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INVESTIGATION OF THE PERFORMANCE CHARACTERISTICS OF A
DOPPLER RADAR TECHNIQUE FOR AIRCRAFT COLLISION HAZARD WARNING

I. SUMMARY

This report presents the results of a computer simulation study of a
cooperative doppler radar system for aircraft collision-hazard warning
under development by NASA-Langley Research Center personnel. The system
performance under multiple aircraft conditions, with particular emphasis
on the problems of saturation and interference, is evaluated by simulation
of the system using a data base consisting of twelve one-hour samples of
aircraft position data obtained from the ground radar at the Atlanta,
Georgia airport. In addition, the system error sources are determined by
comparison of simulated data with flight test data, and other miscellaneous
system problems are considered. Statistical studies of the data base have
been previously documented in the Phase I final report [1l] and Phase II

interim report [2] of this contract.

IT. INTRODUCTION

In phase 1 of this contract, the feasibility of a dynamic computer
simulation of the aircraft collision hazard warning system developed by
NASA-Langley personnel was investigated. The simulation was found to be
feasible and well within the capabilities of the available digital computers.

One of the major objectives of the phase I effort was to collect data
definipg aircraft motions in a typical airport terminal area. With FAA
cooperation, twelve one-hour samples of digitized radar data, controller-
aircraft voice communications tapes, and controller log sheets were collected
at the Atlanta, Ga. terminal. These data were taken during morning,
afternoon, and evening peak traffic periods over a five day interval
during the month of August 1967. The data were edited by FAA personnel at
National Aviation Facilities Experimental Center (NAFEC) and made available

to RTI in the form of digital magnetic tape. The edited data contain, for



the majority of the aircraft within a 35 mile radius of the Atlanta Airport,
(1) position data in xyz coordinates for all aircraft under track at four
second intervals (approximately 700 aircraft tracks with a total flight time
of approximately 119 hours), (2) coordinate rates at four second intervals
for all aircraft under track and, (3) supplementary data such as
identification of aircraft and time of day. The data base is described in
detail in the Phase II Interim Report on this contract [2].

The objectives of the Phase II efforts have been to: (1) development
of mathematical models of the collision avoidance system and development of
computer simulation programs to evaluate the performance of the system;

(2) to use the data describing a typical terminal area to conduct a detailed
statistical analysis of the effectiveness of various parameters (i.e.,
normalized doppler rate, time to closest approach, or projected miss
distance) in reducing the probability of false alarms; and, (3) to provide
assistance in the planning and evaluation of flight test data by use of the
simulation model.

The effort described under (2) above has been reported upon separately
in the Phase II Interim Report. Hence, this report presents the studies
having the objectives (1) and (3) described above.

Two experimental collision warning systems have been constructed by
LRC personnel and have undergone flight test evaluation. This evaluation
provided a good indication of the system performance when only two aircraft
are involved. The computer simulations described in this report evaluate
the system performance under multiple aircraft conditions and provide
quantitative results on the severity of the problem of saturation due to
multiple aircraft interrogations. .

In the following, the simulation techniques used are described in
detail and the analytical models documented. The results of the experimental
flight tests are compared to simulated results and the sources of system
error are determined. The severity of the problem of system saturation and
interference in a multiple aircraft enviromment is investigated in detail,

and conclusions and recommendations are given for future work.



III. SIMULATION TECHNIQUES
A, SYSTEM DESCRIPTION

Figure 1 indicates the basic operation of the system. The protected
aircraft is equipped with a radar unit consisting of two transmitters, a
receiver, and a display console, and all cooperating aircraft have a
transponder. The protected aircraft transmits a pair of signals at
different frequencies. These signals are received at the intruding
aircraft and multiplied to obtain a difference frequency. The difference
signal is then re-transmitted to the protected aircraft where its frequency
is compared with the difference of the transmitted frequencies to obtain
the Doppler frequency as a measure of closing velocity. Since the
transponder output power is proportional to the product of the power of
the two interrogating input signals, the signal power returned to the
receiver varies inversely with range to the sixth power. This relatively
sharp fall-off of received power with range permits a relatively accurate
measure of range to be obtained from measurement of returned signal power.

