The feasibility of electric discharge cleaning was ex­

plored in previous NASA sponsored programs, (1,2) and the results
 

were promising but not entirely conclusive. In previous IITRI
 

work, it was found that adsorbed water and trichlorethylene could
 

be substantially desorbed by arcing and high-frequency sparking
 

treatments, but oxide removal was only partially complete and the
 

weld defect potential was not consistently low. 
Pattee et al. (2)
 

reported that cathodic cleaning with a plasma arc was as effective
 

as abrasive cleaning on the basis of surface resistivity measure­

ments and welding tests. However, the ultimate objective of this
 

program was to develop surface preparation techniques superior to
 

abrasive methods.
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a. Preliminary Studies
 

Preliminary studies with electric discharge cleaning
 

were performed to evaluate various cleaning modes; all modes in­

volved discharge with low energy input. Low energy was used be­

cause the effectiveness of the reverse-polarity welding arc as a
 

surface cleaning device is limited if extensive melting occurs
 

(as it does in normal welding applications). Water of hydration,
 

adsorbed hydrocarbons, oxide fragments, etc., dissociate in the
 

arc atmosphere or molten metal and form entrapped defects (such
 

as porosity and inclusions). Molten aluminum is especially re­

ceptive to atomic hydrogen and can also easily entrap oxides.
 

Low energy arc and spark discharges were evaluated to
 

determine if an optimum range of conditions (energy, frequency,,
 

scanning speed, atmosphere, etc.), which would lead to the nearly
 

complete removal of oxide film and adsorbed contaminants without
 

surface melting, could be developed. Investigations by Corey
(3)
 

on the cathodic etching of metal surfaces has demonstrated that a
 

4 amp direct-current reverse-polarity argon arc with superimposed
 

radiofrequency excitation can be used to etch aluminum, zirconium,
 

uranium, and copper. Optimum surface smoothness is often achieved
 

at pressures somewhat-under one atmosphere; however, even at at­

mospheric pressure substantial surface etching occurs. Corey did
 

not characterize the cleanliness of the surface, nor did he attempt
 

to investigate arc or spark variables. Interestingly, he did find
 

that the radiofrequency spark alone produced fine etching. Corey's
 

findings are in general accord with those of the previous NASA
 

study.(1)
 

Three electrical discharge conditions were investigated:
 

1. Pulsed direct-current reverse-polarity
 

2. Radiofrequency
 

3. Steady-state direct-current reverse-polarity
 

Test specimens for electrical discharge cleaning evalua­

tions were first dry machined to produce a surface with low defect
 

potential and then deliberately contaminated, retaining some
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specimens in the as-machined condition for experimental control
 

purposes. The following surface conditions were evaluated:
 

1. 	As-machined and carefully stored
 

2. 	Alconox degreased
 

3. 	Chemically cleaned (I min in 5 w/o NAOH
 
solution at 180'-190' F, dipped in de­
mineralized water, 15 sec dip with ai­
tation in 50 v/o HNO to remove smut,
 
followed by a .min rinse in demine­ralized water)
 

4. 	Trichlorethylene decreased.
 

Cleaning was performedi with conventional gas tungsten­

arc welding equipment mounted on a side beam carriage and equip­

ped with an oscillator to provide longitudinal and transverse
 

travel over the specimen surfaces. A photograph of a cleaning
 

operation with direct-current reverse-polarity discharge is shown
 

in Figure 9.
 

b. 	 Pulsed Direct-Current Reverse-

Polarity Discharge Cleaning_
 

Cleaning with pulsed direct-current reverse-polarity
 

proved to be the best electric discharge technique that was stud­

ied in the program, but cleaning was unacceptable. Initial tests
 

were made with a peak current time of 0.15 sec and a base current
 

time of 0.35 sec to establish parameters that would provide stable
 

operations. These initial tests were performed without arc oscil­

lation as the arc traversed the test specimen.
 

Effective cleaning was obtained with peak current values
 

of 50 and 25 amp and travel speeds of 508 and 254 mm/min (20 and
 

10 ipm), respectively. At these current values the arc was stable
 

and appeared to be concentrated ahead of the electrode at the for­

ward edge of the cleaned area. Many cathode spots were observed
 

to form and rapidly break down as the arc traversed the surface.
 

The effective width of cleaning was approximately 12.7 mm (1/2 in.).
 

Oscillation was required to clean a 25.4 mm (1 in.) wide surface.
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Preliminary tests were carried out to determine a fa­

vorable range of cleaning parameters for oscillating the electrode.
 

Variations in arc current pulsation, electrode gap, shielding gas
 
flow, scanning rate, and travel speed were investigated. The fol­
lowing conditions were established as a base for the pulsed direct­

current reverse-polarity experiments with electrode oscillation:
 
Electrode: 3.97 mm (5/32 in.) diameter thori­

ated tungsten
 

Electrode gap: 3 mm (0.117 in.)
 

Electrode extension: 1.4 mm (0.055 in.)
 

Electrode cup size: 12.7 mm diameter (0.5 in.)
 

Argon gas flow: 1.3 m3/hr (46 cfh)
 

Peak current, frequency of pulsation, oscillation rate,
 
and travel speed were varied. The close interrelationship of the
 
variables severely limited the range of conditions that could be
 

studied. For example, Figure 10 shows a condition where arc clean­
ing is satisfactory but the oscillation rate is too slow for the
 

traverse speed or vice versa, and surface "sooting" prevents ade­
quate cleaning.
 

As the travel speed increases, the number of oscillations
 

must be increased to achieve good cleaning. With increasing cur­

rent, oscillation rates may be reduced with a given travel speed.
 
A counteracting influence is the onset of material surface and edge
 

melting which occurs with increasing current, increasing peak cur­

rent time, decreasing travel speed, and decreasing oscillation
 

rate. Current levels also were limited by melting of the tungsten
 

electrode. Because of these various interactions, cleaning was
 
achieved only over a relatively limited range. A heat input of
 

4,000 to 5,000 joules/in.2 is required for surface cleaning. Values
 
above these tend to cause surface melting.
 

Cleaning the 6.35 mm (1/4 in.) thick edges of the speci.­

mens proved to be very difficult, as the arc stabilized on one edge
 

would not detach easily. After many tests it was concluded that all
 

edges would have to be cleaned with a peak current of 35 amp and
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Fig. 10 - Sooted Surface as a Result of Improper Oscillation
 
Rate or Traverse Speed on Specimen Cleaned with
 
Pulsed Direct-Current Reverse-Polarity Discharge.
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with superimposed radiofrequency discharge to achieve arc stabil­

ity. A peak current time of 0.15 sec and base current of 12.5
 

amp at 0.35 sec with a travel speed of 254 mm/min (10 ipm) with­
out oscillation provided the best results for cleaning edges of
 

the plate. Figure Ila shows the edge cleaning achieved at the
 

optimum settings. Slight edge melting was unavoidable.
 

A series of test specimens were prepared using the para­

meters established for cathodic cleaning. Two specimens were pre­

pared at each setting to enable evaluation of the cleaning tech­

nique using the fusion spot-weld test. Chemically cleaned samples
 

were selected for analysis, as previous work had established that
 

this was the worst condition encountered among the normal "clean­
ing" methods. 
Figure lib is typical of the surface cleaning
 

achieved. Complete surface coverage is obtained with only occa­
sional surface melting; the marble-like sputtered surface finish
 

is very prominent.
 

