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ORDINARY-MODE ELECTROMAGNETIC INSTABILITY

•	 IN COUNTERSTREAMING PLASMAS

WITH ANISOTROPIC TEMPERATURES

M. Bornatici*

Kai Fong Lee

ABSTRACT

The instability of the electromagnetic linearly polarized mode

propagating perpendicular to a uniform magnetic field is studied by

using the Vlasov equation for a counterstreaming electron plasm..

with a.tisotropic temperatures. An instability occurs if the stream-

ing velocity exceeds a certain threshold value which can be below

that required to excite the electrostatic two-stream instability. It

is found that temperature perpendicular to the field has a stabiliz-

ing effect, while parallel temperature enhances the electromagnetic

instability. Typical growth rates are of the order of the electron

cyclotron frequency.

*National Research Council Postdoctoral Research Associate.
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ORDINARY-MODE ELECTROMAGNETIC INSTABILITY

IN COUNT ERSTREAMING PLASMAS

WITH ANISOTROPIC TEMPERATURES

I. INTRODUCTION

A number of papers have recently appeared in the literature on the linear

stability of waves propagating perpendicular to the direction of stream motion in

plasmas with relative streaming. 
1-5 

In part—ular, for a system of two identical

electron plasmas, ::ounterstreaming along an external uniform magnetic field, it

has been found that in addition to the well-known electrostatic (longitudinal) two-

stream 'nstability with propagation vector in the direction of streaming, the elec-

tromagnetic (transverse) linearly polarized mode propagating perpendicular to

the magnetic field can become unstable. 3, 4 The cold plasma theory predicts

that the threshold streaming velocity required for the excitation of this "modified

ordinary mode" is c.0/wp , where c is the velocity of light, 0 and w p are the elec-

tron cyclotron and plasma frequencies respectively.8 The effect of temperature

perpendicular to the field has also been investigated by means of the fluid equa-

tions, with the result that the electromagnetic instability is stabilized by per-

pendicular temperature.4

The purpose of this paper is to study the modified ordinary mode instability

by taking into account temperatures both perpendicular and parallel to the mag-

netic field (T l and T H respectively). Our analysis is based on the Vlasov equa-

tion for counterstreaming plasmas with anisotropic bi-Maxwellian velocity

1
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distributions. It is found that an electromagnetic instability can be excited at

streaming velocities which can be below the threshold value required for the

electrostatic two-stream instability. It is shown that while T l is stabilizing, in

qualitative agreemen" with the result of the macroscopic theory, T h enhances the

instability. This is in marked contrast to the electrostatic two-stream instability,

which is stabilized by T ii but independent of Tl.
6

Typical growth rates for the electromagnetic instability are of the order,of

the electron cyclotron frequency.

The dispersion relation for the linearly polarized mode for a counterstream-

ing bi-Maxwellian plasma is given in Section IL Section III presents the instability

analysis and some graphical illustrations of the results. Finally, in Section IV the

results are summarized.

II. DISPERSION RELATION

Let us consider a homogeneous, infinite plasma in a static, uniform magnetic

field B o . When the plasma is sufficiently hot, the interparticle collisions may be

neglected and our analysis is based on the Vlasov equation for each charged-

particle species combined with Maxwell's equations. The system is linearized

and Fourier transformed in space and time by assuming perturbations propagating

perpendicular to the magnetic field. We shall assume that the unperturbed veloc-

ity distribution functions F. ) depend only upon the parallel and perpendicular

components of the particle velocity (v, j and v l , where subscripts a and 1 refer

to directions with respect to B,) and are even functions of v i . In such a case,