To provide for multiple access to the transponder, pseudo-random
transmitting coding is used. Both of the transmitted signals are randomly
frequency modulated; a single frequency is derived at the transponder by
multiplication and filtering, and the random modulated return signal is
decoded at the receiver. The signals due to multiple aircraft interroga-—
tions appear at the ownship receiver to have a noise-like characteristic,
while the ownship returned signals are essentially stationary in frequency.

Because of the range limitation of the radar and the use of random
transmitter coding, all radars may operate on the same frequencies,
eliminating the need for separate channel assignments for each aircraft.
Also, because of the C.W. mode of operation, the peak transmitter powers
are relatively low, allowing the use of solid-state equipment, and there
is no specific requirement for a high degree of accuracy in any of the
frequencies involved.

This system is primarily a cooperative, C.W. Doppler radar which

provides a precise measure of the closing velocity of an intruding aircraft,



and a somewhat less precise measure of the relative range between aircraft.
The relative range divided by the closing velocity is computed, and gives

a measure of the "time to collision." An indication to the pilot of the
direction to a hazardous target is provided by a multiple lobe receiving
antenna and associated signal processing to provide nine separate indicators
of relative target bearing (e.g. up-right, up-center, ahead-right,
down-left, etc.).

Figure 2 shows a more detailed block diagram of the system. Not shown
on this diagram are provisions for filtering the ownship transmitter signal
from the ownship transponder and the ownship transponder return from the
ownship receiver. The operation of the system under multiple interrogations
may be understood by inspecting the spectral densities in Fig. 3. The
transmitter outputs are composed of the sum and difference of the two
frequency modulated oscillators. The transponder receives a pair of input
signals from every radar interrogating it, and will generate an output
signal for every cross product that exists. For instance, if two radars
are interrogating the transponder, four cross products will be generated.
Only two of these products are desirable, and to suppress the undesired
products, the transmitted signals are randomly frequency modulated such
that their power is evenly distributed over the transmitter bandwidth. This
modulation is applied such that it is coherent between signals in a pair
and not coherent between signals not in a pair. Thus, the noncoherent
products are spread over a band roughly two times that of the transmitter
bandwidth, whereas the desired returns from the transponder are spread
over a band determined by the deviation of FM oscillator mo. 2. A filter in
the tfansponder passes only the desired signals and the noncoherent power
contained within the desired signal bandwidth.

At the receiver, the incoming signals are mixed with the signal from
FM oscillator no. 2 to derive the desired returns. The desired returns
are thus stationary in frequency at the Doppler filter output (except for
the Doppler shift). Signals entering the receiver whieh are returns to

other receivers in the area are noncoherent with the mixer signal and are
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spread over a bandwidth roughly twice that of the transponder output.
These noncoherent products thus appear as noise within the Doppler filter
bandwidth.

One technique for generating the warning alarm is shown in Fig. 4,
utilizing a warning parameter designated as (RZT). In this technique,
the Doppler signal is differentiated and detected to provide a voltage
related to "time to collision." A threshold circuit is then used to give

an alarm when this voltage exceeds a certain level.

el = A sin w.,t e, = K Aw,cos w,t e, = K, Aw

d 2~ 1™ d 3027
\ \ ¥ THRESHOLD
DIFFERENTIATE | 3] DETECTOR | CIRCUIT &
3 Alarm
Doppler Signal
Tone i

SET THRESHOLD LEVEL

A is proportional to R_3

Wy is proportional to closing velocity (VC),

hence voltage e is proportional to (Rz‘r)”l

Fig. 4. Technique for generation of alarm
based on R?t criteria.

Two of the systems have been constructed and installed in DC-4
aircraft for flight test evaluation.

In the systems subjected to flight tests, signal processing techniques
were used that permitted derivation of voltages proportional to range,
closing velocity, and rate of change of closing velocity, as well as
combinations of these parameters. Both analog and digital data process~-
ing techniques have been evaluated during the flight test experiments.

Additional details of the system operation are given in reference [1]

and [3], and in the following sections of this report.