The specimens produced for spot-weld tests were mainly
 

satisfactory with two notable exceptions. Figure 12 shows a sam­

ple produced under conditions similar to those of the specimen in
 

Figure lib but a badly pitted surface resulted. The arc charac­

teristic changed entirely to produce myriads of bright intense
 

cathode spot areas causing excessive surface eruption. No syste­

matic study was made of this phenomenon. However, if cathodic
 

cleaning is ever to be used, further work to determine the reasons
 

for variable cleaning actions with similar settings is essential.
 
Difficulties were also experienced when the nature of the surface
 

contamination changed. In an attempt to achieve comparative re­

suits, the same cleaning parameters were used for the differently
 

treated surfaces. It was obvious that the optimum conditions for
 

cleaning chemically cleaned surfaces were not as successful for
 

the other surfaces.
 

Visual examination of the specimen surfaces revealed var­

iations in the cleaning action of the arc. Surface melting varied
 

from substantial amounts to very small spots of incipient surface
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(b) Surface
 

Fig. 	11 Views of Specimen Cleaned with Pulsed
 
Direct-Current Reverse-Polarity
 
Discharge.
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Fig. 12 - Badly Pitted Surface of Specimen Cleaned
 
with Pulsed Direct-Current Reverse-Polarity

Discharge.
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melting as typified in Figure lib. Most specimens showed surface
 

cracking of an intergranular nature, although this varied accord­

ing to the parameters used. This examination showed that even
 

the specimens that were apparently clean had many defects and
 

could not be generally recommended.
 

Evaluation of the effect of cathodic cleaning parame­

ters on reducing defect potential was based on the horizontal fu­

sion spot-weld test. According to the previously established re­

lative scale of defect potential, all of the samples that were
 

cathodically cleaned gave poor results. Figures 13 and 14 are
 

examples of the defects noted. Gross porosity in Figure 13 shows
 

a high defect potential, and the oxide fold shown in Figure 14 is
 

a potential source of lack-of-fusion defects in weldments.
 

Samples representing the original contaminated surface
 

conditions that were subjected to electric discharge cleaning also
 

were subjected to the fusion spot-weld test. In practically all
 

cases, these samples had lower defect potential than the specimens
 
cleaned by electrical discharge. As expected, the as-machined
 
specimens were better on the basis of defect potential.
 

c. RadiofreqencDischar~e Cleaning
 

Initial tests with radiofrequency discharge were per­
formed by heating a spot on the specimen. A conventional radio­

frequency power source of the type used to start welding arcs was
 

employed. The high frequency current was supplied to a 3.97 mm
 

(5/32 in.) diameter electrode, and argon shielding gas was used.
 

The spot cleaning tests were performed with variations in elec­

trode-to-work distance. Good cleaning action was observed and
 

varied inversely with electrode spacing.
 

After the initial spot cleaning studies, the electrode
 

was traversed over the specimen surface. When the electrode was
 

traversed, the results generally were unsatisfactory; only inter­

mittent cleaning was observed. One reason for the lack of success
 

in cleaning with radiofrequency discharge was that the minimum
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Fig. 13 - Fusion Spot-Weld Test of Cathodially Cleaned
 
Sample Showing Gross Porosity.
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Fig. 14 -Fusion Spot-Weld Test of Cathodically Cleaned
 
Sample Showing Heavy Oxide Folds.
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travel speed, 30 mm/min (1.2 ipm), which could be achieved with
 

the equipment was too high to allow adequate cleaning.
 

It was concluded from these tests that radiofrequency
 

cleaning is inadequate under the conditions that were employed.
 

It may be possible that improved cleaning could be achieved with
 

a different power source and electrode system. However, work with
 

high-frequency discharge cleaning was terminated.
 

d. Steady-State Direct-Current
 

Reverse-Polarity Discharge Cleaning
 

Electrical discharge cleaning with conventional direct­

current reverse-polarity discharge was performed to establish a
 

range of useful parameters for cathodic cleaning. For these
 

studies the following parameters were investigated:
 

Arc-current: 25-75 amps ­

Electrode-to-work distance: 3.18-6.35 mm
 
(1/8-1/4 in.)
 

Argon gas flow rates: 0.6-1.5 m3/hr
 
(21-53 cfh)
 

Electrode extension: 1.59 mm (1/16 in.)
 

Nozzle diameter: 9.5-15.9 mm (3/8-5/8 in.)
 

Electrode diameter: 3.97 mm (5/32 in.)
 

Travel speed: 508 un/min (20 ipm)
 

Initial tests were performed with an arc current of 25
 

amps. At this current level, the arc was diffuse and oscillated
 

rapidly over the surface of the specimens. Occasionally, the arc
 

was stabilized by cathode spots on the surface, followed by rapid
 

movement. This action resulted in a generally sooty deposit fol­

lowing the passage of the arc. Good cleaning was not achieved.
 

When the welding current was increased to 50 amps, arc
 

stability increased but cleaning action was still poor., When the
 

current was increased to 75 amps, improved cleaning action was ob­

served; however, the arc traversed the surface by direct steps-­

stopping at apparently stable cathode spots where the aluminum
 

melted, then rapidly traversing the surface until another stable
 

35 IITRI-B6092-13
 
(Final Report)
 

http:3.18-6.35


spot was formed. -The resultant surface appeared clean, but un­

even, resembling a somewhat marbled finish with variable reflect­

ing surfaces. Although this current level provided a relatively
 

clean surface, electrode melting was a problem. Work with this
 

technique also was terminated.
 

In summary, all efforts to reduce the defect potential
 

of aluminum surfaces by electric discharge methods were unsatis­

factory. Even when good cleaning action appeared to occur with
 

pulsed direct-current reverse-polarity discharge, the defect po­

tential was not reduced. Apparently, cleaning was not adequate
 

or the surfaces rapidly adsorbed contaminants after cleaning was
 

completed.
 

C. 	 Conclusions
 

It was demonstrated that mechanical cleaning operations
 

are practical for the preparation of aluminum weld surfaces with
 

low defect potentials. Lightweight air motors provide sufficient
 

power to machine surfaces to meet the requirements of the program.
 

Both the face- and climb-milling modes are satisfactory, but face­

milling provides greater ease of operation and better control over
 

dimensional tolerances. A mechanized drive system proved prefer­

able to manual movement, and three surfaces can be prepared simul­

taneously. A system was developed to control depth of cut.
 

All electrical discharge cleaning methods were unsatis­

factory, on the basis of defect potential, under the conditions
 

investigated in the program.
 

III. 	 PHASE II - DESIGN AND FABRICATION
 
OF PROTOTYPE DEVICE
 

Based on the Phase I studies, dry machining of weld sur­

faces was selected as the most practical method for preparing alu­

minum weld surfaces to achieve a low defect potential. In the
 

Phase II studies, a prototype device was designed and fabricated.
 

A decision was made to design the unit to prepare square butt joint
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configurations to demonstrate the feasibility of the technique
 

and systems that were selected. The same unit can be used on "U"
 

joint configurations, but incorporation of adjustments in the de­

vice to prepare single and double Vee configurations were not made
 

for fear that they would jeopardize satisfactory performance of
 

the prototype device. The prototype device is described in the
 

following.
 

