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ORDINARY-MODE ELECTROMAGNETIC INSTABILITY
IN COUNTERSTREAMING PLASMAS

WITH ANISOTROPIC TEMPERATURES

M. Bornatici*

Kai Fong Lee

ABSTRACT

The instability of the electromagnetic linearly polarized mode
propagating perpendicular to a uniform magnetic field is studied by
using the Vlasov equation for a counterstreaming electron plasm.
with auisotropic temperatures. An instability occurs if the stream-
ing velocity exceeds a certain threshold value which can be below
that required to excite the electrostatic two-stream instability. It
is found that temperature perpendicular to the field has a stabiliz-
ing effect, while parallel temperature enhances the electromagnetic
instability. Typical growth rates are of the order of the electron

cyclotron frequency.

*National Research Council Postdoctoral Research Associate.
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ORDINARY-MODE ELECTROMAGNETIC INSTABILITY
IN COUNTERSTREAMING PLASMAS

WITH ANISOTROPIC TEMPERATURES

I. INTRODUCTION

A number of papers have recently appeared in the literature on the linear
stability of waves propagating perpendicular to the direction of stream motion in
plasmas with relative e;treaming.l-5 In particular, for a system of two identical
electron plasmas, counterstreaming along an external uniform magneitic field, it
has been found that in addition to the well-known electrostatic (longitudinal) two-
stream instability with propagation vector in the direction of streaming, the elec-
tromagnetic (transverse) linearly polarized mode propagating perpendicular to

the magnetic field can become unstable. The cold plasma theory predicts
that the threshold streaming velocity required for the excitation of this "modified
ordinary mode'" is cQ"wp, where c is the velocity of light, O and «_are the elec-
tron cyclotron and plasma frequencies respectively.3 The effect of temperature
perpendicular to the field has also been investigated by means of the fluid equa-
tions, with the result that the electromagnetic instability is stabilized by per-
pendicular temperat:ure.4

The purpose of this paper is to study the modified ordinary mode instability
by taking into account temperatures both perpendicular and parallel to the mag-

netic field (T, and T respectively). Our analysis is based on the Vlasov equa-

tion for counterstreaming plasmas with anisotropic bi-Maxwellian velocity




»

distributions. It is found that an electromagnetic instability can be excited at
streaming velocities which can be below the threshold value required for the
electrostatic two-stream instability. It is shown that while T, is stabilizing, in
qualitative agreement with the result of the macroscopic theory, T, enhances the
instability. This is in marked contrast to the electrostatic two-stream instability,
which is stabilized by T but independent of T 1.6

Typical growth rates for the electromagnetic instability are of the order of
the electron cyclotron frequency.

The dispersion relation for the linearly polarized mode for a counterstream-
ing bi-Maxwellian plasma is given in SectionII. SectionIIl presents the instability
analysis and some graphical illustrations of the results. Finally, in SectionIV the

results are summarized.

II. DISPERSION RELATION

Let us consider a homogeneous, infinite plasma in a static, uniform magnetic
field B,. When the plasma is sufficiently hot, the interparticle collisions may be
neglected and our analysis is based on the Vlasov equation for each charged-
particle species combined with Maxwell's equations. The system is linearized
and Fourier transformed in space and time by assuming perturbations propagating
perpendicular to the magnetic field. We shall assume that the unperturbed veloc-
ity distribution functions F,, depend only upon the parallel and perpendicular
components of the particle velocity (v, and v,, where subscripts i and 1 refer

to directions with respect to B,) and are even functions of v, . In such a case,




the gereral dispersion relation for waves propagating perpendicular to B, factors
into two equations: the dispersion relation for the ordinary mode, which is a
purely transverse linearly polarized mode, whose electric field is along B,, and
the dispersion relation for the extraordinary mode, which is a mixed transverse-
longitudinal mode, elliptically polarized in a plane perpendicular to B, and con-
taining the wave vector. We shall restrict nurselves to the investigation of the
stability of the linearly polarized mode. The corresponding dispersion equation,

relating the frequency » and the wave-vector k, can be written as7

c?k? = 2 - E w? + E w? N2
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N; is the equilibrium density for particles of type j, J , is a Bessel function of

order n.




