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ABS`:RACT

The NOL Ballistic Piston Compressor was modified for opacity

measurements in the ultraviolet between 1750 and 2500 k. Principal
changes consisted of lengthening the compressor stroke to eight

meters, use of a 4-port test section for simultaneous emission and

absorption measurements, use of Suprasil and MgF2 windows and lenses,

installation of a high intensity flashlamp, and use of high purity

carrier gases, Opacity calculations using the best available litera-

ture values of photoabsorption cross sections predicted measurable

opacity (T > 0.05) at wavelengths shorter than 2000 1 for a
10% H2/90% He gas mixture at P w 2000 atmospheres and T = 5000° K.

Results of control shot experiments with pure helium and with pure

argon revealed anomalously high ultraviolet opacity, and prevented

the projected hydrogen opacity measurements. Possible causes of the

anomalous opacity are discussed and further steps that may be taken

to reduce the impurity level are proposed.
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1.0 INTRODUCTION

There is an increasing need for quantitative measuremInts of the

spectral opacity of hot, highly compressed gases and gas mixtures.

a	 Design and construction of high energy density power sources such as

the gaseous core nuclear rocket engine require hydrogen spectral

opacity information for minimizing hea p; transfer to the engine walls,

and for further heating of the hydrogen gas before it exits the

nozzle, whereas proper definition of the stellar atmospheres of

white dwarfs depends on radiative heat transfer calculations based

on accurate values of absorption coefficients of gases in the hot,

highly compressed state.

The investigations described in this report represent a contin-

uation of a study undertaken for NASA of the opacity mechanisms

present in a hydrogen/helium plasma at a temperature of 500e K, and

a pressure of about 2000 atm* (Ref. 1). Special attention was paid to

the ultraviolet spectral region 1750 to 2500 1 where quasi-molecular
hydrogen association is expected to be an important opacity producing

mechanism.

Inasmuch as the conventional static methods of gas containatent

are inadequate for the physical conditions of interest in this inves-

tigation, it was necessary to employ a Ballistic Piston Compressor

(Ref. 2). This device utilizes a free, tight-fitting piston to a

*Present study was funded ,jointly by NASA and the independent research
program of the Naval Ordnance Laboratory.
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closed-end tube as the gas container. Firing the free piston toward

the end-plug compresses the trapped gas along the isentrope defined

by its initial pressure and temperature, and results in high simul-

taneous values of pressu);,e and temperature for times of about one-

half millisecond. Measurement of the parameters of interest is made

during the peak pressure and temperature of the compression cycle.

When working along the NTP isentrope, the low ratio of specific heats

of hydrogen makes it necessary to compress to pressures considerably

in excess of 2000 atm in order to attain the required 5000 * K gas

temperature, and, additionally, results in an end-plug/piston sepa ra-

tion smaller than the minimum 1 cm separation necessary for opacity

measurements. Using a hydrogen/helium mixture increases the specific

heat ratio and circumvents these difficulties.

2.0 HYDROGEN OPACITY

2.1 Opacity Mechanisms

In a partially ionized hydrogen plasma characterized by a

pressure of 2000 atm. and a 5000°K temperature, excited states are

not suf'f'iciently populated to produce measurable discrete line

(bound-bound) opacity in the :1750 to 2500 1 wavelength region.

Several continuum producing mechanisms (bound-free, free-free),

however, are reasonably strong in this wavelength region and show

promise of experimental detection. In addition, Rayleigh and

Thompson scattering will also contribute to the total observed

opacity.

2
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In order to determine the accuracy with which absorption coet-

ficients must be measured to determine the opacity due to any one of

these absorption processes, it is necessary to estimate from available

theory the relative magnitudes of each absorption coefficient. It is

also helpful to know the wavelength dependence of each absorption

.

	

	 coefficient as an aid in the experimental identification of the

principal absorption processes. Current knowledge of the continuc,is

absorption coefficients being considered here ranges from experimental

verification to within a few percent of theory for photodecachment of

H- , to consideraole theoretical uncertainty and no experimental obser-

vations for quasi-molecular hydrogen absorption. The photoabsorption

processes occurring in a partially ionized hydrogen plasma most

likely to contribute significantly to the opacity in the 1750 to

2500 X wavelength range are listed below. The headings of the

various processes refer to the combined system taking part in the

photoabsorption princess, i.e., negative hydrogen ion (free-free)

refers to neutral atom Bremsstrahlung. All absorption coefficient

formulae given here are in cgs units.