A. Design and Construction Features
 

Concepts for the design of the prototype device were de­

veloped in the Phase I studies. The basic concept was to develop
 

a device which could be mounted on the edge of the aluminum plate
 

or component and which would traverse the edge of the component.
 

Other design concepts were: (1) the use of air motors to drive
 

the milling cutters, (2) the use of a mechanically driven unit to
 

provide uniform cutting speeds, (3) the use of the face-milling
 

machining mode, and (4) the simultaneous preparation of three sur­

faces (the abutting edges and two adjacent surfaces).
 

The prototype device is shown in Figure 15. A drive
 

unit and a cutting unit are joined with a clevis (A) to allow the
 

device to traverse the edges of both straight and curved aluminum
 

components.
 

B. Drive Unit
 

The drive unit is attached to the forward end of the
 

cutting unit and is powered by an electric drive motor. An elec­

tric switch (B) activates the drive motor and is mounted on the
 

forward upper surface of the unit.
 

Power from the drive motor is transmitted through a gear
 

train to two polyurethane-coated drive rollers (C) which are forced
 

into firm contact with the surfaces of the component adjacent to
 

the weld edge to provide a positive friction drive. A spring-loaded
 

clam-shell device (D) is utilized to provide firm contact. The
 

spring-loaded clam-shell device is visible in Figure 16, which shows
 

the bottom of the drive unit. Adjustment of the drive rolls is
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Fig. 15 - Prototype for Weld-Surface Preparation of Aluminum
 
Components.
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accomplished by manually rotating a knob (E) which is located at
 

the lower left corner of the drive unit (Figure 15). This ad­

justment will accommodate plates ranging in thickness from 2.54 mm
 

(0.1 in.) to 25.4 mm (1.0 in.).
 

Electric power for the drive unit is supplied through a
 

plug (F) located on the forward end of the cutting unit (Figure
 

15). A cap is provided for the plug and is utilized when the cut­
ting unit is operated independently of the drive unit. The drive
 

unit is designed to propel the device at a linear speed of approx­

imately 914 mm/min (36 ipm). This speed was selected on the basis
 

of the Phase I studies.
 

C. Lutttn$ Unit 

The cutting unit consists of a rigid body to which are
 

attached the milling drive motors, depth-of-cut control systems,
 

alignment rollers, and edge-breaking tools. As seen in Figure
 

15, the body of the cutting unit is fabricated from a rectangular
 

steel tube (G) with welded attachments for use in mounting the
 

system. A rectangular steel tube was selected to achieve rigidity
 
and to provide air passages for a vacuum chip-removal system. The
 

rear end of the body is welded to a cylinder (H) to provide means
 

for attaching a shop-type vacuum cleaner for chip removal and col­

lection. The handle (I) is mechanically fastened to the body and
 

can be removed in operations where it is desirable to mount the
 

cutting unit in a stationary position and move the component that
 

is being prepared. Incorporated into the handle is a gas manifold
 

system (J) to supply air to the milling motors and to collect the
 

exhaust air from the wotors. The switch on the handle activates a
 

gas solenoid; the solenoid is located at the air supply station
 

which supplies air to the milling drive motors.
 

A photograph of the front of the cutting unit is shown
 

in Figure 17, the rectangular shape of the body, the clevis (A)
 

for attaching the drive unit, and the attachment (K) for the for­

ward alignment rolls (L) are readily visible. All welded attach­
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ments were heavy to insure rigidity, as illustrated by the at­

tachments for the forward alignment rollers.
 

Three milling motors (M) are mounted on the body; one
 
in the vertical position to prepare abutting edges, and two in
 
the horizontal position to prepare the surfaces immediately ad­
jacent to the edge. The vertical motor is attached to a slide (N)
 

to provide for depth-of-cut adjustments. Immediately in front of
 
the motor (Figure 17) is a knob (0) for manually adjusting the
 
vertical location of the motor and slightly to the left is a mi­
crometer (P) which allows the measurement of the depth-of-cut ad­
justment. The vertical unit is held stationary during surface
 

preparations.
 

The horizontal cutting units are fitted with depth-of­
cut control systems, which adapt to the surfaces that are being
 
prepared. A simple mechanical system was developed to provide
 

this control. Control is achieved by spring loading (Q) the hor­
izontal milling motor assemblies and providing a small thrust
 
button which extends beyond the cutting surface of the milling
 
cutter and bears on the surface of the plate. With this arrange­

ment the cutting surfaces are not in contact with the surface to
 
be prepared when the motor is normal to the surface. When the as­
sembly is tilted, the trailing edge of the cutter engages the
 
plate. The angle of tilt, the extension of the thrust button be­
yond the cutting surfaces, and the radius of curvature of the com­
ponent determine the depth of cut.
 

Once the proper settings are made, the depth of cut is
 
controlled directly by the thrust button which rides on the surface
 
to be prepared (see Figure 5). Each milling motor is equipped with
 
a multiflute helix-shell end mill, 31.8 mm (1 1/4 in.) diameter.
 
The vertical motor and the horizontal motor on the right are equip­
ped with right-hand cutters. The other horizontal motor is equip­
ped with a left-hand cutter. The spring-loaded horizontal motor
 
mounts (R) are pivoted so that the cutter can be tilted to control
 

42 IITRI-B6092 -13 
(Final Report)
 



the depth of cut. Graduations (S) are machined on the mount for
 
measuring the degree of tilt and to assist in adjusting the depth
 
of cut.
 

The depth-of-cut control system used on the horizontal
 
cutters results in a slightly concave machined surface on the
 
component. This feature is desirable for a smooth transition from
 
the original surface to the machined surface. However, care mtist
 
be taken to insure that the area which is machined to the greatest
 
depth lies within the fusion zone of the weld to be made, other­

wise maximum thinning can occur in an area that will be located
 

within the heat-affected zone after the components are welded.
 

Vertical slides, which are not visible in the photos,
 
are incorporated into the horizontal motor mounts to control the
 

location where maximum depth of cut occurs. The area of maximum
 
depth of cut corresponds to the center of the thrust button. With
 

the vertical adjustment, the center of the thrust button can be
 
located at various distances below the edge of the component. The
 

width of the machined surfaces adjacent to the edge is determined
 
by the position of the thrust button and by the depth of cut. As
 
the depth of cut is increased, the width also increases. As the
 

thrust button is moved further away from the edge, the width of
 
the prepared surface is increased also. Manually operated cams
 
are incorporated into the depth-of-cut control system to retract
 
the horizontal cutters. The levers (T) that operate the cams are
 

shown in Figure 17.
 

Figure 17 also shows the front rolls (L) that hold the
 

device in alignment on the plate. These rolls were mounted on
 
slides and are moved into firm contact with the surfaces of the
 

component to maintain alignment of the device during the surface
 
preparation operation. In addition to the forward alignment rolls,
 

two similar rolls are placed in back of the horizontal cutting
 

units and in front of the vertical cutting unit. The rear align­
ment rolls (U) are visible in Figure 18, which shows the bottom Df
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the cutting unit. Modifications of these rolls will be discussed
 

in Section IV-A.
 

