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I. Introduction

A few years ago, Synge (1966) reviewed the concept of the so-

called "escape cone" of light emitted in the vicinity of gravita-

tionally-intense objects (i.e. where r/rachwarzschild? 1). In a

region outside but close to the surface of such objects, not all

of the light emitted escapes to a distant observer; rather, light

only escapes if it is emitted within a cone which has the property

that it monotonically shrinks in angle as its vertex approaches

the surface of the object. Zel'dovich and Novikov (1965), and

others have also discussed this interesting and unusual effect.

These investigations have all dealt with the emission of light from

a region exterior to a spherically symmetric mass distribution.

Because of the possible importance of general relativistic

effects on the characteristics of stellar objects, we wish to dis-

cuss here the emissi • ^ and escape of light from inside spherically

symmetric mFss aistri-cations. In particular, we will explicitly

analyze the interior Schwarzschild field. This model, although

idealized, can be analyzed analytically; it should give useful

insight into the relativistic effects and possible severe restric-

tions that can exist for the motion and escape of 'ight from within

a mass distribution.

We will show that there also exists a "cone effect" for light

escaping from within the object. However, the "interior escape



cone" does not monotonically shrink with decreasing radius of emis-

sion, as does the "exterior escape cone" discussed by Synge.
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II. The Interior Field

For constant density, p(r < r b ) = o o , p(r > rb) = 0, we have

the Schwarzschild interior field ( Schwarzschild 1916), given by

r `	 2
ds 2 = [3/2 3(1 - R2 ) - 1/2 3(1 - R2 )] 2 c 2 dt 2 	:1)

dr 2	
- r 2 (d^ 2 + sin 2 ^ d62}

0<r<rb^	 (1 - r /R )

where

2	 3c2 	 3M
R - 87rGp0	 po	 47rr 3b

The field equations lead to an immediate restriction (Schwarzschild

1916): in order that the pressure never becomes infinite anywhere,

r  must be greater than (9/4)m. (G and c have been set equal to

unity; the Schwarzschild radius of the sphere in these units is

rs = 2m.)

Solving the geodesic equations of motion for light (ds 2 = 0),

we find	 0, or motion is restricted to a plane, chosen as

= 7r/2, and

r20 = a = constant
	

(2)

2

	

[3/2i/ (l - r2)	 - 1/2,/(1- 2 ) ) 2 = t = S = constant	 (3)

	

R	 R

S
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where a dot indicates differentiation with respect to an arbitrary

parameter. Since the interior and exterior solutions match at rb,

we can show (Appendix A) that

a/$ - 1	 ,	 (4)	 V

the classical impact parameter as measured at infinity.

Combining equations (2), (3), and (4) with ds 2 = 0, we find

drTe-
 

2,- 

r 3 (1 - r 2/R2 ){

	

	 4r 
2	

2 - 1 1 1/2 	 (5)
Q [B - r(1 - r /R2 )]

where

B = 3 (1 - rb2/R2).

Thus the motion of light is characterized by a single parameter, R.

The quantity inside the braces in equation (5) must always

be non-negative; therefore, at each r < r b , the allowable range

of I is

0 < I < It =	 2r 	 (6)
B - 3 (1 - r /R )

I(dr	 _	 = 0 ) is always greater than r (classically, L t = r).

This is an illustratic.)n of the curvature of space-time, for k can-

not be given a real interpretation near the source, but only at



r - w. We must therefore be content to consider L only as a math-

ematical constant of the motion.

Kuchowicz (1965) has very neatly solved equation (5) and found

r = R B3 [B2 - 1 + (A+1-B 2 ) sin 26 ] + 3 [A+1-B2 ]sin 8

B + (A+1-B ) sin 8

where

A = 4R2 

Examining this equation shows that, for a sphere in the range

9/4 m < r  < 3m

(recall that r  is proportional to p o), light emitted at a radius r,

with

k > is = rb/ 3 (1-2m/rb)

does not escape the sphere (i.e., there exists a turning point < rb).

is is less than or er ual to tt in the region'

r - 9/4 m
r> r  [ r 

b
b_	 m ] =rc

In this region, some of the light emitted in the ran--e f = 0 to

Lt never escapes past r b . All of the light emitted from r < rc

escapes past the boundary of the sphere. For r  > 3m, all of the

light emitted in the allowable range of k at a—U r escapes.

These results are illustrated in Figure (1). In Figure (la),

for rb = 200m, kt versus r is practically a straight line of



slope one, for goo and g ll -,. l  as p decreases. For r  > 3m

(Figures [lal and [lbl) , it is monatomically increasing with r.