Negative Hydrogen Ion

The absorption coefficient per neutral hydrogen atom due

to the free-free reaction

H+e+hv-+H+e
	

(1)

is given by the approximation formula (Ref. 4)

3



av (%) A ) _ 10-2bpe :. (,. oot) ^ht)6 - o. 01.1493 A + 0.027029 92

( 3 .2,1 0(14* - 11. 924  9 + r-,.9390   p 2 ) (X /106 )

(0.4092 - 7.0355	 0..4592 A2 ) (X2 /109 ) 3
	

(2)

where pe is the electron pressure, 9 is 504O./T and X is the wave-

length in angstroms. For the bound-free reaction

H'* +hv-*H+e
	

(3)

the absorption coefficient is given by

av(x) 8) xC 10-26pe (0. 41.58) A 5/2 e1. 726 e (1 - e - hoc/ )K*	
(4)

For 14 .,200 .? > 16,419 I
K* = 0.2698 18 A + 0.220190 A 2	 o.0411288 A 3 + 0. 002 73236 A4 (5)

where A = (16,419 - x )/1.040,

and for a c 14,200 t

K* = o. oo68m33 + 0.178708 A + o. 164790 A2

- 0.024842 A 3 + 5.95244 x 10- 4 A4
	

(6)

where now A = 7/1000. The bound-free absorption is zero for

x > 16,419	 Both equations include the effects of stimulated
It

emission.

Atomic Hydrogen

The absorption coefficient is given by the sum of all

1^
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aontribut ons of the bound-free reaction

H*+hv-4 H+ +e
	

C?)

from states whose ionization energ; es are less than that of a photon

of the frequency under consideration, plus absorption of the free-

free reaction

H+ + e + hv -*H++ e

Per neutral hydrogen atom the total absorption coefficient is

(Ref. 4)

av = 2.0898 x 10-14e-ul (1-e-hv/kT)

X U0 O Pe )

	

m*	 um	 um*	
^x	 gbf(m,x) e + I [e	 - 1 + 6ff(X'e) !

	

,,,r	 ^	 (9)

	

o	 m3
	

211,

um = (X/kT)/m2 where X is the ionization energy of hydrogen and m is

the quantum number of the mth state, x : 1/k where X is the wave-

length in microns, Uo is the partition function for neutral H, mo is

the largest integer such that um t hv/kT, m* is the value of the

~	 highest bound itate considered, typically 10 or 12, gbf is the

bound-free quantum-mechanical gaunt factor and gff is the free-free

quantum-mechanical Gaunt factor.

Negative Hydrogen Molecule

The absorption coefficient for the free-free reaction

5
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H2 + e + h v -4 H2 + e
	 (lo)

per H2 molecule is given by (Ref. 4) .

av (X, e)	 Pe]-299 (0. 09319 e + 2.857 -^ 0. 9316/8) (X/911 .27 )2

.. (2.600 e + 6.83 - 4.933/8) (X/911.27)

+ ( 35.29 9 - 9.6o4 - 1o. 62/® )

- ( 7452 A - 62. 48 + 0.4679/0(911.27/03 	 (11)

lonizpd 'Hydrogen Molecule

Emission coefficients (combined) tabulated as a function

of wavelength and temperature (Ref. K) are available for the bound-

free reaction

H2+ ( 2 Y+ ) + by -+ (H + H+)2u
	

(12)
B

and for the free-free reaction

H+H+ +hu -► H+H+
	

(13)

These emission coefficients can be converted to absorption coeffi-

cients by use of Kirchoff's law.

Ionized Triatomic Hydrogen

4

W

.

Although there are considerable amounts of H3 formed in

relatively cool, high pressure plasmas (Ref. 6), there are no

reliable estimates available for the absorption coefficients of this

ion.

6
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Quasi-Molecular Hydrogen

The ground state of molecular hydrogen is a singlet state.

Ground state absorption

H2 ( lE + ) + b y -* H2 ( lE + )
	

(14)

occurs well below :1750 1 and is not of interest in this investigation.

The ground state of the triplet state, formed by the collision of two

hydrogc; i atoms with parallel electron spins, is located above the

singlet ground state by an amount equal to the dissociation energy

of hydrogen. Absorption by this free-bound process

H + H( 31: + ) + by _$ 3 +
g

(15)

is continuous and falls within the wavelength region of 1750 - 2500 L

Absorption cross sections for hydrogen quasi-molecular association

have recently been refined, tabulated, and indeed proposed as an

opacity source that may account for the anomalous absorption in the

sun from about 4800 1 to shorter wavelengths (Ref. 7). There is no

experimental confirmation of the calculated cross sections to date.

Rayleigh Scattering

The Rayleigh scattering cross section of H per neutral H

atom in the ground state is (Ref. 4)

a = 5.799 x 10-13/ 4 + 1.422 x 10-6/X6 + 2.784^8	(16)

where a is in angstroms; this equation is not valid for X <

Lyman-alpha. The analogous cross section for H 2 per H2 molecule

7
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is (Ref. 4)

a=8.14x 10" 13 /x,4 +1 .28x 10-6 /X6 +1.61/X8 	(17)

Thompson Scattering

Scattering by free electrons is independent of wavelength

and is negligible for electron densities of interest in this inves-

tigation. The Thompson scattering cross section is (Ref. 4)

at = 6.655 x 10-25 CM 	 (18)

When it is necessary to mix the hydrogen with helium, as it is in

these experiments, there are several additional sources of opacity

that should be considered.

