
NASA CR-73348

Available to the Public

FINAL REPORT

MULTIPAC, A MULTIPLE POOL PROCESSOR AND COMPUTER
FOR A SPACECRAFT CENTRAL DATA SYSTEM

By T. Baker
G. Cummings
R. South

Distribution of this report is provided in the
interest of information exchange. Responsibility
for the contents resides in the author or organi­
zation that prepared it.

October 1969

a Prepared under Contract No. NAS2-3255 by

APPLIED RESEARCH LABORATORY
I SYLVANIA ELECTRONIC SYSTEMS

In Operating Group of Sylvania Electric Products, Inc.
40 Sylvan Road, Waltham, Massachusetts 02154

0forN

NATIONAL AERONAUTICS AND SPACE ADMINISTRATI
AMES RESEARCH CENTER

MOFFETT FIELD, CALIFORNIA 94035
17

4oa'Lu

-. -

AtoRf~vIRe G H 0 U S Eocs

for Federal scientific & Techicale
Inormation Springfield Va 22151

QtO.

NASA CR-73348

Available to the Public

FINAL REPORT

MULTIPAC, A MULTIPLE POOL PROCESSOR AND COMPUTER

FOR A SPACECRAFT CENTRAL DATA SYSTEM

By T. Baker

G. Cummings

R. South

Distribution of this report is provided in the

interest of information exchange. Responsibility

for the contents resides in the author or organi­
zation that prepared it.

October 1969

Prepared under Contract No. NAS2-3255 by

APPLIED RESEARCH LABORATORY

SYLVANIA ELECTRONIC SYSTEMS

An Operating Group of Sylvania Electric Products, Inc.

40 Sylvan Road, Waltham, Massachusetts 02154

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AMES RESEARCH CENTER

MOFFETT FIELD, CALIFORNIA 94035

FOREWORD

The study described herein was done at the Applied Research Laboratory

of Sylvania Electronic Systems, under NASA Contract NAS2-3255. The work

was done under the direction of Mr. Richard 0. Fimmel, Systems Engineering

Division, NASA-Ames Research Center.

ii

TABLE OF CONTENTS

Section Page

SUMMARY 1...

1.0 INTRODUCTION .. 3

2.0 THE MULTIPAC CONCEPT AND ITS EVOLUTION 8

3.0 SYSTEM OPERATION ... 15

3.1 Data Flow ... 16

3.2 Transfer Timing 16

3.3 Word Format ... 17

3.4 Module Types 17

3.4.1 The Logic Unit 17

3.4.2 The I/0 Register 20

3.4.3 Memory Unit 20

3.4.4 D/A Register 23

3.4.5 Command Unit 23

3.4.6 Telemetry Unit 26

3.4.7 Timing Generator 27

3.4.8 Real-Time Counter 27

3.4.9 Sample Rate Counter 32

3.4.10 Magnetic tape unit 32

3.5 The I/0 System 33

3.5.1 Bilevel inputs 37

3.5.2 Serial inputs 31

3.5.3 Analog inputs 31

3.5.4 Bilevel command outputs 38

3.5.5 Serial command outputs 39

3.6 External Characteristics 39

3.6.1 Parts count 39

3.6.2 Power consumption 39

3.6.3 Speed 47

3.6.4 Volume 47

3.6.5 Weight 47

4.0 LSI CIRCUIT TECHNIQUES 48

4.1 Speed 48

4.2 Low-Power Logic Circuits 50

4.2.1 Low-power bipolar circuits 50

4.2.2 P-channel MOS 50

4.2.3 Complementary MOS 51

4.2.4 Low-power complementary bipolar circuits 52

4.3 Methods of Large-Scale Integration 52

4.3.1 Custom circuits 53

4.3.2 Hybrid packaging 53

4.3.3 Custom metallization 53

4.3.4 Discretionary wiring 54

4.3.5 P-channel MOS technology 54

4.4 Memory Circuits 55

4.5 Special Circuits 56

4.6 Circuit Choice 56

iii

TABLE OF CONTENTS.-- Continued

Section Page

5.0 DETAILED DESCRIPTION OF MODULES 58

5.1 Flip-Flops ... 58

5.2 Basic Register Circuit 61

5.3 16-Way Switch Circuit 62

5.4 The Logic Unit 62

5.4.1 Instruction decoding 62

5.4.2 The control codes 72

5.4.3 The sequence counter 72

5.4.4 Instruction timing 77

5.4.5 Instruction shift register 79

5.4.6 The program memory switch 79

5.4.7 The data memory and register select switching 80

5.4.8 Adder input switches 81

5.4.9 The adder 82

5.4.10 The accumulators 82

5.4.11 Accumulator clocking 83

5.4.12 Timing counter 84

5.4.13 Skip .. 85

5.4.14 Program counter 86

5.4.15 The interrupt mechanism 86

5.5 I/O Register ... 88

5.6 Memory Unit .. 88

5.7 D/A Register ... 96

5.8 Command Unit ... 99

5.9 Telemetry Unit 100

5.10 Timing Generator 105

5.11 Real-Time Counter 106

5.12 Sample Rate CounterIl

6.0 RELIABILITY ...115

7.0 INSTRUCTION MANUAL 125

7.1 Instruction Formats 125

7.2 Arithmetic and Logical Instructions 126

7.2.1 Instruction set 126

7.3 Input/Output Instruction150

7.3.1 Instruction set 150

7.4 Miscellaneous Instructions 153

7.5 Branching Instructions 155

7.6 Shifting Instructions 157

8.0 PROGRAMMING .. 159

8.1 Typical Subroutines 159

8.1.1 A/D conversion subroutine 159

8.1.2 Inputting subroutine 159

8.1.3 Formatting subroutines 159

8.1.4 Timing 159

8.2 Communication Between Processes 165

8.3 Data Reduction 167

8.3.1 Histograms or quantiles 167

8.3.2 Digital filters167

iv

TABLE OF CONTENTS.-- Continued

Section Page

8.3.3 Spectral analysis 163

8.3.4 Usage of data reduction techniques 168

8.4 Addition of Magnetic Tape Storage 174

9.0 REPROGRAMMING AROUND FAILURES 175

9.1 Complete Failure of a Register 176

9.2 Complete Failure of a Logic Unit 176

9.3 Memory Failures 177

9.3.1 Complete failure 177

9.3.2 Partial failures 178

9.4 Command Override Procedure 179

9.5 Reprogramming Methods 180

9.5.1 Diagnostic tests 182

9.5.2 Timing 182

9.6 Ground Software 183

10.0 CONCLUSIONS AND FUTURE RECOMMENDATIONS 185

Appendix

A RELIABILITY PROGRAM 187

B LOGIC DESIGN SIMULATION 199

C NOMENCLATURE OF LOGIC DESIGN OF SECTION 5 205

v

5

10

15

20

25

30

PAGE BLANK NOT FILMED.PRECEDING

LIST OF ILLUSTRATIONS

Figure Page

1 MULTIPAC Block Diagram (Typical System) 6

2 Original MULTIPAC Concept..................... 9

3 Data Flow in Original MULTIPAC Concept........ 10

4 Logic Unit Block Diagram 18

I/O Register Block Diagram.................... 21

6 Memory Unit Block Diagram..................... 22

7 D/A Register Block Diagram 24

8 Command Unit Block Diagram.................... 25

9 Telemetry Unit Block Diagram 28

\ Timing Generator Block Diagram................ 29

11 36-Bit Real-Time Counter...................... 30

12 Sample Rate Counter........................... 31

13 Critical Propagation Path..................... 49

14 Set-Reset Flip-Flop........................... 59

AND Input D Flip-Flop......................... 59

16 NAND Input D Flip-Flop........................ 60

17 Basic Register................................ 63

18 Basic Register Connected as Left/Right

Shifting Register............................. 65

19 16-Way Switch................................. 67

LSI MULTIPAC Logic Unit Logic Diagram......... 69

21 LSIUMULTIPAC Operation Codes.................. 71

22 R Field Coding for SHF and SKP, Part I........ 73

23 R Field Coding for SHF and SKP, Part 2........ 74

24 LSI MULTIPAC I/0 Register 89

State Diagram of R/M Control Section 91

26 Timing Diagram of R/M Control Section 92

27 MULTIPAC Memory Unit (Typical Connections,

Bit 11 Locations 0 and I Shown) 93

28 MULTIPAC D/A Register 97

29 MULTIPAC Command Register..................... 101

MULTIPAC Telemetry Unit....................... 103

vii

LIST OF ILLUSTRATIONS.-- continued

- PageFIgqr e

31 MULTIPAC Timing Generator................... 107

32 Real-Time Counter 109

33 Sample Rate Counter......................... 113

34 Reliability Model of LSI MULTIPAC........... 116

35 Outputting Routine Flow Chart 164

36 Overall System Block Diagram................ 169

37 An Example of a Three-Stage Feedback Shift

Register.................................... 200

viii

LIST OF TABLES

Table Page

I SCIENCE INTERFACE LINES 34

2 ENGINEERING INTERFACE LINES.................. 35

3 I/0 CHANNELS REQUIRED 36

4 PARTITIONING OF THE LSI MULTIPAC DESIGN 40

5 QUANTITY OF CIRCUITS PER SYSTEM 43

6 ESTIMATED POWER CONSUMPTION 45

7 CONTROL CODES................................ 75

8 INSTRUCTION TIMING 78

9 INTERRUPT TIMING 87

10 STATES OF THE TIMING COUNTER 106

11 LSI MULTIPAC SYSTEM RELIABILITY 118

12 LSI MULTIPAC SYSTEM RELIABILITY WITH FULL

MEMORY....................................... 120

13 A/D CONVERSION ROUTINE 160

14 INPUTTING ROUTINE 161

15 OUTPUTTING ROUTINE 162

Al PROGRAM FOR RELIABILITY 188

A2 OUTPUT OF PROGRAM 190

ix

I/0

LIST OF ABBREVIATIONS

ACC Accumulator

A/D Analog-to-digital

ANAP Analog amplifier

ANSW, Analog switch

BMIC Bipolar-to-MOS interface circuit

CCD Control code

CDS Central data system

CMD Command module

CMOS Complementary metal oxide semiconductor

CNI Copy next instruction
*CO2R Combinational reliability

CR Control register

CTR Counter

DIN Data input

DOUT Data output

D/A Digital-to-analog

DMR Data memory paging register

DTL Diode-transistor logic

EX Execute state-of sequence counter

FR Failure rate

IC Integrated circuit

IND Index state of sequence counter

IMME Inhibit register (signal)

INP/WR Input or write

INTO Zero state of interrupt sequence

INTl One state of interrupt sequence

Input or output

IR Instruction register

ISR Instruction shift register

LIR Logic instruction register

LSI Large-scale integration

LSIC Large-scale integrated circuit

LU Logic unit

x

LIST OF ABBREVIATIONS.-- Continued

MA Memory address (register)

MBIC MOS-to-bipolar interface circuit

MD Memory data (register)

MEM Memory

MMinimum number of modules required

MOS Metal oxide semiconductor

MR Reliability of module

MSI Medium-scale integration

MULTIPAC Multiple Pooled Processor and Computer

MUX Multiplexer

N\ Number (of modules in system)

NOP No operation

NS Number surviving

OPC Operation code

OUT/RD Output or read

PC Program counter

PMR Program memory paging register

R Register

REG Register

RIM Register or memory

S Select signal

SC Shift clock

Sq - Sequence counter

TM Telemetry module

TTL Transistor-transistor logic

Vcc Power supply voltage

WS Word strobe

xi

FINAL REPORT

MULTIPAC, A MULTIPLE POOL PROCESSOR AND COMPUTER

FOR A SPACECRAFT CENTRAL DATA SYSTEM

By T. Baker

G. Cummings

R. South

SUMMARY

MULTIPAC is a computer designed especially for use as an "off-the-shelf"

central data system for deep space probes. This computer has the unusual

characteristic that it may be repaired during flight through the command and

telemetry link by reprogramming around the failed unit. This reprogramming

is possible through a computer organization that uses pools of identical

modules which the program organizes into one or more computers. The inter­
action of these modules is dynamically controlled by the program and not

hardware. In the event of a failure, new programs are entered which reorga­
nize the central data system. The only effect of sudh reorganization is to

reduce the total processing capability aboard the spacecraft. Consequently,

some low priority process may have to be eliminated, but data taking and

transmission may continue.

As an example of oneMULTIPAC configuration, a 16-watt system, includ­
ing 12,288 words of memory, can act as a sophisticated data management

system for a space probe with about 200 science and engineering input lines

and 200 output lines. This MULTIPAC system could simultaneously schedule

sampling of the experiments, perform needed analog-to-digital conversions,

reduce the data using histograms or other data reduction techniques, perform

some data processing for the experiments such as digital filtering, and then

format the data for transmission by the telemetry subsystem. In addition,

the system has all the flexibility of a computer by allowing wide variations

in formatting, sampling schedule, etc. These program variations can occur

under program control or be completely changed later in the flight from the

ground after analysis of the data received.

NOT FILMED.PAGE BLANKPRECEDING

1.0 INTRODUCTION

This report describes MULTIPAC, a spacecraft central processor, the

concept of which was derived from the first year of this study. (The re­
sult of the first year study is reported in the final report for that part

of the contract.1) MULTIPAC has modular organization which permits repro­
gramming around failed modules. Machine reorganization may be accomplished

by program changes to utilize surviving modules optimally, thus affecting

a gradual degradation of processing capability as additional modules fail

in the course of a long mission. The overall reliability is such that the

probability is very high that at least some minimum mode of operating the

spacecraft can be sustained throughout very long missions.

The MULTIPAC system is intended to replace the current technique of

designing a new central data system for each probe with a standard "off­
the-shelf" central data system which is piogramed with software to per­
form as a flexible data management system. Some variation of flight-to­
flight requirements are expected to be made up by differences in the num­
ber of modules carried and also with the possibility of the addition of

one or two special modules.

As an example of one MULTIPAG configuration, a 16-watt system, in­
cluding 12,288 words of memory, can act as a sophisticated data manage­
ment system for a space probe with about 200 science and engineering in­
put lines and 200 output lines. This MULTIPAC system could simultaneously

schedule sampling of the experiments, perform needed analog-to-digital

conversions, reduce the data using histograms or other data reduction

techniques, perform some data processing for the experiments such as digi­
tal filtering, and then format the data for transmission by the telemetry

subsystem. In addition, the system has all the flexibility of a computer

by allowing wide variations in formatting, sampling schedule, etc. These

program variations can occur under program control or be completely changed

later in the flight from the ground after analysis of the data received.

In contrast, today's fixed format central data system simply performs a

fixed schedule of sampling followed by one of a few fixed formatting rou­
tines. Processing of the data is not possible, and the scheduling and the

formatting is primarily variable by scaling to the telemetry rate.

The first year of this study, which has been reported earlier, was

concerned with overall spacecraft organization and usage of the central

data system. The three major recommendations of this phase were that the

central data system use stored program computer concepts, data formatting

should be very flexible, and data reduction algorithms should be used

whenever possible.

Data formatting should be flexible in order to use effectively the

telemetry rate when failed experiments are turned off. A format of fixed

cyclic sequence of data words is used on present space probes. For this

fixed format, the CDS input and output rates are matched to the instrument

3

sampling rate. The advantages of fixed format are that only a relatively

small number of bits (frame sync bits) need to be transmitted to mark the

start of the known sequence and, secondly, the same sequence can be used

at different bit rates simply by making adjustments in the input sampling

rates. The chief disadvantage of such fixed formatting is that, when

instruments are turned off, meaningless bits must be inserted into the

telemetry data stream in place of those which would normally come from

the inoperative instruments to preserve the fixed sequential telemetry

pattern. A variable format will eliminate this disadvantage when an in­
strument is turned off but will pay for this in extra transmitted bits

when all instruments are operating. The recommended variable format uses

data arranged in source-associated blocks which contain relatively small

numbers of bits in a fixed order. Each block carries its own identifica­
tion bits, which can be distinguished from ordinary data bits. These

blocks are then transmitted in a variable sequence.

The first phase of the contract recommended that both the fixed

and variable format be available and changes from one to the other be

made when experiments are turned off or when telemetering bit rate changes.

This ability to carry a number of radically different formats is easily

possible if the central data system is a stored program computer.

For some of the experimental data, enough redundancy exists so that

data reduction processing can significantly increase the amount of informa­
tion which may be transmitted at a given telemetry rate. Recommended data

reduction techniques are histograms, digital filtering, and spectral anal­
ysis. The decision to process the raw data for a particular scientific

instrument prior to transmission must be made by the instrument designer

or experimenter. Therefore, it is clear that the only reasonable solution

is a stored program CDS which could be specifically programmed to each

experimenter's requirements.

The central data system is ideally suited to the formation of histo­
grams and the subsequent computation of statistics from these histograms.

For cosmic ray and neutron experiments, a histogram of the counts can be

accumulated over a large number of spacecraft revolutions. The mean,

variance, and modes for each histogram can be computed and transmitted.

Alternately, the quantiles of the histograms can be computed and trans­
mitted. Histograms require very little processing time for their imple­
mentation, which is desirable in the event of a component failure that

would reduce the central data system processing capability.

Another data reduction technique is digital filtering. The avail­
ability of a stored program central data system allows consideration of

employing digital filtering for replacing analog filters in the instrument

electronics. In addition, digital filtering can be employed to reduce

signal bandwidth and provide estimates of spectral energy at different

frequencies. These filters can be either lowpass, bandpass, or highpass

filters.,

4

A third data reduction technique considered in the early study was

spectral analysis. Spectral analysis is a mathematical tool for estimating

the power spectrum of a time function for a finite length record. There

is a basic trade-off when making spectral estimates between the spectral

resolution that can be obtained and the variability of the estimate. The

finer the resolution of individual spectral lines in a signal, the greater

the spread of the confidence range about the estimate. Conversely, reduc­
ing the variability of the estimate reduces the resolution of the spectral

lines.

Several conclusions can be made about handling data reductions of

signals generated by the instruments. In general, it seems better to em­
ploy averaging methods (e.g., computational of mean, variance, and spec­
tral distribution) rather than omit data samples when the rate of data

collection exceeds the telemetry channel capacity. In this way, the CDS

is being used to affect compression, and aliasing errors due to insuffi­
cient sampling rates are minimized.

It is also clear that a variety of algorithms could be stored by the

central data system so that, when monitoring the data from each instrument,

the appropriate algorithm can be selected. This tailoring of the process­
ing of each channel is a distinct advantage possessed by a stored program

central data system.

The data formatting and data reduction studies in the first phase of

the contract highlighted the need for stored program computer concepts

for the design of the Central Data System. A centralized computer for a

central data system leads to the problem of how to prevent failures from

aborting the entire mission. Reliability becomes even more important when

we realize it was recommended in phase one that many additional tasks nor­
mally performed in each experiment be taken over by this centralized com­
pnter. The solution arrived at was a multiple pool processor and computer

(MULTIPAC) made up of a number of modules of a few types tied together by

the program. The remainder of this study was devoted to the design of this

MULTIPAC system.

The MULTIPAC system, as finally developed, is shown in Figure 1.

It's most important module, the Logic Unit, controls the actions of all

other module types. Each logic unit, using a few registers and one or two

memories, acts as a computer. A typical system will have three logic units

and enough registers and memories to act as three simultaneous computers,

each performing one-third the overall processing tasks. This typical sys­
tem will consume only 16 watts and use 173 LSI logic circuits, 768 memory

store LSI circuits and six integrated circuits for special purposes (e.g.,

oscillator). The number of different LSI circuit types is 13 or 17, de­
pending on whether or not a large discretionary wiring LSI type is used on

the logic unit.

5

At LOG ICE E MN

Figure 1. m TcaLS UTACyseBlock Diagr

The registers are dual purpose. They act as index or scratch regis­
ters for normal processing and they are the input/output interface to the

experiments. Each register contains a separate output buffer which holds

output interface information. Thus, the register can be used as a scratch

register without disturbing the output interface.

A few of the registers are special. One is used to produce an

analog voltage of its digital contents to be used in analog-to-digital

conversion for some of the experiments' signals. Another pair is used for

the command and telemetry interface. The command register must have the

ability to overtake the logic units by command in the event that the sys­
tem does not respond properly to normal commands due to component failures.

The memories are passive devices which read or write data as com­
manded by a logic unit. The program counter is contained within the logic

unit and instructions are requested from a memory selected as the program

memory. Usually, a second memory is selected for data since the instruc­
tion rate for a separate data memory is faster than using the program

memory for data.

All logic units can address all registers and all memories. In the

event that two logic units address the same register or memory, any data

transferring to this selected module will be ORed. The hardware normally

associated with a multiprocessing system for handling such conflicts was

purposely left out to keep the central data system small, light, and low

power. Since all three processes are essentially working on three dif­
ferent tasks of the same problem and, therefore, know what the other pro­
cesses are doing, these conflicts can be kept to an absolute minimum and

those conflicts that do exist can be easily programmed around.

Overall, the system described here has a high likelihood of surviv­
ing a long mission with small minimal processing capability. A failure

of a module will cause slightly degraded processing capability because

some extra programming must be done to program around the failed module

unless a spare module exists. But even in the case of a failure of a

logic unit, the worse-that will happen is that the central data system

will be able to perform only two-thirds of its processing load. The pro­
cessing capability of only one logic unit is more than enough to accom­
plish all the tasks done by the data system of Pioneer VI.

71

2.0 THE MULTIPAC CONCEPT AND ITS EVOLUTION

The MULTIPAC system was originally proposed as a computer organiza­
tion which would make the versatility of a programmable central processor

available on long space flights without making the spacecraft dependent

on the poor reliability of a conventional computer in which any failure

normally makes the entire system useless. The solution then envisioned,

shown in Figure 2, was a very simple processor organized from modules se­
lected from pools of three basic module types (logic units, memories, and

general-purpose registers) which would be assigned to their functional

roles by software methods. Should a failure occur, the faulty module

could be replaced by assigning another to fulfill its function. Moreover,

spares would not have to be assigned as such but could be used insofar as

possible to enlarge the initial capacities of the processor. Failures

would simply cause a gradual degradation of processing capability so long

as sufficient modules remained from which to construct the minimal proces­
sor.

As originally envisioned, a processor could be constructed from three

logic units, two memories and severdl registers, plus a multiplexer to

provide I/0 to the spacecraft experiments and modules to interface with

the command and telemetry links. The logic units perform all transfers

in the machine as dictated by their individual instruction registers

(LIR's). The memories automatically output to their data registers (MD)

the contents of the location specified by their address registers (MA) or

write in that location any data word transferred into their MD registers.

The data flow, which is programmed, is typically as shown in Figure 3.

LIRI, the instruction register of Logic Unit 1, is initially loaded with

an instruction causing the contents of a register (RPC)' used as the pro­

gram counter, to be incremented and passed to the address register (MAl)

of the memory containing the program.

A second logic unit (LU2) is also initially programmed, causing it

to continuously transfer the contents of the program memory data register

into the instruction register of a third logic unit (LUS) which actually

executes the program. It, in turn, operates on several registers which

may be used as accumulators, index registers, counters, and scratch stor­
age, and upon a second memory used for data storage. If the memory ad­
dress is set in MA2 by the logic unit, one machine cycle later the con­
tents of the location may be read from the memory data register (MD2).

The following table illustrates the overlapping timing with which the

program counter is advanced, the instructions delivered into the instruc­
tion register and, as an example, how an add from memory into the accumu­
lator (RAC) is executed. Operation codes used are copy (COP), no opera­

tion (NOP), and add (ADD).

8

8 LOGIC UNIT OUTPUT BUSSES 8 LOGIC UNIT INPUT BUSSES

d MAI

IC UNITR1

- MD4 -

I C L

NA49

Fig.ure 2. Original MU LTI PAC Concept

(RpC)-RPC MAI,

M LPROGRAMMED

M
L2

LRETRY'

Figure
3. Data

Flow in Original
MULTIPAC

Concept

10

R MAl MlI LIR3 MA2 ND2 RACG

0 0 ---.-.-.--..-- A

1 1 (0) ---.... A

2 2 (1) (0)=COP MD1, MA2 --- --- A

(2) (l)=NOP ADDR ADDR --- A

(2)=ADD ND2, RACC ADDR (ADDR) A

A+(ADDR)

The original machine was to have used a 16-bit word having a 4-bit

operation code and three 4-bit addresses. Addresses were 12 bits long

with an operation code field containing all zeros, defined as a no opera­
tion (NOP) instruction. Addresses were buried in the program stream'in

what were essentially two-word instructions and prevented from acting as

instructions when they reached LIR3 by their NOP coding.

Three factors have proved troublesome in the practical design of the

machine. First, there is a great deal of switching interconnecting all the

modules in order that they may all be interchangeable. Second, the power

limits set upon the design constrain the choice of circuitry to the lowest­
powered (and lowest-speed) logic families. Third, the real-time data pro­
cessing requirement, initially assumed to consist of low-rate data format­
ting, has grown quite large, enough to exceed the capability of the simple

micro-ordered set of trivial modules originally envisioned.

These three factors have influenced the evolution of the design. The

choice between a serial or parallel machine was resolved in favor of a

serial one, largely in order to minimize the amount of switching logic

between modules. Also involved in this decision was the question of speed

versus power. Investigation indicated that a parallel machine would have

been too large, considering the switching logic, and would exceed the

power budget even with very low-powered logic. The serial system was

smaller and could stay within the power budget if constructed from very

low-powered logic. However, it would be an order of magnitude slower,

which would have an adverse effect upon the ability of the machine to

handle the processing load. This can be alleviated to some extent by the

use of a small percentage of higher power, faster logic in the critical

data paths.

The power budget was also responsible for the decision to reduce the

machine word size to 12 bits. The three-address instructions were elimi­
nated, which not only disposed of one 4-bit address field, but also pro­
hibited instructions designating two locations in which the result should

be stored. This permitted the simplification of the switching logic to

include only one output data bus instead of two.

11

The reduction in gating resulting from a serial transfer organization

was further reduced by eliminating the normal transfer control lines to

each of the registers. Instead, the number of transfer pulses was set at

15; one for word strobe (beginning of word), two for transfer control, land

12 shift pulses for the 12 data bits. The two transfer control bits in­
form the register what to do for the 12 data shift pulses (e.g., read word

in, read word out) and replace the normal gated control lines. The extra

logic due to encoding and decoding the 2-bit transfer code is more than

offset by the savings in gates needed to switch the control signals.

Considering the speed that could be attained with such a serial ma­
chine (estimated at about 15-microsecond instruction times), it became

necessary to consider a multiprocessing system having two or three inde­
pendent processors in order to fulfill the real-time requirements. This,

in turn, increased the number of modules required and the size of the

switching matrix. At this point, it became necessary to depart from the

generality of the Figure 2 arrangement, which had standard logic unit

modules doing such simple tasks as incrementing the program counter and

transferring the output of the program memory into the instruction regis­
ters. The logic units used for these simple tasks were eliminated. Now,

self-incrementing logic is built into the memory address register and the

program memory selection switch is built into the logic unit. The number

of logic units was reduced by two thirds. Since logic units are no longer

program addressable devices, a secondary bus structure was created for the

transfer of instructions. In essence, some of the simplicity and general­
ity of the original concept had to be specialized to meet the demands of

speed and efficiency.

MULTIPAC evolved from a processor in which each microinstruction was

dealt with separately and was independent, so far as the hardware was con­
cerned, from those preceding it and following it. Thus, its individual

treatment by the instruction register had to be coded into it, and se­
quences of microinstructions were solely a matter of programming. As a

more specialized system evolved, however, sequences of instructions had to

be anticipated in the jump and interrupt hardware. This specialization

was extended to realize further efficiencies by recognizing other similar

sequences of microinstructions, or macroinstructions, in the hardware.

These macroinstructions would be multiple word instructions containing

memory addresses. The sequencing hardware need only recognize these ad­
dresses and prevent their being treated as instructions.

It appeared useful to be able to use the same memory for instructions

and data, thus permitting more flexibility in the modes of MULTIPAC opera­
tion, including a single memory mode with a higher probability of survival

than any previous workable configuration. This was accomplished through

macroinstructions using a program counter (PC) separate from the memory

address register. It increments its own contents, delivering the result

back to itself and at the same time transferring it to the memory address

register. Jump instructions require a control signal to alter the PC as

well as the MA. Other addressing of the MA overrides the input from the

PC to the MA but does not affect the actual PC contents.

12

The address fields of the instruction format were increased from four

to six bits in order to address all devices directly. The previous machine

required 40 addresses. Six-bit fields Would provide an expansion capabil­
ity of 24 addresses, a feature which is highly desirable in the system.

Additionally, the use of macroinstructions suggested above would require

at least five or six bits in the operation code field. It initially ap­
peared that if three fields were retained in the instruction, the machine

word would have to be lengthened to 18 bits, as follows:

OPC B A

6 bits 6 bits 6 bits

An earlier design used 4-bit register address fields with 3-bit base

registers to give an effective 7-bit register address. To change from

the 16 addresses each instruction could address, the base register would

have to be changed by an extra instruction. It was quickly discovered

that- (1) many of the 16 addresses (particularly memory) had to be inde­
pendent of base register setting to prevent excessive base register set­
tings, and (2) the few addresses left per base register significantly in­
hibited efficient programming, especially in the event of a register

failure.

The machine word could be reduced to 12 bits, however, by reducing

the number of address fields to one. The reason for the two-address in­
struction, if traced back, lies largely with the earlier use of one logic

unit to transfer instructions into another logic unit. Normal data opera­
tions could function with only one address field if the logic unit con­
tained two accumulators and a 1-bit field in the instruction referencing

one or the other. Indexed or indirect addressing operations require a

temporary storage and addition facility in the logic unit whose use will

not destroy the contents of the regular accumulator, i.e., a second accu­
mulator. This gave an instruction format of:

Operation Accumulator

Code Number Address

5 bits I bit 6 bits

In the course of designing the I/O devices, it was found that the

multiplexer had switching problems very similar to those of the logic

units. At least 200 I/0 channels had to be provided, which called for

something like four modules, each containing addressable 64-way switching

of in, out, and control signals. This problem was solved by combining the

multiplexer with the' general-purpose registers .and providing special in­
structions to use each bit of each register as an IO channel. The number

13

of channels required was essentially divided by 12, the number of bits in

each register, and the multiplex switching was moved back into the main

address switching.

Another step taken to increase the efficiency of the processing rou­
tines was the improvement of the A/D conversion method. The original con­
cept called for analog-to-pulse-width converters at the experiments, the

duration of whose output levels would be counted by the processor. This

consumed too much processing time, since the processor would have had to

devote itself to each conversion for about 50 milliseconds in a tight loop

to achieve the required 8-bit accuracy. To solve the problem, a new

module was created, a register which has a D/A ladder network on its out­
puts. This provides an analog reference signal to the experiments, and

each of the latter now must have an analog comparator which returns a sig­
nal level to the processor I/0 indicating whether their output signal is

greater or less than the reference signal supplied. This makes possible

the successive approximation method of conversion whose algorithn runs

much faster, i.e., about 1.4 milliseconds for the maximum length (8-bit)

conversion.

The instruction set was then enlarged from simple two-argument logi­
cal and arithmetic instructions and test commands to include .the bit ma­
nipulating and I/0 instructions necessary to make the I/0 registers and

the A/D algorithm operate efficiently.

14

3.0 SYSTEM OPERATION

MULTIPAC is expandable and is comprised of seven module types as

follows (see Figure 1 in Introduction):

Min. No. Number in Number in Fully
Module Required Typical System Expanded System

Logic Unit 1 3 5

Memory Unit 1 6 15

I/0 Register 1 25 57

D/A Register 1 2 2

Command Unit 1 2 2

Telemetry Unit 1 2 2

Timing Generator 1 1

A processor is formed by software assignment of one logic unit, one

or two memories, and several registers to operate in conjunction with one

another. The I/0 Registers serve the purpose of index or temporary stor­
age registers and also provide I/O connections to the system. The most

efficient use of memory units requires two per processor in order that

program storage and data storage can be separate. The processor can also

operate from a single memory unit but at a reduced computation rate. Com­
munication with the command receiver and the telemetry transmitter are

provided by the Command and Telemetry Units respectively, which are essen­
tially specialized registers. Another specialized register is the D/A

Register, which has a D/A ladder connected to its outputs so as to provide

a reference signal for the successive approximation method of A/D conver­
sion.

The MULTIPAC System is not limited to the module types listed above,

but these are sufficient for our "typical" mission. Possible omissions

are a magnetic tape (or other mass memory) interface, a real-time counter,

a sample rate counter, and a Television imaging system. These are dis­
cussed briefly in paragraphs 3.4.8, 3.4.9 and 3.4.10 below, and logic dia­
grams for a real-time counter and a sample rate counter are described in

paragraphs 5.11 and 5.12.

In the discussion which follows, the system is assumed to be con­
figured with the quantity of modules listed in the table above under the

heading "Number in Typical System."

15

3.1 Data Flow

Data flow takes place only under the control of one of the three
logic units. Each of these communicate directly with six memories, 25
general purpose registers which also serve as I/O interfaces, two D/A
registers, two command registers, and two telemetry registers.

Each memory is controlled by the logic unit addressing it. The

logic unit can direct the memory to read and send the contents of a speci­
fied memory location to itself as either instructions or data, or to write

the data which it supplies to the memory.

Each of the 25 general purpose registers has connections for 12 digi­
tal inputs and 12 digital outputs which may be accessed by I/0 instructions.

Thus, they provide 324 inputs (counting the D/A registers) and 300 outputs

to the rest of the spacecraft and the instruments.

The D/A registers are very similar to the general purpose registers,

having the same number of input channels, but the output channels are not

present. Instead, a D/A ladder network is connected to provide an analog

signal proportional to the arithmetic value of the register contents.

This analog signal is used by the experiments as a reference voltage in

the successive approximation A/D conversion process.

The telemetry and command registers share a common address. Instruc­
tions operating on such an address will connect one of the command regis­
ters to its input bus and/or one of the telemetry registers to its output

bus.