Two horizontal rollers (V) are incorporated into the
 

bottom of the cutting unit to roll on the abutting edges and to
 

maintain a constant distance between the unprepared edge and the
 

cutter on the vertical motor. These rollers are visible in Fig­

ure 18; one roller is located immediately behind the clevis joint,
 

and one is located immediately in front of the cutter on the ver­

tical motor. These positions were selected so that the rollers
 

would precede the vertical cutter and would not contact the fresh­

ly machined surface.
 

Additional features of the body of the cutting unit are
 

visible in Figure 18. Two openings (W) in the bottom of the body
 

were located so as to provide for the removal and collection of
 

chips. One opening, which is visible in the photograph, corres­

ponds to the location of the vertical cutter. The other opening
 

is located under the shrouds that encircle the cutters on the hor­

izontal motors. The shrouds are used to contain chips from the
 

horizontal cutters and to act as ducts to direct air into the vac­

two
uum chip-collection system. Also visible in Figure 18 are 


small cutting tools (X) in back of the vertical cutter. The pur­

pose of these tools is to remove burrs that are formed at the ma­

chined edges. These cutters also required modifications and will
 

be discussed in Section IV-A.
 

The weight of the cutting unit as originally designed
 

is 37 lb, 8 oz and the weight of the drive unit is 4 lb, 10 oz.
 

The total weight of both units is 42 ib, 2 oz. The units may be
 

separated for mounting on the component or plate, or they may be
 

mounted as a single unit.
 

Electrical and compressed air supplies are required.
 

Electrical requirements are minimal: 110 volts to operate the
 

drive motor, shop vacuum cleaner, and air solenoid. A compressed
 

air supply with a capacity of 1.55 m3/min (90 cfm) at a pressure
 

of 620.5 kN/m 2 (90 psi).
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IV. 	 PHASE III - EMPIRICAL EVALUATION AND
 
MODIFICATION OF PROTOTYPE DEVICE
 

Initial tests with the prototype device were performed
 

to determine operational characteristics such as alignment on
 

plate or component edge, depth-of-cut control and adjustment, sur­

face finish and deburring. Minor requirements for modifications
 

became apparent in these initial tests.
 

A. 	 Modifications
 

Three minor modifications were made to the prototype de­

vice as a result of the initial tests. Included were improved
 

methods to: (1) adjust the alignment rollers on the cutting unit;
 

(2) adjust and measure the depth of cut on the horizontal motors;
 

and, (3) deburr the corners of the plate.
 

1. 	 Alignment Rollers
 

In the initial design, the alignment rollers were manu­

ally forced against the sides of the component to achieve align­

ment. This original method proved to be awkward, and the rollers
 

could not be adequately tightened for satisfactory operation.
 

To overcome this shortcoming, a screw adjustment was in­

corporated into the alignment rollers on the cutting unit. With
 

this adjustment, the rollers can be forced together to firmly con­

tact the component surfaces. The modification is shown in Fig­

ure 19.
 

2. 	 Def th-of-Cut Adius tment 

In the initial design, the horizontal motors were moved
 

manually to tilt the horizontal cutters and the angle of tilt was
 

determined from a pointer and scale that was graduated in degrees.
 

When this system was used to adjust the depth of cut, it was found
 

that depth of cut was more sensitive to tilt angle than had been
 

indicated in previous studies--an angle of 0.50 is approximately
 

equal to a 0.13 mm (0.005 in.) depth of cut. As a result, repro­

ducible depth-of-cut settings could not be made.
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The mechanism was modified by inserting a cam for the
 

purpose of adjusting the angle of the cutter and replacing the
 

pointer with a vernier to allow accurate measurement of the angle.
 

A photograph of the modified mechanism is shown in Figure 20.
 

3. Burr Removal Tools
 

The small cutting tools mounted on the aft end of the
 

cutting unit were held in a fixed position in the initial design.
 

During operation, however, the tools did not remove a consistent
 

amount of metal due to variations in the thickness of the plate-­

at some locations they removed no metal, and at others they re­

moved an excessive amount.
 

To correct this problem, the deburring tools were spring
 

loaded to exert an approximately uniform cutting load regardless
 

of variations in plate thickness. Also, a locking device was in­

cluded so that the cutters can be retracted while the device is
 

mounted on the plate or component.
 

B. Operational Features
 

Detailed operational instructions are provided in the
 

Operating and Maintenance Manual supplied with the prototype de­

vice. However, these features will be briefly summarized.
 

The prototype device is equipped with an air solenoid,
 

air supply and exhaust hose, and electrical cable to extend from
 

the unit to the solenoid and an electrical outlet. The solenoid
 

is normally mounted at the air supply, and the hoses and cables
 

are extended to the work area. A shop-type vacuum cleaner, which
 

is not supplied with the device, must be attached to provide for
 

chip removal.
 

Before mounting the device on the component to be pre­

pared, it is necessary to retract the cutters, vertical alignment
 

rolls, drive rolls, and horizontal cutter shrouds to allow the
 

unit to be placed on the component edge. When the unit is in place,
 

the forward and rear vertical alignment rolls are forced into con­
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Fig. 20 - View of Modified Cam-Operated Tilt Mechanism with
 
Vernier for Angle Measurement.
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tact 	with the surfaces by adjusting the screw devices on each
 

roller; then the cap screws are tightened to maintain alignment.
 

The entire unit is then manually traversed for a short distance
 

along the plate to check whether excessive force is required to
 

power the unit. If so, the guide rollers are backed slightly to
 

allow free travel, yet maintain a positive relation to the plate.
 

The drive rollers are then tightened against the plate. Next,
 

the horizontal drive motors are positioned approximately-normal
 

to the surface, and the cams are rotated to allow the thrust but­

ton to contact the surface.
 

At this time the horizontal cutters are examined to in­

sure that the cutting edges are not in contact with the surface.
 

If the cutting edges are in contact with the surface, the motors
 

must be pivoted until contact is eliminated. The horizontal mo­

tors are then adjusted vertically so that the center of the thrust
 

button contacts the surface below the edge of the component but is
 

within the distance that will constitute the weld-fusion zone af­

ter the part is welded. The shrouds are moved into close proxim­

ity with the surface, and the unit is then ready for adjustment
 

of the depth of cut.
 

Depth-of-cut settings are made on the-horizontal cutters
 

before the milling drive motors are rotated. Depth of cut for the
 

horizontal motors is set as follows:
 

(1) 	Rotate cams so thrust button contacts
 
the component surface.
 

(2) 	Loosen cap screws to allow the motor
 
to pivot.
 

(3) 	Rotate the motor to insure that cut­
ter is not in contact with surface.
 

(4) 	Pivot motor with cam wrench until trail-.
 
ing edge of cutter touches the surface.
 

(5) 	Record the location of the vernier with
 
respect to the graduations, as cutter
 
touches plate.
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(6) 	Retract the cutter'by'hmeans'of the
 
cam handle.
 

(7) 	Increase tilt angle to correspond
 
to -desired depth of cut (approxi­
mate relationships between the tilt
 
angle and depth of cut are present­
ed in Figure 21).
 

(8) 	Tighten cap screws at desired set­
ting.
 

Depth of cut for the vertical motor is set while-the mo-


The switch on the handle activates all air motors.
tor is running. 


Vertical adjustment is performed as follows:
 

(1) 	Loosen cap screws that release ver­
tical slide.
 