We study the above dispersion relation for thu case in which particles of the
same species are counterstreaming along the magnetic field with random (Max-
wellian) energies in directions both perpendicular and parallel to B,. The equi-

librium velocity distribution F . is, then, of the form
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where u, is the mean directional velocity of particles of species j and

1/2 1/2
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are their thermal velocities perpendicular and parallel to B, respectively (T ;

and T, are non-isotrupic temperatures). The normalization

o @
2,,[ dv"'fo dvy v, F, (v v?) = N,

holds and no current along the lines of force is associated with a distribution of
the form (2). From the specific equilibrium velocity distribution (2) and by using

Weber's second exponential integral.8 the dispersion relation (1) becomes
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where I _is a modified Bessel function and
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By using the relation
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Equation (3) can be written as

In the case of no relative motions, u; = 0, Equation (4) yields the dispersion
relation which has been discussed by Hamasaki,9 and by Davidson and Wu.10
These authors conclude that a purely growing mode exists in an electron plasma
with 8, > 2and T, /'l‘"e <1, where 5, is the ratio between the electron kinetic
energy density in the direction of B, and the magnetic energy density. In the
next section, it will appear that in the presence of relative streaming, an instability
occurs for 5, and T, / T, . which do not necessarily satisfy the above conditions.
A broadening of the unstable region is as expected since in our system the rela-

tive streaming motion is a cause of instability as well as the temperatur~

anisotropy.




III. INSTABILITY ANALYSIS FOR ELECTRON PLASMAS

A. Instability Criterion

Henceforth we consider the ion mass to be infinite so that only electron
dynamics needs to be considered. In such a case an equilibrium distribution
function of the form (2) describes a symmetrical double beam system, i.e., two
opposing drifting electron beams which interpenetrate in a static, uniform msgz-
netic ﬁeld.11 In order to establish the instability criterion it is convenient to

use Equation (3), rather than Equation (4), written in the form

L, (“’2) = Ry (“’2) (5)
with
Lk (wQ) = w2 - c2 k2 = wp2
: T W\ | e n?I ()
Rk(w) g - ( 'rl +2;,-1—2)e 2=Zﬂw2_(nﬂ)2' (6)

where the subscript j = e has been dropped and all quantities refer to electrons.
Following Hamasald,g the dispersion relation (5) can be analyzed graphically

by plotting L, («?) and R, («?) as a function of «?2for given values of k and look-

ing for the intersections of the two curves. If R, (9) <L, (0), the smallest root

for «.? i3 negative, corresponding to an absolute instability. On making use of




Equations (6) and the relation

1
) L = g le-1,w)

n=1

the instability criterion can then be expressed as

(T u? o T u?\ _
@ 'TI+2v—2--1 - [e®k? taug TI+2v_12e I,(w)| >0,

1

or
1 Ti
I'UT,','F(U[’H*“):(” (7)
where
4 - 2 2
s Vi o -
. c2n? Bl/8m
2
J U = l + 2% s
\ff
F(UB . + eH
L i 4 Bute ILi(n - (8)




10

Since F > 0 and

1 L
l—UTF <1v

two necessary conditions for instability follow from inequality (7):

T, 2
<1 +2—
T V2 ®)
and
2
B, > l+2£ ’ (10)
vll2

Therefore, due to the presence of relative streaming, an instability can occur
also when ‘l‘l/"l‘I| > 1 and ,B" <2,

B. Stability-Instability Boundaries

The equation corresponding to inequality (7),

1 Ty 5
1-gr ~F(Ug.u) = 0, (11)

yields the instability-stability boundaries. Solutions of this equation are obtained
by looking for values of w for which the curves F(US,, 1) and the straight lines

(1 -1 U T, /T" ), corresponding to different values of the parameters UB, and

B TR o o S
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(1) T, /T“ , are tangent. The dependence of F(Uﬁ“ : #) upon . is such that the
curve F(UB,, u) ic tangent to the straight line (1 -1 T, T,) for values of
i = u, for which the function F(UB,, ) has a minimum, i.e.

oF (UB, , 1)
— oz | .

[I'U.a

"
o

Therefore, Equation (11) is equivalent to the following two coupled equations:

4 1 T
1 -
L-gT - F(U8. k) = O (12a)

2 -u
m' e OIo(F"o) te

“u

: Ix(/"'o) = 0. (12b)

-

The above system of equations determines the range of values of the param-

eters (U, T,/T,, B,) at the instability boundary. It can be solved numerically to
express the boundaries of instability in terms of curves separating the stable
from the unstable region in the T, /'T“ versus /3, plane for various values of U,
i.e. (u/V,)2. The results are shown in Figures 1 and 2. It appears that while for
stationary plasmas, u = 0, the minimum unstable value of B“ is 2, in the presence
of relative streaming, an electromagnetic instability can occur in sufficiently
low-3 plasmas. As an example, when u = 2V,, the minimum value of ﬁ" for in-
stability is 0.22.