Neutral Helium

Photoionization cross sec,_ :ins for the lower levels of

helium a z-e given by (Ref.  4 )

a ^ ( 8 ) 	 k ( i ) Si e-X/kT	 (19)i v

go

where the summation is over all ionization edges whose threshold

frequencies are less than that under consideration. Hydrogenic 	 •

cross sections are used for the higher levels.

Negative Helium Ion

Inasmuch as the only bound state of He - is about 19 ev

above the ground state of He, its population will always be

8



negligible at the temperatures of interest in this study, and

photodetachment of the He- will not contribute significantly to the

opacity. Free-free continuous absorption coefficients for the

reaction

He+e+hv-+He+e
	

(20)

are given in (Ref. 8).

Raylel ,h Scattering

The He Rayleigh scattering cross section is taken to be

0.134 times that of atomic hydrogen (Ref. 9).

Red Wine of Lyman Alpha

Extreme pressure broadening of the Lyman alpha line might

be expected to produce measurable opacity in the far red wing, i.e.;

between 1750 and 2500 1. The dominant broadening mechanism for

high atomic hydrogen densities at the temperatures of interest is

resonance broadening. This process occurs when the upper or lower

state of the spectral line has an allowed dipole transition to the

ground state, and when the active atom is perturbed by an identical

ground state atom. Unfortunately, the theory of resonance broadening

of spectral lines by atom-atom impacts (Ref. 10) is valid only for

binary collisions, i.e., for low atomic hydrogen particle densities,

and is not applicable to a high pa rticle densities of these experi-

ments, i.e., nH ear 1020 cm-3 . Recently, it has been pointed out

(Ref. 11) that the conventional resonance broadening formula describ-

ing absorption in the wings of Lyman alpha seriously overestimates

9
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the magnitude of the absorption at long wavelengths. These authors

find that the absorption coefficient decreases exponentially with

increasing wavelength above 1603 1, And state that it is improbable

that the resonance-broadened red wring is a significant source of

opacity at wavelengths in excess of 2,000 ^. There are to date no

experimental opacity measurements in this wavelength region ascribable

to the red wing of Lyman alpha.

2.2 equilibrium Concentrations

A computer program named PLASMA that determines chemical equilib-

rium in complex mixtures containing ionized as well as neutral species

was updated to include recently acquired data on H 2+ and H3+

(Ref. 3). This computational scheme, based on the minimization of

the Gibbs free energy, calculates the equilibrium concentrations of

product species of any arbitrary gas mixture as a function of pres-

sure and temperature. Two variations of the basic scheme permit

equilibrium composition calculations as a function of pressure and

energy added to the system in the form of a chemical reaction or

mechanical work performed by a piston compressing a gas, and also

along an isentrope.

This program was used to determine the compressor firing

conditions that would optimize the atomic hydrogen particle density.

This is equivalent to optimizing the opacity because the two

processes that make the largest contributions to the opacity, i.e.,

quasi-H2 and H- (bf,ff), both depend on the particle density of atomic

hydrogen. Weak pressures of 2000 atm (approximate upper limit of side

10
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window operation) and peak temperatures of 5000 * K (approximate upper

limit for chromium platir of test section) were assumed. Although

pure H2 compressed to these peak conditions would produce the highest

opacity, the computer results showed that it is necessary to use a

mixture of about 10% H2 and 90% He (by volume) to assure that the

minimum piston/end-plug separation does not fall below the 1 cm

necessary for absorption measurements.

Computer results for the equilibrium concentrations, in units of

cm-3 , of the product species of a 10% H 2 /90% He plasma at 2000 atm

and 5000* K are shown in Table 1.

Table 1. Equilibrium Concentrations

H2 	(2.29 x 1620 ) H3+ (1.41 x 10i4)

H	 (1.17 x 1020 ) e-	 (1.34 x 1014)

H+	 (1.18 x 1013 ) H-	 (2.27 x 1013)

H2+ (6.12 x 1012 ) He	 (2.59 x 1021)

2.3 Calculated Opacity

The opacities, T i , of all the continuum photoabsorption processes

described in Section 2.1 were computed for the particle densities of

Table 1 and for a pathlength of 5 cm (diameter of test section). The

results for all processes with T i > 10-5 and the sum T = f T i were
4

plotted as a function of wavelength for the range 1750 to 2500 k,

Figure 1. A dashed horizontal line representing the experimental

detection limit of five percent for single-pass measurement is also

shown. Multiple-pass operation is expected to lower the limit of

11
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detection further.

Examination of Fig. 1 reveals that quasi-H2 is the dominant

absorbing process throughout the entire wavelength region, increasing

In strength with decreasing wavelength. Except for H - (b;s, ff) each

of the other opacity sources contribute less than 10 -3 to the total

opacity. Opacity detection through test beam attenuation measure-

ments should be possible for % < 2000 k. In view of the absence of

any identifying features in the different individual curves it is

Fortunate that one of the processes (quasi-H 2 ) is clearly much

stronger than the rest, and that it has a reasonably strong wave-

length dependence. Experimental detection of gas opacity at wave-

lengths less than 2000 1, and with this wavelength dependence,

could safely be ascribed to the hydrogen quasi-molecular association

process if our neglect of contributions from the Lyman-alpha red

wing is indeed justified.