B. SYSTEM SIMULATIONS

Several simulation programs have been developed, each somewhat
similar, but differing in input data, output, and in certain internal

details. A general description of each of these programs follows:

1. Linear path simulation:

inputs: positions and velocities of up to
15 aircraft, system parameters, and
time intervals.

outputs: geometrical parameters and warning
criteria, transponder and receiver
power levels, frequencies, alarm
status, signal-to-noise ratios,
saturation condition, interference
levels and output voltages vs time.
(For all transponders and one se-—

lected receiver).

2. Atlanta data simulation:

inputs: Atlanta radar data, system
parameters, track selected for

analysis, and time intervals.

outputs: same as in (1)

3. Flight test simulation:

inputs: Radar data from Wallops FPQ-6 and
FPS-16 radars, system parameters, and

experimental flight test data.



outputs: Geometrical parameters and warning
criteria, system outputs vs time
as in (1), receiver voltages
corresponding to geometrical
parameters and warning criteria, break-
down of system errors, and comparison
of geometrical (ground radar)
calculated (simulated warning system)
and experimental (flight test data)

measurements.

4, Saturation evaluation:

inputs: Atlanta radar data and system
parameters
outputs: Statistical data on system power levels,

alarm condition, and saturation
condition, assuming full simulated
warning systems on all aircraft in the

data base.

A general flow chart for the system simulation program is shown in Fig. 5.
This chart indicates the basic program which is used, with slight modifica-

tions, in the programs described above.

C. ANALYTICAL MODELS

In the phase I report [1] analytical models are documented that provides
for calculations of signal, noise, and interference levels at various points
in the transponders and receivers. Additional analytical and emperical
models have been developed in phase II of the study to provide a more
realistic representation of the behavior of the systems as presently con-

structed.
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Figure 5. Simulation flow diagram.
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The major refinements incorporated in the phase II simulations are

summarized as:

1. More accurate representation of the system antenna
patterns using a Fourier analysis of the
experimental patterns.

2. Representation of the receiver amplitude-frequency
response by empirical functions fitted to
experimental calibration data taken at LRC.

3. Development of a mathematical model of the output
of a limiter-product detector circuit with
several input signals

4, Consideration of each transmitted signal separately
instead of assuming equal path losses and
antenna characteristics for both transmitted
frequencies.

5. Incorporation of time response in the receiver
calculations in accordance with time constants
used in the actual systems.

6. Provision for the simulation of the analog data
processing accomplished in the receiver based
on experimental calibration data.

7. Incorporation of an error breakdown giving calculated
measurement errors as referenced to an ideal

receiver and to experimental flight test data.

Details of the above refinements are given in Appendix D (Receiver
Data Processing), Appendix B (The Output of a Product-Detector Limiter

Circuit) and Appendix G (Representation of Antenna Patterns).
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IV. SATURATION AND INTERFERENCE STUDIES

A, GENERAL

The radar traffic data from the Atlanta terminal, as mentioned in
the introduction and analyzed in detail in reference [2], permit studies
of particular agpects of the system performance by computer simulation.

A detailed warning system can be simulated on each aircraft in the data
base, and statistics determined on performance measures of interest.

In the study of the saturation problem, the system parameters of
interest include the signal, interference, and noise levels ét various
points in the transponder and receiver. A good measure of the severity
of the saturation problem is given by a statistic such as 'the average
percentage of flying time in the terminal area that a certain power
level exceeded a specified level." This statistic also provides an
unbiased estimate of the probability that a randomly selected system will
have a power level exceeding the specific level at any particular instant
of time.

Another statistic of interest is''the average percentage of flying
time in the terminal area that a certain power level exceeded a specified

level while the system was in an alarm status." This statistic indicates

the severity of both the multiple hazard and interference problems. For
example, if the second largest signal power level at a given receiver
exceeded the alarm threshold of the receiver for a large percentage of
the time, a multiple target problem would exist. As another example, if
the signal-to-interference ratio for the largest signal at a given
receiver (while in an alarm status) is small for a large percentage of
the time, an interference problem exists.

Thus, in the following, results are presented indicating the above
mentioned statistics on various power levels for hour 11 of the Atlanta
data base. During this hour, 68 aircraft were present with a total flying
time of 13.6 hours [2].