2
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the general dispersion relation for waves propagating perpendicular to B o factors

into two equations: the dispersion relation for the ordinary mode, which is a

purely transverse linearly polarized mode, whose electric field is along Bo, and

the dispersion relation for the extraordinary mode, which is a mixed transverse-

,

	

	 longitudinal mode, elliptically polarized in a plane perpendicular to B, ) and con-

taining the wave vector. We shall restrict ourselves to the investigation of the

stability of the linearly polarized mode. The corresponding dispersion equation,

relating the frequency w and the wave-vector K, can be wc • itten as 

C 2 k	 = G;2 -	
wP i 

+TW I
.P i2

i	

i

kvl
OD	 aF	 n2 J^

1	
of	 i	

( )x 2n	
dv fo 

dvl vl1	 c..:2 - (n II i ) 2	
1

n

where

	

wP i 	
(47Ni ei/mi)1/2

and

Qj	 _	 Ie.I B /
m 

i C ;

N i is the equilibrium density for particles of type J, J,, is a Bessel function of

order n.

3
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We study the above dispersion relation for thv case in which particles of the

same species are counter streaming along the magnetic field with random (Max-

wellian) energies in directions both perpendicular and parallel to B o . The equi-

librium velocity distribution Fo j is, then, of the form

F o i	 1	 3, s 12	 a 
VI ,i	

e - ( °II-" 
j ) /v ll2i + e - ( v 11 + U j ) /vi?jl	 2n V V	

i	
J	 O

1 1	 II j	

r

where u i is the mean directional velocity of particles of species j and

( 2T Jj )1/2	 (!!^1)1/2

U1 i	 =	 m'	 VII i	 =	 m,

are their thermal velocities perpendicular and parallel to B o respectively (T l j

and Til j are non-isotrup!c temperatures). The normalization

277
CD

-m 

dv
11

	

	 dvl v l F O  ( v 12 , x 11 2 ) = Ni
o

holds and no current along the lines of force is associated with a distribution of

the form (2). From the specific equilibrium velocity distribution (2) and by using

Weber's second exponential integral, 8 the dispersion relation ( 1) becomes

s	
-4
	 m	 2 

In
1µ.)

	

C 2 k 2 = rv2 — AL W 2 - Lc,;pj ^2j2 T	
u

i +2 —', e j2LW s	 s
j	 j	 1j 

where I n is a modified Bessel function and

1
(kVj) 2

4

(3)
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By using the relation

9
F	 1	 µ

2	 mn I^^	
L1	 _	 _	 1	 u^	 11 	I^^ ^ 1^

	

2	 x112 - (nn.) 2	 r. 2 e	
- I0(^^1/ + L (no 2

•	 n= +1 	1	 1	 n._a

n°0

Equation (3) can be written as

2

	

2 
I	 Tii i	 u; 

L P+2v 2 	 nib 22a

	

2	 2

1 1
^Wei(TI1

^ + 2 V 12 - 1 - c2 k2 - ^ W 2 '" +Z Vz a
-u^ 

I 0 ^^-;) '(4)
^	 11	

j
	 1 1

in the case of no relative motions, u = 0, Equation (4) yields the dispersion

relation which has been discussed by Hamasaki, 9 and by Davidson and Wu. 10

'These authors conclude that a purely growing mode exists in an electron plasma

with 3H e > 2 and T  e/Tii e < 1, where iii, is the ratio between the electron kinetic

energy density in the direction of B. and the magnetic energy density. In the

next section, it will appear that in the presence of relative streaming, 'an instability

occurs for 8,,, and Tle/Tie which do not necessarily satisfy the above conditions.

A broadening of the unstable region is as expected since in our system the rela-

tive streaming motion is a cause of instability as well as the temperature

anisotropy.

5
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III. INSAA13ILITY ANALYSIS FOR ELECTRON PLASMAS

A. Instability Criterion

Henceforth we consider the ion mass to be infinite so that only electron

dynamics needs to be considered. In such a case an equilibrium distribution

function of the form (2) describes a symmetrical double beam system, i.e., two

opposing drifting electron beams which interpenetrate in a static, uniform msa-

netic field. 
11 

In order to establish the instability criterion it is convenient to

use Equation (3), rather than Equation (4), written in the form

Lk P )	 Rk 
(w2 )	

(5)

with

Lk (w2) 
r w2 - c 2 k 2 - n;P2

T„	 u2	 ^ n 2 I n (µ)

	

Rk ( w2) _ wp u'2 T-1 2 V12 e 2 r W2 - (nD )2	 (6)

n=+1+1

where tale subscript i = e has been dropped and all quantities refer to electrons.