3.0 BALLISTIC PISTON COMPRESSOR EXPERIMENTS

3.1 Apparatus and Basic Technique

The Ballistic Piston Compressor used in this investigation is

shown in Fig. 2. It is the same apparatus employed in the earlier

study (Ref. 1) except that the former 4-meter tube was replaced by

a two-section, 8-meter tube to facilitate absorption measurements at

high volumetric compression ratios, and a new high pressure test

section containing two pairs of diametrically opposite windows for

12
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simultaneous absorption and emission experiments, and for multiple-

pass test beam attenuation measurements, Fig. 3, has replaced the

old test section. The use of the 4-window test section makes Al.,

possible to increase the detection sensitivity of the opacity

measurements through double-pass and quadruple-pass operation as

shown schematically in Fig. 4. The test beam can be either colli-

mated or slightly divergent. An alternate arrangement of the optics

for quadruple-pass operation is the replacement of the half-silvered

mirror N ) by a fully silvered mirror containing a shall hole, and
employing a slightly diverging test beam.

All surfaces of the new test section exposed to hot gas were

electroplated with 0.001 to 0.002 inches of chromium to suppress

vaporization of the steel parts and the accompanying appearance of

the rich iron spectrum. In addition, a new steel piston long enough

that the rear seals do not cross the junction between the tube and

test section, and with interchangeable bearings (piston rings) was

designed and constructed. This change was made so that the effect

of different bearing materials on the absorption and emission spectrum

of the test gas could be investigated. east experience has shown

that a small amount of bearing material dust is invariably formed

during each compressor firing. Spectrograms of intermediate and

high temperature shots always contain the characteristic discrete-

line spectrum of the bearing material, and may also contain contri-

butions to the continuous spectrum. The ability to change bearing

materials was expected to facilitate analysis of the continuum

spectrum recorded in the hydrogen/helium experiments. A new piston

13
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„up-seal material, Rulon LD, was tested with the steel piston. Rulon

LD is basically Teflon, but has a 1000-Fold increase in wear resis-

tance over Teflon, lower deformation under load, greater stiffness

and higher compressive strength. These new seals have operated

without rupture or other failure up to 2000 atm maximum pressure.

Fig. S shows a disassembled view of the double-cup Rulon LD piston

seal.

Two gas handling systems were design,,:-1. One system, Fig. 6,

is made up of 1/4-inch copper tubing and V iton-A, 0-ring sealed

"Circle Seal" plug valves. This system was used for test shots or

preliminary experiments for which ultrahigh purity test gas was not

required. The other system, Fig. 7, is the high purity, tube pumping

and filling system which was used for data-taking spectroscopic

experiments. It incorporates a moderately large capacity vacuum

pump, stainless steel tubing and ball valves, and a multipo.rt

connection to the compressor tube at a point ,just forward of the

initial piston position. This high purity system is capable of

attaining; 10-4 torr vacuum, but five microns was the best attained

in the tube due to leaks in the test section-tube-piston release

section system. Sintered bronze filters were placed in all input

lines to remove particles larger than ten microns. The tube and	 4-

all parts of the piston and test section were washed with C.P.

Acetone using Kimwipe swabs. This procedure was followed before

each shot. Tube filling was accomplished by pumping down to

five to ten microns, filling to about 800 torr and bleeding down to

760 torr.

14
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All measuring optics are mounted independently from the

compressor supports in order to eliminate any possibility of noise

or optical misalignment that might be caused by compressor recoil

motion or vibration. Fig. 8 is a photograph showing the optical

bench used to isolate the various optical elements from the com-

pressor. The high pressure test section (with two observation

windows), carbon arc, rotating drum, McPherson 216 and B and L

quartz spectrographs, and high-intensity flashlamp (see Section 3.2)

are also visible.

3.2 Experimental Techniques

3.2.1 Temperature Measurements

A spectroscopic temperature measurement scheme has beep

developed, installed, and tested with pure helium test gas. These

tests have been conducted over a range of gas pressures from 900 to

2000 atm, and have yielded measured gas temperatures ranging from

2 500 to 5000°K. The scheme will be described in detail in a separate

report (Ref. 12), but its principal features and results are described

here.

The scheme employed is the "brightness-emissi lrity" method

which is based on the solution of the radiative transfer equation for
3	

a homogeneous gas sample in local thermodynamic equilibrium (LTE).