13



B. TRANSPONDER CHARACTERISTICS

1. Mixer Saturation

The linear turn—around transponder deviates from linearity due

to two major effects. One effect is that of exceeding the dynamic range
of the balanced mixer circuit that effectively multiplies the two
incoming signals and derives the low-level output signal (see figure 2).
The other effect is the deviation from linearity of the output linear
amplifier chain. Experimental data indicate that with one set of input
signals, the balanced mixer is the component that tends to saturate first
as the input power levels are increased.

A theoretical study of mixer saturation (see reference [1]) indicated
that the mixer saturation was a function of the total power input to the
mixer, and that the effect of transponder saturation could be represented

satisfactorily by a model,

Fx Pai, Pbi’
Ps,, = L= (1)
ij N
1+ K ) (Pa,, + Pb,,)
i=1 1] 13
where
Psij = power output of transponder j due to transmitter in
aircraft i
Paij = power input from aircraft i at transponder j at
frequency a
Pbij = power input from aircraft i at transponder j at
frequency b
FX = overall gain constant for transponder

= experimentally determined constant approximately
equal to the gain of the transponder from the
input to the mixer, divided by the mixer bias

power (units of Mwﬁl)

14



The denominator of eq. (1) has been designated as the ''saturation factor"
for the transponder. Notice that this term is also the nominal gain

divided by the actual gain for a given signal, or

nominal gain
actual gain

Sat. factor (SK) = (2)

Figure 6 shows the results of the simulation study indicating the
average percentage of time that an aircraft transponder "saturation
factor" exceeded a level specified along the horizontal axis. For example,
a value of 1.3 was exceeded only .67 of the time; this corresponds to a
gain reduction of only 1.1 db.

Inspection of the curve indicates that the median gain reduction
factor is 1.05 and that there is a low (* .0l) probability of exceeding
1.4. These levels are acceptable, hence transponder mixer saturation
does not appear to be a problem under hour 11 (congested) flight
conditions, and with the system parameters (gains, bandwidths, etc.)

used in the construction and simulation of the system.

2. Signal and Interference Levels

Another factor of importance in judging the transponder performance
is the level of the cross modulation products in the transponder resulting
from multiple interrogations. If n aircraft are interrogating the
transponder a total of n(n-1) cross products are generated. Because of the
random modulation of the transmitted signals,the cross products are
spread over a bandwidth determined by the frequency deviation of the two
oscillators in the transmitter (see spectral density in Fig. 3).

Curves indicating the average percent of time that the cross product
power and the noise plus the cross product power exceeded a level greater
than a specified value are shown in Fig. 7. The power levels are referred
to the transponder output (30 dbm maximum output). As may be seen from the

plots, the noise plus cross product power level referred to the output

15
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rarely exceeds 9 dbm. The median value of noise plus cross product power
is approximately -6 dbm.

Figure 7 also plots curves indicating the average percent of time
that the total output, the largest signal output, and the second largest
signal output exceeded the value specified on the horizontal axis. Note
that the total output power is well below the 30 dbm maximum value for all
cases.

From the curves of Fig. 7, we conclude that the transponder is
operating well within its design values under hour 11 conditions. For
conditions existing during this hour the cross product power is not an
excessive percentage of the total output power, and the probability of

exceeding the design maximum output of the transponder is very low.

C. RECEIVER
1. Signals in Receiver 60 MHz IF Amplifier

Figure 8 plots the largest, second largest, etc. up to the fifth
largest signal in the receiver IF amplifier. Again these curves represent
the percent of time that the power level exceeded the value along the
horizontal axis, for hour 11 data. These power levels are referred to the
input of the IF amplifier (-85 dbm corresponds to a target at a range of
5 miles).

The statistical analyses of the same hour of data reported in the Phase
II Interim Report [2] indicated that 60 percent of the time there would be
at least ome aircraft within 5 miles of a randomly selected aircraft. The
data in Fig. 8 indicate that the signal level from the clesest aircraft
exceéds the power level corresponding to 5 nautical miles only 3(Q percent
of the time. The difference between these percentage values is evidently
due to the filtering by the system antenna characteristics.