Following Hamasaki, 9 the dispersion relation (5) can be analyzed graphically

by plotting Lk (w2 ) and R k ("- 2 ) as a function of W2 for given values of k and look-

ing for the intersections of the two curves. If R  (0) < L k (0) 1 the smaRest root

for w k 2 1 3 negative, corresponding to an absolute instability. On making use of

6



Equations (6) and the relation

00

n=1

the instability criterion can then be expressed as

^P f +2 
V22 

_ 1 _ e 2 k 2 +U; 2 Tl +2 UZ e- " I
o(^) > 0

i	 Vl

or

T

1 U T1II - 
F(U,8 11 , µ = U

where

2	 2

	

^ II vP
	

III

QII	 c2 Q2	 Bo /8n

U2
U - 1 + 2—

Vil

	

^ F IUQ II ^ µ ^ -	 INIV + e^
Ip ({1)

9

(7)

(8)

!I'

1 I

7
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Since F > 0 and

1 T1
1- ^l 	 <1

two necessary conditions for instability follow from inequality (7):

TI 	u 2
TIJ 

< 1 + 2 
T211

(9)

and

>	 `

1 
i 2 

u2	
(10)

vu

Therefore, due to the presence of relative streaming, an instability can occur

also when T.A, > 1 and 8, 1 < 2.

B. Stability-Instability Boundaries

The equation corresponding to inequality (7),

1 T,
1	 U	 F(UAi1 , µ^ = 0	 (11)

yields the instability -stability boundaries. Solutions of this equation are obtained

by looking for values of µ for which the curves F(W,, , µ) and the straight lines

1 - 1/U T1/T,i), corresponding to different valuec. of the parameters UQ i, and

8

--	
x lot
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(1/U) TI/T11 , are tangent. The dependence of F(UQ„ , p) upon µ is such that the

curve F(U,8 11 , µ) is tangent to the straight line (1 - (1/U) T l T i ,) for values of

µ = µ, for which the function F(UQ,, , µ) has a minimum, i.e.

dF(Wjj , u)
^I = 0 .

V

Therefore, Equation (11) is equivalent to the following two coupled equations;

1 - U
T
Ti - F(UQ 11 , u o ) = 0	 (12a)

2I U - e-Uo I^(µo) + e-"o 
I i ( µo) = 0	 (12b)

The above system of equations determines the range of values of the param-

eters (U, T IA, , 811) at the instability boundary. It can be solved numerically to

express the boundaries of instability in terms of curves separating the stable

from the unstable region in the T l/T,, versus Q„ plane for various values of U,

i.e. (u/V ii ) 2 . The results are shown in Figures 1 and 2. It appears that while for

stationary plasmas, u = 0, the minimum unstable value of Q„ is 2, in the presence

of relative streaming, an electromagnetic instability can occur in sufficiently

low-,3 plasmas. As an example, when u = 2V,,, the minimum value of 8„ for in-

stability is 0.22.

It is interesting to recall that the threshold streaming velocity required for

the electrostatic two-stream (TS) instability is 1.3V,, for a Maxwellian equilibrium

9
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distribution function. 6 From Figures 1 and 2 it is seen that it is possible to

excite the electromagnetic instability alone without simultaneously triggering the