The intensity and opacity at the center of a spectral feature are

simultaneously measured, and with a suitable calibration of the inten-

sity measuring optics, the excitation temperature of the thermometric

specie radiating the spectral feature can be calculated. Thermometric

15
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species used to date ine.l,ude bath metallic impurity vapors of sodium,

calcium, and eopper, and trace quantities of premixed methane in

helium. In the latter case, the rormation of C? radicals From the

decomposition of CHI , has permitted excitation temperatures for the

C2 (Swan) bands to be obtained under conditions of homogeneity and

freedom from boundary layer problems.

The application of this scheme to the Ballistic Piston

Compressor was found to be straightforward. The opacity is measured

by passing a carbon are light beam through the hot gas and into a

spectrograph Instrumented as a photoelectric polychromator. A

diagram of the optics used is shown in Fig. 9. The use of the

rotary chopper permits a separation of the detected signal, into that

part due to the attenuated carbon are 'beam and that due to the emis-

sion. From the hot gas. The optical depth at each wavelength channel

is obtained from Lambert-Beer's law calculations. This part of the

scheme is identical in principle and in application to the scheme

described in some detail. in Ref. 1

The intensity measurements are obtained from that part of

the detected signal, obtained when the chopper has blocked the carbon

are beam. The optics are calibrated by passing light from a standard

light source of known spectral radiance through the same optical path

as that traversed by the light from the compressed hot gas. Care

must be taken to ensure that all len ­:.,q and apertures are filled by

both light sources. The standard source used is the Mole-Richardson

Company Pyrometric Molarc Lamp, Type 2371, and its radiance has been

accurately measured at NBS (Ref. 13).

16
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The temperatures derived from these measurements are ob-

tained from the following equation, which is written as a ratio of

two equations, The numerators are the radiative transfer terms for

the gas emission and absorption, and the denominators are the cali-

bration terms for the carbon arc.

I	 BX(Tg)Gl-exp( -T01
1,(a)	 Bi(Ta )

I X (g) and % are the gas emission signal and the optical depth at

the wavelength % corresponding to the peak of the broadened spectral

line. I X (a) and B X (Ta ) are the calibration signal and radiance of

the carbon are at temperature T. and at the same a as the emission

and opacity measurements. Therefore t this equation can be solved

directly for the gas temperature Tg , by using the explicit form for

tie Planck function B i (Tg), because all the other terms have been

directly measured.

Temperature measurements have been made to date on the

resonance lines of sodium and calcium, on both a resonance line and a

line with an excited lower state of oopper, the (0,0) band-head of

the C2 Swan bands, and at several wavelengths in the continuum. Many

experiments have been made in which temperature measurements were ob-

tained simultaneously for more than one of the above species. No

serious disagreements were detected for temperatures of any of these

species with the exception of continuum temperatures which were almost

always several hundred degrees cooler than the metallic or molecular

species.

17
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The measured gas temperature versus time history for four

I.800 atm Pmax shots for helium with 60 ppm CH 4 is shown in Fig. 10.

Simultaneous C2 and Ca observations were made during each shot for

approximately one millisecond before and after Pmax occurred. Al-

though there is some discrepancy between the temperatures measured by

the two thermometric species on the compression stroke, both species

give identical temperatures at Pmax and throughout the expansion

stroke. Fig. 11 shows the relationship between measured "Pmax and

measured Pmax for shots made with the old 4-meter and the new 8-meter

compressor employing CO , ^ul(5105 A), CaI(4226 1), and Na(D-lines)

as the thermometric species. For most shots 'Tmax lags Pmax by about

200 microseconds. The lag is attributable to gas leakage across the

piston during the peak of the compression :ycle. The gas temperature

at Pmax is systematically less t.:an Tmax by about lOeK for Pmax <

1600 atm for all thermometric species, but for P max > 1600 atm metal-

lic resonance line temperatures never exceed 4500°K. Temperatures

greater than 45's0°K can only be obtained from C 2 or excited Cu lines.

The empirical power law:

logl o 	 _ ( 0.364 * 0.010) logl o P(22)M0
describes the T, P data quite accurately, for T o = 298°K, and Po = 1

atm.

No direct tests of the homogeneity of the thermometric

species in the test gas have been devised. Both the C2 molecules and

the excited Cu atoms are formed predominantly in the hot, central core

18
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The measured gas temperature versus time history for four

y800 atm Pmax shots for helium with 60 ppm CH 4 is shown in Fig. 10.

Simultaneous C2 and Ca observations were made during each shot for

approximately one millisecond before and after Pmax occurred. Al-

though there is some discrepancy between the temperatures measured by

the two thermometric species on the compression stroke, both species

give identical temperatures at Pmax and throughout the expansion
stroke. Fig. 11 shows the relationship between measured T max and

measured Pmax for shots made with the old 4-meter and the new 8-meter

compressor employing C 2 , nul(5105 1), Cai(4226 1). and Na(D-lines )

as the thermometric species. For most shots Tmax lags Pmax by about

200 microseconds. The lag is attributable to gas leakage across the

piston during the peak of the compression :ycle. The gas temperature

at Pmax is systematically less t.:an Tmax by about lOeK for PAX <

1600 atm for all thermometric species, but for Pmax > 1600 atm metal-

lic resonance line temperatures never exceed 4500°K, Temperatures

greater than 45r'jo°K can only be obtained from C 2 or excited Cu lines.