The command module serves as the link between the command decoder

and receiver and the IULTIPAC system. The module has three purposes- To

transfer normal commands (e.g., turn on or off experiments, change mode),

to allow special override commands to diagnose and reloadrnew programs

from the ground through the command link, and to allow loading of programs

while on the ground before launch. The latter two use the ability of this

module to have the instruction words it receives executed while inhibiting

the normal program stream.

3.2 Transfer Timing

All data transfers between modules are serial. Synchronous machine

timing is provided by two clock signals, the shift clock (SC) and the word

strobe,(WS). These are generated in the Timing Generator and distributed

to all modules by triplicated signals driving majority voting gates at

each module interface. Timing consists of 14 SC pulses followed by one

WS pulse at equally spaced intervals of approximately 1 microsecond. The

machine cycle is therefore about 15 microseconds.

16

The actual 12-bit data transfer is preceded by the transfer of a

2-bit control code on the same line. It is by the transfer of this code

that the logic unit controls the operations of the other modules with

which it communicates.

3.3 Word Format

MULTIPAC uses a 12-bit word. The instruction format is as follows:

Single Word Instruction:

6 bits 6 bits

OP Code Reg Addr

Double Word Instruction:

6 bits 6 bits

OP Code Index Reg Addr
 j

Memory Address

12 bits

Data words are 12 bits in length and use two's complement arithmetic.

3.4 Module Types

3.4.1 The Logic Unit.-- This module executes the program it receives

from the memory unit which it selects as its program source. Figure 4 is

a block diagram of the Logic Unit. It is connected to all other modules

in the system and controls those which it addresses. In general, a module

is addressed by only one logic unit, the one to whose process it is as­
signed. (Use of a module by more than one processor for purposes of inter­
communication must be coordinated between the two programs concerned.)

The Logic Unit selects one memory as its source of program and another

(although it may also be the same one) as its source of data locations by

means of an instruction which loads two 4-bit base, or paging, registers.

The Logic Unit also addresses 64 register locations by the contents

of the instruction R field, or six lowest order bits. The first seven such

locations are specifically assigned as follows:

17

H

TO MEMORY MODULES

LEC oPC R SELECT

INTERRUPT ROGRAM
COUNTER /SEQUENCER

JUMP ~

SELECT

SEETADDER SEET'T6 TO
REG =-- REGISTERS

Figue Lg SELECT ETC.

I ACC 2

Figure 4. Logic Unit Block Diagram

Address Register

0 Dummy register: Contents = 0

1 Accumulator 1

2 Accumulator 2

3 Input: Command Unit 1

3 Output: Telemetry Unit 1

4 Input: Command Unit 2

4 Output: Telemetry Unit 2

5 D/A Register 1

6 D/A Register 2

The remaining addresses in the first addressing section are nine. Address

switching may optionally be included to expand the number of addresses in

blocks of 16 to the maximum of 64. The unallocated register locations, up

to 57, will normally be assigned to I/0 registers, which makes the permis­
sible I/0 interface as large as 57 x 12 = 684 channels each way. These

registers also serve the functions of index registers and provide scratch

storage for the processor.

Arithmetic and logical operations are performed with the contents of

either the registers or the data memory by means of a serial adder and two

internal accumulators. Section 7 describes instructions executable by a

logic unit. All instructions which access memory are two-word instructions

and require two memory cycles for their execution, assuming a data memory

unit separate from that in which the program is stored. If only one memory

unit is in use, i.e., if the contents of the program paging register and

the data paging register are the same, the instruction cycle is automati­
cally extended one cycle. All memory accesses are in practice indexed.

Non-indexed instructions reference index register zero and the contents

of the dummy register R0 are hardwired to present the number ZERO.

Each logic unit has interrupt capability which may be enabled by an

EINT instruction which sensitizes that particular logic unit to the inter­
rupts. Upon responding to an interrupt, the logic unit breaks off the pro­
gram stream, and the interrupt hardware forces the program memory address

to zero and executes the instruction in that location before modifying the

program counter. The instruction stored in location zero (STPC, see Sec­
tion 7) will store the program counter in a register. After executing this

STPC instruction, the program counter is set to ONE and execution of in­
structions proceeds from there.

19

Since a second interrupt during the interrupt subroutine would de­
stroy the return address, the interrupt enable flip-flop is cleared at the

start of each interrupt and must be enabled before returning to the main

program.

3.4.2 The i/0 Register.-- Figure 5 is a block diagram of the I/O

Register. It consists of a shift register for shifting serial data to and

from the logic units, an output buffer register for holding output inter­
face information, gating to enter input interface information into the

register in parallel, and control section which decodes register control

codes from the logic units. The 2-bit control codes cause one of the fol­
lowing four actions:

Control Action

00 	 Do nothing.

01 	 Read input channels, then shift

register.

10 	 Shift register.

11 	 Shift register, then load output

buffer.

For the 10 code, the register is simply shifted which causes data to be

serially read into the register from the logic unit and into the logic

unit from the register. The 01 code reads the input interface data into

the register and then by shifting the register, sends the data to the logic

unit. The 11 code shifts serial data from the logic unit to the register

and then transfers the data in parallel to the output buffer. The 00 code

does nothing. In the case of inputting or outputting, it also generates

clock pulses to the receiving or outputting I/O devices to acknowledge the

transfer of I/O data to or from them. In the case of serial transfers, for

example, these serve as-shift pulses shifting data into or out of the I/0

device.

It should be pointed out that the Register Control Section is also

intended to serve a similar function in the Memory Unit. What differences

exist in the two functions are accommodated by hard-wiring two connections,

REG and MEM, to +Vcc and ground respectively when the circuit is used in

the I/O Register module. The inverse connections are made when using the

circuit in a memory unit.

3.4.3 Memory Unit.-- The Memory Unit incorporates the I/0 Register

module, with minor alterations to its timing through hard-wired connec­
tions, together with additional LSI circuits for address decoding, inter­
face circuits and complementary MOS memory storage cells. Figure 6 is a

20

INPUT TRANSFER
CLOCK

r
VO INPUTS

A

D SHIFT REGISTER DATA OUT

REGISTER
CONTROL

12 •

OUTPUT BUFFER REGISTER

OUTPUT
TRANSFER

CLOCK
%.-

12--

VO OUTPUTS
I

Figure 5. V/O Register Block Diagram

21

DATA
r - .- ---­ . .

SHIFT REGISTERI

IDENTICAL TO iO
REGISTERMODULE

CONTROL....

.I OUTPUT BUFFER REGISTER I

DECODER DECODER

INTERFACE CONVERTERS{(36)

±

S

*C

4-04

•o CMOS MEMORY
S16 x 16 CIRCUITS,

04- EACH CIRCUITC4
.CONTAINING

"16WORDS x 12BITS
V)d

-
z

Figure 6. Memory Unit Block Diagram

22

block diagram of a 4096-word unit. The X and Y lines select one circuit

of 16 words and the A lines are decoded at the circuit to select one word.

The 2048-word memory as used in the typical system would have only 8 X lines

and 28 interface converters.

Complementary MOS was chosen for the basic storage element as the

only element with low enough standby power and operating power to allow

large amounts of memory for the MULTPAC system. This element has a stand­
by level of less than 100 nanowatts per bit and can be driven with rela­
tively low power drivers (order of 10 milliwatts). It is commercially

available in 16-bit memory chips and NASA ERC has a 256-bit element under

developmenta

3.4.4 D/A Register.-- The D/A Register is similar to the I/O Regis­
ter, lacking only its output buffer register and replacing this with an

8-bit D/A ladder network. Figure 7 is a block diagram of this module. It

supplies a reference signal to all peripheral devices requiring A/D signal

conversion. Each such device has its own comparator to compare this refer­
ence signal with the analog signal to be converted and returns the resul­
tant bilevel signal into one of the I/0 channels which indicates whether

the reference signal is greater than or less than the analog signal to be

converted. The processor then tests this channel as it performs a pro­
grammed A/D conversion by the successive approximation method. Since the

D/A ladders are connected directly to the shift register stages (as op­
posed to the buffer register), the MSKR instruction and other register in­
structions can be used for this conversion routine.

3.4.5 Command Unit.-- The Command Unit provides an interface with

the command receiver to receive normal operational commands for the space­
craft and also to take over control of the processor(s) for reprogramming.

Figure 8 is a block diagram of the unit.

The command receiver must assemble a digital word of data, and load
this word into one of the two CMD registers in the CDS. Commands received
on the up-link will contain a special command address of four bits. These
will directly address the instruction register and both accumulators in
each of five possible logic units in such a manner that they can override
their normal functioning and force data into them. The sixteenth address
is used for normal command transfers.

3.4.5.1 Normal commands:-- Normal commands are handled by the use

of the sixteenth command address. Receipt of this address causes a pro­
gram flag to be set through one of the I/O channels and the command word

itself remains in the command unit shift register until read out by the

program.

aSee Reference 3 at the rear of this report.

23

DATA DATA
IPTSHIFT REGISTER OUTPUT

O/A SWITCHES (8)

ANALOG
AMPL F ER

A/D COMPARISON
SIGNAL

Figure 7. D/A Register Block Diagram

24

DATA IN SHIFT REGISTER

FROM DATA CLOCK IN

COMMAND-
RECEIVER

DATA FINISHED -M

SC OMMAND '

FROM [DATA IN
COMMAND

ADDRESS
UNIT

CONTROL
SHIFT REGISTER F NORMAL

DATA OUT

EXTERNAL DATA CLOCK IN
INPUT
CONNECTOR DATA FINISHED C M

I OVERRIDE DATA
DECODER COMMAND OVERRIDE COMMAND

OVERRID5E
CONTROL

NORMAL
COMMAND
FLAG

Figure 8. Command Unit Block Diagram

3.4.5.2 Command override:-- The command module inputs to the pro­
gram switch exercise hard-wired priority over the source dictated by the

command address bits. This overriding control is used to take over the

MULTIPAC system to recover from circuit failure by reprogramming.

The command override function replaces the normal program source of

the logic unit and causes instructions thus inserted to be executed in

lieu of the next program step. The first step in reprogramming is to in­
troduce an SPNP (Set Program Memory Page - see Section 7) instruction into

each logic unit, setting the program page register to ZERO. This position

is unused and is hard-wired to a data level of ZERO. All logic units would

therefore copy instructions which are all ZEROS. This is interpreted as a

series of no operation (NOP) instructions and the logic unit is effectively

disabled. Since only the logic unit itself can address its own program

switch, there is no danger of another processor which is still active

interfering and restarting it. During the relatively long period while

each instruction of the reprogramming bootstrap loader is being received

on the command link, the logic units are disabled, but when an instruction

has been assembled in the command receiver and transferred to the MULTIPAC

Command Register, it is inserted in the stream of NOP's at the normal in­
struction rate.

A bootstrap loader is then written into one of the memory units

through one of the logic units. This memory unit is selected to be the

data memory of the logic unit, and the memory address and data to be

stored there are loaded directly by the command override logic into ACC2

and ACCI of the logic unit. An instruction is then loaded by the override

logic directly into the instruction register to store in data memory the

contents of ACC2 indexed by ACCI. The address of the store instruction

will be the next word seen in the program, but since this is all zeros

except for instructions inserted by the command override, the address seen

will be ZERO. Thus, the data word contained in ACCI will be loaded into

the location specified by the index in ACC2. Once a bootstrap loader has

been stored in a memory unit, the program paging register can be switched

to that unit by the command override and the remainder of the new program

loaded by means of normal command transfers.

3.4.5.3 Loading from the ground:-- Programs can be loaded on the

ground before launch through the input connector shown on Figure 8. This

connector is wired in parallel with the signals from the command receiver.

When the receiver is off, the programs can be loaded in the same manner as

the command override, except at a much higher rate since there is no com­
mand link limitation. Of course, once the program is loaded, the power to

the memory must remain on to retain the information.

3.4.6 Telemetry Unit.-- The Telemetry Unit interfaces with the

modulator of the telemetry transmitter which is used to transmit the space­
craft data to the ground station.

26

The block diagram of this unit is Figure 9. It is similar to an I/0

Register except for the Telemetry Buffer Register and associated logic.

The buffer register shifts, including a 1-bit high-order extension of it,

on the telemetry clock pulses. Since the 1-bit extension is preset to a

ONE but shifting fills from the left with ZEROS, when the ONE reaches the

next-to-low-order stage, the contents of the register will be either 00028

or 00038, depending on the last bit of telemetry data. At this point one

more shift would bring the preset ONE to the telemetry interface. Instead,

however, the control causes the next telemetry clock pulse to load a new

telemetry data word in parallel from the shift register and to preset the

extension bit again. A flag to the processor is also set to advise it that

the next telemetry word should be transferred into the shifting register.

The frequency with which the processor must sample the flag is one-twelfth

the telemetry bit rate.

3.4.7 Timing Generator.-- The Timing Generator, diagrammed in

Figure 10, provides both the shifting clock (SC) pulses and the word strobe

(WS) pulses to all other modules. Each of these signals is supplied in

triplicate throughout the system and is decoded by majority voting gates at

each module interface. The Timing Generator contains two sources of l-NHz*

square waves selectable by the Command Decoder plus three identical count­
ers which operate in synchronism, routing 14 of the clock pulses onto the

SC line, then diverting one to the WS line and resetting. This resetting,

which maintains synchronism, is accomplished through majority voting gates

also. Thus, the clock distribution system can absorb the malfunction of

any one of these counters, or clock drivers, or the loss of any one clock

signal up to the individual module interfaces.

3.4.8 Real-Time Counter.-- Many missions will require a real-time

counter in order to label experimental data with time of occurrence. This

will be particularly true if data is stored or data reduction techniques

performed before transmission to the earth. The real-time counter designed

for MULTIPAC is expandable in increments of 12 bits. Figure 11 shows a

block diagram of a 36-bit real-time counter. Thirty-six bits will cover a

time span of about two weeks with a precision of 15 microseconds. The

real-time counter can be-implemented with only one new LSI chip type shown

on the block diagram of Figure 12 as Increment And Control. This circuit

allows the top shift register to increment once every word-time and the

bottom two shift registers to increment on the word-time following an over­
flow of the shift register immediately above. In addition, this circuit

will select one of the three shift registers as an output on receiving an

input command (INP instruction) from a logic unit. These input commands

select each shift register cyclically. If an INP instruct selects the top

shift register after the next application of the INP instruction to the

same register control, the middle shift register will be selected and then

the bottom shift register will be selected. An OUT instruction will cause

the next INP instruction to select the top shift register. The select cir­
cuitry shown as a separate block is actually packaged in the Increment And

Control LSIC.

The actual clock rate should be 983.04 kHz to obtain a 2 16-Hz word rate

if a real-time counter module is present.

27

b.

SHIFT REGISTERDATAINPUT

STELIMETJRY

ONI

CONTROL1
TO 1/o TELEMETRY

FLAGCHANNEL

Figure 9. Telemetry Unit Block Diagram

8

SELECT FROM COMMAND DECODER

- RESET

COUNTER I S

1-MHz H SQUARI NG
OSCILLATOR

I-~z H
CIRCUITCOUNTER

SQUARING C
OSCI LLATOR CIRCUIT

COUNTER 3

Figure 10. Timing Generator Block Diagram

L
CONTROL '"..

0 OUTPUT BUFFER- " "- SELECT DATA
REGISTER OUT

SLOW CLOCKS

IEGISTER

AND CONTROL
,SHIFR

WINCREMENT

INCREMENT SHIFT REGISTER
AND CONTROL

Figure 11. 36-Bit Real-Time Counter

3O

DAT IN

FROM OUTPUT BUFFER OF A REGISTER

-12 -

STER
NTROL

INCREM ENT
AND CONTROL

SHIFT REGISTER

INTERRUPT

Figure 12. Sample Rate Counter

31

Clocks slower than the 65,536-Hz MULTIPAC word rate can be generated

easily by the addition of one or more output buffer LSI circuits to the

real-time counter. One such buffer is shown in Figure 11. This buffer is

loaded every word rate. Each stage, therefore, represents a clock fre­

n
quency of 2 Hz where n varies from 4 to 15 (16 Hz to 82,768 Hz). Slower

rates can be obtained by adding another buffer to the middle shift register.

These slow outputs will be used by the telemetry receiver and can also be

used by the experiment.

3.4.9 Sample Rate Counter.-- Many missions could use one or more

sample rate counters to control sampling rates of experiments. One very

obvious use of such a counter is to time out a sector from the sun pulse

generator. A 12-bit version of the sample rate counter is shown in Figure

12. The only new LSI circuit is the same as that required for a real-time
counter (see paragraph 3.4.8), which has been designed for either use, de­
pending on external connections. For count rates slower than that obtained
with 12 bits (16 Hz), these may be expanded in a manner similar to the
real-time counter or may be triggered from an overflow of a real-time
counter. The sample rate of this counter is stored in an output buffer of
another I/O register. This count need only be read into this output buffer
with an OUT instruction once. The shift register is incremented contin­
uously, and everytime the shift register overflows, the 12 bits of this out­
put buffer are jammed into the shift register and counting commences from
this number. When the count overflows, an interrupt is also generated to
be tied into the interrupt input of the logic unit. This interrupt flip­
flop will be cleared when an OUT instruction occurs at this register. This
register may also be resynced with an INP instruction which reloads the
register with the starting number.

3.4.10 Magnetic tape unit (not implemented).-- It is likely that

future spacecraft missions will have a magnetic tape unit aboard as a mass

memory. In the past, these have been operated to look very similar to the

telemetry interface. The data is transferred to the unit (and also stored)

as low-speed serial data. If this technique continues, then a module with

characteristics similar to those of the Command/Telemetry Unit (considered

as a whole) could be designed, or the Command/Telemetry Unit changed (if

needed) to accomplish both command/telemetry and magnetic tape interface.

If, on the other hand, a magnetic tape unit is designed to take ad­
vantage of a stored program central data system, then the interface will
depend on the characteristics desired. The simplest interface, in terms
of hardware, is to use the standard I/0 interface of MULTIPAC. To handle
reasonable transfer rates, this would require transferring 12 data bits in
parallel (i.e., using all output buffer bits of one register) and using
additional input and output channels from another register for control
channels.

The most likely magnetic tape interface would have a high-speed

serial data transfer with control of the tape to go forward or back at one

speed. However, regardless of what the interface looks like, a special

additional module could be designed which could connect into the MULTIPAC

32

system without change of the system. This module would use the register

control circuit used by the I/0 Register module to interface to the regis­
ter bus. The three different control codes (shift, input, and output)

could be used to distinguish between writing, reading, and tape control

functions. For the tape control words, the 12 bits become commands to

change modes to reading, or writing, or rewind, or any other tape modes.

In essence, this special module would be a tape controller. If the tape

has a simple mechanism, this will be a simple module and may be designed so

that the command/telemetry module can use many of the same modules. The

more complicated tape functions such as counting out blocks, end-of-files,

and interrecord gaps should always be performed with software.

3.5 The I/0 System

The input/output (I/O) interface of the central processor, as de­
scribed in the final report of Phase I of this project,1 is summarized in

Tables 1, 2, and 3 for a typical mission. The term "input" refers to sig­
nals into MULTIPAC and "output" refers to signals coming from MULTIPAC.

A typical mission requires 191 input channels and 126 output channels.

The science input lines are doubled in order to be connected through two

different registers for path redundancy. Also, there is one output channel

added for each serial digital input and each serial command output since

these must have additional signals to control the serial transfer.

The multiplexing system which has been devised employs each bit in

each of the registers of the machine as a bilevel input channel as well as

a bilevel output channel. Input instructions read the 12 interface signals

present at the register's input into the register and into an accumulator

of the logic unit. Output instructions load the register with 12 output

bits, which are then transferred into a 12-bit output holding register.

This holding register will keep outputting the 12-bit output information

until there is another output instruction to that register. All other in­
structions use the registers as data scratch and index registers without

disturbing the interface signals.

33

TABLE I

SCIENCE INTERFACE LINES

Magnetometer:

Cosmic Ray Telescope:

Plasma Probe:

Radio Propagation:

Neutron Detector:

VLF Experiments:

Micrometeorite Detector:

Totals:

3 Analog Inputs

2 Serial Commands

2 Bilevel Commands

4 Analog Inputs

5 Serial Inputs

1 Bilevel Input

4 Bilevel Commands

11 Analog Inputs

I Serial Command

1 Bilevel Command

5 Analog Inputs

1 Serial Input

1 Bilevel Command

19 Serial Inputs

2 Bilevel Commands

6 Analog Inputs

1 Serial Command

1 Bilevel Command

2 Analog Inputs

3 Serial Inputs

3 Bilevel Inputs

4 Bilevel Commands

31 Analog Inputs

28 Serial Digital Inputs

4 Bilevel Inputs

4 Serial Commands

15 Bilevel Commands

34

TABLE 2

ENGINEERING INTERFACE LINES

Orientation Subsystem:

PowerSubsystem:

RF Subsystem:

S/C Support Subsystem:

Central Data Engr. Subsystem:

Other Subsystems:

Totals:

5 Analog Inputs

5 Bilevel Inputs

10 Bilevel Commands

14 Analog Inputs

1 Bilevel Input

11 Bilevel Commands

15 Analog Inputs

9 Bilevel Inputs

10 Bilevel Commands

6 Analog Inputs

2 Bilevel Inputs

2 Bilevel Commands

5 Analog Inputs

3 Bilevel Commands

1 Serial Input

2 Bilevel Inputs

3 Serial Commands

4 Bilevel Commands

45 Analog Inputs

I Serial Digital Input

19 Bilevel Inputs

3 Serial Commands

40 Bilevel Commands

35

TABLE 3

I/O CHANNELS REQUIRED

Inputs (Science lines doubled):

Analog - Science

Engineering

Serial - Science
Engineering

Bilevel - Science

Engineering

Outputs

Serial Commands - Science

Engineering

Bilevel Commands - Science

Engineering

Control Lines for

Serial Inputs

Control Lines'for

Serial Commands

62

45

107 107

56

I

57 57

8

19 27

191 191

4

3

7 7

15

40

55 55

57 57

7 7

126

36

The I/0 interfaces fall into the following categories, and the

methods for handling each of them is discussed in detail below.

Inputs:

Bilevel inputs: Two-state signals which are sampled
asychronously at the interface

Serial inputs: 2- to 17-bit words to be transferred serially
into the machine

Analog inputs: 	 0- to 5-volt analog levels to be converted

into digital words with up to 8-bit accuracy

Outputs:

Bilevel commands: 	 Single-bit commands which are held indefi­
nitdly as levels at the interface. Pulsed

reset signals are also included here, but

they are set, then cleared, by the program.

Serial commands: 	 Commands of two to five bits which are trans­
ferred serially to the peripheral device.

3.5.1 Bilevel inputs.-- These are simply levels which must be read

by the processor. They are present as inputs to individual stages of the

I/O registers and are transferred into the logic unit by an input instruc­
tion addressed to the register. The input instruction (see description

of INP in Section 7) reads all 12 input lines of the addressed register

into the register and sends those input bits specified by the instruction

to an accumulator in the logic unit.

3.5.2 Serial inputs.-- Data words longer than a few bits will be

transferred in serial across the interface between the experiments and

MULTIPAC in order to keep the amount of wire (and hence weight) to a mini­
mum., A serial input data line will be connected to one of the input stages

of an I/O Register. An output line from another register (or the same

register) will be'used to tell the experiment that serial transfer is to

occur. The serial data will appear as sequential bilevel inputs to this

single input channel of the I/O Register. Each time an input instruction

addresses this I/O Register, reading one bit of data, the register will

supply a pulse to the experiment to be used to shift the data to the next

bit.

3.5.3 Analog inputs.-- A/D conversion is accomplished by the succes­
sive approximation method, where processor software is used for the cus­
tomarily hard-wired conversion logic. Two addressable registers are

equipped as D/A converters. Their outputs are fed into a ladder network

37

and the resultant analog signals distributed through isolating amplifiers

to all devices requiring A/D signal conversion. Each such analog signal

will be connected to its own comparator, which will also receive the dis­
tributed reference signal from the D/A output. The output of the compara­
tor will then be treated as a bilevel input to one stage of an I/0 register.

This method of analog-to-digital conversion was chosen rather than

the more standard method of multiplexing the analog signals into an analog­
to-digital converter primarily to avoid sending low-level analog signals

around the spacecraft where they may be susceptible to noise. The extra

weight of shielding the wires could not be afforded. This method sends

around only one (actually two for redundancy) analog signal to each experi­
ment which, in turn, returns a digital signal. The cost trade-off is a

comparator at each experiment versus a switch at the MULTIPAC for each

analog line.

To accomplish the conversion, the program sets a ONE in the high

order end of the D/A converter, which is a digital number one-half the num­
ber range of the register, and produces an analog output equal to one-half

of the analog signal range. The comparator response indicates by its out­
put which signal is larger. This is detected by the program through test­
ing the input channel, and the high order bit in the D/A register is left

at ONE or set to ZERO according to whether the analog signal is greater or

less than half the signal range. The next highest bit is then set to ONE,

and the process is repeated to see whether the analog value is greater or

less than 1/4 or 3/4, depending on what the first bit was, and so on.

After all bits are thus determined, the converter value is read out of the

D/A register. The interface required, apart from the distribution of the

D/A converter outputs, consists of one input channel per analog signal.

3.5.4 Bilevel command outputs.-- The register module includes an

output buffer register which is loaded in parallel from the shifting

register using the word clock timing. This is a typical structure through­
out the machine. In this case, however, the buffer register will be loaded

only upon receipt of an output command. The outputs of this buffer regis­
ter constitute the bilevel output channels. This arrangement provides

both an input and an output channel for each stage of the I/0 register, and

since the number of each is approximately equal, it effectively doubles the

multiplexing.

Since there is no way of outputting data to one channel without af­
fecting others, and no way of transferring the contents of the output buf­
fer register back into the processor to regenerate the bits which should

not be changed, it is intended that a copy of the commands be kept in mem­
ory. Command routines would operate on the appropriate word in memory to

alter the appropriate bits, using masking instructions that leave the other

bits unaffected. Then the updated word would be transferred to the regis­
ter by an I/0 instruction.

38

3.5.5 Serial command outputs.-- Two bilevel channels are required

for serial commands; one to switch the peripheral device to its input mode

and the second to provide data levels. A shift pulse from the register

will be provided each time it receives an 1/0 instruction.

3.6 External Characteristics

3.6.1 Parts count.-- Table 4 indicates the size, in terms of stan­
dard NAND gates, of the different MULTIPAC modules and the proposed parti­
tioning of them. The general level of 100 gates and less than 50 pins per

package was an assumption for the design. This level allows more than the

selected vendor (Texas Instruments) to respond to the LSI circuit develop­
ment program for this system. One LSIC where the use of Texas Instruments'

capability for very large circuits could be used effectively is the con­
trol section of the Logic Unit. Table 4 shows two alternates to the par­
titioning of the Logic Unit. Alternate 1 uses a large Texas Instruments'

LSIC for all the control gating and alternate 2 uses 5 LSIC's for the

same amount of logic to keep within the gate and pin limitation. Relia­
bility estimates use alternate 2.

Using Texas Instruments' discretionary wiring approach, a much higher

level of integration is possible (see Section 4) than in other LSI tech­
niques where, to keep the pin count low, the density must be lower than

elsewhere in the system. Even so, one type, Control 5, needed 61 pins.

To get near 40 pins, this circuit would need to be divided into three

circuits since the amount of internal connections per gate is very high.

One LSIC using this discretionary wiring technique could be used instead

of five different types.

Table 5 lists all the LSI circuit types and their usage. Some (e.g.,

basic shift register) have large usage and others are used only two or

three times. The total types needed are 16 (only 13 if the Texas Instru­
ments'control circuit is used for the Logic Unit).

As much as possibley-LSI circuits were reused rather than prolificate

a new type. This is most apparent in the use of shift registers. The

basic shift register without the parallel input gating could have been

used in many places, but a new circuit type could have been required.

3.6.2 Power consumption.-- Table 6 indicates the expected power

consumption of about 16 watts for the typical system and about 32 watts

for the fully expanded system. These figures are essentially dependent on

two budgetary estimates: 1 milliwatt per logic gate and 10 milliwatts per

interface circuit. The former figure is based upon the power consumption

of the Fairchild LPDTIL logic used in the integrated circuit design and

other low-power logic in the same general speed/power class. (See Sec­
tion 4.) The latter estimate is based upon integrated circuit power

levels generally and has yet to be verified by specific circuit design.

39

TABLE 4

PARTITIONING OF THE LSI MULTIPAC DESIGN

Circuit

Type

Logic Unit Basic Register

(Alternate 1)

16-Way Switches

Complete Control

LSIC's per module:

Logic Unit Basic Register

(Alternate 2)

16-Way Switches

Control 1

Control 2

Control 3

Control 4

Control 5

LSIC's per module:

No. of No. of Required No. of
LSIC's per Gates Pins per Gates per
Module per LSIC LSIC Module

5 96 42 480

$4 typ.~ 78 42 j312 typ.

16 max) 1468 max.5
352 72 352

510 typ. 1Total gates per
112 max. module:

(1144 typ.)
j13oo max.

5 96 42 480

54 typ4 78 42 t312 typ.

16 max.1 1468 max.

1 83 34 83

1 88 40 88

1 83 36 83

1 33 40 33

1 65 61 65

(14 typ. Total gates per ~1144 typ.)

16 max.) module: (1300 max.

40

TABLE 4.-- Continued

Circuit

Type

I/0 Register Basic Register

Buffer Register

R/M Control

LSIC's per module:

Memory 	 Basic Register

Buffer Register

R/M Control

Decoder

Bipolar-to-MOS

Interface Circuits

MOS-to-Bipolar

Interface Circuits

Memory Storage (CMOS)

LSIC's per module:

D/A Register 	Basic Register

R/M Control

D/A Switches

Analog Amplifier

LSIC's per module:

No. of

LSIC's per

Module

1

1

1

3

1

1

1

1

3

1

128

8 plus

memory

storage

1

1

1

1

4

No. of

Gates

per LSIC

96

61

52

Required No. of

Pins per Gates per

LSIC Module

42 96

39 61

18 52

Total gates per

module: 209

96 42 96

61 39 61

52 18 52

31 33 31

14 33 -­

12 26 -­

1880 34 --

Total gates per 240 plus

module:

96

52

8

1

125 special

plus memory

storage

42 96

18 52

18 -­

4 --

Total gates per 148 Plus

module: 9 special

41

TABLE 4.-- Continued

No. of No. of Required No. of
Circuit LSIC's per Gates Pins per Gates per
Type Module per LSIC LSIC Module

Command Unit Basic Register 2 96 42 192

CND Control 1 115 27 115

LSIC's per module: 3 Total gates
per module: 307

Telemetry Basic Register 2 96 42 192
Unit

R/M Control 1 52 18 52

TM Special 1 29 24 29

LSIC's per module: 4 Total gates
per module: 273

Timing Oscillator 2 IC's -- 3 --
Generator

Squaring Circuit 2 IC's -- 4 --

Switch 1 IC 4 14 --

Counter 3 34 8 102

LSIC's per module: 3 plus Total gates
5 IC's per module: 102 plus

5 IC's

42

TABLE 5

QUANITY OF CIRCUITS PER SYSTEM

No. of No. of No. of No. of

Circuit
Gates
per LSIC

Pins
per LSIC

LSIC's per
Typ. Sys.

LSIC's per
Max. Sys. Where Used

Basic Shift Register 96 42 56 107 Logic Unit, all Register
Types, Memory

R/M Control 52 18 35 76 Memory, I/O Register,
D/A Register, Telemetry
Unit

Buffer Register 61 39 31 72 Memory, I/O Register

D/A Switches 8 18 2 2 D/A Register

TM Special 29 24 2 2 Telemetry Unit

CMD Control 115 27 2 2 Command Unit

Counter 34 8 3 3 Timing Generator

Memory Storage 1880 (MOS) 34 768 1920 Memory

Decoder 31 33 6 15 Memory

Bipolar-to- MOS Inter- 14 33 18 45 Memory
face Circuits (Special)

MOS-to-Bipolar 12 26 6 15 Memory
Interface Circuits (Special)

16-Way Switch 78 42 12 30 Logic Unit

TABLE 5.-- Continued

Circuit

Logic Unit Alter­
nate 1:

Complete Control

Logic Unit Alter­

nate 2:

Control 1

Control 2

Control 3

Control 4

Control 5

Integrated Circuits:

Analog Amplifier

Oscillator

Squaring Circuit

Oscillator Switch

No. of

Gates

per LSIC

352

83

88

83

33

65

1

2

2

1

No. of

Pins

per LSIC

72

34

40

36

40

61

4

3

4

14

No. of

LSIC's per

Typ. Sys.

3

3

3

3

3

3

2

2

2

i

No. of

LSIC's per

Max. Sys.

5

5

5

5

5

5

2

2

2

1

Where Used

Logic Unit Alternate 1

Logic Unit Alternate 2

Logic Unit Alternate 2

Logic Unit Alternate 2

Logic Unit Alternate 2

Logic Unit Alternate 2

D/A Register

Timing Generator

Timing Generator

Timing Generator

TABLE 6

ESTIMATED POWER CONSUMPTION

Typical System:

No. of Logic No. of Logic

Gates Per No. of Modules Gates Per

Module Type Module per System System

Logic Unit 1144 3 3432

Register 209 25' 5225

Memory 240 6 1440

D/A Register 148 2 296

CND Unit 307 2 614

TM Unit 273 2 446

Timing Generator 102 1 102

11,755

Internal Power Budgets

Logic (1 mw/gate) 11.755 w

Oscillator and Squaring IC's 0.200 w

D/A Switches and Amplifiers 0.600 w

Memory quiescent power (100 nw/tell 0.015 w

Memory transient power 0.OXX w

Memory Interface circuits

(10 mw/individual circuit) 3.240 w

Total z 15.8 watts

45

TABLE 6.-- Continued

Maximum System:

No. of Logic No. of Logic

Gates Per No. of Modules Gates Per

Module Type Module Per System System

Logic Unit 1300 5 6500

Register 209 57 12369

Memory 240 15 3720

D/A Register 148 2 296

CMD Unit 307 2 614

TM Unit 273 -2 446

Timing Generator 102 1 102

23,371

Internal Power Budgets:

Logic (I mw/gate) 23.371 w

Oscillator and Squaring IC's 0.200 w

D/A Switches and Amplifiers 0.600 w

Memory quiescent power (100 nw/cell) 0.035 w

Memory transient power O.OXX w

Interface circuits and sence amplifiers

(10 mw/individual circuit) 8.1 w

Total 32.3 watts

46

3.6.3 Speed:-- The clock frequency of 1.0 MHz and the consequent

instruction time of 15 microseconds are based on an anticipated propaga­
tion delay of about 50 nanoseconds for the LSI gates. This is somewhat

better than the Fairchild LPDTpL circuits, which have a typical delay of

65 nanoseconds and a worst case delay of 140 nanoseconds at -550C. It is

felt that this can be achieved for pin-to-pin paths within an LSI circuit

considering the smaller internal capacitances and averaging of internal

delays.