(2) 	Turn adjusting knob to lower motor
 
until cutter engages the edge of the
 
component.
 

(3) 	Turn micrometer until spindle engages
 
the stop attached to the motor mount.
 

(4) 	Retract micrometer spindle a distance
 
corresponding to the desired depth of
 

cut.
 

(5) 	Turn adjusting knob to move cutter in­

to the part-until the micrometer spin­
dle is again in contact with the stop.
 

to hold vertical
(6) 	Tighten cap screws 

motor firmly.
 

After the above adjustments have been made, the unit 
is
 

The cams on the horizontal motors are then
ready for operation. 


rotated to allow the horizontal cutters to engage the workpiece,
 

and the locks holding the deburring tools in the retracted 
posi-


At this time, all cutters are engaged with
 tion 	are disengaged. 


the component. The next operation is to switch the drive motor
 

on and allow the device to traverse the edge of 
the component. Af­

ter a short length of surface has been prepared, the 
drive motor is
 

are retracted, and the air motors
 stopped, the horizontal cutters 


are stopped.
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The short length of prepared surface is then measured
 

.to determine that all adjustments were properly made. Then the
 

air motors are turned on, the horizontal cutters are engaged, and
 

the drive unit is activated. The device is allowed to traverse
 

the edge until the drive motor reaches the end of the plate or
 

when preparing a cylinder until the unit returns to the starting
 

The exact point for stopping on a cylindrical compo­position. 


nent depends on a number of variables that will be discussed in
 

Section IV-D.
 

C. Defect Potential of Prepared Surfaces
 

The most important requirement for the device is that
 

it be capable of preparing weld surfaces to achieve a low defect
 

potential. This characteristic was evaluated by: (1) preparing
 

flat plate specimens with a square butt configuration from 6.3 mm
 

(% in.) plate of 2014-T6 aluminum alloy; (2) machining the edges
 

with the prototype device; (3) preparing gas tungsten-arc hori­

zontal seam and spot welds; and (4) radiographic examination of
 

the seam welds and visual examination of the fractured spot weld
 

For controls, chemically cleaned and as-received ma­specimens. 


terial was also welded.
 

Plates for the welding tests were prepared as strips 

101.6 mm (4 in.) to 152.4 mm (6 in.) wide and 914.4 mm (36 in.)
 

The edges were milled to provide a
to 1,219.2 mm (48 in.) long. 


smooth starting surface for the device., The strips were only de­

greased before preparing them with the prototype device. This
 

was considered to be the most severe condition that would be en-


The depth of cut was varied in preparing specimens.
countered. 


Photographs of flat and curved plates after preparation are shown
 

in Figure 22.
 

In preparing the weld specimens, severe conditions were
 

imposed to insure a critical evaluation of the defect potential
 

of the surfaces. These severe conditions included: (1) welding
 

in the horizontal position to entrap porosity; (2) depositing a
 

single pass weld so that subsequent weld passes would not allow
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porosity to be released from the joint; and (3) depositing a
 

partial penetration weld (50-707.of the plate thickness) to pro­

vide surfaces for the nucleation of porosity. All welds were
 

made without filler wire to eliminate a potential variable due to
 

filler wire surface contamination. Long tack welds were required
 

at the center and end of the plate to prevent tack weld cracks
 

and to maintain alignment. A photograph of the welding setup is
 

shown in Figure 23.
 

Weld parameters for the seam welds are listed below:
 

Arc voltage 

Current 

Travel speed 

Electrode 


Diameter 

Taper 

Flat 


Shielding
 
Nozzle Diameter 

Nozzle to work 

Gas 

Flow rate 

Dew point 


12 volts
 
160 amperes
 
431 mm/min (15 ipm)
 
tungsten-2% thoria
 
4 mm (5/32 in.)
 
320
 
2.4 mm (3/32 in.)
 

15.9 mm (5/8 in.)
 
4.8 mm (3/16 in.)
 
helium3
 
1.42 m /hr (50 cfh)
 
-400C (-40-F)
 

Weld parameters for the fusion spot-weld tests are list­

ed as follows:
 

Arc length 

Current 

Electrode 


Diameter 

Taper 

Flat 


Shielding
 
Nozzle diameter 

Nozzle-to-work distance 

Gas 

Flow rate 

Dew point 


1.6 mm (1/16 in.)
 
280 amperes
 
tungsten-2% thoria
 
4 mm (5/32 in.)
 
320
 
2.4 mm (3/32 in.)
 

15.9 mm (5/8 in.)
 
4.8 mm (3/16 in.)
 
helium3
 
2.84 m /hr (100 cfh)
 
-40°C (-40 0F)
 

Radiographic examinations were performed on the seam
 

welds. Welds in the as-received and chemically-cleaned plates ex­

hibited severe continuous porosity along the entire weld. Frac­

ture surfaces from weldments in a chemically cleaned specimen are
 

shown in Figure 24. These areas are typical of the entire weld
 

length.
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Neg. No. 37076 5X
 

Fig. 24 - Fracture Surface of Weld in Chemically
 
Cleaned Plate; Contains Numerous Pores.
 

Neg. No. 37079 9X
 

Fig. 25 - Fracture Surface of Welds in Typical
 
Prepared Plate; Contains Only
 
Scattered Fine Porosity.
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The weld defect potential of specimens prepared with
 

the prututype device was low except for areas at and near the
 

tack welds. Areas which were not associated with tack welds con­

tained scattered fine porosity, primarily 0.254 mm (0.010 in.) in
 

diameter with one 0.762 mm (0.030 in.) pore. A typical weld frac­

ture is shown in Figure 25; weld soundness in prepared specimens
 

greatly exceeded that for chemically cleaned plates.
 

Areas associated with tack welds contained scattered
 

and clustered fine porosity. This porosity is attributed to the
 

techniques used to prepare and clean the tack welds. The tack
 

welds were made at the same settings used for the weld, and were
 

long--101.6 mm (4 in.)--to prevent cracking. After tacking, the 

tack welds were wire brushed and the primary weld was traversed 

along the entire length of the plate; thus, the tack welds were 

rewelded and all surface contamination present on the tack weld 

was introduced into the weld fusion zone. Weld fracture from a 

tack weld area is shown in Figure 26.
 

Fusion spot-weld tests were performed by placing the
 

adjacent surfaces in contact and melting the spot. Due to the
 

concavity of these surfaces (Figure 27), it was difficult to
 

achieve intimate contact.
 

Test results from the fusion spot welds were erratic.
 

Some spot welds were practically defect free, as shown in Figure
 

28, and had ratings of 1 to 5. Others, however, exhibited a con­

siderable amount of what appeared to be oxide folds (Figure 29)
 

in larger amounts than had been observed previously with the test
 

on machined surfaces.
 

It was believed that the oxide fold defects were influ­

enced by the gap that existed between the plate surfaces. To ver­

ify this, specimens were machined with flat surfaces to-allow in­

timate contact. Some were welded with the surfaces in contact
 

while others were welded with shim stock between the surfaces at
 

the back side to provide an air gap in the interior of the speci­

men. Results from these tests are summarized below:
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Neg. No. 37078 9X
 

Fig. 26 -Fracture Surface of Weld in Tack
 
Weld Area of Prepared Plate;
 
Contains Cluster of Fine Porosity.
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Neg. No. 37084 IIX
 

Fig. 27 - End View of Prepared Edge Showing 
Concave Surfaces Resulting from 
0.0508 mm (0.002 in.) Depth of Cuta. 
lines project location of original 
surface. 
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Neg. No. 37081 6X
 

Fig. 28 - Fusion Spot-Weld Test from Prepared
 
Sample Showing Low Defect Potential.
 