It is interesting to recall that the threshold streaming velocity required for

the electrostatic two-stream (TS3) instability is 1.3V for a Maxwellian equilibrium

9
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distribution t’tmction.6 From Figures 1 and 2 it is seen that it is possible to
excite the electromagnetic instability alone without simultaneously triggering the
TS instability. For example, for T l/’l‘" = ], i.e., an isotropic plasma, and E” 23,
the critical streaming velocity for electromagnetic instability is V, which is
below that required for the TS instability. If T, /T“ < 1, the threshold is further
reduced. It therefore follows that conditions can be arranged in the laboratory
such that the TS instability is suppressed while the electromagnetic instability
is excited. This conclusion is somewhat different from an earlier one based on
the fluid equations, in which only the effect of perpendicular temperature was
considered.4

Corresponding to a set of parameters in the unstable region, there is a
range of wavenumbers for which the waves are unstable. Such a range is de-
termined from the instability criterion (7). Since inequality (7) requires the func-
tion F(UB,, ») to be less than a quantity smaller than one, it follows that the un-
stable range of values of » is such that n_; <u <pg,. .. Therefore, an instability
occurs for wavenumbers k which are greater than a minimum value, k_, , and
smaller than a maximum value, k __ . Ingeneral, . ; and u .. can be determined

only numerically. However, by assuming that »_, and . are sufficiently

max
smaller and greater than one respectively, the modified Bessel function I, (u),
which appears in (7) through F(U,BI| ' ,u.), can be approximated with its power series

and asymptotic expansion, respectively, and expressions for », andu . . can be

obtained. As an example, let us determine n;, . For u less than one (u < 0.2),

10
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we can approximate F(Uﬁ|I , 1), at first-order in u, as

2
F(Uﬁu'“)zﬁﬁf"l’“'

and the instability criterion (7) yields n > p_; , where

T.I.
i T
'umin B u2 2 ’ (13)
1+3 —3 =~
vi B

Expressions (13) for » . is consistent with the assumption n < 0.2 for values of

nin

parameters [T ¢ /T”, (w/v, 3 ﬁ"] such that

u\? 2
5ﬂ<1+2(W) ‘Bﬂ‘ (14)

Since

by using Equation (13), we obtain

Tl
2
k2 = L] (‘?_)2 ,
min u2 2 1 (15)
14+3 W - Bﬁ

which yields the minimum unstable wavenumber under condition (14).

11
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In order to be able: to relate the results of the present kinetic theory to
those of the cold theory of tha modified ordinary mode, it is useful to solve Equa-
tions (12) in the limit of low perpendicular temperature, i.e., for », small. In
this case the exponential and Bessel functions in (12a) and (12b) can be expanded

in u,. At second-order in n, we have

p
14, 8 , .
UT, "3+ - 0. (16a)
2 3 Jra
\3"_IJ'1+7/“0’3'“0 e o (16b)

A quadratic equation in U is obtained by solving one of the above equations with
respect to 4, and substituting into the other. Only one of the two solutions of the
quadratic equation is consistent with the assumption that . , be sufficiently small

than one. The acceptable solution can be expressed as

Vv 2 2
u 2 - &2 c2 + a2 1 - !;— ’
e w2 e 3 (17)
where
2 1/2 1
a? = 24(—%—) -1| -3
“p Y1 (18)
a? is a positive quantity for
0
V, <1.5—=—c. (19)
P
12
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Equation (17) yields the threshold value for the streaming velocity when the
temperature perpendicular to the magnetic field is sufficiently low and such that
condition (19) is satisfied. From Equation (17) it appears explicitly that both the
magnetic field and the perpendicular temperature have a stabilizing effect, while
the parallel temperature enhances the instability.* In the cold limit the critical
value for the streaming velocity becomes ( Q/wp)c , which is the result derived
in Reference 3.