The receiver noise level is approximately -104 dbm, hence the signal-
to-noise ratios are high for a large percentage of the time. The largest
signal exceeds the noise level 75 percent of the time. The largest
of the curves indicate that a dynamic range in the receiver IF of 45 db

should be adequate to prevent saturation, with high probability.
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2. Receiver Doppler Filter Output

The Doppler filter in the receiver is assumed to have a 3 Klz
bandwidth and an ideal frequency response from 100 to 3,000 Hz.

Figure 9 plots the percent of time that various power levels at the
receiver Doppler filter exceeded the level plotted along the horizontal
axis. The power levels are referenced to a level of -76.4 dbm,
corresponding to a target at 4 nautical miles and closing at a velocity
of 240 knots. This reference level was selected so that a 1,000 cycle
Doppler signal from a target at 5 miles would provide a -85 dbm power
level that was used in the preceding plot (Figure 8). Even though
the signals are referenced to a level corresponding to the IF amplifier
input, it should be noted that the signals have been passed through a
differentiating amplifier, hence the power levels are a function of the

Doppler frequency.

Figure 9 also plots "average percent of time'" curves for the cross
product power levels generated in the trdnsponder and the "undesired
signal power'. This latter power represents signals that arise from
transponder signals that are returns to other receivers in the population
of aircraft. The cross product power and undesired signal power both
represent noise like signals spread across the doppler bandwidth. These
power levels have been combined with the noise power level in a composite
curve designated as the noise plus interference power in Fig. 9.

We note from the curves that there is a low probability that the noise
plus the interference power will exceed the threshold level of the
detector. Thus, alarms caused by interfering signals should be negligible
under the conditions represented during this hour of the data base. The
cross product power term is the most signficant interference source. By

extrapolation of the noise plus interference power level curve, we can

5

estimate the probability of a false alarm due to interference as 4 x 10

3. Receiver Signal Levels Under Alarm Conditions
The preceding curves on the receiver power levels have considered
the overall receiver operation during flights in the terminal area.

A major interest, however, is the signal level during an actual alarm
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condition. That is, we are interested in the noise and interfering
signal levels while the system is in an alarm status.

Figure 10 plots the percent of time that the received signal
exceeded a level Rk for the receiver in an alarm status. For these

curves, a hazardous situation (alarm condition) is defined by

RZT < 1000 nmz—sec (3

where R is the relative range and T is the approximate time to closest
approach. The received power level corresponding to the above geometrical
definition is -76.4 dbm. In terms of received power levels and doppler

frequency, the expression for the differentiated power is given by equation

(4)

£

P, =-79 + 20 log —1—6—0*6'

4 dbm (4)

where Py is the differentiated power and fd is the doppler frequency in Hz.

As may be seen in Figure 10, the second largest signal and third largest
signal while in an alarm status are less than the signal causing the alarm
with high probability. The system under hour 11 conditions indicated an
alarm 2.4 percent of the time while the second largest signal exceeded the
threshold level approximately .04 percent of the time.

Figure 11 indicates the percent of time that the receiver signal to
noise plus interference power ratio is greater than the level plotted along
the horizontal axis for threat situations only. As may be seen from the
curve, the probability that the largest signal to noise ratio exceeds 20 db
is on the order of .9, given that the receiver is in an alarm status.

No cases were observed in which the signal to noise ratio was less than
10 db for the signal causing the alarm.
From Figs. 10 and 11 we can conclude that, when in an alarm statug with

the thréshold condition defined by eqs. 3 and 4,the interfering signals and

22



10.0

PERCENT OF TIME

| ALARM THRESHOLD LEVEL
(-76.4 DREM)

!\ SECOND LARGEST
LARGEST SIGN/

\L g e  SIGNAL
/ e~
1.0 /Ll

y
7 /
1
-60 =70 -80 =90 -100 -110 -120 -130

RECEIVED POWER LEVEL (Ry), DBM

Figure 10. Average percentage of time that the received power
level is greater than Rk for alarm situations only.