TS instability. For example, for T,/T,, = 1, i.e., an isotropic plasma, and 8,,;-> 3,

the critical streaming velocity for electromagnetic instability is V ii , which is

below that required for the TS instability. If T 1 /T il
 < 1, the threshold is further

reduced. It therefore follows that conditions can be arranged in the laboratory

such that the TS instability is suppressed while the electromagnetic instability

is excited. This conclusion is somewhat different from an earlier one based on

the fluid equations, in which only the effect of perpendicular temperature was

considered.4

Corresponding to a set of parameters in the unstable region, there is a

range of wavenumbers for which the waves are unstable. Such a range is de-

termined from the instability criterion (7). Since inequality (7) requires the func-

tion F(U,8 11 , µ) to be less than a quantity smaller than one, it follows that the un-

stable range of values of µ is such that µmin < µ < µmex. Therefore, an instability

occurs for wavenumbers k which are greater than a minimum value, k min , and

smaller than a maximum value, kmex• In general, A min and µmex can be determined

only numerically. However, by assuming that µmin and µmex are sufficiently

smaller and greater than one respectively, the modified Bessel function 1 0 GO,

which appears in (7) through F(Uf3, 1 , µ), can be approximated with its power series

and asymptotic expansion, respectively, and e.-pressions for 4 m in and µmex can be

obtained. As an example, let us determine µmin . For µ less than one (µ < 0.2),

10
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we can approximate F(U^3 11 , µ), at first-order in µ, as

2

	

F(U^II, µ^ ti	 + 1
11

and the instability criterion (7) yields µ > µmin, where

TI

T1
in	 U2	 2

1 +2 —
V II -

Expressions (13) for µmin is consistent with the assumptionµ < 0.2 for values of

parameters [TI/TII , (u/VII ) 2, /3
11 ] 

such that

5 Tl < 1+ 2 (Tu
l -l )z-T(14)

II 	 II

Since

(kV, z

by using Equation (13), we obtain

Ti

2	
T2

	

1+2	

,

11

min	 U2	 2 

72 T

which yields the minimum unstable wavenumber under condition (14).

13

(13)

(15)

11
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In order to be ablt to relate the results of the present kinetic theory to

those of the cold theory of tha modified ordinary mode, it is useful to solve Equa-

tions (12) in the limit of low perpendicular temperature, i.e., for µ() small. In

this case the exponential and Bessel functions in (12a) and (12b) can be expanded

in µ(). At second-order in 4 0 we have

1 Ti	 3

[7' -	 µ o =	 (16a)

U	 40	 40

A quadratic equation in U is obtained by solving one of the above equations with

respect to µo and substituting into the other. Only one of the two solutions of the

quadratic equation is consistent with the assumption that µ o be sufficiently small

than one. The acceptable solution can be expressed as

2	 -	 X 2	 2	 2 
Vl2	 v 

11 
2

u^ -

	

	 2 c + a —T-- _T(17)

P

where

2 =	

(ITT, 

2 1/2	 1

a	 -	 24 	 - 11	 - I •	 (18)

a 2 is a positive quantity for
0

Vl < 1.5 = c .	 (19)

P

12
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Equation (17) yields the threshold value for the a*.,reaming velocity when the

temperature perpendicular to the magnetic fiel- is sufficiently low and such that

condition (19) is satisfied. From Equation (17) it appears explicitly that both the

magnetic field and the perpendicular temperature have a stabilizing effect, while

the parallel temperature enhances the instability.* In the cold limit the critical

value for the streaming velocity becomes ( Q/,,,) c , which is the result derived

in Reference 3.

C. Growth Rate

If the instability criterion (7) is satisfied, the dispersion equation for the

linearly polarized mode has a negative root for u;2 , corresponding to a noncon-

v:^ctive instability. By indicating this solution with- wk = yk2 > 0 and by taking

into account only electrons, Equation (4) yields

2

'Y k2 1 +U T ^ (nQ) 2P +y 2 e u I n (/^)

n Y O	 k

Tip	 1 Tl
- wp2 U Tl 1	 UTil - F(UQ II , µ	 (20)

In general, the growth rate can be determined by means of a graphical method.