Neg. No. 37080 6X
 

Fig. 29 - Fusion Spot-Weld Test from Prepared
 
Sample Showing Apparent Oxide Folds.
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Gap Remarks 

0 All welds excellent 

0.508 mm (0.002 in.) Oxide folds in one weld 

1.016 mm (0.004 in.) All welds excellent 

1.524 mm (0.006 in.) Oxide folds in three welds 

2.032 mm (0.008 in.) Oxide folds in all welds 

These results appear to verify the belief that the air
 

gap is responsible for the apparent oxide folds and that the de­

fect potential of the prepared surfaces is low.
 

D. 	 Adaptability of Prototype Device
 

to Fabrication Requirements
 

A number of target requirements for the prototype de­

vice were listed in the Introduction of the report. These re­

quirements as they are related to performance of the prototype
 

device are discussed below:
 

I. 	 Preparation of Surfaces Adacent to Weld
 

One requirement is that the prototype device will pre­

pare the abutting edges of the weld grooves and 25.4 mm (1 in.)
 

widths on the adjoining surfaces.
 

The prototype device is designed to prepare abutting
 

surfaces and over 25.4 mm (I in.) widths on adjacent surfaces.
 

However, the width that is prepared will vary with each specific
 

application due to the shape of the cut that is made. The tech­

nique used to control depth of cut on the adjacent surfaces re­

sults in a concave surface as shown in Figure 27. The location
 

of greatest depth of cut corresponds to the centerline of the cut­

ter or location of the thrust button, and width of cut varies with
 

the location of the thrust button and depth of cut. Therefore, if
 

dimensional tolerances are critical, requiring small cuts and max­

imum depth of cut near the abutting surfaces, preparation of adja­

cent surfaces 1 in. away from the edge is not recommended.
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2. Component Configurations and Position
 

Other requirements are that the system be adaptable to
 

longitudinal and circumferential surfaces on cylinders and to el­

liptical and hemispherical domes positioned for welding in the
 

horizontal, vertical, inclined curved positions, and in combina­

tions of these positions.
 

Most evaluations of the device were performed on flat
 

plate and curved plates with constant radii of curvature. Both
 

of these geometries, which represent longitudinal and circumfe­

rential surfaces on cylinders and hemispheres are readily prepared
 

with the prototype device.
 

The device also can be used to prepare parts with vary­

ing radii, such as elliptical domes; but if the change in radius
 

is too great, it is necessary to readjust the alignment rolls on
 

the cutting unit and angle of tilt on the horizontal cutters to
 

compensate for the change in curvature. Adjustments of the align­

ing rolls are necessary to prevent binding as the radius decreases
 

or loosening as it increases. Changes in the angle of tilt are
 

necessary to maintain a constant depth of cut.
 

When preparing a part with varying radii, tests should
 

be performed to determine if intermediate adjustments are neces­

sary. First, the unit should be traversed around the part, with­

out cutting, to determine if it binds or becomes loose. If either
 

condition is encountered, these locations should be marked on the
 

part so that the device can be stopped and readjusted during the
 

surface preparation operation. Likewise, the tilt angle where the
 

touch the surface should be determined at vari­horizontal cutters 


When this tilt angle changes a
ous locations around the part. 


sufficient amount to change the depth of cut an unacceptable
 

amount, the location should be marked for intermediate change.
 

After the need for and location of intermediate changes are estab­

lished, the part is machined, stopping at the prescribed locations
 

and performing the required adjustments.
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The device has a considerable tolerance for changes in
 

radii, but sufficient tests were not performed under controlled
 

conditions to establish conclusively the variation in radius that
 

can be tolerated before readjustments are required. Further work
 

should be performed to define tolerable limits without need for
 

intermediate adjustments.
 

During the design of the prototype device, one concept
 
was considered which would eliminate the need for readjusting the
 

alignment rollers. This concept was to attach the rollers in
 

pairs and to caster the mount so that the device would travel on
 

surfaces with changing radii but uniform thickness without the
 

need for adjusting the distance between the rollers. This con­

cept was not adopted, however, because of the possibility of less
 

rigidity in the alignment rolls and increased tool chatter.
 

The device was used to prepare plate edges with the
 

plates in the horizontal welding position (Figure 30), downhand
 

welding position (Figure 31), and vertical welding position (Fig­

ure 32). When simulating the lower subassembly of a part in the
 

horizontal welding position, the device maintains contact with the
 

plate due to gravity and the operator does not need to hold the
 

unit. With parts in position for downhand welding, manual force
 

is adequate to hold the device in contact with the surface of the
 

part. Likewise the same technique is satisfactory for the verti­

cal position with the device moving down the component.
 

A technique was not developed for turning the device up­

side down and machining in the mode that simulates the upper sub­

assembly of a component in the horizontal welding position. It
 

would be possible to prepare edges in this mode by designing a
 

counterbalanced holding fixture for supporting the device with a
 

crane. The purpose of the counterbalance would be to provide up­

ward force to hold the device in proper contact with the surface
 

of the part. However, considerable problems could be expected in
 

For horizon­coordinating crane travel with travel of the device. 


tal welds it is recommended that the surfaces of the upper subas­
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sembly should be prepared while it is in a position that simu­

lates the position of the lower subassembly.
 

3. Groove Geometr
 

Another requirement was to prepare all standard config­

urations: square butt, single- and double-V grooves, and single-


U joints.
 

The prototype device was designed and fabricated to pre­

pare square butt joint configurations. However, the device can be
 

adapted to single-U joint configurations by changing cutters on
 

the vertical motor and by moving the motor off center. Such an
 

adjustment was incorporated into the device. For single-U config­

urations, the vertical cutter must be ground to conform to the U
 

configuration. In preparing such joints two passes of the device
 

are required: one to prepare the U and one to prepare the weld
 

land and adjacent surfaces. For this latter pass, all operations
 

are conventional except that the horizontal motor on the U side
 

of the joint is set at a lower position than on the other side.
 

During the design of the prototype device, methods for
 

providing adjustments to prepare single and double V joints were
 

studied. Such adjustments can be-provided by incorporating mech­

anisms to tilt the vertical or horizontal cutters in the vertical
 

plane to machine the bevel. However, providing means for these
 

adjustments on the prototype device was considered undesirable be­

cause the weight of the unit would be increased and the rigidity
 

of the unit and chip removal system would be jeopardized. There­

fore, a decision was made to design and fabricate the unit without
 

the vertical adjustments required for bevel joints.
 

Two techniques can be used for preparing V joints. One
 

is to fabricate a second cutting unit, such as that sketched in
 

Figure 33, to hold two milling motors with adjustments to allow
 

setting the cutters at various angles to prepare beveled plate.
 

We consider this the most desirable approach. The other technique
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Fig. 33 Sketch of Proposed Device for
 
Preparing Bevels on Vee Joints
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is to incorporate the required adjustments in an advanced model
 
of the current device. This latter approach would complicate the
 

unit greatly.
 