23



PERCENT OF TIME

10

o
;/ o P L
[ -~
/Q
A ./-
f 7 7
/[ *

SECOND LARGEST

QNR
TINIC

7
L

J

f\ THIRD LARGEST
/

ONK

o,
—
--~._~.~.~

)
\\0

@,
g
iy
[y
\'\-.
——

.01

40 30 20 10 0 -10 -20 -30
RECEIVED SIGNAL TO NOISE AND INTERFERENCE RATIO (SNRk), DB

Figure 11. Average percentage of time that the receiver signal to
noise and interference power ratio is greater than SNRk
for alarm situations only.

24



noise will not be at a level such that they interfere with the proper
operation of the warning system. The signal to noise plus interference
ratios during an alarm are sufficiently high such that additional informa-
tion, such as range acceleration, can be derived with the signal processing

equipment.
4. Typical Signal Spectra in While in Alarm Status

It is informative to note in detail the power levels and
frequencies of the five largest signals (with closing doppler) from which
the statistics of Fig. 10 and 11 are obtained. Table 1 shows a partial
list of these five largest signals during alarm conditions. The Table
indicates the power levels, signal to noise plus interference ratios, and
doppler frequencies as shown in the Table heading. The specific cases shown
in Table 1 were selected at random from the total of 131 alarm cases
observed in the hour 11 data base.

It should be noted that in most cases the fifth largest signal is
considerably below the receiver noise level hence, the data indicate
approximately the situation that would be observed on a audio signal
analyzer looking at the differentiated signal from the doppler filter in

the receiver. (i.e. usually less than 5 signals are observable)

D. RECEIVED SIGNAL AND INTERFERENCE LEVELS VS TIME

While the operation of the system is adequately explained by the
statistical curves given in the preceding sections, it is interesting to
examine the time history of specific receiver operation. For this reason,
a particular receiver was selected from the '"threat selection tables"
given in reference 1. This track was selected because a situation occurred
in which an alarm should have been noted on the receiver. The track
selected was track 98 in the hour 11 data base, which had a total flight
time of approximately 11 minutes and was arriving at the terminal.

Figure 12 plots the received power levels versus time for the largest
signal received, the largest differentiated signal, and the noise plus

interference power level versus time. For this particular simglation run,
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a minus 67 dbm power level represented a threshold corresponding to

R2T = 1,000 nm2— sec (note that the threshold level is different from that
used on the statistical curves, however the geometrical warning criteria
is the same as given in eq. 3). Note that the noise plus interference
power level is well down from the signal levels throughout the whole track.
Three separate alarm periods are indicated by the shaded area where the
largest differentiated signal exceeds the threshold level,

At 6 1/2 minutes after the start of the track the signals appear to
drop out and all power levels reduced to the receiver noise level. The
reason for this dropout was examined in detail and determined to be due to
the fact that the aircraft of track 98 was heading away from all other
aircraft in the data base during the time interval of the dropout. Figure
13 plots the flight path of track 98 so that the position on the track can
be correlated with the signals received. At the time of the signal dropouts
the ajircraft track 98 was headed away from the airport at a range of
approximately 12 miles.

Also indicated on Fig. 13 are the tracks of aircraft that caused the
receiver of track 97 to indicate an alarm. The first two alarms were
received just after 4 minutes in the track when the aircraft observed other
aircraft on the final approach to the runway (track 87). The third alarm
occurred due to a crossover of track 97 just after 6 minutes into the track.
At the time the alarm was received on track 98, the approximate time to
closest approach was 33 seconds and the projected miss distance was .75
n. mi. Track 98 was at 2700 ft altitude and descending,while track 97 was
at 1700 ft. and flying level. At the point of maximum signal, the slant
range was .8l n. mi. and the approximate time to closest approach was 24
seconds. The altitude separation at the point of closest approach was
somewhat less than 250 ft.

From examination of this specific case, which can probably be considered
typical, we see again that the interference levels are not severe and that

the differentiated signal does give a good indication of a potentially
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hazardous situation. The first two alarms received at the receiver occurred
during a turning maneuver by the tracked aircraft and hence did not
represent a hazardous situation. The last alarm, however, would certainly be an

encounter of the type that would be considered potentially hazardous.