The longest propagation path is 16 gate delays (see Section 4.1),

including the output delay of the transmitting flip-flop, and the preset

time of the flip-flop. At 50 nanoseconds per gate the signal requires 800

nanoseconds to propagate and has 200 nanoseconds to spare. This considers

all gates to be identical. It may be feasible to include higher powered

and, consequently, faster gates at critical points, which could further

improve the delay margin.

3.6.4 Volume.-- The packaging of LSI circuits of this general size

seems to require about four times the space of 14-lead flat packs. There­
fore, using one-quarter the volumetric density (125 LSICts per lb) as in

the integrated circuit MULTIPAC, the volume can be estimated as follows,

Typical System: 95 1 lb 11 lbs

0.7 Space Utilization " 125 LSIC's i

2314 LSIC's lbs

Maximum System: 0.7 Space Utilization " 125 LSIC's - "

3.6.5 Weight.-- Since the weight is largely a function of the

packaging rather than of the circuit itself, it may be estimated similarly

for one-quarter the density (5 LSIC's per cubic inch) of the IC model.

___ .3
1i in 273 in3 Typical System:

0.7 Space Utilization 5 LSIC's

2314 LSIC's I in3 = 668 in3
Maximum System" 0.7 Space Utilization " 5 LSIC's

47

4.0 LSI CIRCUIT TECHNIQUES

A survey of integrated circuit manufacturers was made during February

and March, 1969, to determine a feasible LSt method of implementing this

design.' Updated designs of the major modules were first worked out to

serve as a basis for the choice. Speed considerations demanded a basic

logic circuit of no more than 50-nanosecond average propagation"time per

logic level. The power budget dictates a consumption of no more than

1 milliwatt per gate.

Partiticning the preliminary designs and estimating the quantity of

systems to be built led to an estimate of approximately 15 circut types

and procurement quantities on the order of tens to hundreds of each type.

This indicates, that the chosen LSI medium must lend itself to the procure­
ment of small quantities at a reasonable cost.

a

The types of circuits encountered in the survey were F-channel MOS,
complementary MOS, bipolar TTL or DTL, and complemientary bipolar. LSI
media ranged from custom design by manual methods to completely automated
design fromstored circuit libraries. Intermediate methods involved a
standard pattern of individual logic circuits already diffused into the
silicon to which custom metallization can then be applied. The latter, as
applied by Texas Instruments to their series 54L circuits, was judged most
practical for the MULTIPAC design within the time frame of this present
contract, although as soon as it matures the complementary MOS technique
combined with full design automation would also be very desirable for such
purposes.

4.1 Speed

Figure 13 shows the critical propagation path of the logic design.

It is the path from a register output through the adder in the logic unit

and back to that same register that might occur when an MSRR instruction

is being performed.

1 4
Counting the wired-or in the adder input selection gating as one gate

delay, there are 12 gate delays plus one flip-flop. The worst path through

the flip-flop is four gate delays, giving a total of 16 gate delays. An

arbitrary delay of 50 nanoseconds per gate is chosen as a reasonable speed

for LS1 circuitry with 1-milliwatt per gate power drain. This power drain

per circuit will yield power levels for a typical MULTIPAC in the design

goal range of 10 to 20 watts. Sixteen delays at, 50 nanoseconds is 800

nanoseconds, which means that MULTIPAC can conservatively operate at a

I-MHz clock rate. (It is clear this will have to be reevaluated when the

final circuits are purchased and breadboarded.)

This delay is about the same as that achieved for the integrated cir­
cuit design using Fairchild 9040 circuits (see Appendix C of the MULTIPAC

Research Report2). In the integrated circuit design the maximum total

gate and flip-flop delays ranged from 760 to 1041 nanoseconds, depending

48

REGISTER } REGISTER OUTPUT

SWITCHIADDRESS
ADDERINPUT
SELECTION

ADDER

ADDRESS SWITCH

INP'UT STAGE TO REGISTER

D
FF

1 0

Figure 13. Critical Propagation Path

49

on temperature. In addition, because D-type flip-flops were not available,

a pulse width of 350 nanoseconds had to be added to that delay for the

previous design. The delay through a D-type flip-flop is independent of

pulse width since it samples the input with the same edge of the clock

pulse with which it sets the output. This flip-flop avoids race condi­
tions through internal logical delays (see section 5.1).

4.2 Low-Power Logic Circuits

4.2.1 Low-power bipolar circuits.-- These constitute the low-power,

low-speed end of the wide spectrum of bipolar logic circuits on the market.

The circuits which are available or proposed in some LSI form are listed

below.

Power Per Typical Propagation Delay
Gate (mW) Per Gate (ns)

Fairchild Low-Powered
Micromatrix 3.0 20

Texas Instruments
(TI) 54L 1.0 33

Philco Micro-Energy
Logic 0.44 50

The propagation times quoted are typical for individual IC packaging and

should be somewhat improved on an LSI chip. Note that the circuit which

Fairchild intends to market as the low-power entry in their Micromatrix

line is not the well-known 9040 series but a faster circuit having three

times the speed and power of the latter (nominally 65 nanoseconds and

1.0 milliwatt per gate). Of these, the TI circuits are available in their

LST or MSI format on a custom basis and the Fairchild Low-Powered Micro­
matrix will be announced within a few months. Philco merely evidences an

interest in developing an LSI array using their circuit.

4.2.2 P-channel MOS.-- This is the simplest logic circuit and as

such is particularly well suited to LSI. Requiring only a single diffu­
sion and minimal area, this circuit has been the basis for the most fully

automated and largest scale fixed pattern integrated circuits.

Part of its simplicity lies in a passive pullup resistor which causes

a relatively high power consumption when the circuit is on and a relatively

slow rise time when the circuit is turned off. Any attempt to minimize

one disadvantage aggravates the other. Dynamic two- or four-phase clock

arrangements which switch the power or ground paths minimize or eliminate

the period of time for which these load resistors appear across the supply

voltage, allowing gate capacitances to hold the data between clock pulses.

50

The simpler two-phase system, which is the only variation easily imple­
mented in the automated circuit designs, is useful only in relatively slow

systems in which the low duty cycle of the clock pulses provides a power

saving by enabling the load resistors only a small percentage of the time.

The use of LSI's greatly improves the performance of static MOS circuits

over their use in individual IC's, however, since node capacitances on

the chip are greatly reduced and relatively high-load resistors (75-100

kilohms) can be employed at fair speeds. Some of the speed and power

figures given for such devices driving on-the-chip loads in automatically

designed LSI circuits follow:

Power, mW Average

(50% duty cycle) Speed, ns

Fairchild "Micromosaic" Array 0.65 mW 76

American Microsystems, Inc. 1.2 mW < 100

Texas Instruments 1 mW 100-150

Although within the same order of magnitude, these figures are still not

competitive with low-power bipolar circuits in speed-power ratio.

4.2.3 Complementary MOS.-- This circuit type eliminates the long

rise time of a P-Channel MOS circuit by replacing its load resistor with

a complementary N-channel structure which actively pulls up for any logic

condition that does not cause the P-channel structure to pull down. In

this sense it is similar to the totem-pole active pullup outputs used in

most bipolar TTL circuits and achieves typical propagation delays of 50

nanoseconds even in discrete IC form. Compared tq P-channel, the comple­
mentary MOS circuit has the disadvantage of requiring a second N-type dif­
fusion into a P-type "tub" and also uses almost twice as many transistors

to form the complementary pullup. Thus, it takes the same area as required

for bipolar circuits.

Since either the P-channel or N-channel structure is turned off (the

other being turned on to one side of the supply voltage), there is no do

path across the supply in the static state except for the leakage of the

turned-off MOS devices. This is on the order of several megohms so that

there is very little power dissipation in the quiescent state. A dynamic

power consumption (P = fCV 2) is required to charge the node capacitance at

the switching rate, which is appreciable. This component is present in

the power consumption of any circuit but it is usually negligible compared

to the dc component. In complementary MOS, however, if the logic actually

switches at the usual clock rates, it is predominant. For the RCA cir­
cuits it amounts to 0.6 to 6.0 milliwatts per gate (depending on the par­
ticular gate and the capacitive load) dt 1.0 MHz. The power consumption

in actual use is at least an order of magnitude less, since only a very

51

small percentage of the circuits in a system will switch on any given clock

pulse. This characteristic makes complementary MOS particularly useful

for memories since all but an addressed location will hold unchanging in­
formation over very long periods of time.

The greatest disadvantage of complementary MOS, at the moment, is

that the process has not yet been mastered throughout the industry. At

present, RCA is the only manufacturer except for a memory array available

from Westinghouse. Several other companies have the process under labor­
atory study an4 plan to put such circuits into production within the com­
ing year or so, though none have done so as yet. Typically the first pro­
ducts that are planned are memory arrays. Among the companies planning

to enter the complementary M0S field are Fairchild, Texas Instruments,

Motorola, Signetics, General Instruments, Radiation, Hughes, Siliconix,

and Intersil.

Presently RCA has no LSI vehicle on the market, although a simple

array of 48 two-transistor pairs with single level metallization and dif­
fused crossunders will soon be announced. A somewhat more capable array

of about the same number of four-transistor pairs and two-level metalliza­
tion has been developed in their laboratory for NASA Electronics Research

Center but it is still considered under development and no firm specifica­
tions are obtainable at this time. Its scale of integration is typically

a single 4-bit counter on a clip. This is considerably less than the more

advanced schemes for either TTL or P-channel MOS. The conclusion reached

was that while complementary MOS represents the most favorable circuit

type for low-powered logic, it has not reached a sufficient maturity and

broad base in the industry to have paired with a suitable LSI vehicle.

4.2.4 Low-power complementary bipolar circuits.-- These are mentioned

only for the sake of completeness since they are not presently available

as a prodifct. However, there are several development programs looking

into this type of circuit which is somewhat similar to the TTL circuit

with totem-pole output, except that the internal inversion circuit neces­
sary to drive the pullup transistor is not necessary, thus eliminating

several resistors which consume power. Consequently, such circuits have

speed characteristics similar to TTL but considerably lower power, though

probably not as low as complementary MOS. One of their best uses would,

in fact, be to drive large loads of complementary MOS at high speeds with

minimal power consumption.

4.3 Methods of Large-Scale Integration

The several methods of providing custom large-scale circuits have

various advantages and shortcomings involving the scale of integration

desired, the quantity to be procured, the ease of design, turnaround time,

and costs. These factors are greatly influenced by the customer service

organization the manufacturer sets up to deal with custom requirements

and the degree of automation employed to interface his requirements with

the IC design and manufacturing processes.

52

4.3.1 Custom circuits.-­

4.3.1.1 Custom circuits made by the manufacturer's standard produc­
tion methods:-- This method generally costs from $15,000 to $50,1000 as a

one-time design fee plus $50 to $150 per circuit and is feasible only for

large (100,000 or so) quantities. A relatively low initial cost generally

means that the manufacturer anticipates writing off the design cost over

the total procurement quantity, or expects to be able to market the design

commerically. Although it does lead to the most efficient design and lay­
out, this costly method is employed for low quantities only by small com­
panies which do not expect to manufacture a great number of different cus­
tom designs or those which have not funded the development of more ad­
vanced methods for custom LSI work.

4.3.2 Hybrid packaging.-­

4.3.2.1 Hybrid packaging of standard IC's on a substrate containing

customized interconnections:-- Actually the IC's so used can be more com­
plex than those which can be packaged in a 14-pin flat pack, but all func­
tionally dictated interconnections must be made to the custom substrate

via wire-bonding, flip-chip methods, or beam-lead techniques. This is

more of a packaging technique than true LSI and is undesirable for this

design because of the indications that reliability is largely a function

of the number of interconnections and, hence, the number of monolithic

circuits employed in the design, rather than its total complexity. This

approach is commercially available, however, in the custom MEMA packages

marketed by AMELCO for about $2,500 initial fee and $100-$150 per circuit.

4.3.3 Custom metallization.-­

4.3.3.1 Custom metallization of a standard circuit array:-- This is

one of the cheaper methods of making customized monolithic circuits, cost­
ing between $5,000 and $20,000 for the engineering design of the custom

metallization masks. Such a method is normally required for bipolar cir­
cuits since their complexity presently prohibits all the masking being

laid out by computer. Instead, all the diffusion steps are standard to

the array and only the metallization is customized. The Fairdhild Micro­
matrix and what Texas Instruments calls MSI are typical of such methods.

Philco evidenced some interest in producing their IEL circuits in such a

format. This is also the method used by RCA for their developmental com­
plementary MOS arrays. This method makes relatively inefficient use of

silicon area to accommodate the variety of possible interconnections and

is consecuently limited to about 50-100 gates per chip for reasonable

yields. TheTI method using more specialized cells offers up to 200 gates

equivalent complexity. While single layer metallization is possible in

such arrays by using diffused crossunders, the premium placed on silicon

"real estate" makes multilevel metallization a practical necessity and

those vehicles mentioned use two-level metal except for the simplest RCA

array.

53

4.3.4 Discretionary wiring.-- A very large scale of integration and

a high degree of automation are provided in the discretionary wiring of

diffused circuit array, the technique which is known by the name of LSI at

Texas Instruments. Since the limitation on the size of integrated circuits

is the likelihood that a fault will exist somewhere in a large chip area

and render the whole chip useless, this method diffuses a very large array

of cells over an entire wafer, tests them individually, and interconnects

the good ones by a mask that is unique to that wafer.

A cell is defined as the smallest piece of circuitry which is acces­
sible for testing and subsequent interconnection. These vary in size from

a single gate to sections of logic of approximately 25-gate complexity.

Although commonly used cells are already documented, special ones can be

designed for the customer if he has a particularly recurring pattern in

his logic. The cells are diffused into the silicon and internally con­
nected'by first-level metal in sufficient numbers that the expected yield

of each type of cell is more than sufficient to satisfy the expected re­
quirement. The cells are then tested by computer, the wafer characterized

by the good circuits it contains and put in inventory. When the wafer is

subsequently committed to a requirement, masks for two more layers of

metallization are generated by the computer to satisfy the interconnection

list supplied.

This method permits logic structures from 200-gate to approximately

2000-gate complexity to be put on a single monolithic wafer (for functions

requiring less than 2000 gates, TI used the fixed metallization approach,

which they call I1). The discretionary wiring method was the most ad­
vanced found to be available for complex bipolar circuits and is among the

least expensive for large devices in quantities. TI quotes a price of

$10,000 initial fee plus $2,000 each for a minimum quantity of five for

these circuits which are better than ten times more complex than any other

bipolar array.

4.3.5 p-channel MOS technology.-- The most fully automated custom

LSI methods were found in-the P-channel 10S technology. Similar methods

exist at many companies including Fairchild, Texas Instruments, American

Micro-Systems, and General Instruments. A typical system of this type in­
corporates a circuit family or library, the diffusion masks for which are

stored on a computer tape. The design is accomplished using this library.

A list of the circuits used and their interconnections is then prepared in

a specific format. This list is used as input to the automated design

program which calls out the cells, places them on the chip for optimized

interconnection routing, and makes the diffusion and interconnecting metal­
ization masks automatically. Thus, if the design is specified by the

customer in the form of a card deck having the appropriate format, the

chip design and layout can be wholly automatic (though manual intervention

at some stages is also allowed). The design thus specified can also serve

as the input to a logic simulation program to assure the customer that his

design is functionally correct and it can also be used to generate an

optimum test sequence for the finished product. Unfortunately, this ap­
proach is not applicable to the present design since it is available only

54

for P-channel MOS circuits, which are too slow for this purpose. It seems

likely that complementary MS designs will eventually be implemented in this

fashion, and this would be a highly desirable combination for spacecraft

logic.

4.4 Memory Circuits

The memory storage medium postulated is a modification of the 256-bit

complementary MOS memory chip under development for NASA by Westinghouse

on Contract No. NAS-5-10243. A s with the logic circuits, the chief reason

for this choice was the low power drain of this medium. In a flip-flop

memory, one important consideration is the power required to maintain the

memory contents under dc conditions. Standby power required for this MOS

circuitry is reported as typically less than 100 nanowatts per cell, which

would be approximately 2.5 milliwatts for a 2048-word, 12-bit memory.

This is negligible compared to the operating power of the one chip in

the memory selected by the addressing logic, which is reported as 30 milli­
watts for the present device containing 16 words of 16 bits each when

cycled at a 0.5-MHz rate. If this were scaled to a 12-bit word with a

15-microsecond cycle time, the indications are that the 2048-word memory

would consume on the order of 3 milliwatts. This power is, in turn, neg­
ligible compared to that required by the bipolar portions of the memory

module, especially the circuits interfacing the MOS chip. These would

probably require special design to minimize their power consumption.

In addition to shortening the word length to 12-bits for the present

system (or removing power from those bits not needed), two other changes

in the Westinghouse chip are needed to make its use practical in MULTIPAC

system. There are presently no clear provisions for the use of multiple

16-word chips in a larger memory. There is no method of expanding the

addressing structure except for gating the "strobe" and "write" signals

of each chip separately, and the "bit lines" are not presently such that

they can be collector ORed to form the larger memory. If both these sig­
nals from each chip have to be separately ORed or gated after leaving the

chip, it would require more interface circuits than memory chips and the

power demands would be-exhorbitant. Making these changes on the chip

would seem relatively easy, however. The change to the output circuits

to permit ORing them means gating out the active pull-up circuit as well

as the pull-down circuit from non-selected chips in a similar manner to

what is now done for writing. This leaves only the output circuits from

the selected chip active to drive the bit lines. In write mode they too

are disabled, leaving only the write drivers active on these lines. In

addition, the addressing logic should be expanded to include two more

inputs which would gate all address decoders and appear on outside pins

to be used for x-y coordinate addressing of the chip. This would reduce

the number of interface address drivers required from 128 to 32 for a

4096-word memory, with a corresponding saving in power. The logic dia­
gram for the memory assumes these modifications will be made.

55

4.5 Special Circuits

There are several non-logical circuits required which should be es­
pecially designed for MI-LTIPAC, such as the memory interface circuits men­
tioned above. Such circuits are not a part of the logic design but they

do influence the parts count, power and reliability estimates. Therefore,

certain assumptions have been made concerning them as follows:

(1) 	Clock generator: This circuit must produce a 5-volt square

wave at 1.0 MHz. Two circuits, oscillator and squaring cir­
cuit assumed, with 100-milliwatt power consumption.

(2) 	Bipolar-to-MOS interface circuit (BMIC) which interfaces the

MULTIPAC logic levels to the memory. Two circuits per IC

package assumed, with 10-milliwatt power consumption per

circuit.

(3) 	MOS-to-bipolar interface circuit (MBIC) which interfaces memory

to the MULTIPAC logic. Two circuits per package assumed, with

10-milliwatt power consumption per circuit.

(4) 	Analog switch (ANSW): This circuit switches D/A inputs to lad­
der network. Eight circuits per package assumed, with 25-milli­
watt power consumption per circuit.

(5) 	Analog amplifier (ANANP): These are isolation amplifiers which

supply the analog output to the experiments. A standard inte­
grated operational amplifier circuit could be used. One cir­
cuit per package assumed, with 100-milliwatt power consumption.

4.6 Circuit Choice

In spite of the frequent and casual use of the term in the industry,

true large-scale integration still seems to be in its infancy. Only the

largest manufacturers (and some MOS specialists) have any well-formulated

means of responding to customer requirements, and even these are still in

current development. Present yield considerations limit fixed-wired chips

to 100-120 mils square, and the most useful method of tailoring this area

to perform-a complex custom requirement is in automated P-channel M0S de­
sign, but these circuits are too slow for the MULTIPAC requirement.

Fqr MULTIPAC, the recommended technique is the bipolar circuits us­
ing the TI method of discretionary wiring, which overcomes the limitation

on chip size. Since each wafer produced by this method requires unique

masking, it is essentially a low-volume process and is priced as such, in

keeping with the MULTIPAC requirements. Additionally, TI has a version

qf the more limited fixed-wired technique which could be used for the

smaller, repetitive, and, hence, higher volume, sections of the MULTIPAC

d(sign, such as the basic register circuit (see Figure 15).

56

Complementary MOS as a circuit type is well suited in speed and power

to the MULTIPAC requirement, but at present there is no LSI vehicle for

it that is adequate and sufficiently well defined to permit its being used

as the basis for a design. Memory chips are presently available from two,

companies, however, with several more companies planning such products for

the immediate future, and so its use in this design as the memory medium

does appear feasible. As soon as the larger IC manufacturers have estab­
lished an IC line in complementary MOS, the circuit will no doubt appear

in their automated design LSI formats and will probably find a large usage

in spaceborne systems such as this one, but such developments cannot be

anticipated within the time frame of this contract.

57

5.0 DETAILED DESCRIPTION OF MODULES

All data transfers between modules are serial. Synchronous machine

timing is provided by two clock signals, the shift clock (SC) and the word

strobe (WS). These are generated in the timing generator and distributed

to all modules by triplicated signals driving majority voting gates at

each module interface. Timing consists of 14 SC pulses followed by one WS

pulse at equally spaced intervals of approximately 1 microsecond. The

machine cycle is, therefore, about 15 microseconds. (Figure 26, timing

diagram of the register and memory units, shows these signals.) Since the

ac flip-flop design used triggers on the rising signal edge, the clock

pulses are negative going to provide trailing edge triggering and thus per­
mit the gating of clock pulses. Except for such dc gating of clock pulses,

the pulse width is irrelevant. For convenience, the clock pulse width is

assumed to be 50 percent of the period.

The actual 12-bit data transfer is preceded by the transfer of a

2-bit control code on the same line. It is by the transfer of this code

that the logic unit controls the operations of the other modules with which

it communicates.

The design described in detail in this section is complete but has not

been breadboarded; consequently, it may have errors. The logic symbols used

follow MIL STD 806B per paragraph 4.3 (Basic Logic Diagram without physical

implementation). The discussion which follows is detailed enough to re­
place the usual logic equations. Logic equations are usually difficult to

follow, whereas the discussion leads the reader through the logic in proper

order and supplies the reasons behind the chosen implementation. Logic

designs may be simulated by a computer without equations (see Appendix B).

5.1 Flip-Flops

In the design of an LSI system, one is not limited to the "off-the­
shelf" circuits. For example, flip-flops have only those gating networks

on the input which are actually used.

For MULTIPAC we have designed three different flip-flops: (1) a set­
reset flip-flop without internal delay, (2) an AND input delay-type flip­
flop (D flip-flop) and (3) a NAND input delay-type flip-flop. These are

shown in Figures 14, 15, and 16, with symbols on the left and logic imple­
mentation on the right.

The set-reset flip-flops set the output to a ONE if the SET input is

a ONE and to a ZERO if the RESET input is a ONE when thd clock (CLK) is

high. If both SET and REST are ONES, the final state of the flip-flop is

indeterminate. The setting is accomplished by directly forcing one of the

two cross-coupled flip-flop NAND gates to a ONE output. Since there is no

delaying action, the flip-flop'°s outputs cannot feed its own inputs or

that of any similar flip-flop from the same clock.

58

RESET SET
RESET SET

CCl-

R S

0o 1

OUT OUT

uT OUT

Figure 14. Set - Reset Flip-Flop

INP2

INPI INP2
INPI

CLK 2

RESET 0 SET

Cl01

CLK 2 OUT OUT
OR

INP I

RESET0 1 OUT OUT

CLK I
CLK2 OUT OUT

Figure 15. AND Input D Flip-Flop

59

INPI INP2

INP 2

INP I

RESET

CLK I

CLK 2

D
0 1

6UT OUT

OR

INPI

SET

REET

RESET
DI

0 1 E U_ U

CLK I

CLK 2 OUT OUT

Figure 16. NAND Input D Flip-Flop

60

The AND input D flip-flop sets the output to the logical AND of its

inputs when the clock goes high. While both clocks (CLKI and CLK2) are

high, the inputs are prevented from affecting the outputs. While the clock

is low, the output flip-flop (formed by cross-coupled NAND gates) are iso­
lated from the inputs.

The action of this AND D flip-flop is as follows. With both the

clocks low, the two NAND gates with clocks as inputs will have ONE outputs

no matter what the other inputs to these gates are. The NAND gate with the

flip-flop input signals will form the NAND of the inputs, and the gate on

the far left of the diagram will invert this, forming the AND of the inputs.

When both clocks go high, the middle gates are enabled and the NAND and AND

of the INP1 and IN2 information are forced into the output flip-flop. At

the same time, this NAND and AND information is stored in two flip-flops

formed by pairs of the top four gates. If, then, the inputs change, they

will not be able to change the middle two gates. For the logical case

when the third input to the NAND gate with INI and INP2 is a ZERO, no

change of states of INPI or INP2 can change that NAND gate and, hence, the

outputs. If that third input to the input NAND was a ONE, then the NAND

gate for which it is an output will have a ZERO input from the top left

flip-flop, preventing any affect on it from changes of the input NAND cir­
cuit. For this same reason the top left NAND also cannot change. Thus,

the internal logic of the flip-flop prevents changes on the inputs to af­
fect the output except at the time when the clock goes high after being

low long enough for gates to stabilize.

The NAND type input D flip-flop is identical to the AND D flip-flop

except that the labelling of the outputs is reversed. This has the effect

of forming a NAND of the inputs.

5.2 Basic Register Circuit

All shift registers in MULTIPAC may be made of the single shift regis­
ter LSI circuit shown in Figure 17.

This basic circuit will shift right when the SHIFT line is high and a

clock pulse occurs. When the INPUT line is high and a clock pulse occurs,

12 inputs (labelled 1NO through INl) will be clocked into the register.

Since there is an inversion in the input gating, the inverse of the input

signals is transferred.

If the inputs are each connected to the next stage to the right, then

the register can shift left as shown in Figure 18. This connection results

in a LEFT/RIGHT shift register, where the INPUT line is a LEFT SHIFT line,

and the SHIFT line is really a RIGHT SHIFT line. The INO line becomes a

RIGHT DATA IN and the DATA IN a LEFT DATA IN. These connections are used

for the two accumulators of the logic unit.

61

5.3 16-way Switch Circuit

Another generally used LSI circuit is the 16-way switch shown in

Figure 19. This circuit is used in the logic unit for switching data to

and from memories and registers.

Sixteen of the NAND gates decode one out of 16 states of the four

input levels. Each of these decoded outputs feeds 32 NAND gates which gate

in and out 16 ways. The data gates also have signals for enabling all in­
put gates or all output gates. There is an input enable (INPUT SELECT) and

an output enable (OUTPUT SELECT). To keep the pin count to a minimum, the

four register inputs to be decoded are brought in single-ended and inverted

internally and the 16 gated data signals are ORed internally.

5.4 The Logic Unit

The Logic Unit (Figure 20; see also Appendix C) is connected to all
other modules in the system and controls those which it addresses. At
any one time, a module is addressed by only one logic unit, the one to
whose process it is assigned. (Use of a module by more than one processor
for purposes of intercommunication must be coordinated between the two pro­
grams concerned.) The logic unit selects one memory as its source of pro­
gram and another (although it may also be the same one) as its source of
data locations by means of two 4-bit page registers (PMR and DMR).

5.4.1 Instruction decoding.-- The MULTIPAC instruction word usually

has the form

6 bits 6 bits

OP Code Reg Addr

where the OP field determines the operation to perform and the R field

refers to either a register to operate on or a register to use for index­
ing. In this latter case, the next word following is used for the address

field, requiring two MULTIPAC words for memory reference instructions.

In general, the OP field is further divided as shown at the bottom of

Figure 21 into a 4-bit OPC field, a 1-bit M field, and a 1-bit A field.

The A field specifies which of two accumulators to use and the M field

specifies whether or not memory reference (and, hence, a one- or two-word

instruction) is needed.

Figure 21 shows the Boolean truth table from which MULTIPAC was de­
signed. A few exceptions to the above generality can be noted, and each

of these are decoded separately at appropriate places in the Logic Unit.

Two M = 1 instructions, MDI and JMPR, are single-word, nonmemory reference

instructions which act very much like memory reference instructions. One

M = 0 instruction, INP, is a two-word instruction which uses the second

word as a mask. It is coded here since it is primarily a register operation.

62

fwi H WFm jM T Yin Vim41 T imV4 TWim im2 umTi Im0

IN PUT

5WIF

CLOCK ,A A

mlTI-q,- Rio P6 iP1 47 we. RS W5 4 5 5 P2Ni 72 Rl~

Figure 17. Basic Register

FOLDOUT FRAFN 63/64EOLDOUT FRA (

SHIFT LEFT) --------- -- ------- PSSLAT IN

nq1VT gICHT

CEFT IN

LEFT OUT TG4 L

CLOCK

Figure 18. Basic Rgister Connected as eft/Right Shifting Regiser

FOLDOUT FRAM4 FOL5DOUT/ 6)

Pa6

__ _ __._ _ __ _

F--
_ __ _ _

I
_ _ _ __ _ _ _ ._ _ _ _ _ _

IA-TAIN_

DEVICE EAVA

15cccEIS ECICE 14 DEVICe IS DEVICE 12 DEVICE L DEVICE iO DEVICE.S DEVCE 6 DEVICE7 DEVICE C MDEVICE 5 OEVICE 4 DEVICE S CEVICE2 OEVICE OEVICE

Figure 19. 16-Way Switch

FOLDOUT FRAME'FOLDOUT FRAM r

IRII \1 R9
1 10

IR8
R00 10 11 01 01

M=1

11 10 00

00 NOP STPC EQVR' XORR XOR JMP MDI XORM

01 SMP NEGR SUBR IORR IOR' SUB SUBM IORM

A=0

11 SHF XCHR WAR ANDR AND LDA XCH ANDM

10 SKP STAR UNUSED ADDR ADD JMPR STA ADDM

10 SKP STAR MSTP ADDR ADD LDLR STA ADDM

11 SHF XCHR WAR ANDR AND LDA XCH ANDM

A=I

01 OUT SK DI SUBR IORR IOR SUB SUBM IORM

00 INP MSKR EQVR XORR XOR ADDLR MSK XORM

II

O 0 . LU

0

x x x x M A X X X x x x

11 10 9 8 7 6 5 4 3 2 1 0

Figure 21. LSI MULTIPAC Operation Codes

71

SNP, SHF and SICP are exceptions to most of the other instructions, and

the effect of decoding them appears many places in the logic unit. SHF and

SKP use the R field for further decoding of the instructions, as shown in

Figures 22 and 23. For the shift (SHF) instructions, the R field specifies­
amount, direction and control (e.g., arithmetic, logical, double length,

etc.) of the shift. For the skip (SKP) instruction, this field determines

the condition. For SN?, the R field is used for the value to store in

either data or program memory page registers.

5.4.2 The control codes.-- Control codes are generated by a 2-bit

shift register called the Control Code Register, which is set by the word

strobe according to the next operation to be performed and shifts this

2-bit code out through the adder to the registers and the memory units.

Information for setting the control codes is as a rule, decoded from the

instruction shift register so that the same word strobe which dumps the

instruction into the instruction buffer register also sets the codes simul­
taneously in anticipation of that instruction. The four codes and their

effect in the register or the memory control unit can be seen by reference

to the dual-purpose register and memory control unit module. Code 00 is

treated as a No-op, 10 shifts the register or memory register, 11 results

in an output instruction or memory read, and 01 results in input instruc­
tion or memory write. Thus, for the register instructions, the usual code

is 10, causing the register to shift.

The control codes for various instructions are shown in Table 7. The

first (rightmost) bit is made a ONE for input (INP) and output (OUT) in­
structions only; the second bit is made a ONE for all instructions except

NOP, SHF and SKP instructions which do not shift the register and INP,

which inputs the register. All of these fall in the class of nonindexed

instrtctions. If the next instruction is a memory instruction, however,

it will first call for an index cycle. In that case, the code generated

is 11, the code that will cause a memory read. At the same time, however,

the index register must be made to cycle, the code for that being 10.

Therefore, 11 is generated in the control code register, but one bit of it

is blocked on the bus leading to the registers.

The program memory must also be controlled by such control codes and,

in general, the first two bits are forced to a ONE by hard-wired logic.

This is the read code and causes the program memory constantly to read.

An exception occurs here, however, when the program memory and data memory

are the same. In this case, a level from the comparator determining this

blocks the signal, forcing it to a 00 during the execute part of the cycle.

Since the program memory bus and the data memory bus OR together, and the

program memory bus is forced to ZERO, the program memory can respond to the

code on the data memory bus and will either write or read as the instruc­
tion being executed indicates.