4. 	 Depth of Cut
 

Another requirement was that the metal removal be a
 

minimum of 0.127 mm (0.005 in.)
 

The device was designed and powered to remove metal at
 

depths in excess of the requirement. However, in preparing sur­
faces adjacent to the abutting edges, a total in excess of 0.254
 
mm (0.010 in.) will be removed if this requirement is fulfilled.
 
For some components, the removal of this amount of metal cannot
 

be tolerated. Therefore, the unit was designed so -that cuts on
 
adjacent surfaces can be made repoducibly as shallow as 0.0508 mm
 
(0.002 in.) and in excess of 0.127 mm (0.005 in.) if desired.
 

5. 	 Surface Roughness and Smearinj
 

Requirements for surface roughness were specified to be
 
a maximum of 5.08 Lm (200 uin.) with a minimum of smeared metal.
 

A Proficorder was employed to measure surface roughness
 

on typical prepared surfaces. Roughness measurements of 2.54 to
 
4.85 am (100 to 191 pin.) rms were calculated. The rms value is
 

in the required range. It should b e noted, however, that rms
 
values normally are one-fifth to one-third the value of the maxi­

mum size of irregularities in the surface. Therefore, irregulari­

ties that exceed the rms value can be expected.
 

The scanning electron microscope was used to examine
 

surfaces for evidence of smeared metal. Examinations were made on
 
the abutting edges and adjacent surfaces.
 

A change in cutting speed for the vertical motor --that
 
is,the abutting edges--was made on the basis of these examinations.
 

Initially the vertical motor was operated at 18,000 rpm, resulting
 
in abutting edges with the surface characteristics shown in Figure
 
34. These surfaces contained the normal tears and pits that char­
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acterize all machined surfaces, but also contained numerous folds
 

which were potential traps for contaminants and were considered
 
undesirable.
 

In an effort to improve the surface of the abutting
 
edges, the speed of the vertical motor was reduced to 4500 rpm.
 
Surfaces produced at the lower rpm were definitely superior to
 
those achieved at the higher speed as shown by the scanning elec­

tron micrographs in Figure 35. These latter surfaces contain nu­
merous tears and pits, but do not contain the overlap areas ob­

served previously and show evidence of only a very small amount
 
of smeared metal. These latter surfaces are considered to be ex­

tremely good and acceptable for welding operations.
 

Prepared 	surfaces adjacent to the edges were examined
 
at two locations; near the edge at maximum cut depth and away
 

from the edge at lower cut depths. Scanning electron micrographs
 
of typical surfaces near and away from the edge are shown in
 

Figures 36 and 37, respectively. The surfaces contain the normal
 

tears and pits, and only a small amount of smeared metal was
 

observed.
 

6. Component Thickness
 

The device was designed to prepare surfaces ranging in
 

thickness from 2.54 mm (0.1 in.) to 25.4 mm (1.0 in) as specified
 
in the requirements. From tests performed on the thinner materi­
al, it was observed that thin components should be carefully fix­

tured to stiffen the structure near the surfaces to be prepared.
 
For the thickest plate, the device is satisfactory if the thick­

ness is sufficiently uniform so that the alignment rollers do not
 
bind on the plate.
 

7. 	 Lubricants and Manual Work
 

The device was developed to dry-machine aluminum sur­

faces. This is an important requirement in preparing surfaces
 

with a lowdefect potential.
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NOT REPRODUCIBLE
 

SEM 823 300X SEM 820 1000X
 
(a) (b)
 

SEM 822 3000X
 
(c)
 

Fig. 35 -Scanning Electron Micrographs of Abutting Edge Machined
 
at 4500 rpm; Surface Extremely Good.
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sEM 872 30ox sEM 871 1ooox
 
(a) (b)
 

SEM 873 3000X
 

Fig. 36 -Scanning Electron Micrographs of Adjacent Surface Near
 
Abutting Edge; Surface is Acceptable.
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Up 

SEM 875 300X SEM 876 IO00X
 
(a) (b)
 

SEM 874 3000X
 
(c)
 

Fig. 37 -Scanning Electron Micrographs of Adjacent Surface Away
 
from Abutting Edge; Surface is Acceptable.
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Techniques were developed to prepare surfaces without
 

the need for edge manual preparation as'specified. However, ex­

cess length must be provided for longitudinal welds in cylinders
 

and fot welding gore sections in domes, and joint fit-up toler­

ances may be reduced for a short length in circumferential welds.
 

An additional length of material must be provided for
 

longitudinal and gore welds because the entire length of such a
 

component cannot be prepared with the device. The need for ad­

ditional length is governed by the drive unit and location of
 

milling cutters. At the starting end, the abutting surface can
 

be prepared all the way to the end, but adjacent surfaces can be
 

prepared within only about 76.2 mm (3 in.) from the starting end.
 

At the stopping end, the abutting surfaces can be prepared within
 

about 304.8 mm (12 in.), and adjacent surfaces can be prepared
 

within about 228.6 mm (9 in.).
 

The use of welded start and stop tabs was analyzed as a
 

method for extending the length of components to provide the ad­

ditional material. At the finish end, use of a 127 mm (5 in.)
 

welded tab to compensate for the length of the drive unit is
 

feasible, but these tabs cannot be mounted with sufficient ac­

curacy to allow for the length of the cutting unit. Therefore,
 

it is recommended that additional length be allowed in the actual
 

part if manual operations are not desired.
 

When providing additional length in the part, a speci­

fied sequence of operations is necessary. The entire length of
 

the abutting surface on the finish~end is not completely prepared.
 

Therefore, the entire length of the plate cannot be fit up with an
 

adjacent plate without removing the excess material. To obtain
 

fit-up the following sequence,-based on gore sections for a dome,
 

is required (similar sequences would be involved with longitudinal
 

welds in cylinders):
 

1. 	Gore section 1: prepare edge to be welded first and
 
cut away one half of the excess material on the fi­
nish end corresponding to the prepared side (Figure
 
38a).
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a. 	 GORE SECTION ONE b. GORE SECTION TWO WELDED 
TO SECTION ONE 

C. 	GORE SECTION THREE d. DOME WITH ALL BUT LAST GORE 
WELDED TO SECTION TWO SECTION WELDED 

Fig. 38 Schematic Illustration of Sequence for Preparing
 
and Welding Gore Sections to Form Dome
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2. 	Gore section 2: prepare edge to be welded to sec­
tion 1.
 

3. 	Weld gore section 2 to gore section I (Fig. 38b).
 

4. 	Gore section 2: prepare edge to be welded to gore
 
section 3 and cut away additional metal.
 

5. 	Gore section 3: prepare edge to be welded to gore
 
section 2.
 

6. 	Weld gore section 3 to gore section 2 (Fig. 38c).
 

7." 	Gore section 3: prepare edge to be welded to gore
 
section 4 and cut away additional material.
 

8. 	Repeat sequence outlined for sections 2 and 3 for
 
remaining sections up to the last gore section.
 

9. 	Last gore section: prepare both surfaces; cut away
 
additional metal; prepare edge of gore section; re­
move additional material; and deposit both welds in
 
the 	dome.
 