E. DISTRIBUTION OF POWER LEVELS FOR IDEALIZED SYSTEMS

For system design, it is important to be able to estimate the range
of signal levels to be received from the desired target as well as that
from other targets which may cause interference. While this has been
accomplished by direct simulation of the specific LRC system using the
data base, certain general results from the statistical analyses of
reference [2] prove useful for estimation of dynamic ranges and interference
levels for other systems under consideration.

A histogram of the distribution of the range to the closest aircraft
from hour 11 data is hown in Fig. 1l4. This histogram represents an
approximation to the probability density function of the probability of
observing, from a randomly selected aircraft, another aircraft within a
range increment AR. The histogram data, when plotted on lognormal
probability paper, indicates that the range distribution over the region

0-10 n. mi. can be approximated by a lognormal density function with mean

(ul) and variance (012) of:

By = In 4.0
(5)
ci = ,25

where the basic units are nautical miles.
A plot of the lognormal distribution corresponding to these parameters

is shown on Fig. 14 for comparison with the histogram data. Thus, we have,

£ 5 ——— Exp {- 25 (n rup?) (6)

V2 olR 201
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where fk(R) is the probability density function of the range to the kth
closest aircraft from a randomly selected aircraft under hour 11 conditioms.

Similarly, for the second closest aircraft to a randomly selected
aircraft, we have the distribution shown in Fig. 15. The mean and

standard deviation for these data are

uy = 1n 6.0
(7)
02 = 44

and f2(R) * A(ln 6.0, .44), where A(u,oz) designates the lognormal distribu-
tion with mean p and variance 02.

For the third, fourth, and fifth closest aircraft, we have from the

data,
f3(R) * A(ln 8.0, .38), (8)
f4(R) = A(ln 9.6, .25), €))
and f5(R) * A(ln 11.4, .22). (10)

The fits of the lognormal functions to the data are shown in the plot
on lognormal paper, Fig. 16. As may be seen, the fits are not perfect,
however, no other analytical distribution was found that provided a better
fit. The distributions investigated included the Rayleigh, Rice, Poisson,
and normal distributions.

Some theoretical justification can be given for the lognormal
distribution in that it arises under conditions when a change in a

variate is a random proportion of the previous value of the variate [5].
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Thus, if we assume that pilots fly such that the relative closing velocity
is proportional to the relative range, with a random proportionality

constant ej; we have

AR,
~ e.R, 11
~1At & (11)

where the j subscript indicates the jth time instant and At is the time

increment. Rearranging Equation (11) and summing over j gives

n AR, n
I omea - L ey (12)
S B 1
If each increment is small, and taking At = 1 without loss of generality,
Rn
n AR
1 i - dR _ _
T .Zl —lR. 2 J = = 1nR - InR (13)
J ] R
o
where Ro is the initial range and Rn is the range at j = n. Thus,
In Rn = 1ln RO + €1 + €, + ..., €, (14)

By the central limit theorem, 1n Rn will be asymptotically normal (since
it is the sum of a large number of small random effects), hence Rn will
be distributed lognormally. Note that the same result is obtained if we
assume that the change in relative range is randomly proportional to
the existing range.

The lognormal distribution has transformation properties that are
extremely useful. These properties are summarized in a theorem from

Aitchison and Brown [5]:

If X is A(u,oz) and b and ¢ are constants (¢ = ea),

then ch is A(a + by, b2c2)."
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Using this theorem, we can determine the probability density of the
power received at a randomly selected aircraft i. To relate power
received to the relative range, we assume isotropic antennas for both

transmitting and receiving, and use the radar range equations:

[}

R %case: P, = —ad— Kjb/R6 (15)

~4 p, 9, r, 4
R 'case: P, = ————3——21—- = Kj /R (16)
T 4T RL
where Pj = power received at aircraft i from aircraft j
Pjt = power transmitted at aircraft j
A = transmitted wavelength
Lg = gystem losses
oj = radar cross section of target j
Pt = power transmitted at i
i
r,b = superscripts indicating R‘6 and R-4 cases.