5.4.3 The sequence counter.-- The sequence counter is a two-stage

shift counter (SQO and SQl) which governs the cycles of any particular in­
struction. SQl shifts into SQO whose inverse then shifts into SQl This

72

A=0

100 101 I11 110 010 -011 001 000

000 B4 B5 B7 B6 B2 B3 -11 = 0 OF - 0

001 A2>0 0>AI 0=A] A2=0 810 Bil B9 Ba

Oil A2<0 0<Al 0#AI- A2/0 BIO' 1 89 88

010 B4 B5 B7 6 82 BI=3 0F

SKP

110 4 5 7 6 2 3 LCYCI 0

Ill A2 >AI A2>Al A2=AI A2A1 o 11 8 9

101 A2<AI A2<AI A2,AI A2 A 10 11 8 9

100 4 5 7 6 2 3 LSRL 1
3\

0

100 4 5 7 6 2 3 CYC I 0

101 12 DINT EINT 10 II 9 8

11] 12 DINT EINT 10 II 9 8

110 4 5 7 6 2 3 SHRL I 0

SHF

010 4 5 7 6 2 3 SHL 1 0

Oi 12 DINT EINT 10 11 9 8

001 12 DINT EINT 10 11 9 8

000 4 5 7 6 2 3 SHRAl 0

Figure 22. RField Coding for SHF and SKP, Part 1

73

A=I

000 001 Oil 010 110 I1 101 10D

000 OF=0 B1=0 B3 82 B6 R7 95 B4

001 B8 89 Bi 810 AI=0 O=A2 C>A2 AI>O

Oil 98 B9 Bil BID AIO 0/ A2 O<A2 AI<O

010 OF BI =1 83 82 86 -7- 5 34

SKP

110 0 LSHLI 3 2 6 7 5 4

II1 8 9 II 10 Al1A2 A]=A2AI>A2A] > A2

101 8 9 II I0 AI4A2A.l,6A2A]< A2 Al<A2

100 0 LSRAI 3 2 6 7 5 4

100 0 CYCI 3 2 6 7 5 4

101 8 9 11 10 EINT DINT 12

III a 9 II 10 EINT DINT

110 0 SHRt 3 2 6 7 5 4

SHF

010 0 SHLI 3 2 6 7 5 4

Olt 8 9 II 10 EINT DINT

00I 8 9 II 20 EINT DINT

000 C SHRAI 3 2 6 7 5 4

Figure 23. R Field Coding for SHF and SKP, Part 2

74

TABLE 7

CONTROL CODES

MACHINE
STATE

INSTRUCTION
DECODING

REG
CODE

DM
CODE

PM
CODE

CNI ISR7 = 1 10 11 11

CNI

(C--"3(IND)

ISR7

IR8

=0:
SKP
SHF
CNTRL
NOP
OUT
INP
OTHERS

1:
JMP
JMPR
LDLR
ADDLR
OTHERS

00
00
00
00
11
O
10

00
00
00
00
00

00
00
00
00
00
00
00

00
00
00
00
10

11
11
11
11
11
11
11

11
11
11
11
11

IR8 = 0: 00 00 11

C"N (IND) ALL 00 00 11

75

is the pattern of the shift counter. Thus, it, in general, steps through

the following states: 01, 00, 10, and 11. These may be given the four

functional titles: Index, Execute, No-op, and No-op. At some point in

this cycle, the condition is detected that the present instruction is com­
pleted, and at this point a copy next instruction (CNI) signal is generated.

This resets the sequence counter to either the index or execute state, de­
pending on the next instruction. In which of these two states the next in­
struction commences is determined by bit 7 of the next instruction decoded

from the instruction shift register since that will be the location of the

next instruction at that time.

If bit 7 of the instruction to be executed is a ONE, it indicates an

instruction which must be indexed and, therefore, the counter will be reset

to state 01, or the index state. If bit 7 of the instruction is ZERO, the

reset state will be 00, or the execute state. Having thus begun in either

the index or execute state, the only remaining variable in the cycle is

with what state to terminate the instruction.

The only instruction to terminate after the index cycle is the modify

instruction (MDI) command. This is decoded with the index state 01 to pro­
duce the CNI signal. Most commonly, the CNI signal will be produced by

the next state (00 or execute) provided that one of three ORed signals is

present. One of the ORed signals represents the lack of comparison between

the program memory register and the data memory register (i.e., the program

memory and data memory are not the same).

A second condition that will terminate the instruction at this point

is an OR of the jump to register contents (JMPR), load register with lit­
eral (LDLR), and add literal to register (ADLR) instructions because they

require no further machine cycles even if the program memory and the data

memory are the same.

The third condition which terminates the instruction is if bit 7 is

a ZERO, i.e., if the instruction falls in the category of single-cycle in­
structions, one single-cycle instruction, skip,is only conditionally single­
cycle. There is an additional inhibit generated by the skip instruction

and the test condition which will inhibit CNI from being generated in the

execute cycle, and, therefore, the sequencer will go on to further states.

The next two states, 10 and 11 of the sequence counter, are both no

operation (NOP) states. They are used for conditions when program memory

and data memory are not the same, in which case a certain time must be con­
sumed (one or two cycles to allow memory operation) or they provide the

two-cycle skip generated by the skip instruction.

If the program memory and the data memory are the same, three cycles

are required for instructions which do not write back in memory. These

are coded with a ZERO in bit 8, and upon detecting this during the first

of the two NOP states, the CNI signal will be generated. If bit 8 is a

ONE, the itstruction is one which writes back in memory. When data are in

the program memory, instructions require four cycles and so the sequencer

76

steps further to the second of the two NOP states. In this final sequencer

state of 11, the CNI signal, which restarts a new sequence, is always gen­
erated.

5.4.4 Instruction timing.-- The MULTIPAC processor operates with over­
lapped instructions such as those indicated in Table 8. In this table each

entry represents one cycle time of the machine, including a two-bit control

code time and a 12-bit shift. The slashes are used to indicate the contents

shifting into a register on the left and the contents shifting out of it on

the right of the slash. The program counter increments regularly, and at

the same time its incoming contents are transferred into the program memory

data register with a control code causing a read. The memory reads at the

first part of the cycle during the 2-bit control code time and the contents

of that location can be read out in the 12-bit shift which follows. This

word is shifted during that time into the instruction shift register and,

with the following word strobe, is transferred into the instruction regis­
ter where it is decoded. Note that this requires a memory read time of

less than 2 microseconds (2 shift pulses).

Certain instructions have been assumed in the figure to give an ex­
ample of the overlap and the internal timing of certain instructions. The

first instruction for address ZERO is assumed to be an add and store (ADDM)

indexed by register R. Thus, the sequencer will be initiated in an index

cycle. This will cause the contents then emerging from the program memory,

namely, the contents of location 1, to be added to the contents of register

R and transferred into the data register of memory 2 as the effective data

address. The code used is a read, and one cycle later, the contents of

that effective address are available to be shifted out of the memory regis­
ter. In this next cycle the sequence counter has advanced to the execute

state, and during this cycle, the contents of the effective address are

summed with the contents of the accumulator and transferred to the accumu­
lator and back into the memory register with a write code. While this op­
eration is being done, the next instruction is shifting into the instruc­
tion shift register so that with the next word strobe, it is transferred

into the instruction buffer register. Since this next instruction is not

an indexed instruction-in-the example given, the sequencer started in the

execute state. The assumed instruction is a skip illustrating the use of

SKP and jump (JMP) together. Accumulator 2 is subtracted from Accumulator

1 and the sign determines whether or not the skip occurs. The example as­
sumes that the skip does not occur in order to demonstrate the jump; how­
ever, the two NOP's shown in parentheses indicate what will happen if the

skip is effective. Assuming this skip is not effective, the next instruc­
tion is a jump, causing a typical index operation. The index results are

shifted into the program counter and the program memory. The execute cycle

of the jump does nothing but wait for the contents of the jump location

to shift from the memory register into the instruction shift register.

Then, with the next word strobe, the contents of the jump address are dumped

into the instruction register. This timing is altered if the program mem­
ory and the data memory selected are the same since time for the data op­
erations must be allowed within the program memory.

77

TABLE 8

INSTRUCTION TIMING
PM # DM

PC MAI NDi MA2 MD2 IR SEQ. OPERATION

0/- - R:O/­

1/0 0 R:1/(C)

2/1 1 R:2/(1) - R:Al/- (0) = ADDN R IND (1) + (R) = Al #h14D2

3/2 2 R:3/(2) Al W:S/(A1) EX (Al) + ACC = S ACC, MDi

4/3 3 R:4/(3) Ai (2) = SKP 4 EX ACCI - ACC2: SIGN =>TST

a/4 4 R:a/(4) All (3) = iMp IND(NOP) (4) + (R) = a =>NDI, PC
a+lla a R:a+il/() Al EX(NOB)

(a) = NEXT

PM = DM

PC MAI NDI IR SEQ OPERATION

0/- - R:0/­

1/0 0 R:I/(o)

1 1 R:Al/(l) (0) = ADD R IND (1) + (R) = Al =4ADI

2/1 Al R:2/(A1) EX (AI) +(ACC)= SI ='ACC

3/2 2 R:3/(2) NOP

3 3 R:A2/(3) (2) = ADDM R IND (3) + (R) = A2 r'MD1
3 ,A2 W:s2/(A2) EX (A2) +(ACC)= S2 >ACC, MD1

4/3 R:4/S2 NOP
5/4 4 R:5/(4) NOP

(4) = NEXT

All memory instructions except the jumps and literals require at least

three memory cycles when the program memory and the data memory are the

same, and for such instructions, the sequencer proceeds into its NOP states.

If the instruction only calls for a data fetch from memory, three cycles

are sufficient. However, if it calls for a store, then four cycles are

required. The example shown in the bottom half of Table 8 illustrates two

instructions, an ADD and an ADDM, using data from program memory. The add

instruction is an example requiring only a data fetch. In this case the

program counter is stalled during the index cycle, and during the execute

cycle, the 11 read code normally hard-wired to the program memory bus is

defeated to a 00 level so that the data memory bus ORing with it will in­
troduce whatever codes are appropriate to the data operation. This will

be a read code so there is no effective alteration. However, in the in­
struction following, the ADDM, the code transmitted on the data bus would

be a write code. Since the next 2-bit memory cycle time must be devoted

to writing, the earliest time at which the program counter contents can be

restored as the memory address is in the following cycle. To account for

this extra one-cycle delay, another NOP cycle is introduced and, addition­
ally, the program counter is stalled during the execute state.

5.4.5 Instruction shift register.-- The instruction shift register

uses the same typical 12-bit shift register as found in the rest of the

machine. This register normally shifts in data from the output of the

program memory switch. On one instruction, the modify instruction command

(MDI), it switches to the output of the adder. The MDI instruction is in

the class of those that cause an index operation although it is a single­
cycle instruction. Thus, it treats the next instruction which follows as

an address, performs an index on it, and shifts it into the instruction

shift register. On the word strobe that follows, the modified instruction

is dumped in parallel into the instruction register, where it is decoded

and executed.

5.4.6 The program memory switch.-- The program memory switch is used

to select the memory module which will be used as the source of the pro­
gram for the logic unit. It performs a 16-way switching of two buses, one

leading from the program counter to the memory and the other leading from

the memory to the instruction shift register. It uses the standard 16-way

switch configuration used in the data memory and register switching. A

4-bit register is set by the set program memory page (SBPM) instruction

which transfers the low order four bits of that instruction into the regis­
ter. The register is fully decoded for 16 states, and the decoders operate

a pair of gates, one going to each memory from a common bus which is also

the information entering the program counter, and the other from the memory

to a common bus leading to the instruction shifting register. There are

control buses to disable the switch for the condition of interrupt when the

ZERO address must be sent to the program memory and when the returning data

from the memory must be forced to ZERO.

79

The switch must also be disabled when the command unit forces an in­
struction into the instruction shift register. In this latter case the

data from the command unit is ORed onto the bus leading to the instruction

shift register. There are connections for two separate command modules.

Each such connection includes a 4-bit decoder and data line. The codes

which are used to address the command units overriding function are dis­
tributed throughout the system and each of the 4-bit decoders must be tied

to the buses to reflect its own decoded address. The data bus from each

command module is common. When the coded lines contain a correct address,

the control level is brought up to disable the program switch, forcing its

output to ZERO and the data from the command module is enabled to be ORed

onto the bus to the instruction register.

5.4.7 The data memory and register select switching.-- The data mem­
ory switch is a 16-way switch identical to that of the program memory. It

is controlled by the data memory register, a 4-bit register, the contents

of which are loaded by the set data memory page (SDMP) instruction. This

loads the four low order bits of that instruction into the data memory

register. It is decoded to enable one of 16 two-way buses, coming from

the adder output to the memory register and from the memory register to

the B input of the adder.

Another similar switching section chooses the registers addressed in

each instruction by decoding the six low order bits of the instruction.

The register switches are of variable size in 16-bit increments. The first

four bits of the instruction are decoded in common in all sections of the

switch, while the high order two bits go through separate decoders and en­
able only one of the 16-bit sections.

The register address ZERO on the first switch section only is hard­
wired to the value ZERO to provide a register whose contents is always

ZERO, and the first two register addresses of the same switch section con­
nect to the accumulators. The register switch operates in conjunction

with the memory switch, and both are ORed together, feeding the B input of

the adder.

When IR7 is a ONE in the instruction register, it indicates a memory

instruction, and the memory switch is enabled. The register switches are

disabled by a signal called INHIBIT REGISTERS (INHR) which enters the de­
coders of the high order selection bits and disables them. When IR7 is a

ZERO, signifying a register instruction, the memory switch is disabled and

the register switch is enabled. An exception occurs when IR7 is a ONE

during the index portion of that instruction. In this case, half of the

memory switch is disabled, inhibiting the input from the adder, and the

register switch is allowed on that bus. The other half of the memory

switch controlling the adder input to the memory is enabled. Thus, the

register selected feeds the input to the adder while the adder output feeds

the memory. The register output is cycled back through the register switch

to the register from which it came.

80

For instructions XCH, STA, NEG, STPC, SKDR, MSKR, and OUT, the adder

output must be transferred to the registers, the loop from the register

output back to the register input must be broken, and the register adder

output must be inserted.

The input to the switch must also be changed for the timing signal

transfer of bits 14 and 13, during which control codes must be transferred

from the output of the adder to the register. For the index operation,

the code generated is 11. The memory copies this directly, causing a read.

It is inhibited during bit 14, however, on its way to the register, sending

a 01 code to the register, or simply SHIFT.

5.4.8 Adder input switches.-- The two inputs to the adder are labeled

A and B. Each on' comes from a number of different sources. The B input

is fed by the memory/register input bus except for those instructions coded

with ZEROS in bits 7 and 8; in that case, the input from the memory/register

bus is blocked to ZERO. For these instructions, the adder does not have

to be a function of the data on this bus. Included are such instructions as

XCR and INP, where the data is significant but it enters the accumulators

directly without going through the adder and instructions which use another

input to the B port of the adder, the inverted memory/register bus. This

inverted bus is used for the one's complement signal used in subtraction

and is switched in by the subtract (SUB) and equivalence (EQVR) instruc­
tions as well as the NEGR. Another cause of forcing the input from the

memory/register output bus to ZERO is during the multiply step when the

value of the multiplier digit tested is ZERO.

Other inputs to the B port of the adder are the inverted outputs of

the two accumulators. They are used only in certain skip instructions in

which the accumulator entering the B port of the adder is subtracted from

that entering the A port. The carry is set to ONE initially and the B in­
put is inverted to accomplish this subtraction. Some of the skip instruc­
tions in this group require that the number being subtracted is ZERO.

Since the carry is inserted as a general case, the ZERO is created by put­
ting a third gate on the bus, which forces the bus to a constant ONE.

This could be consideredxas a minus one and the addition of a carry to

make it zero.

The A input to the adder also has a number of gates ORing into it.

Primary among these are the two accumulators selected by the accumulator

bit of the instruction (IR6). During the index cycle of the sequencer,

the output of the program select switch goes into the adder, and the inputs

from the accumulators are blocked. In one of the index instructions, JMPR,

this gate is blocked to ZERO so that the index address from the register

alone is the effective address of the jump. For the STPC instruction, the

output of the program counter is brought into the A port of the adder.

These then are the six data signals which are introduced into the A port

of the adder: the output of either Accumulator 1 or Accumulator 2, the

program counter, the program switch, forced to all ONES, or forced to all

81

ZEROS. The latter occurs in the NEGR instruction when the A port is forced

to ZERO so that the contents of the register is subtracted from ZERO. In

the skip and decrement (SKDR) instruction the whole bus is forced to all

ONES so that the contents of the register are added to minus ONE.

5.4.9 The adder.-- The adder is a two-level min-term decoder of all

the min-terms of 3 variables: the A input, the B input, and the carry,

which will cause the sum to be a 1. Similarly, for the carry, the min­
terms which will cause carry to be a ZERO are ORed. The two conditions of

overflow are detected from thse gates and are strobed into the overflow

flip-flop during the period the sign bit is being decoded. The two condi­
tions are both sign bits ZERO and carry present or both sign bits ONE and

no carry present. The carry flip-flop is set to ZERO with each word strobe

and is enabled only by the instructions requiring an arithmetic result,

such as ADD, SKP, MSTP, SUB, NEG, and SKDR. These instructions also enable

the overflow detection. On the subtract and the negate instructions the

carry is set to a ONE during bit 14 of the timing counter and this, together

with the inversion of the input of the adder, provides the subtraction.

The logic functions are obtained through the min-term decoders used for

addition by forcing both C (carry) and C (not carry) to a ONE. This pro­
vides all four min-terms of A and B ORed into the adder, and the boolean

functions AND and OR are obtained by selectively enabling the correct min­
terms. The mask instruction is obtained with the addition of one more gate.

The carry is a ZERO for this instruction, and the adder reflects an EXCLU-

SIVE OR of the two inputs A and B. One half of the EXCLUSIVE OR is dis­
abled so that the function into the adder is AB. If the accumulator is

ZERO, B will be copied; otherwise, that gate produces ZERO. A separate

gate AND's the two accumulators together producing a ONE when the masking

accumulator and the data accumulator both contain ONE. This is ORed into

the adder on this mask instruction.

5.4.10 The accumulators.-- The logic unit has two accumulators which

serve to provide one input to the adder and to receive its output. A

single bit, IR6 in the instruction, determines which accumulator is to be

used. The accumulators are made up of the typical 12-bit basic shift regis­
ters used throughout the machine connected as a LEFT/RIGHT shift register

(see paragraph 5.2).

The data paths are selected by one of eight gates ORed together at the

input of each accumulator. Two of these are for connection to the command

module so that it may force data into the accumulators. The other six

gates take data from various places within the logic unit. In general, the

input is taken from the adder output. In the case of the exchange and load

accumulator instructions, this gate is blocked and another gate is enabled,

copying data from the memory/register output bus. This must be done since

in the exchange instruction the adder is copying the output of the accumu­
lator. This provides a path not through the adder but directly into the

input of the accumulator. Having once done this for the exchange instruc­
tion, it is convenient to do it for the load accumulator instructions.

82

The gating of the skip (SKP) and shift (SHF) instructions must be

treated as a pair since there are some shift instructions coded by using

certain unused codes in the SKP instruction. For these, the gate copying

the output is also disabled in addition to the gate copying the signal out

to the registers. The gate6 that are enabled by SKP and SHF are those that

cycle the register upon itself and that,extend the sign, or high order, bit

leftward as the shift takes place.

For all instructions beginning with a 10 in the high order of the

register field, the sign extended gate will be enabled. This includes the

shift right arithmetic instruction (SRA) and long shift right arithmetic

(LSRA). To create the shift right logical instruction, the cycle (CYO)

(CYC) gate need only be disabled, thus shifting a ZERO into the left end

of the register. The double length shifting instructions gate the same

functions as already described tb the input of Accumulator 1. Then, both

the cycle and the sign-extended gate of Accumulator 2 are defeated and the

output of Accumulator 1 is introduced.

The multiply step (MSTP) instruction OR's in with the long cycle in­
structions to enable the operative Accumulator 1 to feed Accumulator 2.

At the same time, a separate gate disables the adder output from going to

Accumulator 2. The output of the adder is read into Accumulator 1 and the

output of Accumulator 1 shifts into Accumulator 2.

A special case for shifting right inputs is when the accumulators are

addressed as registers. In this event, the adder output gate which would

normally be enabled at this time is disabled and the bus which goes out to

the registers is copied instead. A straight decoding of the R field regis­
ter address levels accomplishes this. Both accumulators are located on

the lowest 16-bit segment of the R field switch.

For shift left instructions, a decoding of the shift left instructions

switches the accumulator to the shift left configuration. A ZERO is shifted

into the lower order of Accumulator 2 under all conditions. The input in­
struction OR's with the shift left instruction to cause the register to

shift left. A gate is-eabled, introducing the memory/register output bus

into the right end of Accumulator 1. On an input instruction, the data

shifts in from the right.

Long shifts are coded by a 10 in the first two bits of the SKP in­
struction, differentiating it from the short shifts coded under the shift

instruction. This 10 decoding is used to enable a path from the left end

of Accumulator 2 into the right end of Accumulator I for the long shift

left.

5.4.11 Accumulator clocking.-- With one exception, the accumulators

shift on the shift clock pulses that occur during counts 12-1 of the timing

counter. Counts 14 and 13 are excluded by a bus which gates them out of

register transfers generally. This is a typical pattern throughout the

machine.

83

The exception is when the multiply step instruction causes the accumu­
lators to shift with the word strobe. Accumulator 1 is allowed to shift

with the normal 12 SC pulses plus the word strobe, which is ORed in on the

clock bus, and Accumulator 2 is allowed to shift with the word strobe only.

Thus, Accumulator I performs a full 12-bit ADD and then, on a 13th pulse,

the word strobe shifts out the low order bit of that sum into Accumulator

2, which also shifts once at that time on the word strobe.

The gating level controlling SC pulses comes from an OR of the control

signal from the command module and a level from the shift and skip instruc­
tions, with bits 2 and 3 in the register field a 10. This latter class of

instructions is the conditional skip or arithmetic comparisons between the

two accumulators. Consequently, both accumulators must shift for these

instructions. A third such ORed level comes from a decoder: the sequencer

state 00 or execute, plus the accumulator's selection bit, which is ONE for

Accumulator 2 and ZERO for Accumulator 1. In addition, the shifting of

Accumulator 2 must be limited for certain instructions which are coded with

a ZERO in bit 6 but which do not require shifting of accumulators. These

are inhibited by two decoding circuits; the first decoding JMP and JMPR,

the second decoding NOP, STPC, SMP, and NEGR. The only such instruction

which unconditionally inhibits Accumulator I is skip and decrement (SKDR).

The input (INP) and mask (M4SK) instructions cause a conditional inhibiting

when the mask bit coming from the low order bit of Accumulator I is a ZERO.

The input and mask instructions also require the other accumulator to cycle

to provide the mask, and, therefore, one of the ORed levels permitting

shifting of Accumulator 2 comes from the decode of these instructions. The

one remaining ORed signal that permits shifting of both Accumulator 1 and 2

decodes the double length shifts which require a shifting of both accumula­
tors regardless of the accumulator bit.

Inhibiting the circuit which enables long shifts and the circuit which

enables shifting on the proper accumulator bit is a circuit which is in­
tended to halt shifting for shift instructions when the timing counter

reaches ZERO. This circuit decodes the instructions skip (SKP) and shift

(SHF) and a decode of ZERO from the timing counter. Actually, it is only

the shift instructions which should cause the halt. Consequently, skip

on bit set must be specifically excluded from this decoding by a separate

circuit. -The skip-on arithmetic comparison signal enters the logic in

such a position that the shift halt circuit cannot be effected, thus not

requiring this exclusion.

5.4.12 Timing counter.-- Timing of the logic unit operations is

governed by a timing counter located in it. This is a 4-bit down counter

which is initially set to the number 14 by the word strobe. It then counts

down on each shift clock pulse to the number ZERO. During the counts of

14 and 13, the registered control codes are transmitted, and during the

counts 12 through 1, the data transfers take place. In the case of shift

instructions and certain skip instructions, the count is jumped after 13

to some number taken from the register field of the instruction. It then

counts down that number of shift clock pulses and locks at the count of

ZERO. In the case of shift instructions, this leads to shift N times, and

84

in the case of skip on bit N, the count of one strobes the bit of interest

while the accumulators are allowed to shift a full 12 bits, as in other

instructions. For most instructions the accumulators are allowed to shift

for all counts other than 14 and 13 if the instruction uses them.

5.4.13 Skip.-- The skip instruction operates by performing a test

during the execute cycle and inhibiting the copy next instruction (CNI)

signal which would normally occur at the end of this cycle if the outcome

of the test warrants. If the copy next instruction signal is inhibited

at this point, the sequence counter will continue stepping through two no

operation (NOP) cycles before again creating the copy next instruction sig­
nal. During this time, the next two locations in program memory will have

been passed over and the third location following the skip will be copied

as the next instruction.

There are two basic groups of tests for skip: skip on bit N and skip

on arithmetic condition. Skip on bit N is coded with N from 1 to 12 in

the register field. This number is used to jump the logic unit timing

counter so that the count of 1 appears at the appropriate time to strobe

the bit in question and set the test flip-flop.

The general form of the arithmetic skips is to defeat the signal jump­
ing the timing counter so that the count-of-one strobe coincides as usual

with bit 12 of the transfer. The opposite accumulator from that indicated

by the accumulator bit in the instruction is then subtracted from the ac­
cumulator indicated, and the sign bit is used to set the test flip-flop.

Since it must be possible to skip on the difference of any two numbers

within the range of the machine, it is possible that the test subtraction

may yield an overflow result. The output of the test flip-flop is EXCLU-

SIVE ORed with the overflow flip-flop so that the effect of the sign bit

is reversed if overflow results from the subtraction.

A third condition of skipping is provided by overriding the strobe so

that all bits of the difference are, in effect, strobed. With the test

flip-flop locking on any ONE bit detected, this detects the condition that

Accumulator 1 * Accumulator 2.

These three skip conditions are doubled by forcing the accumulator

indicated to be ZERO and tripled to a total of nine by forcing the number

subtracted from it to be ZERO. The accumulator indicated is forced to be

ZERO by blocking the input to the adder, and the number being subtracted

from it is forced to ZERO by forcing the other input to the adder to be

all ONES. Since subtraction is accomplished by adding the two's complement

of the number being subtracted, the signal itself is inverted to form the

one's complement, and an initial carry is introduced into the adder.

The one remaining class of skips is skip on overflow. The overflow

conditions are detected by strobing the appropriate decoding circuits dur­
ing the time when the sign bit is present. The two conditions decoded

are: both the sign bit positive and a carry present, or both the sign bit

negative and no carry present. These represent positive overflow and nega­
tive overflow respectively. The state of overflow flip-flop is set into

the test flip-flop as the condition for skipping.

85

In addition to the 12 jump on biC set instructions, the nine arithme­
tic conditions, and the overflow, there are also instructions to skip on

the complement of each of these conditions. Thus, there is also an instruc­
tion for skip on bit not set, a skip on no overflow, and such instructions

as skip on Accumulator 1 < Accumulator 2, which is the complement of Ac­
cumulator I > Accumulator 2. In total, there are two overflow skips, 24

bit skips, and 18 arithmetic skips.

5.4.14 Program counter.-- The program counter is made up of the same

typical 12-bit shifting register used throughout the machine. At its in­
put is a serial half adder with a carry flip-flop. This is used to seri­
ally add one to the program counter. The carry flip-flop is set 6o a ONE

with each word strobe and continues to propagate as long as there are ONES

emerging from the low order end of the register. This flip-flop i not

initialized to ONE on the word strobe when the program memory switch is

set to ZERO, preventing incrementing when the command override.is in effect.

That is, a ONE from the register and a ONE from the carry is the condition

for propagating the carry into the next bit. In addition, there'are gates

for steering the input to the program counter under conditions of jumping

and interrupting. A decoding 6f either the jump instructions plus the

level indicating an indexing state in the sequence counter will force both

halves of the half adder EXCLUSIVE OR to ZERO and enable a path from the

adder output into the program counter. The jump instructions use an index

cycle so that during the index cycle, the index result will be transferred

from the output of the adder to the program counter. During the execute

cycle of a jump, nothing takes place except waiting for the memory to re­
act. There is also a gate forcing the output of the program counter to 1,

ZERO. This is used during interrupt, when it is desired to force the pro­
gram counter and the memory address to ONE. Since the interrupt forced

the previous contents of the program counter to ZERO, incrementing effec­
tively forces the new contents to ONE. Details of this operation can be

found in the discussion of the interrupt. There is also gating included

to stall the program counter while data fetch cycles are taking place in

the program memory under the condition that the program memory and data

memory are the same. In this case, the shift clock to the program counter

is blocked, preventing incrementing to the next location while the program

memory is used for data.

5.4.15 The interrupt mechanism.-- Interrupt is accomplished by tak­
ing over certain control signals with a 2-bit sequencer called interrupt

zero (INTO) and interrupt one (INTI). Exercise of this function is en­
abled or inhibited by a flip-flop called enable interrupt (EINT). Table

9 indicates the timing of the interrupt sequence. The slashes are used

to indicate the contents shifting into a register on the left and the con­
tents shifting out of it on the right of the slash. In this example the

last instruction to be executed before interrupt is the contents of loca­
tion 19 (LOC19). Upon occurrence of the interrupt signal, the INTI flip­
flop is set to a ONE. The decoding of this condition creates an inhibit

signal which forces both the bus from the program counter to the memory

and the bus from memory to the instruction register to ZERO. These two

buses are not forced to ZERO until after the two control bits starting a

86

http:override.is

TABLE 9

INTERRUPT TIMlING

PC tDl IR R INTl INTO EINT

20/19 201(19) (18) 0 0 1

21/20 0*/(20) (19) LAST INST 1 1 1

22/21 22/(0) 0 - 1 1 0

1*/22 1*/(22) (0) STPC R 22 0 1 0

2/1 2/(1) 0 22 0 0 0

- - (1) INT ROUTINE 22 0 0 0

- 22 0 0 0

- - 22 0 0 0

11/10 11/(10) - 22 0 0 0

12/11 12/(11) (10) EINT 22 0 0 0

20/12 20/(12) = -2 (11) JMP R 22 0 0 1

20/12 21/(20) - (1) 0 1

(20) NEXT INST

Forced by hardware

read cycle are sent to the memory. This is accomplished by gating this

inhibit level with-a timing level from the timing counter section of the

logic unit. This timing level is high for the 12 data bit times only.

This places a ZERO in the address of the memory and forces a ZERO or NOB

instruction as the next instruction following the contents of location i9.

The interrupt is gated with a copy next instruction (CNI) level so that it

can only be initiated on the last step of the previous instruction. After

one cycle, the contents of location ZERO then appear in the instruction

register. This location should contain the store program counter register

(STPO) instruction. This stores the program counter (which by this time

is larger by 2 than the correct return address) in a register. The se­
quencer is then allowed to change the program counter by forcing the pre­
vious contents of the program counter, as seen in the incrementing half­
adder, to ZERO. With the incrementing taking place, the address next

created is ONE. Another ZERO must be forced in the instruction register

to wait for the contents of location 1 to appear. Then, the contents of

location 1 appear in the instruction register and the interrupt routine

is begun.

87

In the course of sequencing through these control signals the enable

interrupt flip-flop is cleared so that while in the interrupt routine, an

interrupt cannot be received, as this would lose the original address. The

last two instructions of the interrupt routine should be enable interrupt,

(EINT) and jump (JMP) to location minus 2 indexed by R (which contains the

return address plus 2), and this creates a correct effective return address.

The ONE in parentheses indicates the earliest time at which a new interrupt

could be received, since interrupt is gated by the copy next instruction

(CNI) level and this occurs during the second cycle of a jump instruction.

5.5 I/0 Register

The register control logic is shown in Figure 24, the state diagram

in Figure 25 and the timing diagram in Figure 26. In this discussion the

register mode connections are assumed, i.e., REG=l and MEM=0. The 2-bit

control code (COD) transmitted by the logic unit is received in the control

register (CR). The contents of this register will be described in the

order CR2 to CR0 with X's indicating "don't care" digits. The CR is pre­
loaded with the number 100 and as the control code shifts into it from the

left, the I moves to the rightmost position: XXI. The first digit of the

code (CO) determines whether data is to be loaded from the input channels

into the shifting register or not. This transfer takes place during both

input and output operations, although the data is used only for the in­
putting operation. In the output operation, the data shifting in replaces

that loaded from the input channels, and the latter is never used. After

the second code bit (Cl) has been received, the register will shift on the

remaining 12 SC pulses for all operations except no operation (NOP). The

ONE in CR0 at this time activates the shifting gates rather than the paral­
lel inputs. This ONE also inhibits further shifting of the CR by blocking

the shift clock (SC). Thus, the control code remains in CRI and CR2 until

the WS pulse, which is not blocked, steps the register to its next state,

which is 100 for all cases.

For the output operation, the WS pulse loads the buffer register with

the data that has just been shifted into the shifting register. For the

input or output operations, the WS pulse also sets the INPUT/WRITE or

OUTPUT/READ flip-flops respectively. These are reset in every instance by

the second SC pulse of the next operation which is gated by decoding XIO

in the CR. These 2-microsecond pulses serve to signal the peripheral de­
vices that data has been input or output respectively.

5.6 Memory Unit

The basic memory storage cell uses complementary MOS circuits for low

standby power. The Memory Unit uses the I/O register module as both the

memory address register and memory data register. Other LST circuits are

used for address decoding and bipolar-to-MOS interface circuits. Figure 27

is a logic diagram of this unit.

88'

M.LINI-- J

Figure 24. LSI MULTIPAC I/0 Rpgistcr

FOLIDOUT FRAM FOLDOUI E s919I

000

IST SC PULSE 	 10

10 NOT 3 	 1-100OS 	 NOTE 1,3
2ND SC PU LSEN O E 1,N O E 1,N T S 1 2

:3RD THRU 14TH

NO OPERATION SHIFT OUTPUT/READ INPUT/WRITE

NOTE 1: 	 DIGITS IN BOXES CONSTITUTE CONTROL CODES (CCD'S) AND ARE INPUT FROM
THE DATA LINE INTO THE LEFT END OF THE THREE-BIT CONTROL REGISTER AS IT
SHIFTS RIGHT.

NOTE I: ENABLES CLOCK PULSES (SC) TO THE SHIFTING REGISTER IN REGISTER MODE.

NOTE 2: ENABLES CLOCK PULSES (SC) TO THE SHIFTING REGISTER IN MEMORY MODE.

NOTE 3: ENABLES A CLOCK PULSE,(SC) TO THE SHIFTING REGISTER IN MEMORY MODE IF THE
THE INP/RD FF IS SET.