Simple analytical expressions for the growth rate I y k I can be given only to the

extent to which one is able to approximate Equation (20). In the approximation

• In Reference 4, by using the fluid equations it was concluded that the temperature stabilizes the
modified ordinary-mode instability. This result applies only to the particular case in which
T  >> TV

13
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in which

2	 «, 2

1 + U ^ L nf2 2 + .y 2 e-" 
I ., ^µ) � U 

T ill 
+ y. z 

2c " I1 
^µ)	

(21)

, r ^ (	 )	 k	 k

Equation (20) yields

1 '2

T
yk 	 1 U T- - F(U

QII , µ )

(22)
T

2e - "I 1 GO- 1 - II T- - F ( U8 11 , µ )

For the above to be a valid expression for the growth rate, the right-hand

side of (22) has to be real. Hence, in addition to condition (7), which is the in-

stability criterion for the non-approximated Equation (20), the following condition

has also to be satisfied:

T
2e - " 1, (Il ) - 1 - U T" 	 F ( UQ II ' µ	 > 0	 (23)

Conditions (7) and (23) are independent conditions. For example, with TIA, ==

Q11 = 1; (u/V li ) z = 9 and 2 _< µ ^ 3.2, condition (7), but not (23), is satisfied. In

Figures 3 and 4 we show some numerical results obtained by using Equation (22).

The quantity I yk I/Si is plotted versus A. In agreement with the conclusions of

Section III B, an instability occurs for i min <N' < µmax• The curves in Figure 3

14
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are obtained for (u/VII ) 2 = 2, ti3 11 = 2 and four different values of the parameter

T,/T 11 O It appears that the instability is enhanced by increasing parallel tempera-

ture and stabilized by increasing perpendicular temperature. In Figure 4 curves

are shown for 9 11 = 1, T 1 /T 11 = 0.8 and two different values of the parameter

V	 ( u/VII) 2. By comparing these two cuiwes at the same parallel temperature, it

is seen that the instability is enhanced by increasing streaming velocity. The

growth rates shown in both Figures 3 and r are of the order of the electron

cyclotron frequency. Since in these examples 11 = cwp V112/02 c 2 ? 1 and V 11 < c,

it follows that 0 < c., , There.ore, the above growth rates for the electromagnetic

instability are smaller than those corresponding to the electrostatic two-stream

instability, which are of the order of the electron plasma frequency.

Instead of (21), the following approximation

T	
2

I1	 wp

1 Y U T 1 L (n.0	 yk2 ^,-µIn (^^^	 1	 (24)
n=O

has been used by Hamasaki in calculating the growth rate from Equation (20), in

the case of no streaming.9 When condition (24) is satisfied, Equation (20) yields

yk	 Ti,	 1 T l	 1

c,	 U TiT 	 1	 U T O 	 (25)

15
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The growth rate given by Equation (25) is maximum for values of µ = µ. such

that the function F(UA II , µ) is minimum in 4 , i.e.,

i; s
T-Y. W	

U 
'rT;j [ 1 _ lU ,I, l - F (U/QII /10

Q p	 1	 II	 1	 1

I^ - e-uo In (4,) + e 
ka 

I i( A1 0 ) 	 0	 (26)

Equations (26) have been solveu by Namasaki in the limit of no streaming, U = 1,

and with the assumption that µ o be sufficiently smaller than one. 9 It seems, how-

ever, that the expression for the growth rate derived in such a way is not con-

sistent with approximation (24).* We may note, moreover, that approximation

(24) is unlikely to be satisfied, in general,since it requires one to be smaller

thar. the sum of a series whose first terms are of order one.

IV. CONCLUSION

In conclusion, we have investigated an electromagnetic instability in a coun-

terstreaming plasma in a magnetic field and found that conditions exist under

which the electromagnetic instability is excited independently of the electrostatic

two-stream instability. We have shown that the effect of temperature perpendicular

to the field is toward stabilization while parallel temperature enhances the

e note also that Hamasaki's result is a sock ad-order quantity in µo while in deriving it an ex-
pansion at first-cider in µ0 has been used.

16



instability. Due to the presence of streaming, an instability can occur in suf-

ficiently low-,3 plasmas and may :hen play a role in laboratory experiments.
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(u/V11 )2 = 0; 0.5; 0.75. Unstable regions lie above the curves.
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Figure 2. Siability-instability boundaries in the T 1 /T 1 , vs vi ii plane when (u/V,,) 2 = 1; 2; 4.
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