The sequence above provides two important advantages:
 

manual work on the prepared surfaces is not necessary, and the
 

surfaces are prepared immediately before welding. An alternate
 

sequence is to prepare both surfaces of each gore section and re­

move the additional metal prior to placing it in the welding fix­

ture. The major disadvantage with the alternate sequence is the
 

increased possibility of contaminating the second edge before
 

welding.
 

A third alternative, which does require manual work on
 

the surfaces, is to scrape the areas that are not machined with
 

the device. Under the worst conditions, 304.8 mm (12 in.) of
 

abutting edge at the finish end and 76.2 mm (3 in.) and 228.6 mm
 

(9 in.) of adjacent surface at the start and finish ends, respec­

tively, would be manually prepared.
 

When preparing circumferential surfaces in cylinders,
 

the unit returns to a previously prepared edge. Because the de­

vice controls depth of cut by rollers which roll on the'plate edge
 

and thrust buttons which contact the adjacent surfaces, dimensional
 

variations must be acceptable or manual surface preparation work
 

is required to completely prepare the surface.
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There are four alternate sequences for stopping the de­

vice on circumferential surfaces, one of which does not require
 

manual work. The first is to let the unit return completely so
 
that the cutting unit rests entirely on previously prepared sur­

faces before stopping. Theoretically, this sequence will result
 
in a surface with the contour shown in Figure 39a when cutting
 

with a 0.0762 mm (0.003 in.) depth of cut on all surfaces. The
 
variations theoretically occur, first as the forward horizontal
 

roller contacts the previously prepared edge (Figure 40a). At
 

that time the vertical cutter is raised as the forward end of the
 
cutting unit drops and the depth of cut on the edge is reduced.
 

The other changes occur as the aft horizontal roller and thrust
 

buttons contact the previously prepared surfaces (Figure 40b).
 

At this time, the aft end of the cutting unit drops, causing an
 

increased depth of cut on the edge and the horizontal cutters
 

move in causing an increased depth of cut on the adjacent surfaces.
 

Tests were performed to evaluate this first technique,
 

which allows all of the surface to be prepared without manual oper­
ations. In actual tests with a 0.762 mm (0.003 in.) depth of cut,
 

the variation on the abutting surfaces could not be measured when
 

two parts, one flat and the other finished in the prescribed man­
ner, were placed in contact. Therefore, the calculated changes
 

shown in Figure 39a do not hold true in tests. The change in
 

thickness was measurable with a micrometer. Cut depths of 2.54 mm
 
(0.010 in.) were required to measure the variation of the abutting
 

edges by placing two parts together.
 

The second technique is to stop the device just before
 

the aft roller contacts the previously prepared surface resulting
 

in the contour shown in Figure 39b. With this technique about
 

50.8 mm (2.0 in.) of the abutting edge and 76.2 mm (3.0 in.) of
 

adjacent surfaces are not prepared and must be manually prepared.
 

The third technique is to stop the device before the
 

forward horizontal rolls on the cutting unit contact the previously
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DIRECTION OF TRAVEL 

qt 

0.0762 MM 0. 102 MM 0.0254 MM 
(0-003 in) (0.004 i-n-} (0.001 in) 

57.1 mm 	 120.7 mm 
(2.25 i) 	 4.75 'n) 

0.0762 mm 
(0.003 in) 

0. 	COMPLETE PREPARATION 

50.4 mm 	 120.6mm 

(2.0in) T 	 (4.75 'in) 

0.0762 mm 0.05086mn 	 -0.0254 MM 
(0.003 in) (0.002 in) 	 (0.001 in) 

0.762 mm 76.2mm 0.762 mm 

(O.03in) 	. (3.oin) , OO03in)
 
T, ­

b. 	 STOP BEFORE AFT HORIZONTAL ROLLER CONTACTS
 
PREVIOUSLY MACHINED SURFACE
 

Fig. 39 	 Theoretical Surface Controus Achieved in
 
Circumferential Surfaces with Different
 
Stop Locations
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a. FRQNT 	 ROLLER CONTACTS PREVIOUSLY PREPARED SURFACE 

b. AFT ROLLER CONTACTS PREVIOUSLY PREPARED SURFACE 

Fig. 40 	 Theoretical Effects as Cutting Unit Returns
 
to Previously Prepared Surface
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prepared surface. This technique requires manual surface prepa­

ration of about 177.8 mm (7 in.) of both adjacent surfaces and
 

abutting edge.
 

The last technique is to place a strip of shim stock,
 

equivalent in thickness to the depth of cut, on the abutting sur­

face for the horizontal rolls to ride on as they reach the loca­

tion of the previously prepared surface. Limited success was
 

achieved with this technique in the evaluation. The shim stock
 

was placed on the edge as a long strip and was manually held from
 

one end. The results appear promising, but additional tests
 

should be performed on simulated parts.
 

8. Waviness of Edge and Surface Defects
 

Machining parameters and the design of the device were
 

selected to minimize defects in the surface which might contri­

bute to weld defects. Proper use of the device will not cause
 

burrs, nicks, gouges, grooves, surface burning, or undercuts.
 

However, if the surface to be prepared has excess waviness, the
 

prepared surface also will exhibit the same characteristics.
 

Likewise, if the original surface contains large nicks, grooves
 

and gouges, they will be reduced by the device, but will not be
 

eliminated.
 

V. SUMMARY AND CONCLUSIONS
 

A practical system for preparing the welding surfaces
 

of aluminum components was developed and demonstrated. The sys­

tem consists of dry milling the abutting edges and adjacent sur­

faces of aluminum to remove contaminated surface layers and ex­

pose a fresh surface with a low defect potential. A prototype
 

device was designed and fabricated to demonstrate the feasibility
 

of the system.
 

The prototype device is designed to straddle the edge
 

that is being prepared and to align with the existing edge and ad­

jacent surfaces of the component. Depth of cut is regulated from
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the 	existing surfaces. Therefore, reasonably smooth existing
 

surfaces and a uniform thickness are required on the component
 

that is being prepared.
 

The device is equipped with an electric drive unit to
 

provide travel and three air-operated milling motors to provide
 

the 	required machining operations. The drive unit provides a
 

mechanized uniform travel speed. The milling motors are aligned
 

to machine the abutting edges and adjacent surfaces simultane­

ously.
 

The prototype device was used to prepare the weld sur­

faces of flat and curved aluminum plates with a square butt weld
 

joint configuration. These surfaces were evaluated on the bases
 

of gas tungsten-arc spot and seam weld soundness, Proficorder
 

measurements,and scanning electron microscopy. Results from these
 

evaluations proved the technique, system, and prototype device to
 

be satisfactory for the intended application.
 

VI RECOMMENDATIONS FOR FUTURE WORK
 

Additional studies to provide a comprehensive evalua­

tion of the device and to determine areas for improvement are re­

commended. These studies should be performed on simulated or ex­

perimental parts for which a background of knowledge on joint fit­

up requirements and in the incidence of repairable weld defects
 

has been developed. The studies should be performed to:
 

1. 	Determine the extent to which repairable defects
 
can be eliminated by-use of the device.
 

2. 	Determine the tolerance of the device for parts
 
with varying radii without changes in settings.
 

3.i 	Determine the fit-up of joints prepared with the
 
device for comparison with the fit-up achieved
 
with manually prepared surfaces.
 

4. 	Determine optimum methods for preparing the en­
tire weld surfaces of circumferential joints in
 
cylinders.
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