Figure 25. State Diagram of E-/M Control Section

cc

WORD STROBE (WS) LI

SHIFT CLOCK (SC)

DATA INPUT (DIN) C4.
FROM LOGIC UNIT

CR2 I

CR1 0

CR4' CDo 0

SR11 (SHIFT) y

SRP(INP)1 /

BUFFER REGISTER

INP/WR2

2
OUT/RD

SR03/(RD 2' 51F110)

IF

C1 i4 DI D2 D3 D D5 D617 iD8 D9 D I 01DII

C c I

1 Cq. b0

0 1 DII D2 I D3 D5 D7 I 0

D 02 DS D4 05 D6 DY I8 D9 I DIO DID

A CH' 0c-2 101 10C161 D,ICII ICH ICH ICH71CH8 11CH9 ICHO0I

IOUTPUT/ADDRESS DATA

NOTE 2 m-jc NOTE4

1MDp I MDI I MD2I-MD3I MD4IMD5 I MD61 MD71 MDBj MD9 IMDI01MD111DO

NOTE 1: REGISTER OPERATION ONLY
NOTE 2: GATED BY CONTROL CODE (CCD) OF PREVIOUS CYCLE
NOTE 3: MEMORY OPERATION ONLY
NOTE 4: GATED BY CONTROL CODE (CCD) OF CURRENT CYCLE

Figure 26. Timing Diagram of R/M Control Section

I

L
x

ny]LO

F
q5C

fOLP B(: ~~FigurelT FRAME

27. MULTIPAC
Memry

Bit 11L ..

Unit (Typical Coro

fi-,n innd I Shown) net, ..FOLDOUT FRAME 9

When the register portions which are the I/0 register module are used

in the memory selection, the address is transferred into the shifting reg­
ister with a READ control code which causes it to be transferred to the

address buffer. The OUTPUT/READ flip-flop is set for 2 microseconds fol­
lowing the WS pulse, and this serves the memory as a read strobe.

The MEM and REG input signals must be hard-wired to logic ONE and

logic ZERO respectively for use of this circuitry in the memory. The

changes which occur are indicated in Figures 25 and 26, the state dia­
gram and timing diagram of the R/M Control Section. The change effected

is basically that the loading of input signals into the shifting reg­
ister is not enabled unconditionally by state 110 of the control reg­
ister (CR) as it is in loading interface signals into the I/0 Register.

Instead, it is enabled by the state X10, which occurs in any event at

the second SC pulse, and the ONE condition of the OUTPUT/READ flip­
flop. Thus, after the read pulse has been up for 2 microseconds, the

outputs of the sense amplifiers are loaded into the register.

Writing is accomplished by following the read operation with a trans­
fer of data to be stored into the shifting register preceded by a WRITE

control code. This causes the OUTPUT/WRITE flip-flop to be set by the WS

pulse, and it remains up for two microseconds following the transfer. The

memory address is not disturbed from the previous read operation; the data

to be stored is read directly from the outputs of the shifting register

since it is inactive during this 2-microsecond period. Thus, owing to the

control logic used, the Memory Unit as a whole operates in a read-modify­
write mode.

The modified register logic described above may be used to interface

with any memory storage medium which can be accessed in the required

2-microsecond time. It is recommended that a 192-bit complementary MOS

memory circuit be procured. This medium is the lowest powered circuit

available, taking into account the drive circuit requirements of magnetic

storage, and it has more than adequate speed. Sixteen and 32-bit chips

are presently on the market and similar 64-, 256-, and 228-bit chips are

under development by several manufacturers. The proposed memory organiza­
tion shown in the block diagram has been derived from these sources and

adapted to the MULTIPAC requirements, but it is strictly a preliminary de­
sign to guide preliminary estimates and contacts with possible suppliers.

Since bipolar circuits are used for system logic and complementary

MOS for memory storage, interface circuits will be required. These would

be typically 5-volt to 10-volt level converters for address and data in­
puts. The method of sensing the memory will govern the type of interface

circuits from the memory to the logic, either voltage level converters or

current sense amplifiers to approximately 5-volt logic levels as shown.

Interface circuits, in general, must be carefully designed to minimize

their power consumption since the relatively low impedances of bipolar

circuits and high logic levels of MOS could lead to excessive power re­
quirements. This problem can also be minimized by doing as much decoding

on the memory chip as possible to minimize the number of address drivers.

95

The method chosen uses a two-way coincidence of a pair of I of 16 decoded

levels to select a 16-word chip. The chip,in turn, decodes another 4 bits

to select a single word. This requires only 36 level converters for a

4096-word memory. A 2048-word memory, shown in Figure 27, needs only 28

converters.

The storage device proposed is a modification of the 256-bit comple­
mentary M0S memory chip developed by Westinghouse under NASA contract num­
ber NAS-5-10243. The modification required consists of those measures

necessary to permit use of the 16-word, 16-bit memory, which has been de­
signed on a single chip, as a constituent part of a larger multiple-chip

memory. Such expansion required a method of addressing a selected chip

from among others, preferably a coordinate-select method, and a method of

ORing the bit lines from each chip without extensive external circuitry.

Either of these functions could be carried out in external circuitry but

would require a larger number of extra gates and interface circuits to do

so, whereas a slight modification of the chip would allow them to be ac­
complished by simple bussing interconnections of the memory chips them­
selves.

The logic diagram of the Memory Unit shows one possible such modifica­
tion requiring only four gates and two additional external connections per

chip. These modifications would permit X-Y selection of the chip in addi­
tion to the normal decoding of the word on the chip and wired OR operation

of the bit lines. The latter would be high impedance from all but the

selected chip during read, and high impedance from all chips during write.

In this condition the write drivers are enabled to drive the bit lines.

The select signal (S) of the memory is the OR of both READ and WRITE.

This signal connects the internal flip-flops for the word selected to the

bit lines. For the READ operation, these bit lines are gated to the out­
put level converters (MBIC). For the WRITE operation, the internal cross­
coupling of the flip-flops of the word selected are disconnected and the

bit lines are driven to the input levels by the input level converters

(BMIC).

The memory is volatile and hence will be destroyed upon power turnoff.

If the memory is loaded prior to launch, then the spacecraft must be

launched with power on the memory storage cells or the program will be de­
stroyed. The power supply for the memory cells is separate from the logic

since it is a different voltage. Since the standby power of the CMOS

storage cells is extremely low, very little power will be drawn during

launch.

5.7 D/A Register

The D/A Register (shown in Figure 28) uses two of the three LSI cir­
cuits of the I/O register: R/M Control and Shift Register. The buffer

register circuit is replaced by a set of analog switches, a ladder network,

and one or more isolation amplifiers. Only one isolation amplifier is

shown, but more could be added in parallel if protection from one experi­
ment shorting this output is desired. Some protection exists since there

are two D/A Registers.

96

o
AIISD D11511 4*T5UT

SET

AFigure 28 MULTIPAC /A Register

FOLDOUT FRA. FD"

-- 79FOLDOUJT FRAMEFOLDOUT FRALYA

The ladder network will most likely be discrete and the isolation

amplifier will probably be a standard operational amplifier integrated

circuit.

5.8 Command Unit

The Command Unit (shown in the logic diagram of Figure 29) accepts

serial data from the Command Receiver in 16-bit words. It distinguishes

between normal commands read by the program and overriding commands by the

most significant four bits. A normal command has these four bits as all

ZEROS. For these, it simply sets an I/O flag and holds the data until it

is read by the program.

The other 15-bit combinations of these four bits specify one of three

locations in one of five logic units. The three locations in each logic

unit are its instruction register and its two accumulators. When such an

overriding command is received, the Command Unit sends the 12 bits of data

and the 4-bit address to all logic units, where each logic unit has hard­
ware to decode the address and gate the data (if addressed) to the proper

location.

In the allocation of register addresses, only two addresses are allo­
cated for the two telemetry registers and the two command registers. If

these registers are addressed by an input instruction, the command module

is assumed; otherwise, the telemetry module is addressed. Thus, only one

register control section is needed for a telemetry-command combination.

No control section is shown on the Command Register logic diagram (Figure

29). It uses the INP/WR level from the control section of a telemetry reg­
ister with the same address.

Data from the Command Receiver is shifted into the upper shift reg­
ister of the Command Register with a clock supplied by the receiver. When

all 16 bits are in, the receiver signals the register with a DATA FINISHED

level. Two flip-flops are connected as a 2-bit shift register shifted with

the word strobe to perform asynchronous-to-synchronous conversion of this

level and obtain a one-time transfer level to gate the 16 bits into the

other shift register and command address register portions of the Command

Register. This level, obtained by decoding the first stage of the 2-bit

register as a ONE and the second as a ZERO, will last for one period from

one word strobe to the next. A set-reset flip-flop is then set to a ONE,

and if this was a normal command (Command Address = 0), this signal which

appears at the I/0 interface on some input channel, may be sensed by the

program. The INP instruction will set a control flip-flop on the second

SC pulse (the first is counted out with a flip-flop) with the INP/WR signal

from the R/M Control Section of the telemetry unit with the same address,

and the following 12 pulses will shift the lower shift register. This con­
trol flip-flop and the set-reset flag flip-flop will be reset on the first

SC pulse following the next word strobe. This clearing is performed by the

same flip-flop which counted out the SC pulse previously because this flip­
flop is cleared on every word strobe and is set to a ONE by every SC pulse.

99

When an overriding command (address # 0) appears in the command address

flip-flops, the same control flip-flop that INP set will be set and the

lower shift register will be shifted by the same 12 SC pulses. Since the

command address flip-flop levels are connected to all logic units, hardware

at these units will decode these levels and open the correct gates, allow­
ing the 12-bit data to be shifted into the proper register. At the next

strobe, the command address register will be cleared in addition to the

control flip-flop.

The input connections from the Command Receiver also are wired to an

external input connector to facilitate loading of programs on the ground

before launch, when the Command Receiver is off.

5.9 Telemetry Unit

The Telemetry Unit interfaces with the modulator of the telemetry

transmitter which is used to transmit the spacecraft data to the ground

station. The design of this unit is highly dependent on the final design

of the telemetry modulator. (It is assumed here that the convolutional­
encoder is part of the telemetry modulator and any switch to bypass the

encoder is in the modulator also.) The design presented here assumes that

the modulator accepts data serially one bit at a time. If, instead, the

modulator would accept 12 bits at once, then these need no special telem­
etry register. A standard I/O Register would suffice. This pushes the

unique logic in the present telemetry register into the modulator which, of

necessity, has to be specially designed and fewer module types would be

needed for the MULTIPAC system.

The detailed logic diagram of this unit is shown in Figure 30. Two

of its circuits are the same as an I/O Register. The other two circuits

are the Telemetry Buffer Register and associated logic. The buffer regis­
ter shifts, including a 1-bit high order extension of it, on the telemetry

clock pulses. A 1-bit extension flip-flop is preset to a ONE when data is

transferred to the buffer register. Shifting fills the buffer register

from the left with ZEROS. When the ONE reaches the next-to-low-order stage,

the state 00028 or 00038 is decoded by a 12-input NAND gate. This gate

causes the next telemetry clock pulse to load a new telemetry data word in

parallel from the shift register and to preset the extension bit again.

When the extension bit is set, a set-reset flip-flop (shown as cross­
coupled NAND gates) is set to serve as a flag to the processor to advise

it that the next telemetry word should be transferred into the shifting

register. On an output (OUT) instruction, the flag flip-flop is cleared

by the word strobe to prevent ambiguity.

The telemetry clock, in the non-coherent telemetry mode, will most

likely be divided down from the basic oscillator in the Timing Generator,

not the word strobe. Thus, in both this case and in the coherent mode,

the telemetry clock will be asynchronous with the telemetry clock signals.

The flag flip-flop must be set synchronous with the word strobe so that it

cannot be set during or after reading the flag and yet be automatically

100

k . I.I. I

I 0EE~T
LL

000 1 1 . 0 1 0 D

ROM ts-.T
S I

I 010 TO

DOIJ

11T5

~Fige
29. MULTIPAC Co.and Rister

f O! B ... rRA I~i IFOLDOUT FRAI~E r

- - - - - - - - - - -- - --

F

L
4 r

I 0 I 0 I0 I 0 I 0 I I 0I 0 I 00

*0 C

If~

I 7-ID

1W32o I

11 0 Ij

30. MULTIPAC Telemetry Unit /Figure

FLOTFRM
FOLDOUT FRAME

0/0

cleared on an OUT instruction. Two flip-flops are used to convert the

asynchronous occurrence of need for more data in a manner identical to

synchronizing the DATA FINISHED signal in the Command Unit. The setting

of the extension bit to a 1 is used for the data request information since

this guarantees that the previous data is transferred to the lower regis­
ter. The word strobe majority logic is duplicated since those signals are

not available outside the R/M Control LSI circuit.

The input interface signals on this module cannot be used since INP

instructions refer to the Command Unit.

Some logic in the control section and input gating to the unused input

channels could probably be eliminated, but in the interest of reducing LSI

chip types, it is identical to the I/O Register. As in the I/O Register,

REG and MEN must be wired to ONE and ZERO respectively.

5.10 Timing Generator

The Timing Generator, shown in the logic diagram of Figure 31, pro­
vides both the shifting clock (SC) pulses and the word strobe (WS) pulses

to all other modules. Each of these signals is supplied in triplicate

throughout the system and is decoded by majority voting gates at each

module interface. The Timing Generator is driven by I-MHz square waves.

One of two 1-MHz oscillator and squaring circuit combinations is selected

by the Command Receiver which will switch from one to the other with a

special command.

Each of the three counters is a feedback shift register. The regis­
ter shifts right each clock pulse, with the input to the first stage equal

to the EXCLUSIVE OR of the two rightmost stages. This counter will se­
quence through the states shown in Table 10. The state 0000 (all stages

equal to zero) is not allowable for this type of feedback. In this case,

the register would normally "hang up" and continually stay in the ALL

ZEROS state. This condition is used to put all counters in synchronism.

When the left three stages of the shift register are ZEROS (states 0000

or 0001), the feedback is disabled and the counter will not continue until

at least one other counter is in the same state. When this counter and one

of the others is at 0000 or 0001, a ONE will be fed into the leftmost stage

of all three counters. At the same time ZEROS are forced into the other

three stages to guard against the possibility of failure of one counter

permanently in the 0000 or 0001 state.

In this manner a counter will hang up until one other is in synchro­
nism, and as soon as two are in synchronism, all three are forced to the

1000 state. If one counter fails, the other two will maintain synchronism,

assuming that two of the three SC and WC pulses will be correct.

105

TABLE 10

STATES OF TE TIMING COUNTER

0001

1000

0100

0010
1001

1100

0110

1011

0101

1010

1101

1110

1111

0111

0011

5.11lReal-Time Counter

The Real-Time Counter is made up of the three circuit types of the

I/O Register and one additional special circuit entitled Increment and Con­
trol. This new LST circuit, shown in Figure 32, will allow the shift reg­
ister to be incremented every word-time in an identical manner to that of

"the program counter of the logic unit. If the input labelled COUNT is at

'zero, then the flip-flop controlling the incrementing will be set to zero
at the word strobe and therefore no counting will take place. This feature
is used to expand the Real-Time Counter beyond 12 bits. To expand, we
take the output from the incrementing control flip-flop (labelled OVERFLOW
on Figure 11) and tie this signal into the COUNT signal on another Incre­
ment and Control circuit. This overflow signal will be a ONE when all 12
bits of the register are ONES and the word is being incremented to all
ZEROS. This is the only time that this flip-flop will be a ONE at word
strobe time, which will set a O0E into the incrementing control flip-flop,
allowing the shift register tied to this Increment and Control circuit to
increment once every time the preceding 12 bits overflows. The low order
12 bits of the Real-Time Counter will have the COUNT signal tied to plus

Vcc so that it will count at every word-time.

106

ULE S

TO ALL
MOD

II

W$1 TO ALL MODULES

Ir

~2 ODULESAL

- TO ALL MODULES

505 70 ALL OODULES

--CB To ALL MODULE5

Cc

3
C2

gS

NS C

LOGINC

°C V u o -

neVOU O'J-aW-sL

rr

S

-
555

____i,______ _I__ L 1 1 1

-+ OUT/PJD IND/v.,,+ L -O 04 OS OC DN' 01

C DOS II S .

, ,OauT To LOGC UNITS

L-
OIEQLOW NEADUT

A

Figure 32. Real-'ime Counter

yOLDOUT FRAME FOLDOUT FRAME 109/110

In Figure 11 an output buffer register is shown tied to the shift

register. This register is not needed for operation as a Real-Time Counter,

but its addition allows the generation of slow clock waveforms which are

binary multiples of the basic word-time. This buffer register will be

loaded once every word-time with the present ,state of the shift register

and will have the effect of a slowly counting register with a parallel

count output, instead of the continuous shifting of the shift register.

These slow clocks may be useful for some experiments and also for the

telemetry system when in noncoherent mode. These buffers need only be

added to those 12-bit sections for which slow outputs are needed. This

will probably be only the low 12 bits of the Real-Time Counter.

When the Real-Time Counter is longer than 12 bits, which for most

applications will probably be 36 bits, a method of choosing which section

to read for an input instruction is desirable to save using MULTIPAC

register addressing. 1,

Logic is included in the Increment and Control circuit to reduce the

number of MULTIPAC register addresses needed for Real-Time Counters longer

than 12 bits. For most applications, 36 bits will be used, giving a time

scale of slightly less than 2 weeks. Rather than use three addresses to

input the three 12-bit words representing the Real-Time Counter, the hard­
ware in the Increment and Control circuit will sequence through each 12-bit

section each time an input instruction addresses the Real-Time Counter.

An output instruction will reset this sequencing logic so that the next

input instruction will address the least significant 12 bits, the second

instruction will address the second least significant 12 bits, and so forth.

This is accomplished by connecting a special flip-flop in each Increment

and Control circuit together as a ring counter. An output instruction will

set a ONE in the flip-flop of the least significant stage and ZEROS in all

other stages. Each input instruction will read that 12-bit shift register

for which the flip-flop is set to a ONE and shift the ONE to the flip-flop

in the next Increment and Control circuit.

5.12 Sample Rate Counter

The Sample Rate Counter (Figure 33) uses the Register Control circuit

and the shift register circuit of the I/0 Register and the Increment and

Control circuit of the Real-Time Counter. This circuit is similar to the

Real-Time Counter in that if the count input is a ONE at word strobe time,

the shift register will be incremented. Like the Real-Time Counter, the

least significant 12 bits will always count every word-time because the

count will be wired to +Vcc and the other 12 bits sections will be con­
trolled by the overflow of the previous 12 bits. For many applications

only one section of 12 bits will be used.

The major difference between the Sample Rate Counter and the Real-

Time Counter is that the Input signal to the shift register section, in­
stead of being unused as in the Real-Time Counter, is tied to an output

buffer of some I/O Register. When the overflow signal is present at word

strobe time (which only occurs when all 12 bits are one), the word strobe

will be ORed with the clock pulse of the shift register. At this time the

ill

input signal will be high and shift level will be low and the 12 bits from

the output buffer will be loaded into the shift register. Thus, after all

12 bits have overflowed, the count will start at a number determined from

the bits stored in an output buffer from an I/O Register, allowing control

of the sample rate by the program.

When the counter overflows, the overflow signal is wired to the other

flip-flop in the Increment and Control circuit to be used as an interrupt

signal to one of the logic units. This flip-flop will be cleared by an

output instruction to this counter. Thus, the program must send an output

instruction to the Real-Time Counter after receipt of an interrupt.

In addition to the word strobe time following an overflow, the output
buffer containing the reset number will be inputted to the sample rate
counter on receipt of an input instruction in a manner similar to a normal
I/O Register. This permits the program to resynchtonize the sample rate
counter.

112

COUNT

TI T

ToC A44 CL4 I gml C

.irooU /E N ' utjue _

UOCU

Fi~uro 33. Sample R Counterte
13/

FOLDOUT FRAME}.OLC FFRAMq

0

4

11

6.0 RELIABILITY

The reliability of the MULTIPAC system depends largely on its restruc­
turability in the event of failure. Since the initial configuration makes

use of all modules in the system, such restructuring to delete failed

modules leads to a progressively simpler machine and consequently to a

gradual degradation of the processing capability. Thus, to state the

reliability of the system, or the probability that it will be operational

after some specified period of time, one has to define the configuration

under consideration. The initial configuration has a very low probability

of lasting for the duration of a lengthy mission without requiring some

restructuring for repair purposes. There is a high probability, on the

other hand, that the minimal processing mode can still be implemented from

the surviving modules after years of system operation. Intermediate modes

of operation has probabilities of survival between these extremes according

to the module requirements, and hence, the processing capacities of such

modes.

The organization of MULTIPAC permits two basic methods of restoring

operation by reprogramming after failures occur. In the first, extra

modules not needed for the initial configuration may be included to be

used as spares should failures occur. In the second, the remaining

modules may be reassigned in a different configuration which will continue

to take care of the highest priority tasks. Such a loss in capability

can best be compensated for by accepting a reduction in the telemetry rate

or discontinuing some on-board processing tasks. This may be continued

through a number of failures and successively less powerful configurations

until the minimum operational configuration is reached.

Reliability thus becomes a function of both the modules initially

available in the system flown and the configuration for which the proba­
bility of survival is specified. Figure 34 gives the reliability model

for the typical system in its initial configuration showing only actual

spares replacing one another.

In addition to the number of processors which can be configured, a
gradual degradation of the multiplexed connections to the experiments is
also to be expected, and this is reflected in the probability of a certain
percentage of the I/O lines remaining available in each of these modes.
In Figure 34 a typical connection of the I/0 interface is assumed for
modelling purposes. Twelve of the 25 available I/O registers are con­
nected to 72 digital signals, each appearing redundantly at the inputs of
two different I/0 registers, for example RI and R7 . Another 72 are used
for analog conversion signals and are connected to the outputs of 72
comparators with the same redundancy, for example R13 and R1 9 are redundant.
The comparators connected to input channels on R1 3 through R1 8 are driven
by the reference signal from D/A I while those connected to R19 through
R24 receive the reference from D/A 2. Special modules such as a sample
rate counter and a real-time counter are not related in this model.

115

II R17 RI5 DAI II R17 R18

ABEREVIATION$

TC TIMING COUNTER
LU LOGIC UNIT
14 MEMORY UNIT
TM TELEMETRYUNIT
CM COMMAND UNIT
R VO REGISTER
DA DA REGISTER

FAILEDMODULE

Figure 34. Reliability Model of LSI MULTI PAC

A computer program was written to calculate reliability figures for

M of N modules which shows the higher probabilities of survival attainable

for degraded operation. The series reliability given for four such modes

of operation is shown in Table 11. The program and its output is included

as Appendix A. Table 11 gives these figures for 12, 24, and 36 months and

- 6 5
for failure rates of 10-7, 10 , and 10- per ISIC hour. It is expected

that circuits can be produced which will have a failure rate somewhare be­

-7
tween 10 and 10-6 . A failure rate much lower than 10-6 will not produce

a reliable system as can be seen from the results of a 10- 5 failure rate in

Table 11. Each of the module-failure rates (except memory) reflects the

conservatism that a single failure disables the entire module. Table 11

ignored the memory storage elements on the assumption that if a few failed,

enough memory remained to continue operating with negligible reduced per­
formance. Table 12 includes the memory storage elements and assumes that

the failure of one causes the entire memory to fail. The actual reliability

figures will be somewhere between these two extremes.

The memory storage elements represent 16 consecutive locations in

memory. A single failed storage element will be easy to program around

and is a very small percentage of storage. A large number failed at ran­
dom locations in one memory unit may be difficult to program and, in fact,

make the memory useless. It can be shown that there is a high probability

of most of the cells surviving: 0.9995 for 118 of 128 cells surviving 36

months at a failure rate of 10-6. This would destroy 160 of the 2048

storage locations and, given the proposed addressing scheme, they would,

at worst, consist of 10 separate blocks of sixteen words each so long as

the failures did not propagate on the data sense or addressing lines. For

the latter type of failures, some special definition of their probability

is required from the manufacturer. In Table 11 the reliability of the

storage cells is considered to approach one for a sufficient number of

them surviving to make the module usable, and thus only the control and

addressing logic is considered in the reliability calculations.

The combination of the two oscillators, two squaring circuits, and

the switch was assumed to have a failure rate of 0.2 ot an 0SIC.

Included in Tables 11 and 12 (same in both) are the probability of a

given experimental line (digital or analog) surviving if the remainder of

the system is operable. This is looking at it from the experimenter's

viewpoint, instead of at the mission as a whole.

The formulas used in the calculations are as follows:

- (P c) (R) (7 3 0) (MO)
MR = e

and

NN! (MR)NS(1-Mr)N-NSCONER = NS=NZ~ NS!(N-NS!)
S=NIR­

117

TABLE 11

I

LSI MULTIPAC SYSTEM RELIABILITY

Failure Rate = 10 "7 LSIC's per LSIC-hour

Mission Duration = 12 months

3LU's, 6 M's, FULL I/0 .9238

2LU's, 4M's, FULL I/0 .9992

1LU, 2M, FULL I/O .9996

1LU, 1M- 83% I/O .9998

Probability of being able to
communicate with any experiment

Analog .9998

Digital .99999

Failure Rate = l0"6 ISIC's per LSIC-hour

Mission Duration = 12 months

3LU's, M's, FULL I/0 .4444

2LU's, 4M's, FULL I/0 .9366

1LU, 2M, FULL I/O .9761

1LU, iM, 83% I/O .9928

Probability of being able to

communicate with any experiment

Analog .9854

Digital .9982

24 months

.8531

.9970

.9987

.9995

36 months

.7874

.9935

.9974

.9991

.9994

.99995

.9986

.99987

24 months

.1905

.7836

.9124

.9692

36 months

.0793

.5973

.8191

.9254

.9477

.9910

.8948

.9770

118

TABLE 11 -- continued

Failure Rate = 10­5 ISIC's per LSIC-hour

Mission Duration = 12 months 24 months 36 months

SLU's, 6M's, FULL I/0 .0001 .0000 .0000

2LU's, 4M's, FULL I/0 .0185 .0000 .0000

ILU, 2M, FULL I/0 .1522 .0021 .0000

lLU, Im, 8% I/O .3307 .0129 .0001

Probability of being able to
communicate with any experiment

Analog .4430 .1035 .0187

Digital .7190 .2910 .0849

119

TABLE 12

LSI MULTIPAG SYSTEM RELIABILITY WITH FULL

MEMORY STORAGE

Failure Rate = 10-7 LSTC's per LSIC-hour

Mission Duration = 12 months 24 months 36 months

SLU's, 6M.s, FULL I/0 .4727 .2233 .1055

2LU's, 4M's, FULL I/O .9774 .8834 .7390

1LU, 2M, FULL I/0 .9995 .9966 .9865

1LU, IM, 83% I/O .9998 .9994 .9984

Probability of being able to

communicate with any experiment

Analog .9998 .9994 .9986

Duration .99999 .99995 .99987

Failure Rate = 10-6 LSIC's per LSIC-hour

Mission Duration = 12 months 24 months 36 months

9

.0005 .2 x 10-6 .I x 10-
SLU's, 6M's, FULL I/0

.0696 .0008 .6 x 10- 5
 2LU's, 4M's, FULL I/0

1LU, 2M, FULL I/0 .5741 .0909 .0090

1LU, IM, 83% I/0 .8800 .4280 .1461

Probability of being able to

communicate with any experiment

Analog .9859 .9477 .8948

Digital .9981 .9910 .9770

120

where

MR = reliability of a single module

PC = parts count of LSIC's

FR = failure rate per LSIC-hour

730 = hours per month

MO = mission duration in months

N = number of modules in system

NS = number of modules surviving

4NR = minimum number of modules required

COMBR = combinational reliability of at least MNR of N

modules surviving

The formula for combinational reliability is diagrammed for 2 or 3
timing counters in Figure 32. The same approach is used, though not dia­
grammed, for all other MNR of N cases. The three branches of the DA sec­
tion describe three mutually exclusive sample spaces in which some MNR of
N registers constitute a further requirement for success. This shows the
method of analysis for the probability of at least a certain portion of
the I/O surviving. The 83 percent figure given is based on losing one
of the six register pairs providing entirely digital I/0 and one of the
six register pairs providing the analog inputs.

121

MULTIPAC INSTRUCTION LIST

(Per order of appearance in Section 7.0)

Operation
Mnemonic Code

LDAI 76XX

LDA2 7TXX

LDAIR 74XX

LDA2R 75XX

STAI 52XX

STA2 53XX

STAIR BOXX

STA2R 51XX

XCHI 72XX

XCH2 73XX

XCHlR 70XX

XCH2R 71XX

ADDI 46XX

ADD2 47XX

ADDIM 42XX

ADD2M 43XX

ADDR 44XX

ADD2R 45XX

SUB1 36XX

SUB2 37XX

SUBIM 32XX

SUB2M 33XX

SUBIR 34XX

SUB2R 35XX

XORL 06XX

XOR2 07XX

XOR1M 02XX

XOR2M 03XX

122

Operation Page

Load Accumulator I from Memory 127

Load Accumulator 2 from Memory 127

Load Accumulator I from Register 128

Load Accumulator 2 from Register 128

Store Accumulator 1 in Memory 129

Store Accumulator 2 in Memory 129

Store Accumulator 1 in Register 130

Store Accumulator 2 in Register 130

Exchange Accumulator 1 with Memory 131

Exchange Accumulator 2 with Memory 131

Exchange Accumulator 1 with Register 132

Exchange Accumulator 2 with Register 132

Add Memory to Accumulator 1 133

Add Memory to Accumulator 2 133

Add Accumulator I to Memory 133

Add Accumulator 2 to Memory 133

Add Register to Accumulator 1 134

Add Register to Accumulator 2 134

Subtract Memory from Accumulator 1 135

Subtract Memory from Accumulator 2 135

Store Accumulator 1 Minus Memory

135in Memory

Store Accumulator 2 Minus Memory
in Memory 135

Subtract Register from Accumulator 1 136

Subtract Register from Accumulator 2 136

EXCLUSIVE OR Accumulator I with
Memory 137

EXCLUSIVE OR Accumulator 2 with
Memory 137

EXCLUSIVE OR Accumulator 1 into

Memory 137

EXCLUSIVE OR Accumulator 2 into
Memory 137

MULTIPAC INSTRUCTION LIST -- continued

Mnemonic

XOR1R

XOR2R

ANDI

AND2
ANDIM

AND2M

ANDIR

AND2R

IORI

1OR2

ORIM

IOR2M

IORIR

IOR2R

EQVIR

EQV2R

NEGR

MSTP

LDIR

ADLR

MSKM

MSKR

NOP

INP

OUT

EINT

DINT

Operation

Code

04XX

05XX

66XX

67XX
62XX

63XX

64XX

65XX

26XX

27XX

22XX

23XX

24XX

25XX

14XX

15XX

30XX

55XX

57XX

17XX

13CXC

11XX

00XX

01XX

21XX

6076

6077

Operation Page

EXCLUSIVE OR Register with Accumulator 1 138

EXCLUSIVE OR Register with Accumulator 2 138

AND Accumulator 1 with Memory 139

AND Accumulator 2 with Memory 139

AND Accumulator 1 with Memory into
Memory 139

AND Accumulator 2 with Memory into

Memory 139

AND Accumulator 1 with Register 141

AND Accumulator 2 with Register 141

INCLUSIVE OR Accumulator 1 with Memory 142

INCLUSIVE OR Accumulator 2 with Memory 142

INCLUSIVE OR Accumulator 1 into Memory 142

INCLUSIVE OR Accumulator 1 into Memory 142

INCLUSIVE OR Accumulator I with

Register 144

INCLUSIVE OR Accumulator 2 with

Register 144

EQUIVALENCE Accumulator 1 with

Register 145

EQUIVALENCE Accumulator 2 with

Register 145

Negate Register 146

Multiply Step 146

Load Register with Literal 1{8

Add Literal to Register 148

Replace Memory Through Mask 149

Replace Register through Mask 149

No operation 150

Input Through Mask 151

Output Accumulator 1 152

Enable Interrupt 152

Disable Interrupt 152

123

MULTIPAC INSTRUCTION LIST -- continued

Operation
Mnemonic Code

SDMP 20XX
(xx<4o)

SPMP 20XX

(xx 40)

STPC 10XX

MDI 12XX

JMP 16XX

JMPR 56XX

SKDR 3Li0

Operation Page

Select Data Memory Page

153

Select Program Memory Page

153

Store Program Counter in Register 153

Modify Next Instruction 154

Jump to Indexed Location 155

Jump to Register Contents 155

SKIP on Accumulator Condition

(Various skips) 156

SKIP on Decrementing Register 157

Various shifts and cycles 158

124

7.0 INSTRUCTION MANUAL

The logic modules are essentially small processing units which execute

instructions from memory. Each logic unit has two 4-bit registers; one

selects the memory to be used for program memory and the other selects the

data memory. Each logic unit also has two scratch storage registers

(called Accumulator I and Accumulator 2).

7.1 Instruction Formats

The instructions may use one or two words of memory, depending on

whether or not memory is referenced. In general, they are of the follow­
ing form:

Single Word Instruction:

6 bits 6 bits

OP Code Reg Addr

Double Word Instruction:

6 bits 6 bits

[OP Code Index Reg Addr

Memory Address

12 bits

Data words are 12 bits in length and are in two's complement notation.

Usually, the least significant bit of the OP code portion of the in­
struction defines whether Accumulator I or 2 is to be referenced.

The Register Address Field ("R" Field) generally specifies the reg-.

ister to be used for data in one-word instructions or the index register

to be used for modifying the address field of two-word instructions.

Since register 0 contains zero, "R" Field = 0 will produce no indexing for

the latter case.