The empirical power law:

1091 0 '_ ( 0.364 f 0.010) logl0	 (22)
o	 0

describes the T, P data quite accurately, for To = 298°K, and Po = 1

atm.

No direct tests of the homogeneity of the thermometric

species in the test gas have been devised. Both the C2 molecules and

the excited Cu atoms are formed predominantly in the hot, central core
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of the test gas, and both species yield higher temperatures than the

metallic resonance line data which are subject to boundary layer

absorption effects.

The existence of LTE can be inferred from excitation temper-

ature agreement obtained from thermometric species expected to have

widely differing values of excitation cross-sections for collisions

with helium atoms. Although electrons are efficient collisional

excitation partners, their abundance is thought to be less than the

value required to establish excitation equilibrium. Until more

definitive experiments can be conducted to establish the degree of

LTE achieved, we assume that these excitation temperatures correspond

to the translational temperatures of the helium atoms.

3.2.2 Emission Experiments

Survey emission spectra were made during most flashlamp

absorption experiments by focusing the light beam emerging from the

top window of the test section onto the slit of a Bausch and Lomb

medium quartz prism spectrograph, Fig. 12. This spectrograph was

loaded with Kodak I -F and 103-F plates which are sensitive to light

in the wavelength range 2 C00 to 7000 X. The sensitivity of the optics-

spec trograph-pl atc combination falls off quite vapidly below 2500 1

due to absorption by air and emulsion gelatin.

All of the emission spectra recorded in these experiments

revealed the usual collection of broadened metallic lines super-

imposed on a continuum whose intensity variations with wavelength

were described in the last NASA report. No significant difference

19
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in exposure levels was observed between He. Ar, and research grade Ar.

It was noted, howev r.. that the continuum intensity of these experi-

mfn l s was markedly weaker than that of the experimen ts described in

the first report. This is undoubtedly a result of the use of the

new test section with its newly chromium-plated bore, and the adop-

tion of more stringent cleaning procedures for the compressor prior

to each shot.

3.2.3 Absorption Experiments

In order to make opacity measurements in the ultraviolet

it is necessary to use a lamp of high brightness temperature. A

Garton-Charatis flashlamp with a 4$,000°K brightness temperature was

chosen, Fig. 12. The emitting medium of this lamp is a plasma

consisting of hydrocarbons ablated from the phenolic capillary walls

by the sliding-spark discharge, together with 5 mm Hg air representing

the lamp firing pressure. The capillary dimensions are 3/16 inch

diameter by 2-1/2 inch length, and the electrodes are of tungsten.

During this investigation the flashlamp was operated at five kilo-

volts resulting in an input energy of 150 joules, peak measured

current of 2500 amps, peak current density of 1.4 kiloamps/cm 2 , and

a visi',,# e brigh tness temperature of 30, 000°K, a value obtained by

extrapolation of the Charatis calibration data. The circuit diagram

for the flashlamp is shown if Fig. 13. Oscilloscope display of the

flashlamp intensity-time signal from a photomultiplier tube showed a

fast rise to peak intensity in approximately 5 µsec followed by an

exponential decay resulting in a pulse half-width of 10 µsec. Imax

was reproducible to t 3 percent.

20

_ ___tee ..., :'N.^._^l
i.^•	

WON-



r	 __

The optical train (Fig. 14) traversed by the light pulse

generated by the flashlamp plasma consists of a 6 mm thick Suprasil II

flashlamp window, a 1 mm thick Suprasil disk aluminized to 35 percent

transmi,_ision at 1900 t, a 150 mm focal length (Lyman a) f/6 MgF2

lens, two 12.27 mm Suprasil TI high-pressure windows, a 45 0 angle of

Incidence front aluminized mirror, a 50 mm focal length f/2 Mg F2 lens,

and a McPherson Model 216 combi:Aation monoc:hromator-spectrograph-

direct reader. The McPherson 216 has a Czerny-Turner mount and its

600 groove/mm, 2000 1 blazed B and L grating gives a 15.9 I /mm

reciprocal dispersion at 1900 k. Adjustable entrance and exit slits

set at 50 µ width produce a triangular slit function with a 0.8 A

half-width. The detector was a RCA 7200 photomultiplier tube with

the cathode at -1000 volts. This tube is essentia lLy a 1P21 in a

Suprasil envelope giving S19 spectral sensitivity response. The RCA

7200 output was connected to a twc--3tage emitter-follower preampli-

fier and displayed on a Tektronix RM35 oxcilloscope.