For r  < 3m (Figures [lc] - Ile]), it
 reaches a maximum at

r	 4r - 9m j1/2

rmax r
b/3 [(m ) r m

b
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and then decreases to it = is at r = rb-



g

III. Cone of Escape

We consider the cone of emission of light escaping from the

sphere at any r . rb. From the metric, equation (1), the r and e

spatial displacements are

dl e M r de

	

dlr	Vg) dr

The half-angle of the cone of emission as measured from the radial

direction is then

tan e = ^

dl  
= r	 () k	r 	 c

4ri	 - 11-1/2 .

ks [B - 3 (1-r2/R2)]2

Figure (2) illustrates efor various values of r b . For r  > 3m,

e = a /2 for Al r. (It should be clear that; while the spread

from 0 to I t may be decreasing with decreasing r, if all the light

emitted at r, in the allowable range 0 to I t , escapes the object,

the escape cone is still n /2.) For r  < 3m, we have the interesting

result that, with decreasing r, the full cone angle of the envelope

of escaping light initially decreases from n, reaches a minimum,

and then increases to n at rc . This is in contrast to the result

for the exterior Schwarzschild field, where for r < 3m (with an

emitter exterior to the mass distribution), the corresponding cone

envelope is monotonically decreasing.
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The red shift of the light emitted of course increases as

the point of emission moves closer to the center. For a photon

emitted radially (i = 0) from a point at rest in the object, the

red shift relative to an observer at infinity is simply

z 1/ q00 - 1

r2	 r2
[3/2 3 (1- _2 ) - 1/2 3 (1- 

Rb 
)j -1 -1

which increases with decreasing r.
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IV. Transit Time of Light

It is interesting too to examine the transit time of light

travelling within the sphere. From the geodesic equations, we

find

	

dr	 g	 2

	

r /--g,,,, 	 g00 12

This equation can be integrated analytically, yielding

	

t - t =	 R	 sin 1 2 [A (A-v) (v+1 -B2) (B2_1)]1/2

°	 3 (B 2 -1) 	 a(A+1-B2)

where

	

A = 4R 2/1 2 and	 a = R2 [B - 3 ( 1-r 2 /R 2 ) ) 2

In the limit of vanishing p, we have

2 - 2 3/2
t - to = 3 (r 2 -!Z 2 ) + 4/3 (r k 2 )	

+ 0( 2n )R	 R

1
	the classical result, plus terms of order R 2	 (See Figure [3].)
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V. Conclusion

Gravity places unusual restrictions on the emission and es-

cape'of light from within a spherically symmetric mass distribu-

tion. There exist regions where the escape cone is less than rr.

While the interesting range of r  here (or equivalently, P.) is

not terribly great, recent work by Kuchowicz (1968) indicates that

other, perhaps more realistic configurations have a much greater

latitude of dimensions within which these capture effects may exist.

Acknowledgments

it is a pleasure to thank Professor Philip Morrison for his

continuing interest in this work.

I am indebted to Professor Irwin I. Shapiro for many valuable

suggestions regarding the presentation of this manuscript. I also

want to acknowledge the hospitality of the Institute for Space

Studies.



APPENDIX A

The exterior 5chwarzschild solution is given as

ds 2 = (1-2m/r) dt 2 -	 dr
2 	- r 2 (d^ 2 + r 2 sin 2 ^ d92)

(1-2m/r)

The relevant geodesic equations of motion for light (ds 2 = 0) are

readily found to be

r 2 6 = p = constant 	 (Al)

( 1- 2m/r)t = c = constant .	 (A2)

If we consider a test particle at infinity, of mass m and

with velocity v as measured at infinity, equations (Al) and (A2)

can be written as

r 2 6 = p = kv/(1-v 2 )	 (A3)

(1-2m/r) t -► t = c = l/ (1-v 2 )	 ,	 (A4)

where I is the classical impact parameter of the particle as

measured at infinity. Therefore, for light, where v = 1, we

have

13
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P/c = R .
	 (A5)

Since the interior and exterior solutions match at rb , we

have from equations (2) # (3) , W), and (M),

a = P

s

Therefore,

a/$ = P/c = z .

14



15

References

Kuchowicz, B. 1965, Acta Astron., 15, 297.

Kuchowicz, B. 1968, Acta Phy. Polon., 33, 723.

Schwarzschild, K. 1916, Sitzber. Preuss. Akad. Wiss. Berlin, p.424.

Synge, J.L. 1966, Mon. Not. R. astr. Soc., 131, 463.

Zel'dovich, Ya.B., and Novikov, I.D. 1965, Sov. Phys. - Usp., 8, 522.



FIGURE CAPTIONS
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Figure 1. Range o

of r/rb

not all

escapes

E light emitted (i 	 0 to k t ) as a function

for various values of rb . For r  < 3m,

the light emitted in the region r  < r < r 

past r  (shaded sections).

Figure 2.	 The half-angle of the cone of escaping light as a

function of r/rb , for various values of rb . Curve (a),

9 = 1/2, is valid for r  > 3m. Curves (b) , (c) ,

and (d) correspond respectively to r  = 2.86 m,

2.35 m, and 2.27 m.

Figure 3.	 The transit time, in units of m, from r = 0 to

r = r  for a radial photon (I = 0), as a function

of rb . The transit time is longer than the classical

case, especially in the limit as r  approaches its

minimum allowable value, (9/4) m.
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