The logic unit addresses 64 register locations by the contents of the

instruction "R" Field, or six lowest order bits. The first seven such

locations are specifically assigned as follows:

125

Address Register

0 Dummy register: Contents = 0

1 Accumulator I of Logic Unit

2 Accumulator 2 of Logic Unit

3 Input: Command Unit I

3 Output: Telemetry Unit 1

4 Input: Command Unit 2

4 Output: Telemetry Unit 2

5 D/A Register I

6 D/A Register 2

The remaining addresses in the first addressing section are nine. Ad­
dress switching may optionally be included to expand the number of ad­
dresses in blocks of 16 to the maximum of 64. The unallocated register

locations, up to 57, will normally be assigned to I/O registers, which

makes the permissible I/0 interface as large as 57 x 12 = 684 channels

each way. These registers also serve the functions of index registers

and provide scratch storage for the processor.

Accumulators 1 and 2 refer to the logic unit decoding the instruction.

There is no way for one logic unit to address an accumulator in another

logic unit. Since the accumulators are part of the Register addressing,

they may be addressed with any of the Register Field instructions.

7.2 Arithmetic and Logical Instructions

All instructions which access memory are two-word instructions and

require two memory cycles for their execution, assuming a data memory unit

separate from that in which the program is stored. If only one memory

unit is in use, i.e., if the contents of the program paging register and

the data paging register are the same, the instruction cycle is auto­
matically altered. Instructions which access program memory storage re­
quire three cycles for execution, halting the program counter for the

necessary data access, and instructions which store in program memory re­
quire four cycles. All memory accesses are, in practice, indexed. Non­
indexed instructions reference index register zero, and the contents of

the dummy register R0 are hard-wired to present the number ZERO.

7.2.1 Instruction set:-- The available arithmetic and logical in­
structions are described in detail in the following pages.

126

LDAI Load Accumulator I from Memory 76XX

LDA2 Load Accumulator 2 from Memory 77XX

Format:

11 6 5 0

X~ Firstx11xy × x xWoro1< 1 1 1

Index Register Address

"0' for Accumulator 1
"I' for Accumulator 2

11 0
x I I i I I t i Second

X XXI X X Word

Operand Address

These instructions load one accumulator with the contents of the

location specified by the sum of the operand address field and the con­
tents of the index register. LDAl loads Accumulator 1 and LDA2 loads

Accumulator 2.

(a + (R))->ACCA [A = 1 or 2]

127

LDA1R Load Accumulator 1 from Register 74XX

LDA2R Load Accumulator 2 from Register 75XX

Format:

One-Word
1 I 1 I 0 X X X X X X X Instruction

Register Address

'0' for Accumulator I

" I' for Accumulator 2

LDAIR, LDA2R load accumulator with the contents of the register spec­
ified by the Register Field. The register is unchanged. LDAIR loads

Accumulator I and LDA2R loads Accumulator 2.

(R) >-ACCA [A = I or 2]

128

STAl Store Accumulator I in Memory 52XX

STA2 Store Accumulator 2 in Memory 53XX

Format:

11 6 5 0

.1 1 x x x x x x x First
11 0 1X Word

Index Register Address

'0' for Accumulator 1
' 1 " for Accumulator 2

11 0

Second
X X X X X X X X X X X K Word

Operand Address

These instructions store the contents of one accumulator in the loca­
tion of memory specified by the sum of the operand address field and the

contents of the index register. The accumulators remain unchanged. STAI

stores Accunulator I and STA2 stores Accumulator 2.

(AccA)=->a + (R) [A = 1 or 2]

129

STAIR Store Accumulator 1 in Register 5OXX

STA2R Store Accumulator 2 in Register 51XX

Format:

11 5 6 0

x x x x x One-Word10 1 00
Instruction

Register Address

"0' for Accumulator I

'1 for Accumulator 2

These instructions store the contents of one accumulator in the register

specified. The accumulator remains unchanged unless specified in the Regis­
ter Field. STAIR stores Accumulator 1 and STA2R stores Accumulator 2.

(ACA)>R [A = 1 or 2]

130

XCH1 Exchange Accumulator I with Memory 72XX

XCH2 Exchange Accumulator 2 with Memory 73XX

Format:
11 6 5 0

Word
X X X
1 X X X
I0

Index Register Address

"0"for Accumulator 1

" for Accumulator 2

11 0

X X X X X X X X X > X Second
Word

V

Operand Address

The contents of one accumulator and the location of memory which is

the sum of the operand address field and the contents of the index regis­
ter are interchanged. That location of memory will have the previous

contents of the accumulator and the accumulator will have the previous

contents of memory. XCH1 specifies Accumulator 1 and XCH2 specifies

Accumulator 2.

(a,+ R))->ACC A

simultaneously

]ACeA)---) a + (R)
AC) [A = o 2]

131

XCHIR Exchange Accumulator I with Register 70XX

XCH2R Exchange Accumulator 2 with Register 71XX

Format:

11 0

10 I XOne-Word
1 1 1 0 0 XI) X X X X X Instruction

Register Address

' 0 ' for Accumulator 1

"0" for Accumulator 2

The contents of one accumulator and the contents of a
register are interchanged. The register contains the old value of the
accumulator and the accumulator the old value of the register. XCHlR
specifies Accumulator 1 and XCH2R specifies Accumulator 2.

(R) r>ACCA

simultaneously

(ACCA >R [A=Ior2]

132

ADDI Add Memory to Accumulator I 46XX

ADD2 Add Memory to Accumulator 2 47XX

ADDIM Add Accumulator 1 to Memory 42XX

ADD2M Add Accumulator 2 to Memory 43XX

Format:

11 6 5 0

_ _ _ I _ I ' ' First
1 0 0 X 1 X X X X X X X Word

'O' - Result to Memory Index Register Address
1 - Resu It to Accumulator I es

"0' for Accumulator I
1' for Accumulator 2

11 0
Second

X (X X X X X X X X X X Word

Operand Address

The contents of the memory location addressed is added to the con­
tents of one accumulator. For ADDl and ADD2, the result replaces the
accumulator contents, and for ADDlM and ADD2M, the result replaces the
contents of memory. ADDI and ADDiM reference Accumulator 1 and ADD2 and
ADD2M reference Accumulator 2.

The address of memory is the sum of the contents of the index register

and the operand address (second word).

133

ADDI or ADD2:

(ACCA) + (a + (R))>ACCA [A = I or 2]

ADDiM or ADD2M:

(ACCA) + (a + -> aaR))+ (R) [A = 1 or 2]

ADDiR Add Register to 	Accumulator 1 44XX

ADD2R Add Register to 	Accumulator 2 45XX

Format:

I1 6 	 5 0

xx x x X One-Word010011 0 x
Instruction

Register Address

'0* for Accumulator I

1W for Accumulator 2

Add the contents of the register to one accumulator, leaving the

results in the accumulator. ADDIR adds to Accumulator 1 and ADD2R adds

to Accumulator 2.

(A + (R) >ACC 	 [A =1I or 2]

134

SUBI Subtract Memory from Accumulator 1 36XX

SUB2 Subtract Memory from Accumulator 2 37XX

SUBIM Store Accumulator 1 Minus Memory in Memory 32XX

SUB2M Store Accumulator 2 Minus Memory in Memory 33XX

Format:

11 6 5 0
SFirst

0 1 1 X I X X X X X X X Word

m0a - Result to Memory Index Register Address

u - Result to Accumulator

'0' for Accumulator 1
"I" for Accumulator 2

11 0
Second

X Y X X X _X X X X X X I Word

Operand Address

Subtract the contents of memory addressed from Accumulator 1 if

SUBI or SUBIM or Accumulator 2 if SUB2 or SUB2M. For SUBI or SUB2, re­
place the contents of the accumulator with the result. For SUBIM or

SUB2M, replace the contents of memory with the result.

The location of memory addressed is the sum of the operand address

and the contents of the index register.

I135

SUBI or SUB2

(ACCA) - (a + (R)) >ACCA [A = 1 or 2]

SUBIM or SUB2M

= or(ACCA) - (a + (R))) a + () [A 1 2]

SUBiR Subtract Register from Accumulator 1 34XX

SUB2 Subtract Register from Accumulator 2 35XX

Format:

11 	 6 5 0

0 a 1 1 0 x 	x x x x x X First
j I I tWord

Register Address

*0" for Accumulator 1

U1U for Accumulator 2

The contents of the register are subtracted from the contents of one

accumulator, with the result replacing that accumulator contents. SUBIR

references Accumulator I and SUB2R references Accumulator 2.

(AccA) - (R) -> ACCA 	 [A = 1 or 2]

136

XORI EXCLUSIVE OR Accumulator 1 with Memory O6XX

XOR2 EXCLUSIVE OR Accumulator 2 with Memory 07XX

XOR1M EXCLUSIVE OR Accumulator 1 into Memory 02XX

XOR2M EXCLUSIVE OR Accumulator 2 into Memory 03XX

Format:

11 6 5 0 __ __ _ __ _ __ __ _ __ _ __ __ _ ' __'____ __ _ _ _ IFirst
X I X X X X X X X Word0 0 0

Index Register Address"0" - Result to Memory

'P - Result to Accumulator/" /

"0'for Accumulator I
1" for Accumulator 2

11 0

Second
X X X X X X X X X X X X Word

Operand Address

The EXCLUSIVE OR. of the contents of the memory addressed and the

contents of one accumulator is formed. For XOR1 and XOR2, the result

replaces the contents of the accumulator, and for XORIM and XOR2M, the

result replaces the contents of the memory. XORI and XORIM reference

Accumulator 1. XOR2 and XOR2M reference Accumulator 2.

The memory location addressed is the sum of the operand address and

the contents of the index register.

The EXCLUSIVE OR operation (D) is performed on each bit position

of the data independent of other bit positions by the following truth

table.

Bit N of Bit N of Bit N of

Accumulator Memory Result

0 0 0

0 1 1

1 0 1

1 1 0

137

XORI or XOR2

(AcA) ® (a + (R)) . AA [A = I or 2]

XOR1M or XOR2M

= 1 or 2]
(A CcA)L (a + (R)) w>a + (R) [A

XORIR EXCLUSIVE OR Register with Accumulator 1 04XX

XOR2R EXCLUSIVE OR Register with Accumulator 2 O5XX

Format:

11 6 5 0

One-Word
0 0 0 1 0 X x x x x X x Instruction

Register Address

"U for Accumulator I

'I* for Accumulator 2

The EXCLUSIVE OR of the contents of the register and the contents of

one accumulator replaces the contents of that accumulator. XORIR refer­
ences Accumulator 1 and XOR2R references Accumulator 2.

The EXCLUSIVE OR operation (D) is perforfied on each bit position

of the data independent of other bit positions by the following truth

table.

Bit N Bit N of New Bit N

of Accumulator Memory of Accumulator

0 0 0

0 1 1

1 0 1

1 1 0

(ACCA) (> AGOA
CR) =

138

ANDi AND Accumulator 1 with Memory 6XX

AND2 AND Accumulator 2 with Memory 6YXX

ANDIM AND Accumulator 1 with Memory into Memory 62XX

AND2M AND Accumulator 2 with Memory into Memory 63XX

Format;

11 6 5 0

First

1 1 0 X I X X X > X X X Word

0' - Result to Memory Index Register Address

1 ' - Result to Accumulator
00' for Accumulator 1

"1" for Accumulator 2

11 0
I ' J I I I I I S c n

X X X X X X X X X X X x Second
Word

Operand Address

The logical AND of the contents of memory and the contents of one

accumulator is formed. For ANDI and AND2, the results replace the con­
tents of the accumulator, and for ANDIM and AND2M, the results replace

the contents of memory. For ANDi and ANDIM, Accumulator 1 is referenced

and for AND2 and AND2M, Accumulator 2 is referenced.

The loaction of memory addressed is the sum of the operand address

(second word) and the contents of the index register.

The logical AND (A) is performed on each -bitposition of the data

independent of other bit positions by the following truth table:

Bit N Bit N Bit N

of Accumulator of Memory of Result

0 0 0

0 1 0

1 0 0

139

ANDi or AND2

(ACCA) A (a+ (R)) ~> ACCA [A =t1or 2]

ANDIM or AND2M

(ACCA) A 0! + (R)) a + (R) [A = or 2]

140

ANDIR AND Accumulator I with Register 64XX

AND2R AND Accumulator 2 with Register 65XX

Format:

11 6 5 0
1 1 1 9 1 1 1'1 X I X IOne-Word

1 1 0 1 0x X XXX) XInstruction

u0u for Accumulator 1 Register Address

" for Accumulator 2

The logical AND of the contents of the register and the contents of

one accumulator replaces the contents of that accumulator. ANDIR refer­
ences Accumulator I and AND2R references Accumulator 2.

The logical AND (A) is performed on each bit position of the data,

independent of other bit positions according to the following truth

table:

Bit N Bit N Bit N

of Accumulator of Register of Accumulator

0 0 0

0 1 0

i 0 0

(ACOA)A CR)=>ACCA [A 1 or 21

141

10RI INCLUSIVE OR Accumulator I with Memory 26XX

I02 INCLUSIVE OR Accumulator 2 with Memory, 27XX

IORIM INCLUSIVE OR Accumulator 1 into Memory 22XX

1R2M INCLUSIVE OR Accumulator 2 into Memory 23XX

Format:

11 6 5 0
Fi rst

0 1 0 X 1 X X X X X X X Word

Index Register Address'0 ' Results to Memory
*I" Results to Accumulator>

"0' for Accumulator I
'I' for Accumulator 2

11 0

ISecond

XX X X X, XX X Word

Operand Address

The INCLUSIVE OR of the contents of memory with the contents of one

accumulator is formed. For IORi and 1012, the result-replaces the con­

tents of the accumulator, and for IORiM and IOR2M, the result replaces

the contents of memory. IORI and IORIM reference Accumulator I and 1012

and IOR2M reference Accumulator 2.

The location of memory addressed is the sum of the operand address

(second word) plus the contents of the index register.

142

The INCLUSIVE OR (V) is performed bit by bit on each bit position

of the data independent of the other bit positions according to the

following truth table:

Bit N of Accumulator

0

Bit N of Memory

0

Bit N of Result

0

0

1

1

0

11

1

1

IORI or 10R2:

,(ACCA) V (a (R))-->ACCA [A = I or 2]

IORIM or IOR2M:

(AQUA) V (a + (R)) a + (R) [A = 1 or 2]

143

IORIR INCLUSIVE OR Accumulator 1 with Register 24XX

IOR2R INCLUSIVE OW Accumulator 2 with Register 25XX

Format:

011 6 5
I , iI , , , , , , One- Word

10 I 0,10 X 1 X X XIX XXl Instruction

Register Address

"0"for Accumulator 1
"1I for Accumulator 2

The INCLUSIVE OR of the contents of the register with the contents

of one accumulator replaces the contents of that accumulator. IORIR

references Accumulator 1 and IOR2R references Accumulator 2.

The INCLUSIVE OR (V) is performed bit by bit on each bit position

of the data independent of the other bit positions according to the

following truth table:

Bit N of Accumulator Bit N of Register Bit N of Accumulator

0 0 0

0 1 1

1 0 1
1 1 1

(ACCA V (R) >ACCA [A 1 or 21

144

EQV1R EQUIVALENCE Accumulator 1 with Register 14XX

EQV2R EQUIVALENCE Accumulator 2 with Register 15XX

Format:

11 6 5 0
One-Word

0 0 1 1 0 X X X X X X X Instruction

Register Address

"0' for Accumulator 1

"I" for Accumulator 2

The EQUIVALENCE of the contents of the register with the contents

of one accumulator replaces the contents of that accumulator. EQVIR

references Accumulator 1 and EQV2R references Accumulator 2.

The EQUIVALENCE (7)) is performed bit by bit on each bit

position of the data, independent of other bit positions according to

the following truth table:

Bit N of Accumulator Bit N of Register New Bit N of Accumulator

0 0 1

0 1 0

1 0 0

1 1 1

(ACCA) ((R) >:ACCA [A =1I or 21

14 b

NEG_ Negate Register 30XX

Format:

11 6 5 0
0 ' 0 ' 0 x ' x x I x x One-Word

0 1 0 0 0 X X X X X X Instruction

Register Address-

The contents of the register are replaced with the negation of the

initial contents of the register. The negation is the two's complement

of the initial contents.

(R) -'> R

MSTP Multiply Step 55XX

Format:

11 6 5 0

X X One-Word1 0 1 0 x xx X XInstruction

Register Address

MSTP performs one step of the multiplication of the contents of the

register by the contents of Accumulator 2, putting the result in double

length register made up of Accumulator 1 and Accumulator 2.

14'6

Each MSTP consists of testing the low order bit of Accumulator 2 and

if it is a "I", adds the contents of the register to Accumulator 1. Then,

no matter what the lower order bit of Accumulator 2 is, Accumulator 1 and

Accumulator 2 are shifted right one bit as a double length register, with

the low order bit of Accumulator I shifting into the high order bit of

Accumulator 2.

The multiply step (MSTP) instruction provides a convenient way of

programming the multiply operation. Twelve such instructions will multiply

the contents of a register (the multiplicand) by the contents of ACC2

(the multiplier) and leave the contents in the double-length register

formed by ACCl and ACC2. The multiplicand is treated as a signed number;

however, the multiplier must be positive in this routine. If the multi­
plier might be negative, it could be tested and both multiplier and

multiplicand negated before beginning the multiply. An alternate solu­
tion is to make a correction to the resultant.a

ACCIn >ACClni

ACC2 = 0: ACCo >ACC211 1 < n < 11

ACC2n > ACC2n
 I

(R) + (ACCl).-- >ACCl

ACC n -> ACCln-1

ACC20 = 1: ACCi ACC21 1 1< n < 11

ACC2 n > ACC2n I

aThe user should consult the literature. A particularly complete refer­

ence is "The Logic of Computer Arithmetic" by Ivan Flores (Prentice-Hall,

1963).

147

LDLR Load Register with Literal 57XX

ADLR Add Literal to Register 17XX

Format:

11 6 5 0
11 11 1 1-:-7 First

X 0 1 1 1 1 X X X) X X Word

Register Address
60f Add Uteral

'1" Load Ittera]l

H1 0

X X X X X X X X X >(X X Word

Operand Address

Load (LDLR) or add (ADLR) to the contents of the register the operand

(second word).

LDLR:

a->R

ADLR:

a + (R)-->R

148

MSKM Replace Memory Through Mask 13XX

MSKR Replace Register Through Mask 11XX

Format:

11 6 5 0
First Word

0 0 1 0 X II X X X X X X '(MSKR isone word

instruction)

Index Register Address

UQU Replace Register

"I"Replace Memory
11 0

Second Word
X X X X X X X X X X X X (MSKM ony)

Operand Address

Replace contents of memory or register with low order bits of
Accumulator 1 through mask in Accumulator 2. Accumulator 2 is scanned
from right to left (least significant bit to most significant bit).
When the first "I" is encountered, the least significant bit of Accumulator
1 is transferred to memory or register in the same bit position as the "I"
in the mask and Accumulator 1 is shifted right one bit. The scanning
continues, and for every "I" in the mask, the above process is repeated.

If there are N 'T"1s in Accumulator 2, then the net effect of these

instructions is to replace the corresponding N bits of memory or register

with the N least significant bits of-Accumulator 1.

For MSM, the location of memory is the sum of the operand address

and the contents of the register. MSKR is a one-word instruction, and

the contents of the register are replaced through the mask.

Example:

Accumulator 1: 0 0 0 0 0 1 1 1 0 1 0 1

Accumulator 2: 0 0 Oil 1 0 0 0 1 1;0
I II

1 0 00 0 0 1 0:111 011Register of Memory: I I

Final Register or Memory: 1 0 oil 0101 0:l 0.11

1
----------------------------------.

Final Accumulator 1: 0 0 0 0 0 0 0 0 0 0 1 1

149

NOP No Operation 00XX

Format:

11 6 5 0

0 0 i 1 One-Word0 0 0 0 0 0 X X X Instruction

Ignored

No operation occurs with this instruction. The low order 6 bits

are ignored.

7.3 Input/Output Instructions

The I/O Register consists of a shift register which receives and

transmits data serially to the logic unit(s), and output buffer register

into which the shift register transfers its contents upon receipt of an

output code, and a set of parallel inputs to the shift register through

which input I/O data is loaded upon receipt of an input code. These con­
trol codes are generated by the logic unit and are received and decoded

by the Register Control Section. The control section then gates the

register transfers as dictated by the codes. It also generates clock

pulses to the receiving or outputting I/0 devices to acknowledge the

transfer of I/0 data to or from them. In the case of serial transfers,

for example, these serve as shift pulses shifting data into or out of the

I/O device.

The INP instruction permits inputting any random bits determined by

a mask into the low order end of ACCI where they are right-justified. The

OUT instruction permits loading data from ACCi into a register and then

directly into the output buffer register. These instructions also gen­
erate an acknowledge pulse to those I/O devices tied to the register..

Output information is not available to the processor from the inter­
face itself and so a memory image of this information must be maintained.

New information should, in general, be used to modify the memory image,

and then the new image should be output to the buffers. An exception is

data which is not to be retained at the interface, such as reset pulses

or serial data.

7.3.1 Instruction set:-- The available input/output instructions are

described in detail in the following pages.

150

INP Input Through Mask OIXK

Format:

11 6 5 0

0 0 0 0 0 X X X X X X Word

Register Address

11 0
I _ _I _ _l Second

X X X X X X X X X X X X Word

V

Mask

The bit or bits specified by mask (second word) of the input inter­
face of register R are inputted to the logic unit, shifting them left into

the low order end of Accumulator 1.

There are twelve input interface bilevel lines tied to each bit posi­
tion of each register. The INP instruction inputs all twelve lines at

that register into the 12 bits of the register. Then, the new contents

of the register is masked with the second word (mask) of the instruction.

The new contents of the register and the mask are scanned from right

to left (low order end to high order end). For each "I" in the mask, the

corresponding bit of the register is shifted left into the low order end

of Accumulator 1. For each "0", no transferring or shifting takes place.

Example:

r--r-

Mask (second word): 0 0 0 1i510 0 101o 4d01

S I ' I ;

I I i i

Register after input strobe: 1 0 0 110:1 0 0!0:0 ILa

Li Lf

Accumulator 1: 0 0 0 0 0 0 0 0 0 0 0 0

New Accumulator 1: 0 0 0 0 0 0 0 0 0 1 0 1

151

OUT Output Accumulator I 2LXX

Format:

11 6 5 0

I x x xOne-Word00 1 0 1 .I 1 x x
0 l 0 0 0 1 X X X X X X Instruction

Register Address

The contents of the register is replaced by the contents of Accu­
mulator 1 and then the new contents of the register is transferred to the

output buffer of the register. The 12-bit output buffer of each register

is connected to the output interface.

EINT Enable Interrupt 6076

DINT Disable Interrupt 6077

Format:

11 6 5 0
One-Word

1 I 0 0 0 0 1 1 1 1 1)(Instruction

'0" for Enable
"?for Disable>-

The interrupt flip-flop is enabled (for'EINT) or disabled (for DINT).

152

7.4 Miscellaneous Instructions

SDM Select Data Memory Page 20XX (XX < 40)

SPMP Select Program Memory Page 20XX (XX > 40)

Format:

11 6 5 0
0 0 1 0 000 One-Word

X] Instruction

Page Address
'0: for SDMP
Ul for SPMP."

The page address is transferred to the program (for SPMP) or data

(for SDMP) memory page register. If the page register is less than

5 bits, only the required least significant bits are transferred and

the remainder ignored. When the program memory page register is set

to zero by SPMP instruction, the logic unit is disabled and cannot

be restarted except via the command override. Also, when the page is

zero, the program counter (PC) is inhibited from incrementing, but it

may be set or changed with a JMP or JMPR instruction.

Page Address iw> Page Register

STPC Store Program Counter in Register 10XX

Format:

11 6 5 0
SI ' 1 X One-Word

0 0 1 0 0 0 X X X X X Instruction

Register Address

Replace contents of register with contents of program cbunter.

153

The store program counter (STPC) instruction provides a means of

jumping to subroutines by storing the return address in a scratch register.

Interrupt also uses this instruction stored in location zero. The in­
terrupt hardware forces the program address to location zero and executes

the instruction in that location before modifying the program counter.

Thus, a STPC instruction in location zero will store the return address

in a scratch register. The program counter is then forced to the number

one, and the first instruction of the interrupt routine is taken from

that location.

(PC) -- >

MDI Modify Next Instruction 12XX

Format:

11 6 5 0
_______I 1I0 XX X I I I One-Word
0 0 1 0- 1 0 X I I X x Instruction

Register Address

Add the contents of the register to the next instruction before

executing it.

The modify instruction (NDI) instruction provides a'means of

temporarily modifying the register address of an instruction during its

execution. The instruction word in program memory is unchanged. This

is useful in addressing specific I/0 registers during general routines,

operating indirectly through a register to a register. It is also use­
ful as an execute instruction, executing the-contents of the register as

indexed by the program if the operation code is actually contained in

the register, or in the case of skip conditions, if the condition code

(register field) is in the register.

Since the register address field in shift is used for determining

number of shift pulses, this MDI instruction can be used to shift by an

amount contained in a register.

154

7.5 Branching Instructions

All jumps are unconditional and program branching is provided by the

skip (SIP) instructiqns. These may be used to conditionally skip the

two-word jump. One jump is also indexed inasmuch as the feature is readily

available.

JMP Jump to Indexed Location 16XX

JMPR Jump to Register Contents 56XX

Format:

11 6 5 0

IFirst Word
X 0 1 1 1 0 X X X X X X (JMPR is one word

_\ ,, __ Indtruction)

Register Address
"0" for JMPR

"1" for JMP

11 0

x X X X x X X X X X X X Second Word
(for JMP)

Operand Address

For JMP, the next instruction is taken from the sum of the operand

address plus the contents of the register.

For JMPR, which is a one-word jump, the next instruction is taken

from the location stored in the register. This instruction allows return

from subroutines or interrupt if the program counter had been lreviously

stored in the register with an STPC instruction.

155

SKIP on Accumulator Condition

Format:

12 6 5 10

0
II

0 1
I I

0
1

0
1

X X
4 1

X X X
One-Word,
Instruction

Depends on condition t

Each of these instructions tests a condition of the two accumulators,

and if the condition is met, skips the next two locations in program

memory. If the condition is not met, the next instruction (location) is

executed.

Skip if OP Code

ACCI = ACC2 4076 or 4077 or 4176 or 4177

ACCI > ACC2 4054 or 4055

ACCI < ACC2 4154 or 4155

ACCI # ACC2 4056 or 4057 or 4156 or 4157

ACMl < ACC2 4074 or 4075

ACMl > ACC2 4174 or 4175

ACCl < 0 4015

ACC2 < 0 4115

ACMI > 0 4035

ACC2 > 0 4136

ACC > 0 4114

ACC2 > 0 4014

ACCW < 0 4134

ACC2 < 0 4034

ACCI = 0 4017 or 4116

ACC2 = 0 4117 or 4016

ACCI 6 0 4037 or 4136

ACC2 * 0 4137 or 4036

Overflow 4020 or 4120

No overflow 4000 or 4100

156

Bit N of ACCI = 0 4000 + N l <N < 14

Bit N of ACC2 = 0 4100 + N 1 <N < 14

Bit N of ACCl = 1 4020 + N 1 <N < 14

Bit N of ACC2 = 1 4120 + N 1 _<N < 14

The last four test each bit of an accumulator separately. The bits

are numbered from right to left (least significant to most significant)

starting with 1. Thus, the most significant bit is 14 (octal) or 12

(decimal).

SKDR Skip on Decrementing Register 31XX

Format:

116 5 0

0 0 16 5 , x I I 0 One-Word

Instruction

Register 'Address

This instruction decrements the register, and if the result is zero,

skips the next two memory locations. The decrementing of the register

always takes place.

(R) - 1 0: ()

I (PC) + 2 >PC

(R) -# 0: (R) - 1 R

7.6 Shifting Iustructions

Format:

11 6 5 0
I ' '' " IOne-WordI X 0 0 0 X x X X x X X Instruction

Depends on instruction

These instuctions shift one or both accumulators right or left,

arithmetically, logically or cyclicly. They can shift by 0 through 13

(octal) or 11 (decimal) shifts.

157

Mnemonic Description OP Code

SHRLI Shift Accumulator 1 right logically
N bits 6060 + N

SHRL2 Shift Accumulator 2 right logically
N bits 6160 + N

SHRAI Shift Accumulator 1 right arithmetically
N bits 6000 + N

SHRA2 Shift Accumulator 2 right arithmetically
N bits 6100 + N

SHI Shift Accumulator 1 left N bits 6020 + N

SHL2 Shift Accumulator 2 left N bits 6120 + N

CYCI Cycle Accumulator 1 right N bits 6040 + N

CYC2 Cycle Accumulator 2 right N bits 6140 + N

DLSRL Shift Accumulators 1 and 2 together
right logically N bits 4040 + N

DLSRA Shift Accumulators 1 and 2 together
right arithmetically N bits 4140 + N

DLSHL Shift Accumulators 1 and 2 together
left N bits 4160 + N

DLCYC Cycle Accumulators 1 and 2 together
right N bits 4060 + N

When shifting right logically (SHRLI, SHRL2, DJSRL), the new high

order bits are filled with zeros. When shifting right arithmetically

(SHRAI, SHRA2, SLDRA), the new high order bifs are filled with the sign

bit. When shifting left (SHL1, SHL2, DLSHL), the new low order bits are

filled with zeros.

For double length shift rights (DLSRL, DLSRA) and cycle (DLCYC), the

low order bit of Accumulator 1 is shifted into the high order bit of

Accumulator 2. For double length shift left (DLSHL), the high order bit

of Accumulator 2 is shifted into the long order bit of Accumulator 1.

For single length cycles (CYCl and CYC2), the low order bit of the

accumulator is shifted into the high order bit. For double length cycle

(DLCYC), the low order bit of Accumulator 2 is shifted into the high order

bit of Accumulator 1.

158

8.0 PROGRAMMING

8.1 Typical Subroutines

Several pieces of the required operating system have been coded in

order to achieve three goals: (1) develop an approximation of the tim­
ing involved, (2) discover difficulties in programming imposed by the

design, and (3) develop useful techniques for circumventing various de­
sign limitations.

These routines were first programmed using the order code of the

previous version of MUITIPAC (see MULTIPAC Research Report).1 Those

programs helped to point out deficiencies in the previous design which

led to the present LSI design. These routines have been reprogrammed

(see Tables 13, 14, and 15) using the new order code resulting in about

a third the number of words and execution time.

8.1.1 A/D conversion subroutine.-- Table 13 is an analog-to-digi­
tal conversion subroutine. The semicolon denotes comments and the colon

denotes a program label. Those signals of the experiments which are to

be converted are fed into an anlog comparator (difference circuit) at

the experiment, the other input of which is the output of one of the

digital-to-analog registers in MULTIPAC. This circuit sends a bilevel

signal to the computer telling it whether or not the signal is higher

or lower than the D/A reference signal. Using a binary successive ap­
proximation technique, the conversion routine determines the analog

value. First, it tests for less than or greater than half full range.

Then,it tries half the resulting range of the first test and continues

to halve the range until it obtains the value.

8.1.2 Inputting subroutine.-- Table 14 is a subroutine for input­
ting serial 4ata from an experiment. This simple routine first deter­
mines the address of the specific routine from a table and then, for this

case, inputs a serial stream of n bits.

8.1.3 Formatting subroutines.-- Table 15 is a subroutine for for­
matting and then outputting one 12-bit telemetry word. This routine would

be called when the telemetry signals that it needs a new word. In con­
trast to previous assumptions, parity (or error correcting codes) is

added by the telemetry hardware. A flow chart of this routine is given

in Figure 35.

8.1.4 Timing.-- The routines chosen represent the most important

and most time consuming of the primary tasks of the CDS. Additional time

must be allotted for the executive routine and the remaining tasks. The

results for the primary tasks are summarized here.

159

TABLE 13

A/D CONVERSION ROUTINE

;RINDEX = Register used as index register

;N = number of bits to be converted

;RDA = one of the D/A registers

;RDEV = 1/0 register to which experiment's comparator

returned

;DSEL = 12-bit mask for selecting current input channel

of RDEV

All numbers in octal notation

LDLR N,RINDEX ;number of bits to index register

LDLR 600, ACC2 ;mask used for outputting

LDAlR 0 ;clear accumulator 1-

OUT RDA ;clear D/A, signal experiment

LOOP: ADLR 1,ACC1 ;one to least significant bit

MSKR RDA ;output two bits to D/A

SHRL2 1 ;move mask for next trial

INP DSEL, RDEV ;input return from comparator

SILLI 1 ;move input bit left, 1 added at LOOP

SKDR RINDEX loop back for total at N times

JmP LOOP

;result in RDA

Timing: 	Overhead = 6 cycles = 90 ps

Loop = Ion cycles, = 150n ps, where n = number of converted bits

Variable significant timing = 6 + lOn cycles

= 90 + 150n gs

n = 5 t = 840 ps

n = 8 t = 1290 Ms

160

TABLE 14

INPUTTING ROUTINE

;DNUMB = device number

;DEVINP = table of inputting routine addresses

;RRTN = register which contains return address to
routine which called READ

READ: LDLR DNUMB, RX ;device number to index

LDA2 DEVINP, RX ;address of routine to ACC2

JMPR ACC2 ;jump to proper subroutine (DEVN)

;NBITS = number of bits to read in

;RINDEX = index register

;RDEV = I/O register with desired input

;DSEL = mask for selecting proper input channel

DEVN: LDLR NBITS, RINDEX ;number of bits to index

LDAIR 0 ;clear accumulator 1

DEVNI: INP DSEL;RDEV ;input bit

SKDR RINDEX ;loop back for all bits

iMP DEVNl

JMPR RRTN ;return with result in ACCI

Timing:

Overhead = 11 cycles

Read loop = 5n cycles ;n = no. bits to read

Total time = 11 + 5n cycles

= 165 + 75n ps

n = 5 t = 540 ps

n = 8 t = 765 As

n = 12 t = 1065 ps

Range: 540 < t < 1065 us

161

TABLE 15

OUTPUTTING ROUTINE

(Outputs one 12-bit telemetry word)

;TBUF = address of data table

;OBUFI = current index into TBUF

;TBUF(OBUFI) is next data and TBUF(OBUFI + 1) is number of bits in data word

;ROBUFI = scratch register to hold OBUFI

;RBLEFT = scratch register to add number of bits left to output

;RWDCNT = scratch register to add number of bits in data word

;RTLM one of the telemetry registers

;RRTN = scratch register holding return address

;all numbers in octal notation

TLMOUT- LDAI OBUFI ;data word index-to ROBUFI
STAIR ROBUFI

LDLR RBLEFT,14 ;number of bits to output
LDAIR 0 ;clear accumulatorl

TLOOP: LDA2R TBUF+, ROBUFI ;bit length of next data
STA2R RWDCNT ;store in RWDCNT
SUB2R RBLEFT ;word count minus bits left
SKIP (ACC2<0) ;test for too many bits...
iMP TOVER ;over, go to TOVER
STA2R RBLEFT ;OK, update bits left
NEGR RBLEFT
LDA2 TBUF,ROBUFI ;get data word
MDI RWDCNT ;shift whole word...
DLSRL 0 ;into accumulator 1
ADLR ROBUFI,2 ;update table index...
LDA2R ROBUFI ;and store away
STA2 OBUFI
LDA2R RBLEFT ;check if any bits left..
SKIP (ACC2=0)
iMP TLOOP ; yes, go back for more
iMP TEXIT ;no, go to TEXIT

162

TABLE 15.-- Continued

TOVER: STA2

OUTPUTTING ROUTINE

TBUF + 1, ROBUFI ;amount over number of bits

next time

LDA2

MDI

DLSRL

STA2

TBUF, ROBUFI

RBLEFT

0

TBUF, ROBUFI

;get data word

;shift only those needed...