The test beam signal and its attenuation were measured with
two firings of the flashlamp. In order to be certain that I o is the

same for the two measurements a flashlamp monitor scheme was assembled,

Fig. 14. The bearn emerging from the front window of the flashlamp is

split by the 1 mm thick Suprasil disk aluminized to 35 percent trans-

mission at 1900 1. The reflected beam passes through a Thin Film

Products interference filter with a 200 1 bandpass centered at 2300 Is

a sodium salicylate coated (front surface) glass plate, and a four-

foot section of fiber optics light guide to a RCA 6199 (S-11 response)

photomultiplier/emitter-Follower/oscilloscope display. This monitor

21



is sensitive enough to detect a one percent change to lamp intensity.

In order to determine the UV-cutoff of the optical train

and its six meters of air, the flashlamp was Flashed 30 times and

recorded on Kodak SWR film using a 20 u spectrograph (McPherson 216)

slit. A Calcomp plot of the resulting spectrogram is shown in Fig. 15.

Although absorption by the Schumann-Runge bands of 0 2 starts at about

1950 A and increases with decreasing wavelength, there are many

wavelength intervals of very :Teak absorption between 1950 and 1875 ^.

Below 1875 1, strong apparatus /air absorption sets in. These "win-

dows", located gust to 'the blue of the red-degraded vibration-

rotation bandheads, can be used for opacity measurements without

recourse to vacuum operation. Removal of the air from the path of

the test beam would extend the usable wavelength range to about

1750 k where the MgF2 and Suprasil optical elements begin to absorb

strongly.

In spite of the extremely heavy exposure (blackening) on

SWR film, there was no detectable blackening at the stronger 02

Schumann-Runge bandheads, nor in many of the individual rotational

lines. One can therefore conclude that scattered light makes a

negligible contribution to the total intensity or signal at these

wavelengths.

Estimates of random and systematic errors in individual

measurements indicate an overall accuracy of the final opacity value

of f 4 percent. This value represents the sum of oscilloscope record

reading (t 2%), flashlamp reproducibility, corrected with monitor

r
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adjustment if necessary (* 1%), thermal effects such as spectrograph

wavelength shifts, oscilloscope sensitivity drifts, and effects due

to relative humidity changes in room (f 1%). Errors due to scattered

light, optical alignment during shot, and defocusing at spectrograph

slit due to refractivity changes in the test gas at high temperatures

i	 and pressures are negligible.

4.0 EXPERIMENTAL RESULTS

The initial conditions of the test gas for most of the experi-

ments of this investigation were 1 atm pressure and room temperature.

Eighteen compressor shots were made for UV opacity measurements at

pressures up to 1850 atm and temperatures up to 4700® K. In addition,

45 temperature measurement shots were made at pressures up to 2480 atm

and temperatures up to 510e K.

A number of pure helium control shots with P = 1500 atm and

T = 4000°K were made to check out all systems and to establish impu-

rity radiation levels that would be used to correct measured radiation

levels in the projected 2000 atm, 500eK hydrogen/helium data shots.

The initial results at a number of wavelengths between 1800 A and

1900 1 revealed totally unexpected high values of the opacity, T,

ranging from 0.6 to 1.5. The opacity that can be ascribed to helium

at these pressures and temperatures is less than the calculated 2000

atm, 5000°K value of 0.0015 (Fig. 1), and well below the detection

limit of the measuring scheme. The observed opacity must therefore

be due to impurities. Improved tube cleaning and filling techniques
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were adopted and,the experiments were repeated. The most reliable

data (using the beam-splitter flashlamp monitor) were obtained at

1900 A and showed a marked reduction in the data scatter from the

initial measurements, but unfortunately still gave an unaccountably

high opacity of T = 1.08 + 0.07. Air Products and Chemicals, Inc.

99.975 percent pure helium (principal impurities N2, H20) was used

for the driver gas, and 99.995 percent pure helium (50 ppm Ne, trace

NO was used as the test gas. Tube pumping and filling procedures

added approximately 50 ppm air to the test gas.

In order to eliminate any possibility that the observed control

shot opacity was associated in some unknown way with the helium, it

was decided to repeat the control shots but with argon instead of

helium. The first argon shot was made with 99.97 percent pure argon

(150 ppm H20, 150 ppm N2 ) for both the test and driver gas and gave

T > 3.3. The second and third argon shots were made with Linde

Research Grade 99.999 percent pure argon (< 5 ppm He, 3 ppm N2 , trace

Ne, H20) as the test gas. Tube pumping and filling resulted in the

addition of approximately 60 ppm air to the test gas in the second

shot giving T = 1.55, and 25 ppm helium and 20 ppm air in the third

shot giving T = 1.13.

The essentially identical opacity measured in the helium and

argon shots, i.e., 1.08 and 1.13 respectively, indicates that the

unknown opacity source probably is not associated with the rare test

gas, but is a common impurity introduced into the compres p or with the

test gases, or boiled off the test section walls in a similar fashion

in both the pure helium and argon shots.
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5.0 ANALYSIS

5.1 Impurity Opacities

Inasmuch as the observed ultraviolet continuum opacity cannot be

ascribed to the test gases helium and argon it becomes necessary to

look for other opacity producing mechanisms. One possible source of

the observed opacity may be the ever-present trace amount of vapors

of the metallic impurities, i.e., Na, Ca, K, Rb, Cs, Cu, Cr, and Fe

that are unavoidably produced during the mechanical operation of the

compressor. Photoionization of those metal vapor impurities with

appropriate ionization potential could account for the observed

ultraviolet continuum opacity.