C. Growth Rate

If the instability criterion (7) is satisfied, the dispersion equation for the
linearly polarized mode has a negative root for «?, corresponding to a noncon-
vective instability. By indicating this solution with - w? = 2 > 0 and by taking

into account only electrons, Equation (4) yields

T” w:
2 . SEWRRY
% §1tU . E (n)? +7k2 e "I (u)
n¥0

R— 1 0
N T 1'U’I'H'F(Uﬁu'“) " (20)

In general, the growth rate can be determined by means of a graphical method.
Simple analytical expressions for the growth rate kal can be given only to the

extent to which one is able to approximate Equation (20). In the approximation

*In Reference 4, by using the fluid equations it was concluded that the temperature stabilizes the

modified ordinary-mode instability. This result applies only to the particular case in which
T2 Tie
1 ]

13
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in which

2
T wg

1+UTZ:(nQ)2¢n FLWEUT T 2L W)

Equation (20) yields

1,2

1 Ty
% 1- g1 ~F(UA. »)

i T (22)

1
2e™# 1, (u) - [1 -UT -F(U8 u)]

For the above to be a valid expression for the growth rate, the right-hand
side of (22) has to be real. Hence, in addition to condition (7), which is the in-
stability criterion for the non-approximated Equation (20), the following condition

has also to be satisfied:

-u
22741, (W) - |1- g "~ F(UA k)| >0 (23)

Conditions (7) and (23) are independent conditions. For example, with T 1 /'l‘" = 0.8;
B, = 1; (u/v,)? = 9 and 2 <, <3.2, condition (7), but not (23), is satisfied. In
Figures 3 and 4 we show some numerical results obtained by using Equation (22).
The quantity |y, | / Q is plotted versus . Ir. agreement with the conclusions of

Section III B, an instability occurs for ., <u<gu_. . The curves in Figure 3

14
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are obtained for (u/V )? =2, 3, = 2 and four different values of the parameter
T 1/‘l‘“. It appears that the instability is enhanced by increasing parallel tempera-
ture and stabilized by increasing perpendicular temperature. In Figure 4 curves
are shown for 4, =1, T l/’l‘” = 0.8 and two different values of the parameter
(u/V " )2. By comparing these two curves at the same parallel tcmperature, it

is seen that the instability is enhanced by increasing streaming velocity. The
growth rates shown in both Figures 3 and 4 are of the order of the electron
cyclotron frequency. Since in these examples £, = ? Vuz/ 0c?21andV, <c,
it follows that Q < @ s There.ore, the above growth rates for the electromagnetic
instability are smaller than thosc corresponding to tﬁe electrostatic two-stream
instability, which are of the order of the electron plasma frequency.

Instead of (21), the following approximation

2
1+uT"E et () 1
_ s o
Tl (72" (24)

has been used by Hamasaki in calculating the growth rate from Equation (20), in

the case of no streaming.9 When condition (24) is satisfied, Equation (20) yields

|7k| T“ 1 Tl 172
= VT |L-uT CF(U4 k) (25)

15
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The growth rate given by Equation (25) is maximum for values of » = u, such

that the function F(U,B". u) is minimum in u,, i.e.,

Doy T, 1 T v
— UTI I-Uﬁ-F(UB".;AO)

2 - .
(B U ° 1, (ko) "euolx(/*‘o) =0 (26)

Equations (26) have been solved by Hamasaki in the limit of no streaming, U = 1,
and with the assumption that ., be sufficiently smaller than oue.9 It seems, how-
ever, that the expression for the growth rate derived in such a way is not con-
sistent with approximation (24).* We may note, moreover, that approximation
(24) is unlikely to be satisfied, in general,since it requires one to be smaller

than the sum of a series whose first terms are of order one.

IV. CONCLUSION

In conclusion, we have investigated an electromagnetic instability in a coun-
terstreaming plasma in a magnetic field and found that conditions exist under
which the electromagnetic instability is excited independently of the electrostatic
two-stream instability. We have shown that the effect of temperature perpendicular

to the field is toward stabilization while parallel temperature enhances the

#We note also that Hamasaki’s result is a sec\ ad-order quantity in Mo while in deriving it an ex-
pansion at first-ccder in u, has been used.
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instability. Due to the presence of streaming, an instability can occur in suf-

ficiently low-3 plasmas and may then play a role in laboratory experiments.
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Figure 1. Stability-instability boundaries in the Tl/T” vs ,B" plane when
(u/VII )2 =0; 0.5; 0.75. Unstable regions lie above the curves.
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and four different values of Tl/T".
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