;into accumulator 1

;store remainder back in table

TEXIT: OUT

JMPR

RTLM

RRTN

;output result to telemetry

;return to calling routine

TIME: Overhead (TLMOUT up to TLOOP and TEXIT to end) = 14 cycles

each word not overflowing (TLOOP up to TOVER) = 19n cycles,
n = no. of

times

last word (TLOOP thru TOVER up to TEXIT) = 13 cycles

Total time =

or t =

27 + i9n cycles

405 + 285n gs

n = 1 (word length averaging 12 bits)

n = 2 (word length averaging 8 bits)

n = 3 (word length averaging 6 bits)

t = 690 ps

t = 975 ps

t = 1260 Ms

163

ENTER

S INDEX ROBUFI

12.
0

RBLEFT
ACC I

GET NEXT DATA LENGTH

BITS LEFT - DATA LENGTH---BITS LEFT

" SHIFT WHOLE DATATDATAWORD -S S H LENGTH - BITS LEFT DATA LENGTH

TO ACCUMU LATOR I

[- SHIFT DATA WORD INTOF UPDATE INDEX INTO DATA TABLE ACCUMULATOR I BY BITS LEFT

STORE WHAT REMAINS
IN DATA WORD

OUTPUT TO TELEMETRY

EXIT
Figure 35. Outputting Routine Flow Chart

164

A/D Conversion Inputting Formatting
(usec) (psec) (gsec)

Time Evaluation 150n + 90 75n + 165 -­

n = 5 bits 840 540 1260

n = 8 bits 1290 765 975

n = 12 bits 1065 690

If the above tasks of A/D conversion, input, and telemetry buffering

are the only tasks desired, then the basic time, not including intercon­
necting overhead for each device, for an average 8 bits per device (ana­
log or digital) would be 2.3 to 2.8 msec/dev (assuming 500 microseconds

used in interconnection overhead). At 2.5 msec/dev, 400 devices per

second is saturation. That results in 3200 bits/second to the telemetry.

To gain more speed, the process would have to be divided over several

logic units.

8.2 Communication Between Processes

A typical HULTIPAC central data system will be configured to operate

three processes simultaneously, i.e., one with each logic unit. The most

likely division of these three tasks will be data formatting and output

to the telemetry unit, inputting and converting data from the experi­
ments, and performing data reductions on the experimental data. Each

process will take a logic unit, two memories and one to four registers,

except for the inputting which must be able to sample all the registers

which have input information on the register input channels. Since all

three processes operate on the same data base, there must be some communi­
cation between the processes. A process may need to know when another

process has data for it or needs new data, and when data is ready, some

means of transfering the data from one process to another must be avail­
able. The easiest way to transfer large amounts of data between processes

is to switch memories. For example, when the inputting routine has in­
putted enough data to be used by either the data reduction process or the

outputting process, it would be desirable to have some means to notify

the other process that the data is ready so that this process can switch

its data memory page to the new data. For one or two words transfers,

a transfer via a register is probably easiest since all logic units'can

address all registers.

All methods of data transfer require some method of flagging one

process by another process. The best technique to perform this type of

communication will be to use some program specified register as a flag

register.

In MULTIPAC, when two logic units are accessing the same register,

both logic units will be able to read the register data, but the data

going back to the register is ORed. The registers, when shifted, do not

recycle their data, but the logic unit which is reading the register re­
writes the contents of the register. As long as both logic units are

165

both 	reading, they will be rewriting the same data. If one, or both, are

storing new data in the register, then the logical OR of the outputs of

the two logic units will result.

To circumvent this problem of simultaneous register use, the follow­
ing programming rule must be followed. If a process is writing a TT0 "T
into a flag register, it then must write the "0" for two consecutive in­
struction times. Except for this case of writing "0", a flag register
may not be addressed by two consecutive instructions. Since n two con­
secutive reads are permitted to occur, the write will eventually win out.

One register would be used for the flags of two processes. Each

process will use one-half of the flag register for its flags. One pro­
cess sets.flags at its portion of the register as signals to the other

and reads the other portions to determine what the other processes are

doing.

The basic procedure is to set a busy flag for a module if it is not

already in use by another logic unit and proceed to use it. To avoid

the conflict of two processes finding a module free and proceeding in

unison to use it, the following procedure will be followed: Let us sup­
pose processor P1 wants to use a module. Then, if R is the flag register.,

P1 can proceed as follows:

(1) 	Read R and check if busy flag is on. If so, wait; if not,

proceed.

(2) 	Pause, then write R with P1 busy flag on (1 = busy).

(3) 	Read R and see ifP2 busy flag is now on (in case P2 read

R before PI wrote R). A pause before reading R is needed

in case P2 is setting some other bit to zero). If P2 busy

flag is still off, then proceed to use module.

(4) 	If P2 busy flag is on, then P1 has two choices:

a. 	if P2 has priority, then wait uhtil module is free

again;

b. 	If PI has priority, then proceed because P2 will wait.

(5) 	 When P1 is finished with module, it must turn its busy flag
off. R must be written twice with the flag = 0 because of
the P2 rewrite cycle.

The above procedure can be used between the process which is input­
ting data from experiments and the process which is formatting the data

(assuming no data reduction) and outputting to the telemetry register.

Two different data memories will be used to buffer the input data. The

inputting routine will use one buffer and the outputting routine will

use the other buffer. When they are both finished using their buffer,

the data memories will be swapped and the process will continue.

166

The inputting routine will set a busy flag before it fills one buffer.

When it is finished, it will turn off the busy flag, set a second flag to

signify the data is ready, and then, using the procedure above, will check

to see if the second buffer is free for use. The formatting routine will

read the data-ready flag set by the inputting routine to tell when the

data is ready and sets its busy flags to notify the other routine what it

is doing. Since each of the two buffers is in a different memory, then

the transfer is a simple switch of the data memory page register.

8.3 Data Reduction

Data reduction programming will have to be done by the experimeter.

To the experimenter. To the experimenter various subroutines can be made

available, such as histogram or fourier analysis. Data reduction techniques

make some assumptions about the nature of the data. Consequently, it may

be desirable to add data reduction techniques after the spaceprobe has

gathered data. These programs can be checked out by the ground base com­
puter and then transmitted to the spacecraft via the command link.

8.3.1 Histograms or quantiles.-- Histograms or quantiles take very

little space for program storage, probably 100 to 300 words of program

memory. Data storage, on the other hand, will most likely require 1000

words for each experimental line analyzed. Probability theory for normally

distributed data and single quantiles state that the square of the mean

deviation will be 1.57 divided by the number of samples, and for two quan­
tiles, 0.767 divided by the number of samples. Thus, 1000-samples seems a

reasonable amount to keep the error to a few percent. The determination

of the optimal quantiles requires the knowledge of the density function of

the underlying population whose parameters are being estimated. Thus, the

results will not be optimal when applied to populations whose densities

depart from that assumed in finding the quantiles.

8.3.2 Digital filters.-- Probably the best implementation of digital

filters is to cascade recursive filter sections using different equations.

Cascaded sections require the least accuracy of the data word and are the

simplest to implement. The canonical form of difference equations is

generally preferred in terms of ensuring against noise due to truncation

and round off effects. Recursive filters require very little program

storage and data storage. A very complicated cascaded filter can proba­
bly be implemented in a few hundred words of program storage and 10 to 20

data words.

8.3.3 Spectral analysis.-- The most generally useful program tech­
nique for spectral analysis is the fast fourier transform (FFT) which can

be programmed in less than a thousand words of program space. The data

space is a function of the size of the transform and is approximately

167

twice the number of points in the transform. Half the data storage is for

the data points themselves, a quarter for the cosine table and the remain­
der for miscellaneous constants. For example, a 512-point transform will

take about a thousand words of data storage. A 512-point transform can be

considered as 512 simple single-pole filters spread evenly across the band­
width over a time span of 512 consecutive samples.

Reliable spectral estimates are possible only if the experimenter

has a rough idea of the actual spectrum being estimated. Such knowledge

will then enable an intelligent choice of the number of samples and the

bandwidth of the bandpass filter preceding the transform. The sampling

frequency must be high enough to minimize possible aliasing errors, a

selection that demands the knowledge of the spectrum shape. Quite often

the spacecraft instruments have a well-defined bandwidth so that the

selection of the necessary sampling rate (Nyquist rate) is straightforward.

8.3.4 Usage of data reduction techniques.-- During the first year of

this study, some analysis was made of what experiments might use these data

reduction algorithms. The advantage of a computer ini achieving data com­
pression has been a primary concern.

8.3.4.1 Neutron detector.-- The interface between the neutron detec­
tor and the CDS is shown in Figure 26. The bit requirement for the

measurements alone, exclusive of timing information, amounts to 208 bits

per second for the neutron detector. One way of reducing this requirement

is to accumulate data over only a few hours during a day or to sample less

frequently, thereby lowering the average bit rate. This may be undesirable

since it sacrifices what might be valuable information. Use of logarithmic

counters would immediately reduce the bit rate.

Processing alternatives:

(1) The simplest processing uses zero-order thresholding

of the count accumulations in the successive one-second measurement inter­
vals. Thus, the gamma ray count for interval k + 1 is not transmitted

unless it varies by more than, say, T units from the previous transmitted

value. The disadvantage of such a scheme is that, during periods of

rapidly fluctuating counts and for low telemetry rates, the thresholding

method may offer almost no data compression. Further, it can require

frequent formatting change and can put severe demands on the control of

the buffer queue.

(2) The accumulation of histograms for each measurement

over some interval, large compared to the one-second counting time, offers

several possibilities for data compression. From the histogram, the CDS

can readily compute the mean, variance, and other statistical quantities

of interest as well as giving the maximum and minimum counts and their

relative frequencies and the count having highest frequency (the mode).

Furthermore, these statistics can themselves be thresholded so that they

are transmitted only when they change by more than some fixed percentage

from the previously transmitted values.

168

+ - .. :*i (< 0.5 AU)

/ /...

ARC Plusma Instrument z

Telemetry Subsystem

T e e m trntbs st ml/ O u yes ' '

C. .i RIy Exeimn Mcrometeote Detect.,

i i__I iii
, ,Z7- II

..+
....---­! I II

L'-'7 - Figure 36. Overall System Block Diagram

' -
FOLDOUT FRAMVI 169/170

FOLDOUT FRAME r

Compression of the histogram data can also be achieved by use of sample

quantiles. It has been shown that as few as four sample quantiles are

sufficient to give efficiencies exceeding 90 percent and 73 percent, re­
spectively, for estimates of the mean and variance from a normal population.

The disadvantage of using quantiles is that, for severely nonnormal popu­
lations, the estimate of the variance can be substantially in error. Use

of more than four quantiles will give improved results, but obviously at

the expense of reducing the compression ratio.

8.3.4.2 VLF experiment:-- The instrument schematic is given in

Figure 36. The six lines marked Exl, ..., M2 denote the interface with

the CDS. The programmable filter has a bandwidth that is 10 percent

of the center frequency. This means that, for the center frequencies of

16 Hz and higher, the sample rate of one sample per second is likely to

result in aliasing. For each center frequency, the data output is repre­
sented by 39 bits, assuming 6 bits for each of the six lines and 3 bits to

identify the center frequency (1 out of 7) used. If the center frequency

is always stepped through the same cyclic order, then only one bit is

needed to identify the start of the cycle.

Processing alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1)'.

(2) At low telemetry rates, each measurement can be stored

over a number of sample periods and the mean, variance, and other quanti­
ties periodically computed and transmitted. These quantities can be

thresholded as in paragraph 8.3.4.1,(2).

(3) Each measurement can be sampled at rates greater than

one sample per second and digital filtering used to determine the spectral

content of the signals. This spectral information can be used either to

control the rate at which samples are transmitted (providing the telemetry

rate allows for such leeway) or to provide indication to the ground of the

data activity. In the former case, the CDS would have the concomitant

task of altering the data flow from the other experiments, under some

priority schedule, to permit the increased data rate.

(4) Orthogonal polynomials or Fourier series expansions

for each measurement over a number of intervals. Such expansions result

in best least squares approximations to the data, and a sufficient number

of terms can be computed so as to give an error term less than some desired

amount. Thus, the possibility exists that N coefficients can be trans­
mitted in place of N data samples, where M < N; and, hence compression

can be achieved. This method will be suitable for those measurements

having lower precision requirements and where the ground station proces­
sing is likely to use least squares techniques.

171

8.3.4.3 Cosmic ray experiment:-- The instrument arrangement is shown

in Figure 36. The bit requirement is 67 bits per sector. The sector

sampled is advanced each spacecraft revolution. As with the neutron de­
tector, logarithmic counters offer a way of reducing the bit rate.

Processing alternatives: Same as for neutron detector,

paragraph 8.3.4.1.

8.3.4.4 Plasma probe:-- Figure 36 showed the schematic arrangement

of the instrument and the interface specifications. The instrument is

programmed to cycle through a specific measurement pattern; and, as long

as this pattern is in force, it is a simple matter to reduce the bit rate

with no additional processing. Consider the scan mode data word: 3 bits

are used to describe which of 8 channels is selected; 4 bits to give the

sector (I out of 15); 7 bits for the flux measurement; and 1 bit to

specify the energy level (analyzer plate voltage) cycle. It is clean that

the channel and sector bits are superfluous if the channels are selected.

in fixed cyclic order and the sectors sampled sequentially. Even at low

telemetry rates when some of the sectors are omitted, the ordering is

still fixed. Occasionally, it is desirable to transmit the channel and

sector information as a check on proper instrument performance. In the

maximum mode, channel identification is superfluous because of the fixed

order of channel selection. The calibration signals need be sent only

if they differ by more than some allowable tolerance from the desired

values, a check easily implemented by the CDS. The CDS can also be used

to perform the maximum mode functions that are currently shown in Figure 36

as being done within the instrument. As with all other instruments, the

easiest way to reduce the average bit rate is simply to restrict the

operating period of the instrument.

Processing alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1). In

the scan mode, successive samples of the same measurement (i.e., same

energy level, channel, and sector) occur once every 384 spacecraft revo­
lutions. Thresholding of measurements for adjacent sectors for the same

channel and energy level and for adjacent channels for the same sector and

energy level should also be considered as a means of obtaining compression.

Similarly, thresholding can be used in the maximum mode.

(2) Histogram compilation and analysis as in paragraph

8.3.4.1, (2), for both the scan mode and maximum mode. A modification of

the instrument sampling format might be considered whereby the measurement

period could be reduced from the current value of 384 revolutions. This

would produce more samples per unit time and would make the histogram

analysis more meaningful by reducing the time needed to acquire an appro­
priately large number of samples. In order to do this, it would be neces­
sary to multiplex all eight channels, in effect, sample them all in each

of the 15 sectors.

172

8.3.4.5 Triaxial fluxgate magnetometer:-- The basic instrument
schematic and interface is given in Figure 36. A realistic approach to
data processing requires that the low-pass filter for each axis have a
cutoff frequency sufficiently high to pass all desired information. For
all three gates combined, a single data sample specifies either implicitly
or explicitly 32 bits: 8 bits for each flux measurement; 2 bits for the sun
aspect sensor position; 2 bits for the dynamic range position; 3 bits for
the dc offset position; and 1 bit for the fluxgate physical orientation.
This assumes that sampling is done four times per revolution. Here, as
with the plasma probe, some savings can be made if the same sampling
arrangement is always used. However, it may be desirable to sample more
frequently in order to determine the spectral characteristics of the sensor
outputs. This spectral information can be used to determine an appropriate
sampling rate or to govern the rate at which measured samples are trans­
mitted. All processing, including spectral analysis and compensation for
the spin effect of the spacecraft on the magnetic field measurements, can
be performed digitally.

Processing alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1).

(2) Histogram compilation and analysis as in paragraph

8.3.4.1, (2).

(3) Spectral analysis of sensor outputs. If the analysis

indicates that signal frequency content is higher than can be handled by

the available telemetry rate, then some points of the spectral distri­
bution can be transmitted.

8.3.4.6 Stanford radio propagation experiment:-- Figure 36 shows

the schematic arrangement of the instrument and notes the appropriate

interface points. The most substantial bit requirement occurs on line S5 .

We can assume that the CDS determines the maximum and minimum values

(6-bit precision) of S5 once per revolution from 36 or 128 samples. Line

Sl accumulates counts; and, therefore, histogram methods are applicable.

Processing alternatives:

(1) Simple thresholding as in paragraph 8.3.4.1, (1) -­

applicable to all lines.

(2) Histogram analysis as in paragraph 8.3.4.1, (2) -­

appliceble to all lines, particularly SI .

(3) Orthogonal polynomials as in paragraph 8.3.4.2, (4) -­
applicable to all lines except S1
.

173

8.3.4.7 Conclusions:-- Several points are clear as regards effective

use of the CDS in handling the variety of signals generated by the instru­
ments. In general, it seems better to employ averaging methods (e.g.,

computation of mean, variance, and spectral distribution) rather than omit

data samples when the data bandwidth exceeds the available telemetry rate.

In this way, the CDS is being used to effect compression; and aliasing

errors due to insufficient sampling rates are minimized.

It is also clear that a variety of algorithms could be stored by the

CDS so that, by monitoring the data from each instrument, the appropriate

algorithm can be selected. This "tailoring" of the processing to each

channel is a distinct advantage possessed by a digital computer.

8.4 Addition of Magnetic Tape Storage

The flexibility of a stored program central data system such as

MULTIPAC allows the addition of a mass memory unit, such as magnetic tape,

to the system for storate of output data at times the telemetry link is

not in use. The program technique used for this type of unit will depend

entirely on the sophistication of this unit. A very unsophisticated unit

could be used which simply stores data on a long loop of tape to be trans­
mitted later. For such a unit, the programmer can consider it another tele­
metry unit. It is strongly recommended that the unit be interfaced with a

module very similar to the command/telemetry unit. In addition to trans­
mitting data to this unit, the program need only start and stop the unit.

The start and stop commands will be given very seldom, and the data will be

sent to the unit at the slow telemetry rate.

A more powerful implementation would be to design the tape unit to run

at higher speeds and put the data on the tape in blocks separately by record

gaps. In this case the formatting and outputting routine will be more effi­
cient since a block of words can be outputted each time the routine is

entered. A simple subroutine can be used to time out the record gaps for

start and stop. Later when the telemetry link is active, MULTIPAC can read

a block of data at a time into memory and output to the telemetry at the

telemetry rate.

If, in addition, the tape has the capability of fast forward and re­
wihd, programs which are seldom used, such as diagnostics or backup pro­
grams, can be stored on the tape. This will result in a great deal more

diagnostic capability while the spacecraft is out of contact with the Earth.

174

9.0 REPROGRAMMING AROUND FAILURES

The reliability of the MULTIPAC system is achieved through its ability

to reprogram around failures. This section describes some of the techniques

used to accomplish this reprogramming.

It does not seem feasible at this time to fly enough memory to perform

all the diagnostics and automatic reprogramming. A more realistic approach

is to diagnose the error through the command and telemetry links; to re­
assemble the program on a ground-based computer; and then transmit the new

program to the spacecraft. In general, it will not be necessary to repro­
gram all of the memory.

A typical system will have three logic units and enough memories to

have three complete processors operating simultaneously. A processor is

defined here to mean enough programmable units to program one or more of

the CDS tasks. The most likely division of work into these three processors

will be: one responsible for inputting and outputting data; another re­
sponsible for telemetry buffering; and the third responsible for data re­
duction processing.

The discussion will be divided into failures of various units (e.g.,

registers, logic units, etc.).

9.1 Complete Failure of a Register

Most failures in a register will cause complete register failure.

Data is moved in and out of the register serially., A failure in a flip­
flop, input gating or output gating will cause all bits of the word to

fail.

The major consequence of a register failure is the loss of the 12

input lines and 12 output lines. If these lines are not redundantly

connected to another register, then this represents a permanent loss of

data. In general, it is expected that enough resisters exist so that

science lines can be redundantly connected to two registers. Thus, the

loss of a single register will not cause the loss of any science data.

In the case of those lines connected redundantly to another register,

the I/0 tables in the I/0 processor are simply changed to reflect the

alternate register for the connection of the devices concerned. This pro­
gramming task could be included in the I/O processing routines so that only

a simple command to update these tables is necessary. However, since it

takes very little time to update the tables directly from the command link,

this latter approach is preferable to keep the CDS programs as simple as

possible.

175

In addition to use as I/0 interfacing, the registers are used as

scratch and indexing by programs. The ground-based computer should keep

a table of register usage for each of the programs and should reassemble

those programs using a failed register. As long as the number of failures

is small, there should be spare registers for this purpose. If this is

not the case, then the programs will have to be reassembled using fewer

registers. Frequently, there exists a reprogramming solution to accomplish

a process without relying so heavily upon available registers. Keeping

process parameters in registers is usually the most efficient in time.

Most often a loop which keeps constants in registers can be reoriented to

retrieve from program (not data) memory each time they are needed at a

slight loss in processing speed.

9.2 Complete Failure of a Logic Unit

Any failure of a logic unit is likely to cause associative failure

(due to failed logic), and some diagnostics should be attempted on a logic

unit to determine to what use, if any, this unit can be assigned. In this

discussion we will consider only the complete failure of the logic unit.

The failure of a single logic unit out of the three will primarily

affect throughput. Two logic units should be able to supply more than

the minimum required processing load of the central data system. It is

the extra tasks, such as data reduction, which will be affected. Since

initially all logic units will be working, it is reasonable to assume that

as many data reduction tasks as possible will be added to the GDS program

requirements to use up the MULTIPAC processing capability. In the event of

a logic unit failure, a cutback would then be made in the amount of data

reduction, particularly at high telemetry rates. At low telemetry rates

it is likely that no degradation in performance will occur.

This reduction to two logic units will require reprogramming the en­
tire mission. Thus, it is imperative that this be done ahead of time in

case such a failure should occur.

9.3 Memory Failures

There are very few single failures in a memory which will cause a

complete memory failure. However, multiple failures particularly three

or more, will tend to make it very difficult to use the memory. For

example, programming around loss of every other word and one of the middle

bits in every word may be more trouble than it is worth. In this case one

would consider the memory totally failed: Complete failures and some of

the more likely partial failures will be discussed in following paragraphs.

176

9.3.1 Complete failure.-- If more than six memory units are initially

available, there will be very ,little overall effect, except for those data

reduction algorithms which need large data stores. The computer on the

ground will have to go over all programs which reference this memory and

reallocate the storage. If this memory contains programs, these programs

will now have to be read into another memory and the program memory paging

changed.

If the failure brings the total number of memories below two per logic

unit, then the processing throughput will decrease. When the programs and

data are in the same memory, an extra memory cycle time is required on all

instructions referencing memory. This extra time is due to the loss of

data fetch and instruction fetch overlapping which results from using two

memories. Assuming equal memory reference and register reference instruc­
tions, this will decrease the speed for this one process by one-third.

Enough memory failures will have to occur to bring the CDS below four

operating memories before memory failures will prevent operating two pro­
cessors simultaneously. However, once the system is reduced to four working

memories, the amount of data reduction processing capability will be seri­
ously limited since most of these algorithms tend to use large amounts of

memory space.

9.3.2 Partial failures.-­

9.3.2.1 Complete loss of the memory register:-- If this register

section is completely failed, then the memory unit is completely failed.­

9.3.2.2 Partial loss of addressable words:-- This can occur due to
bits of the memory address register failing or an x or y decoder failing.
If conveniently addressable segments remain, such as halves or fourths of
t emory, then the unit really behaves as a smaller memory.- If the useful
w6rds are scattered throughout memory, then the memory can only be used as

random tempory storage or for constants. In this latter case, its effect

is very similar to the complete memory failures described above.

9.3.2.3 Loss of a bit:-- The memory cannot be used for programs since

there is no way to mask the effect. The use as data memory is limited, es­
pecially if the failure is intermittent or in the low order bits.

If the failure is in one of the high order bits, the unit could be used

to store small data with some extra programming to mask off this bit. If

the bit fails to a zero, only mask negative numbers are needed and vice

versa for a failure to a one. If the failure is in the low order bits, it

is necessary to shift the data word on every access to memory, which proba­
bly precludes widespread use.

177

9.3.2.4 Loss of a single word:-- This is a trivial problem for either

program or data storage and can be easily taken care of by the assembler in

the ground-based computer.

9.4 Command Override Procedure

The uplink commands are 16 bits in length. The last four bits (the

four most significant bits) are used to distinguish between normal commands

and command override commands. When these four bits are all 0, a normal

command is assumed. The other 15 combinations of these four bits are used

for command override. Each of these 15 address 15 different locations in

the MULTIPAC system: three to each of 5 logic units. When less than 5

logic units are in the MULTIPAC system, the unused commands will act like

command override without performing any command override function. In

other words, these unused commands will be treated like override commands,

but will be sent to nowhere.

The three addresses within a logic unit addressed by the command

override feature are the two accumulators and the instruction shift reg­
ister. A command sent to the instruction shift register will override any

other instruction entering the instruction shift register and this new in­
struction will be performed as if it came from the program memory.

When overtaking the MULTIPAC system, the first procedure, normally, is

to turn off all logic units. A logic unit is turned off with an override

command instruction to set the program memory page 1-o "0". Since there is

no program memory whose address is "0", this will effectively send zeros

continuously to the instruction shift register. Zeros are treated as NOP

instructions by the MULTIPAC logic unit.

The procedure to turn off all logic units is to send the instruction

SPMP (set program memory page) "0" to each of the logic units in turn.
SPNP "0" will set the program memory page of each logic unit to "0". After
all logic units have been disabled, the procedure is either to enable some
program stored in a known good memory or else to bootstrap in a program

from the ground into a memory.

To start the program at some program memory N at address A, first the

command to load Accumulator 1 with the Address A is sent. The instructions

JMPR ACCI are then sent to the instruction shift register. This jump

through register instruction will set the program counter to the address

in Accumulator 1. Since the program memory page is still "0", the program

counter will not increment and the address A will remain in the program

counter until the program memory page changes. Next, the instruction SPMP N

is sent to the instruction shift register, and when this instruction is

performed, the program memory page will switch to the requested memory and

the instructions will begin to be performed from the address stored in the

program counter.

178

To bootstrap in a program into memory, the data memory switch of a

logic unit is set to the proper memory with a SDNP instruction and then

the following three commands can be used to load each word into memory.

First, the addregs is loaded into Accumulator 1, and second, the data is

sent to Accumulator 2. The third command is the instruction STA2 indexed

by Accumulator 1. Commands from command override portion of the second

unit are sent to the instruction shift register as one word followed by

many words of all zeros. Thus, if a first word of a two-word instruction

is sent to the instruction shift register, the second word will be all

zeros. The STA2 indexed by Accumulator 1 instruction will have an address

of "0" indexed by Accumulator 1, or, in other words, the address will be

that of Accumulator 1. This will send Accumulator 2 to this address in

memory. This procedure can be repeated over and over again until enough

words are scored in memory to load programs with normal command words. Be­
for this loading program is entered, the diagnostic procedures of the next

section should be followed to determine what modules are working properly.

9.5 Reprogramming Methods

Reprogramming may be accomplished from the ground by simply sending

up a new section of code. Given any failure, the next most efficient pro­
gram usually involves a complete reorganization. This entails approximately

1000 words being sent up.. At 10 bits per second, this requires less than

one-half hour to transmit. Total reprogramming (-6000 words) would take

only 3 hours to accomplish. On the other hand, reprogramming from within

simply cannot cope with this kind of reorganization. Specifically, any

reprogramming requires changing code, hence a reassembly.

A relabeling process is possible for register failures only. Any

failure other than a register will require a total reorganization of some

routine to prevent inefficiency of running time and memory storage uti­
lization. There seems to be no real use for reprogramming which can be

accomplished on-board so that the command link transmission speed is the

factor which determines the amount of reprogramming done in a given time.

A very critical area is the problem of determining "what" has failed

whenever it becomes apparent that "something" has failed. A great deal of

the failure detection is going to occur on the ground. It does not seem

practical to put sophisticated detection programs on-board, since these

generally take a great amount of running time and memory. During the period

when the spacecraft is not transmitting to ground, a reasonable amount of

failure detecting can be run, but this does.not detect failures that occur

during the transmission period.

179

There seems to be no useful diagnostics which could be run on-board,

since these are far more complex than failure detection. Consequently,

the discussion in this section is concerned with how to diagnose from the

ground once the failure is apparent on the ground. In most cases all

activity will have to be stopped and all modules cleared so that they will

not conflict with the diagnosing process.

.5.1 Diagnostic tests.-- These diagnostics should not be very ex­
tensive. Rather, they should be a short sequence of tests which are opti­
mal for the length of the sequence. The main purpose of these diagnostics
is to get some confidence quickly in most of the units which are not defi­
nitely known to be bad. If these tests fail to reveal trouble, then some

more extensive tests may be run. There is a reasonable chance that the

simple echo and register tests could be included in every memory unit.

The remaining tests will probably be too large. However, they might be

stored on a tape. The time estimates involve transmitting everything from

the ground, but tape could be used for such things. It is encouraging

that even the worst case of numerous duplicate transmissions from the

ground is not exorbitant in time. As units fail, the search is reduced

because the unit no longer has to be considered. Looking-at the problem

in this light, it seems clear that the bootstrap test can always be done

in quite reasonable time unless a large number of failures occur at once.

9.5.1.1 A simple echo:-- The simplest possible program which generates

feedback is necessary. This would probably consist of a sequence of words

being sent back via telemetry, for example,

TEST: LDAl WORD1
OUT TELl
INP MASK,RFLAG
SKPI NEZ
MP .-3

LDA I WOPD 2

imp TEST

where the code is repeated for each word to be sent back. In this program

the word to be tested is read into Accumulator 1 and is outputted to a

180

telemetry register. The flag is then inputted from that telemetry register,

which is tied to some input interface channel as specified by MASK and

RFIAG. This flag is loop tested until another word is needed and then the

processing is continued. This program uses one memory, one logic unit and

one telemetry register. If the desired sequence comes back some specified

number of times, then a basic processor has been located. Otherwise, the

program must be reassembled and retransmitted using some other combination

of the three units. This can be done in an optimal manner with some analy­
sis.

A program such as the simple echo routine should include a frame

synchronization (FS) code. This would assure at least one word having

the high correlation properties of a Barker code and thereby form a very

simple frame format to make the ground synchronization and decommutation

problem easier. One word could be echoed which contains a 7-bit Barker

code plus 5 bits of data.

9.5.1.2 Register test:-- The next step is check out all registers

A basic processor exists but cannot be very useful unless a reasonable

number of registers are alive. In addition, checking registers is at

least logically simple. The program would be very similar to that above

except that the words to be transmitted would be first copied into a

register, then into the telemetry. This is a very basic test and can test

all registers with one simple program.

9.5.1.3 Creating a full processor:-- The next two steps are to per­
form an instruction test for all the modules used up to now and then to

search for a good data memory. A full processor needs two memories, a

logic unit, and probably one to four registers. The search for a good

data memory can be performed on-board, since we have already determined

through the instruction test that the selected modules work properly.

This program should interact often with the ground so that unforeseen

problems may be detected. At this time it will be more efficient to test

all memories rather than just to look for a good one.

9.5.1.4 Test of remaining logic units:-- When the above is completed,

the system is known to have at least one full processor plus a number of

available memories and registers. The next test should be the complete

checkout of the other logic units. This can be done completely on-board

by the good processor monitoring the output of a standard program residing

in a good memory. As soon as one unit checks out, it is turned off and

the other unit is set to execute from the same test program (same memory

unit).

181

9.5.1.5 I/0 test:-- The final test is to check out all the I/0
devices and generate a device number-to-register map for use by the I/0
programs. Absolutely failed units should be reported to ground, although
reprogramming would not usually be required. The other telemetry unit
should be tested at this time if not tested previously.

9.5.2 Timing.-- Overall time for a complete set of diagnostics where

everything is transmitted from the ground is on the order of 1-2 hours.

This assumes an unlikely 2000 words of transmission and one hour of analysis.

Running diagnostics from an on-board tape unit might appreciably reduce

this time by reducing transmission time and allowing more lengthy self­
checking routines to be run. Thus, it looks like the bad failure situation

might take two hours of diagnosis and three hours of reprogramming. If

very definitive diagnostics are desired, then the time increases, simply

because they must be run for long periods of time. It is clear that inter­
mittent failures will cause either long periods of diagnosis or living with

intermittently bad data.