Residual air in the tube from the test gas filling operation

is an additional source of impurities. Pressure-broadened vibration-

rotation lines of the Schumann-Runge (B3E -• X3E) system of 02 , and

of the Lyman-Birge-Hopfield (a l n 
g 

Xl '+g ) and Vegard-Kaplan

(A3E XlZ) systems of N2 may conceivably account for the observed

opacity.

Analogous arguments hold also for the photodetachment continua

W

	 associated with the minute amounts of 02 - , N2 - 2 OH- , and Cu- that can

be expected to be present in the test gas at the peak of the com-

pression cycle.

A final constituent of the hot, highly compressed test gas that

may contribute to the test beam attenuation is particulate matter. A

small amount of very fine dust is produced by the rubbing motion of
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the phosphor-bronze piston rings on the polished steel walla of the

tube during each compressor shot. It is possible that imperfect

sealing of the reservoir gas by the Rulon cup-seals during the

initial part of the compression cycle, when the reservoir driver

gas pressure is greater than the test gas pressure, results in a

small amount of dust being blown across the piston and mixed with

the test gas.

5.2 Estimates of Impurity Abundances

Previous calculations (Ref. 1) based on experimental measure-

ments of the opacity at the peak of the 4226.7 1 calcium line and
the sodium D lines give abundances of these two impurities of approxi-

mately 1012 em-3 4 This value is probably a reasonably good estimate

of the abundance for each of the metal vapor impurities. Fifty ppm

residual air in the compressor tube from the filling operation

represents abundances at the roughly 115 amagat peak relative density

of these experiments of 1.2 x 10 17 cm-3 for N. and 3.2 x 1016 cm-3

for 02 . The free electron abundance of ne 1013 cm-3 in the helium

experiments is at most doubled by contributions from impurity ioniza-

tion.

Estimates of the size and number den3icy of the particulate

impurity cannot be made easily. Visual inspection of the test

section immediately after a compressor shot reveals a very thin layer

of fine, reddish dust particles, which probably come from the phosphor-

bronze piston rings.

2 6



r-

a.0 DISCUSSION

Calculation of absorption coefficients of all possible photo-

absorption processes involving helium, argon; and the above described

vaporized impurities were made but the sum of the individual contri-

butions was much less than the value of 0.2 cm -1 required to explain

the experimentally measured opacity.

Attenuation of a test beam by particulate matter is due to both

scattering and absorption processes. The scattering and absorption

coefficients of particles ranging in size up to about 0.1 of the

wavele"gth of the incident radiation increases quite rapidly with

decreasing wavelength, whereas test beam attenuation by larger

particles results in less severe frequency dependence. One can

reason that scattering and absorption by particles of dimensions

much less than the 1900 1 wavelength of the incident radiation
produces the observed opacity. Unfortunately, this does not appear

possible because the exceedingly small cross sections associated

with these processes require an unrealistically high abundance of

particulate matter.

The inability to ascribe the source of the measured opacity to

known phc"oosbe nrption processes involving the high temperature

product species of the carrier gas and known impurities makes it

necessary to consider less likely processes previously neglected.

Various hypothetical processes can be described even though insuf-

ficient data prevents meaningful evaluation. Photoabsorption
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prooesses involving previously unabcerved high-temperature, high-

pressure species may be occurring. These species might include the

dimer of helium, Het , molecules HeX where X is an impurity, or some

heretofore undetected impurity whose spectrum lies in the ultra-

violet,

It may be argued that the ultraviolet transmissivity of the

high-pressure windows is somehow degraded by the severe mechanical

and thermal stresses occurring at the peak of the compression cycle.

Mechanical stress is known not to be detrimental to the Suprasil

window material in the visible, and it seems likely that the same

also holds true for the ultraviolet. It is, however, conceivable

that the inside window surface that is momentarily exposed to the

5000"K gas experiences thermal stresses that degrade its ultraviolet

transmission properties. There are no measurements that suggest

this as a possible mechanism, although in principle it is a remote

possibility.

7.0 CONCLUSION

The actual data- taking H2 /He experiments must necessarily be

postponed until the unexplained ultraviolet opacity source at 1900

is identified and removed. Further steps that may be taken include

reducing the impurity level by simultaneous tube heating and pumping,

chrome-plating the compressor tube, acid cleaning all parts exposed

to hot gas, improving piston cup-seals so that less particulate

matter is blown into and mixed with the test gas by the driver gas,
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testing or alternate window materials in order to examine the possible

effect of high temperature on window transmissivity, and studying the

temperature and wavelength dependence of the observed opacity for any

clues that may heap identify its source.
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