9.6 Ground Software

Ground-based software must emphasize the ability to diagnose and re­
program in the shortest possible time. This primarily implies a large

collection of preassembled routines using all the combinations of availa­
ble hardware. This is, or course, impractical. What really is needed is:

1) a diagnostic generator which uses failure history to reduce its output,

and 2) various organizations determined by sets of available units of the

running software which are abstract in the actual units utilized. This

latter means assuming some subset of units being available and writing

the most efficient code for the situation. Parameters to each such en­
coding would be the actual unit numbers (switch addresses). This ability

implies an assembler of only moderate complexity with relatively simple

macro features.

No time should be wasted on any kind of compiler. Code simply must

be as efficient as possible, which means only machine language coding.

A computer must be available at all times for reassembling programs.

Some on-board problems, such as failures, will be solved only by having

a programmer generate more code in real time. If possible, the computer

should take care of transmisslon to the on-board system. Extremely de­
sirable would be a diagnostic generator (as above) which checks out the

system automatically when needed. There is probably no need of human

analysis most of the time. This is more true of diagnostics than repro­
gramming.

182

10.0 CONCLUSIONS AND FUTURE RECOMMENDATIONS

This contract began as a study of data formatting and data system

organizations for lightweight deep space probes. The first year of this

study, which has been reported previously, recommended that the central

data system use stored program computer concepts, that data formatting

should be very flexible, and that data reduction algorithms should be used

whenever possible. The initial contract was extended to develop the mul­
tiple pooled central data system concept described in this report.

MULTIPAC is a central data system using stored program computer con­
cepts which would give future spacecraft extensive data processing capa­
bility for variable data formatting, sampling and converting analog in­
formation from experiments, and performing data reduction on experimental

data to improve information transfer on a limited telemetry bandwidth. An

organization consisting of pools of modules organized by the program is

used to achieve an extremely high reliability for extended deep space

probes. In the event of a failure, this multiple pooled organization

allows reprogramming around the failed modules, permitting the surviving

modules to be utilized optimally.

In addition to the ability to recover from failures, this multiple

pool organization replaces the current technique of designing a new data

system for each probe, with a standard "off the shelf" central data system,

which is programmed by software to perform as a flexible data management

system. One typical organization was used as an example throughout this

report. This typical MULTIPAC configuration, a 16-watt system, including

12,288 words of memory, can handle about 200 science and engineering input

lines and 200 output lines. This typical system could simultaneously

schedule sampling of the experiments, perform needed analog-to-digital con­
versions, reduce data using histograms or other data reduction techniques,

and then format the data for transmission by the telemetry subsystem.

Since a computer organization is used, wide variations in formatting, sam­
pling schedule, and other data management tasks are easily accommodated.

These changes can be made later in flight from the ground after the data

has been analyzed. It is at this time that data reduction techniques are

quite powerful, since after the flight has been in progress for some time,

enough may be known about the data to effectively perform data reductions

on the raw data. In addition, if an experiment has failed, the part of the

data format transmitted to earth from that failed experiment can be used by

other experiments.

The above system has an extremely high probability of surviving 36
months (the longest mission considered). However, with the very pessi­

-
mistic failure rate of 10 5 LSI circuits per LSIC-hour (I percent per
1000 hours), the probability of system survival is 0.0001. For more real­
istic failure rates of 10-6 or 10-7, the corresponding figures are 0.92
and 0.999, respectively. These failure rates are for a minimum operable
configuration of one processor, 2048 words of memory and 83 percent of

183

the input-output interface lines working properly. This configuration

is more than enough to perform scheduling and sampling of the science and

engineering lines and data formatting which is the capability of present­
day fixed format central data systems.

The present design is expandable to five processors and 32,768 words

of storage. Each of these processors will act as a computer with an in­
struction rate of 15 microseconds. These limits are arbitrary and simple

changes to the system design can be made if greater memory storage and/or

computers are needed. This fully expanded MULTIPAC system will require

32 watts of power, and will handle an extensive input-output interface

to the experiments, many times greater than that of present day space probes.

The generality of the design is such that it can easily handle input/output

devices not included in this design with existing modules or with the ad­
dition of new modules. These new modules are easy to interface, require

very few interconnections, and may be directly addressable by the programs.

As this design moves into hardware implementation, it is probable that

some changes will be made due to further analyses of the system's require­
ments. Before final implementation, it is recommended that a typical mis­
sion be programmed, and that diagnostics be written to determine whether

they ought to be transmitted from the ground (the most likely), or stored

in memory. These programming tasks may result in recommendations for some

changes in the overall design. It is expected that such design changes

will be limited to change of instruction repertoire, in which case only

the design of the logic unit need be affected. The register and memory

can remain exactly the same, and the LSIC's of these modules may be re­
leased before programming is done. Programming a typical mission will give

a closer estimate of memory requirements and the amount of data reduction

processing capability available to the experimenter.

These programming tasks may be accomplished while a breadboard is

being built. Breadboarding costs about the same (assuming integrated

circuits are used in place of the LSI circuits) as performing a computer

simulation and is a far more accurate representation of the final system.

Without a mass storage device aboard the spacecraft, reprogramming

from the ground will require a command link capability of at least 10 bits

per second. Even at that rate it is possible that a failure could put a

spacecraft out of contact with earth for one to two hours. If this is an

unacceptable delay, it may be desirable to add a simple commutator under

control of the command decoder which will bypass the central data system.

This bypass, which would be used while reprogramming, could simply trans­
mit the raw data with frame syncs and parity in a fixed sampling sequence.

In conclusion, a very low power, extremely flexible central data

system has been described which can be reprogrammed from the ground to

either change its characteristics or to program around failed components.

This design can be used for all (or most) future deep space probes re­
placing the present data systems which are specifically designed for each

flight.

184

REFERENCES

1. 	A Study to Determine an Efficient Data Format and Data System for a

Lightweight, Deep Space Probe. NASA CR-73211, Contract No. NAS2-3255;

February 1968.

2. 	MULTIPAC, A Multiple Pool Processor and Computer for a Spacecraft

Central Data System. Research Report No. NASA CR-73262; March 1969.

3. 	Cricehi, J.R; Lancaster, E; and Strull, G; A Large-Scale Complementary

MOS Memory. Supplement to IEEE Transactions on Aerospace and Elec­
tronic Systems, Vol. AES-3, No. 6; November 1967.

185

BLUNK NO'T ?ILMEDb~aDX4G ~r,

APPENDIX A

RELIABILITY PROGRAM

The results tabulated in Section 6.0 using the general model of
Figure 31 of that section, was written on a time-sharing terminal using
a language called TELCOMP. This is typical JOSS language (simplified ALGOL)

similar to CAL, a more generally known language. The program is shown in

Table Al and its output upon the command "DO PART 6" is shown in Table A2.

Abbreviations used:

CG - Clock Generator (oscillator + squaring)

TO - Timing Counter

TC20F3 - 2 of 3 TC's

LU - Logic Unit

M - Memory Unit

MS - Memory Storage Element

R - Register

TM - Telemetry Unit

CM - Command Unit

RP - Register Pair (redundantly connected I/O)

DA - D/A Register

RATYP - Typical Analog Comparator Return Reliability
(must have one D/A and corresponding I/O

register)

RADGR - Typical Digital Input Reliability

LITYP, L2TYP - Partial calculations of RATYP

LIDGR, L2DGR - Partial calculations of RADR

187

TABLE Al

PROGRAM FOR RELIABILITY

1.01 DO PART 2 FOR NNR:I FOR N:j FOR PC:.2

1.02 CG=PS

1.03 DO PART 2 FOR MNR:2 FOR N:3 FOR PC~i

1.04 TC2OF3=?b

1.05 DO PART 2 FOR MNR:3 FOR N:3 FOR PC=14

1.06 LUOF3=SrS

1.07 00 PART 2 FOR MNR:1 FOR N=3 FOR PC:14

1.08 LUIOF3:t5

1.09 DO PART 2 FOR MNR:6 FOR N:6 FOR PC:8

1.10 46uF6:Po

1.11 DO PART 2 FOH jqR=I FOR N:6 FOR PC:8

1.12 ilHOFG6zS

1.16 DO FART 2 FOR MNR:1 FOR N:2 FOR PC=3

1.131 R?=S

1.15 CMI10F2:PS

1.16 DO PART 2 FOR MNR:1 FOR N:2 FOR PC:4

1.17 TMIOF2:PS

1.18 DO PART 2 FOR MNR:G FOR N=6 FOR PC=3

1.19 RGOFSG:PS

1.20 DO PART 2 FOR NNR:5 FOR N:6 FOR PC:3

1.21 R 50FG:PS

1.22 DO PART 2.04 FOR M'NR:6 FOR MR:RP FOR N:6

1.23 RP6OF6:PS

1.24 DO PART 2.04 FOX ?iNR:5 FOR MR=RP FOR N=6

1.25 RP5OF6:Pb

1.26 DO PART 2 FOR NNR:I FOR N:! FOR PC:4

1.27 DA:PS

1.28 DO PART 2 FOR M4MR:2 FOR N:3 FOR PC:14

1.29 LU2OF3:P

1.30 DO PART 2 FOR IINR:4 FOR N:G FOR PC=8

1.31 D140FG:t

1.32 DO PART 2 FOR MNR=2 FOR N:6 FOR PC=8

1.33 V,20F6
6?
1.34 DO PART 2 FOR MNR=2 FOR N:6 FOR PC136

1.35 M,20F6=PS

1.36 DO PART 2 FOR MNR:4 FOR N:G FOR ?C=136

1..37 [IS4OF6:PS

1.38 DO PART 2 FOR MNR:6 FOR N=6 FOR PC: .13,6'

1.39 MS60F6:'5

1 .40 DO PART 2 FOR MNR:1 FOR N=6 FOR PC:136

1.41 MS IOF6:PS

1.60 TYPE #,#,#

1.70 TYPE NO,FR IN FORM 6

1.71 TYPE #,CG,TC20F3,LU3OF3,LU20F3,LUIOFS,MOFG,M4OFG,M20F,MIOF

1.715 TYPE MS6OFE,MS4OFG,MS2OF6,MS1OF6

1.72 TYPE TMIOF2,CMIOF2,RSOFG,R50F6,RP,RP5OFStPo6FG,DA,#

1.91 DO PART 4

1.92 DO PART 5

2.0.3 MR :EXP (-PC*FR*730*MO)

2.04 NS :N , :0

2.05 SET NF=N-NS

2.06 DO PART 3 FOR J:NNSNF

2.07 SET PRd:FCT(NJ/(FCTINS]*FCTtNF])*MRtNS*(I-NR)TNF

2.09 PS:PS+PRS

2.10 N;:NS-1

2.11 TO STEP 2.05 IF NS':MNR

188

TABLE Al.-- Continued

PROGRAM FOR RELIABILITY6.0 Se.T FCT[.J]:1

6.1 FCT(J)=FCTEJJ*I FOR I=z:i:J

q.0l LITYP:DA*(I-DA)*R6OF6

4.02 LZTYP--DAt2*RP 6OFG

4.03 RATYP:2*LITYP+L2 IYP

4.04 LIDGR=DA*(l-DA)*R5OF6

4.05 L2DGR=DAt2*RP50FG

4.06 RADGR =2*LIDGR+L2 DGR

4.31 TYPE LITYPL21YP,RATYP,LIDGR,L2DGR,RADGR,#,#

5.01 L3X:CG*TC2OF3*LU3OF3*TliOF2*CMI OF2

5.02 RELS:RELSX* 60F6*RP6OF6*RATYP

5.03 REL.3A=RELZX*RP50F6*RADGR*MOF6

5.04 REL-3p4:REL3X*M 60F6*RP6OF6*RATYP

5.05 RELS;,MA=RE LSX*MbEGOFG*RP50F6*RADGR

5.06 R tL2XC*TC20F3*LUZOFS*T4IOF2*CMIOF2

5.07 REL2=REL2X*M4OF6*RPOF6*RATYP

5.06 REL2A=RLL2X*M4OFG*RP50FG*RADGR

5.09 REL24 =REL2X*MS40FG*RPEOF*RATYP

5.10 REL2MA:REL2X*MS40F6*RP5OFE*RADGR

5.11 RELIX:CG*TC2OF*LU0OF3* TMIOF2*CMIOF2

5.12 RELI :RELIX*142 OF6*RPEOFE*RATYP

5.13 RELIA=RELIX*MeOFG*RP5OF6*RADGR

5.14 R .LM=REL1X*Mo2OF6*RP6OF6*RATYP

•I.1
5 RLL1MA:jELIX*MS2OF6*RP 50F6*RADGR

5.16 R.LOX=CG*TCOF3*LUIOF3*TMIOF2*CMIOF2

5.17 RELOZRELOX*MIOFG*RP6oF*RATY?

5.15 RELOA:RELOX*MI OF6*RP5OFS*RADGR

5.19 RELOM:RELOX*M IOFS*RP6OF6*RATYP

5.20 RELONA :RELOX*4S iOFS*RP5OF6*RADGR

5.63 TYPP FORM 1

5.S4 LINE

5.85 TYPE RELS3REL2,RELIRELO IN FORM 2

5.86 LINE

5.87 TYPE RELSA, REL2ARELIARELOA IN FORM 3

5.88 LINE

5.89 TYPE REL3M,RELZM,REL1M,RELO(M IN FORM ,4

5.90 LINE

5.91 IyPL REL3MA,REL2MA,RELIMA,RELOMA IN FORM 5

5.92 TYPE #,#

6.0 ZL PART I FOR 11:12;12:36 FOR FR:IOT-7

6.1 DO PART I FOR MO=12:12:36 FOR FR=IOt-C

6.2 DO PART I FOR MO=12:12:36 FOR FR=IOt-5

FORM I
REL: LU,EM 2LU,4M ILU,214 ILU,IM

FORM 2
FULL I/O .#### .#### .####

FO HiM 3
83% I/0 .#### .#### ,####

FuR, 4
FULL I/0 (W MS) .####ttt .####ttt .####ttt .####?Tl

FOR M 5
83% I/O (I MS) .####ttt .####ttt .####ttt .####T

FORA G
SOLAR PRObE ## MONTH RELIABILITY FOR FAILURE RATE= #.#stt

189

TABLE A2

OUTPUT OF PROGRAM

SOLAR PROBE 12 MONTH RELIABILITY FOR FAILURE RATE: 1.0-07

CG= .999824815

TC2UFS: .999997701

LU30F3: .963876601

LU20F3= .999557899

LUIOF3= .999998189

M60F6: .958823756

040FF= .999993295

M20F6= I

MIUF6: I

l560F6= .489282131

NS4OF6: .976202277

tC:2OF6: .99990281

MSIOF6 .999997993

IMIOF2: .999987765

CMIOF2: .999993112

R6OF= .984555664

R50F6: .999897397

RP: .999993112

RP5OF6= .999999999

RtEOF6= .999958671

DA= .996502132

LITYt 3.4311027*IOt -3

L21TP= .992975458

RATY?= .999537664

LIDR= 3.48527548*lOt -3

L2IDGR: .993016498

RADGR: .999987049

REL: 5LUGM 2LU,4M ILU,2Pi ILUIM

FULL 1/0 .9258 .9992 .9996 .9996

83% 1/0 .9240 .9993 .9998 .9998

FULL i/0 (W MS) .4714+00 .9774+00 .9995+00 .9996+00

83% 1/0 (W Mb) .4715+00 .9776+00 .9997+00 .9998+00

190

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAH PROBE 24 MONIH RELIABILITY FOR FAILURE RATE= 1.0-07

C(: .999649661

TC20F3= .999990218

LU3OF3: .929058102

LU2OF3: .998267224

LU1OF=: .999985775

NIGOF6= .919342995

A4OFE: .999947746

i,20FG= .999999997

L41F6= I

o6OF6: .239397004

Orz4OF6: .885811874

tIS2OF6- .997883975

MS1OF6 .999909185

fMIOF2= .999951231

CMI OF2: .999972519

R6OF6: .968956074

R50F6= .999593517

RP= .999972519

R5OF6: .999999989

Rt6OF6: .999835126

DA: .993016499

LITY?: 6.71945054*10t -3

L2TYe= .985919188

RATYtz .999358089

LIDGR: 6.931913*10t -3

L2DGR: .986081756

RADGR: .999945582

REL: 3LU,6M 2LJ,4M ILU,2M ILU,IM

FULL 1/0 .8531 .9970 .9987 .9987

83% I/0 .8537 .9977 .9995 .9995

FULL 1/0 (W M6) .2221+00 .8832+00 .9966+00 .9987+00

,Z. 1/0 (W MS) .2223+00 .8838+00 .9974+00 .9994+00

191

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 56 MONTH RELIABILITY FOR FAILURE RATE= 1.0-07

CG:

TC20F3=

LU3OF3:

LU2OF3:

LU1OF3z
k160F 6=

M40F6:
L42OF6:

AiOF6:

MSCOFG=

'S40F6 :

MiS20F6=

4l1OF6:

IM1OF2=

CMIOFZ=

RGOFG:

R50F6:

R?:

R?50F6:
Ri-'OFE6

DA:

LIlYP:

L2 TYP=
RATY?:

LIDGR-

L2DGR:

RADGR:

FULL 1/0

83% 1/0

.999474538

.999979371

.895497365

.996179575

.999952863

.881487903

.999528195

.999999977

I

.117132676

.743359332

.98897748

.999263489

.999890652

.99993833

.953797399

.9990941 56

.99993833

.999999943

.999630039

.989543058

9.86950861*1Ot
.979833199

.998572217

.0103382211

.979195408

.99987185

REL: 3.UJ,6M

.7874

.7887

FULL 1/0 (W M) .1046+00

8.37 I/0 (W MIS) .1048+00

-3

2 LU,4M ILU,2M ILU,IM

.9935 .9974 .9974

.9952 .9991 .9991

.7.387+00 .9864+00 .9967+00

.7.399+00 .98814-00 .9984+00

192

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PRO8E 12 MONTH RELIABILITY FOR FAILURE RAIL: 1.0-06

C. ,998249534

TCcuF3: .99977312

LUu 5 .692172553

LJ20F3= .963111128

LUIOF3: .998462483

60FG: .656731513

i,4UF6- .99469357

112 F6: .99999196

WUOF6: .999999904

tv'b6UF6= 7.8630956*IOT -4

N, 40F6: .0735338386

bz2OF6: .588015717

&SIOF G= .886139024
TMIuF2: .998814354

CMIOF2: .999327236 *

REOF6: .854123057

R5OF6: .990586456

RP ,.999327236

Rt 50F6: .999993223

HtP 60F6Z .995970201

DA: .965566793

LITYt: .0283975088

L2 TYP : .928562173
RATYe=: .985535719
LIDGR: .0329345841

L2DGR: .932312913

RAD6R: .998182081

REL: 3LU,SM 2LU,4M ILU,2M ILU, IM

FULL 1/0 .4444 .9366 .9761 .9761

86% I/0 .4520 .9526 .9928 .9928

FULL i/0 (W1 M) .5321-03 .6924-01 .5740+00 .8650+00

83% I/O (W MS) .5412-03 .7042-01 .5838+00 .8798+00

3-93

TABLE A2.-- Continued

OUTPUT OF PROGRAM

vULAR PROdE 24 MONTH RELIABILITY FOR FAILURE HATP-- 1.0-06

CG : .996502152

TC20F3: .999105595

LU3OF3= .479102843

LU2OF3: .878644571

LUIOF3: .98970882

M60F6= .43129628

£M40F6: .967100241

M2OF6: .99979547

o'l 0F6= .999994996

II60F 6.18282726*1OT -7
Nz4OF6= 9.34050436*10t -4
,1520F6: .0994429334
MaIOFG- .440685136
TM1 OF2 .995419,313
C{ 1OF2z .997378293
RCOF6Z .729526197

R5OF6= .965742979

Ri : .997378293

R?50F6= .999897618

Ht6OF6: .984372497

DA= .932319231

LIlY?: .046033163-

L2 TY? = .855635425

RATY'= .947701751

LIDGH: .06093546113

L2DGR: .869130157

RADGR .99100708

REL: 3LU,M

FULL 1/0 .1905

83% 1/0 .2024

FULL I/0 Cv M6) .2732-06

83% 1/0 (W mS) .2901-06

2LU,4i ILU,2h 1LU, IM

.7836 .9124 .9L26

.8323 .9692 .9694

.7568-03 .9075-01 .4022+00

.8038-05 .9640-01 .4272+00

194

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 36 MONTH RELIABILITY FOR FAILURE RATE: 1.0-06

CG: .994757789

TCZOF3: .99801 6609

LUSOF3= .331621838

LU2OF3= .774064853

LU1OF3: .970230968

MGOF6: .283245858

M40F6: .913468973

M2OFG- .998761864

M1OF6t .99995353

M360F6= 4.86161619*10t -10

MS 40FE: 8.86300499*I0t -6

Mo20F6: .0109400896

ilSIOFG: .156884438

TMIOF2: .990043251

CMIOF2: .994252508

RSOF6: .623105146
R50F6: .929789461

RP : .994252508

Rt 50F6: .999512041

Rr6OF6: .96600677

DA= .90021649

LITYt: .0559715171

L21YP: .782841965

RA TYP : .894784999

LIDGR: .0835199757

L_.DGR: .809994292

RA DGR: .977034243

REL: 3LU,6M 2LU,4M ILU,2M ILU, IM

FULL 1/0 .0793 .5973 .8191 .8200

83% 1/0 .0896 .6748 .9254 .9265

FULL I/0 (W MS) .1362-09 .5795-05 .8972-02 .1287+00

83% 1/0 (W ItS) .1539-09 .6547-05 .1014-01 .1454+00

195

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 12 MONTH RELIABILITY FOR FAILURE RATE= 1.0-05

CG = .982632583
TCZOF3= .980076116

LUOF3= .0252431613

LJ2OF3= .207670585

LUIOF3: .647126436

M6OF6 .0149237705

M40F6= .336630383

iqZOF6 - .887010429

MlOF6= .983646525
NSOF6= 9.0,3515412*10t -32

MS40F6= 3.02025525*10T -20

MS20F6: 6.73072773*1Ot -10

flS1OF6= 4.01914096*10T -5

TMIOF2= .912624347

CMIOF2= .946590784

ROFS= .206635274

R5OF6= .57928122

RP-- .946590784

RP50F6= .96295007

RPGOF6 .719405299

DA= .704406271

LITYP= *0430251993
L2TYP= .356960416
RATYP= .445010815

LIDGR: .120616821

L2 DGR = .477804456

RADGR= .719038099

REL. 3LU,61' 2LU,4 ILU,2M ILU,1fM

FULL 1/0 .0001 .0185 f522^ .1688

8,3% 1/0 .0002 .0403 .3307 ..3667

FULL I/0 (W MS) .6047-33 .1663-20 .1155-09 .6896-05

83% 1/0 (W MS) .1314-32 .3613-20 .2509-09 .1498-04

196

TABLE A2.-- Continued

OUTPUT OF PROGRAM

bULAH PROBE 24 MONTH RELIABILITY FOR FAILURE RATE:

CG= .965566793

TC2UFS: .930817737

LU3oF,3= 6.37217192*10? -4

LJ2UF3 = .0209405619

LU IOF3= .236579128

60F6: 2.22718927*l0t -4

N40F6: .0356304994

M20F6= .457030994

tIOF6= .816545917

'IS6OF6= 8.163401*lOt -63

Pb40F6: 6.08142487*I0T -41

M52QF6: 3.02028762*10t -20

MlOF6= 2.69233919*1OT -10

TMi11OF2= .746173665

CMIOF2 = .832882999

RGOF6: .0426981365

R50F6: .219845897

RP = .832882999

Rt 50F6: .735689382

RPOFG= .333813568

DA: .496188194

LlIfY: .0106739137

L2IYe= .0821858099

RAIYP= ,103533637

LIDGR: .05495828

L2DGR = .18112873

RADGH= .29104529

REL: SLU,6M 2LU,4M ILU,2M

FULL 1/0 .0000 .0000 .0021

83% I/0 .0000 .0001 .0129

FULL 1/0 (W MS) .1004-66 .2458-43 .1379-21

8.3% I/0 (W Ms) .6221-66 .1523-42 .8546-21

1.0-05

ILU,1?j

.0037

.0231

.1230-11

.7618-11

197

TABLE A2.-- Continued

OUTPUT OF PROGRAM

SOLAR PROBE 36 MONTH RELIABILITY FOR FAILURE RATE= 1,0-05

C:
TC20F3=
LUSOF3=
LUZOFS=
LUIOF3:

MtOFS=
M40FS=
M20FG=
MIOF=

MS6OF6:
MS40F6:
MS2OF6:
NISlOF6=
TMIl OF2=
CtIOF2 :
ROFS=
R5OF6=

RP:
RP50FS:
RP6OF6=

DA=

.948797391

.864458556
1.60853763*IOT -5
1. 87948082*I0t -3
.0738339177

3.32380616*10? -6
2.72103028*10t -3
.160517,302
.542402511

7.37575859*IOT -94"
1.22451015*10t -61
1.55527312*10" -30
1.80351199*10t -15
.576873266
.702507782
8.82294115*10t -3
.0723414373
.702507782
.425610167
.120200656
,349518076

LIlYP:
L2TYP=
RA IY?:
LIDGR:
L2DGR:
RADGRz

2.00594147*10t -3
.0146840589
.0186959418
.0164472013
.0519937659
.0848881684

ERROR AT STEP 5.04
NUttSER OUT OF RANGE
-SET ISGOF6 = 0
-60

REL: SLUN614 2LU,4M ILU,2M ILU,IM

FULL I/O .0000 .0000 .0000 .0000

83% I/0 .0000 .0000 .0001 .0005

FULL I/0 (W MS) .0000+01 .1719-66 .7475-34 .9947-19

83% 1/0 (W PIS) .0000+01 .2764-65 .1202-32 .1599-17

198

APPENDIX B

LOGIC DESIGN SIMULATION

This appendix will describe one of many different ways of simulating

a logic design once the logic drawings exist. Many organizations per­
forming digital logic design use simulators similar to the one described

in this appendix. The particular one described has the primary advantages

of ease of writing the simulation software and no requirement to input

Boolean equations.

The simulator described here is a version of the present-day simu­
lator used at the Applied Research Laboratory. Experience on this simu­
lator has shownus that no logic design knowledge is necessary to produce

the input information. Experience has shown that a secretary with less

than one-half hour training can produce input cards from a logic drawing.

However, an engineer is needed to debug any errors in the logic design or

the input process.

B.1 General Description

To input a design, the user inputs equations of the form:

A = NAND(B,C,D)

XYZ = ANDNOR(A,BCDAABBCCDD)

L = FFD(XYZ,ZZ,W,A,B,C,D,E,0,CP)

with one equation per line or card. The first equation is a three-input

NAND gate whose inputs are B,C,D, and output is A. The second equation

represents a SUHL ANDNOR which has two 4-input AND gates feeding a NOR

gate. The third equation represents a D-type flip-flop made by Transitron.

The commas devide the various input gating levels of this-flip-flop, the

last field being the clock pulse input. The simulation clock pulses are

represented by the letters CP followed by a one- or two-digit number. A

normal logic level may appear at this positio if the user does not want

the flip-flop to be triggered by the simulation clock pulse. Note that

the next to last field contains a zero instead of a name of a signal.

The above discussion may be clarified with an example. The logic

diagram of Figure 37 represents a three-stage feedback shift register.

The input to the first stage of this shift register is the exclusive OR

of the second and third stage. The register shifts whenever the logic

level SHIFT is a "I" and will have a repeating pattern of length 7. In

case the register starts with all stages a zero, .this state is decoded

(ZEROA) and a 1 is fed to the first stage. In addition, the register

may be loaded by setting LOAD to a 1 and the register will hold its

current value when neither LOAD nor SHIFT is a 1.

199

C INIV IN 2 1IN3

LOAD

HOLD SHIFT

-A2- "

D-TYPE
FLI P-FLOP

NNSHIFT

D-TYPE
I FLIP-FLOP

12fl A30

I IT -Ye
I FLIP-FLop

i NLA

NAl

ZERO A

Al - NA2 A2 NA] A

Cr-I

Figure 37. An Example of a Three-Stage Feedback Shift Register

This logic would be entered with the following equations:

Al = FFD(RETURN,1,SHIFT,INI,1,LOAD,ZEROA,SHIFT,HOLD,GCP)

A2 = FFD(Al,I,SHIFT,I,IN2,LOAD,1,0,HOLD,CP)

AS = FFD(A2,l,SHIFT,1,INS,LOAD,I,0,HOLD,CPI)

HOLD = AND2(NLOADNSHIFT)

NLOAD = NANDl(LOAD)

NSHIFT = NANDI(SHIFT)

RETURN = NAND(Rl,R2)

Rl = NAND2(A2,R3)

R2 = NAND2(A3,R3)

R3 = NAND2(A2,A3)

ZEROA = AND3(NAI,NA2,NA3)

B.2 Method of Simulation

Three general approaches to simulating MULTIPAC are possible. The

best long-term solution would be to have a general purpose simulator

written which would accept the equations as input. This then allows the

simulator to be used on many projects, including the digital portions of

the experiments surrounding MULTIPAC. A second solution is to use a

general purpose simulator available on a commercial time-sharing service.

As an example, a firm, EAPIDATA, supplies a terminal service which in­
cludes a digital logic simulator whose input format is of the general

form shown here.

If neither of the first two methods of simulation are desirable,

then a simulator for MULTIPAG only could be written to simulate the

MULTIPAC design.

B.3 Writing a Simulator for MULTIPAC

The above format simplifies the writing of a simulator for a speci­
fic system to be simulated. It will be noted that the format of the logic

is that of a Fortran statement where the output equals a function of a

number of inputs. Thus, if a Fortran function is written for each of the

required gates or flip-flops such that the proper Boolean function is per­
formed and the Boolean answer is returned, then the statement could be

entered as part of a Fortran program. The various size NAND gates need

different function names since Fortran is incapable of accepting a vary­
ing number of arguments to a function.

201

Since Fortran functions only return a single value, then an addi­
tional equation would have to be added for every flip-flop. These

equations will be for the zero output side of the flip-flop. For the

example shown, equations of the following form would have to be added:

NAl = INV(Al)

NA2 = INV(A2)

NAS = INV(AS)

and the function INV would have to be written, which would simply in­
vert the signal (i.e., ZEROS would become ONES and ONES would become

ZEROS).

Thus, a Fortran function must be written for every different cir­
cuit type. For the above equations, functions must be written for FFD,

INV, AND2, ANDS, NANDI, and NAND2. Many will be very short functions.
The NAND2 function will simply form the Boolean NAND of its two argu­
ments by using Fortran IV Boolean functions, or a machine language
routine. Each time the program containing the logic equations calls
NAND2, it will return the NAND of the two inputs. For example, when the
program executes the RETURN equation, it will perform the function NAND2
on the values of RI and R2 at that time and set RETURN to the NAND of
those values.

These equations would have to be surrounded by a Fortran program

which creates clock pulses, prints outputs, and otherwise exercises the

the design. The first part of the program would initialize all the sig­
nals, and set up a Fortran DO loop which contains the equations above

as the main part of the loop. Each time the loop is entered, the clock

pulses and the input signals would be varied according to some pre­
determined test pattern. On every exit from the loop the states of

those signals traced would be printed on the line printer. The print­
out would be of the form shown below.

Al A2 AS RETURN ZEROA

0 0 0 01
1 0 0 0 0
0 1 0 1 0

10 110

1 1 0 1 0

0 0
0 1 0
0 0 i 1 0

10 0 0 0

202

Most logic equations will produce a single bit of information
(0 or 1). Allowance could be made for multiple bit operations. For
example, a new function, REG, could be written to form a "register" of
signals for purposes of printout. If the equation

z = REG(Al, A2, A3)

were included and Z traced instead of Al, A2 and A3, the printout of the
above example would be:

Z RETURN ZEROA

001

4 00

2 1 0

5 0

6 00

'7 00

3 00

1~ 1 0

4 00

where Al, A2, A3 are now the three bits of "register" Z.

203

TINCT.ART1'T~n
Secuitv Cla...lficstlon

DOCUMENT CONTROL DATA - R & D
(Seeutlty dss.Hleatlon OHvie, body o abs fracI and indexingannotation nnuRebe enlered when the overall report Is clossifid)

ORIGNATING ACTIVITY (Coeora.author) Applied Res. Lab., 2. REPORT SCURITY CLASICATIO

Sylvania Electronic Systems, An Operating TTnl as; fietd
1b GROUPGroup of Sylvania Electric Products Inc.

40 Sylvan Road, Waltham, Mass. 02154 N/A

REPORT TITLE

MULTIPAC, A Multiple Pool Processor and Computer for a Spacecraft
Central Data System

4 DESCRIPTIVE NOTES (p. arteport and intiu.'e det e.)

Final Report Phase II

Thomas E. Baker; Robert L. South
Gene A. Cummings;

4REPORT OATE 70 TOTA L N0OFo PAGES 176 NO OF REFS

October 1969 215 3
8 CONTRACT OR GRANT NO 9a ORIGINATOR's REPORT NUMB1RSI

NAS2-3255 F-7159-1
b PROJECT, TASK. AND WORK UNIT NO

* DOD ELEMENT 9b OTHER REPORT NOtS) (Any othernumber that eay be asijned

DOD SUBELEMENT NASA CR-73348
10 DISTRIBUTION STATEMENT

Distribution of this report is provided in the interest of information

exchange. Responsibility for the contents resides in the author or

organization that prepared it.

I I SUPPLEME.NTARY NOTES 12SPON AORINGnL.YAAY ACTIVITYNational Aeronautics and

Space Administration, Ames Res.

Center, Moffett Fld., Calif.

13 ABSTRACT

This report contains a detailed description of a large-scale

integrated circuit version of a central data system for deep space

probes which is made up of pools of identical modules which are inter­
connected by programs to form one or more computers. These modules

are then reconfigured after a module failure by reprogramming via the

command and telemetry links.

4DD Y! 73 UNCLASS IFIED
Security Classification

aNCLASIFIED
Security Classiflcatloi,

4LINK A LINK B LINK C
KEY WORDS

ROLE Wr ROLE WTROL WT

Computer Logic
Computers
Data Processing Systems
Digital Computers
Special Purpose Computers
Space Probes
Spacecraft

UNCLASS IFIED
Security Classification