Thus, if fE(P) denotes the probability density function of the power
received at i from the kth closest aircraft to aircraft i, we can write,

using the theorem above and the previously found distributions;

R-6 case:

fg(P) A(ln K& ~ 6 1n 4.0, 9) 17

fg(P) A(In Kg - 6 1n 6.0, 15.8) (18)

36



fg(P) = A(In Kg - 6 1n 8.0, 13.7) (19)
b b
£2(P) = A(In K}, - 6 1n 9.6, 9) (20)
b b
£2(p) = A(In K} - 6 1n 11.4, 7.9) (21)

Similar results are easily found for the R—4 (two-way path)’case if desired.
Care should be taken in using these density functions since the

fi(P) for K > 1 are conditional density functions, with the condition being

that there are K~1 aircraft closer to aircraft i. For isotropic antennas,

and if all KE are equal, this is equivalent to saying that K-1 aircraft

provide a larger power level at aircraft i.

A further useful property of the lognormal distribution is that:

A(x) = N(1n x) (22)

where N indicates a normal distribution. Using this property and the

previously mentioned transformation theorem, we can write

10 log x = 4.34 1n x

4.34 4.34

therefore, ACP ) = N(In P "77) = N(10 log P) (23)

Hence, the power in db or dbm is normally distributed. We apply the

transformation Pl*'34 to the f;(P) functions using the transformation

theoreém as follows:

. b _ 2
if fk(P) - A(uk’ ok)
b _4.34 2
then fk(P ) = A(4.34uk, 18.80k )
b 2 (24)
and fk(de) = N(4.34pk, 18.80k )
where de = 10 log P. Note that if the Rf4 (two way path) range equation is

used, the power in db or dbm is still distributed normally.

37



In order to illustrate the results, we assume all Kk are equal, and
note that Kk represents the power received at aircraft i from another
another aircraft at a range of one nautical mile. 10 log Kk is this
power in db or dbm depending on the reference power units., If we

designate this power level as § b

db® the expressions for the density

functions become:

®°
b
£° P(p,,) = N(S;) - 36.0, 169) (25)
20 . ) = Ns.D - 46.8, 298) (26)
2V db” db *Os
2. ) = N(s.2 - 54.3, 257) (27)
3Vhdp’ db i
2. ) = N(S.. - 58.8, 169) (28)
4 Pap db -8,
b - —_
£2(Ry,) = N(Sy, - 68.7, 148) (29)

The probability that the power received from the kth closest aircraft

will exceed a level & is determined from

g

k
Prob. (de >E) =1~ l fk(de) deb. (30)

—c0

Curves indicating this probability for K= 1, ..., 5 are shown in

Fig. 17.
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The distributions for the R_4 case are, for equal K§;

R case
£5(p,.) = N(sE. - 24, 75.2) (31
1Pap db > 72 )
£5(p.. ) = N(s5. - 31.2, 132.4 32
2(Pap) = Ny -2, 132.4) (32)
el (33)
£,(R) = N(Sg, - 36.2, 114.4)
= r —
£,y ) = N(SG, - 39.2, 75.2) (34)
- r —
£.(Pyp) = N(Sy, - 45.8, 66.0) (35)

r . . .
where Sdb is the reference power level (i.e. power received from target at

one n. mi.).
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V. FLIGHT TEST EVALUATION OF RANGE MEASUREMENT ERROR

A. GENERAL DESCRIPTION

Two of the warning systems constructed by LRC personnel were installed
in a pair of DC-4 aircraft and subjected to flight tests. The major
objectives of the flight test series were to evaluate measurement errors,
to determine the sources and magnitudes of errors, and to determine the
system performance under actual flight conditions.

During the flight test operations at Wallops Island, Virginia, the
positions of the two aircraft were measured by the Wallops FPQ-6 and FPS-16
radar systems. The radar data obtained during the flight test was then
processed by Wallops personnel to derive relative data between the pair
of aircraft. This data was furnished to RTI on digital magnetic tape to
provide an input to the flight test simulations and to permit comparison
of simulated, experimental, and geometrical measurements.

The flight paths flown were a series of converging pairs with various
predetermined miss distances, both horizontally and in altitude. 1In all
cases, the aircraft were separated in altitude to prevent any danger to the
aircraft. Table 2 summarizes the flight test designations, the altitude
separation, the attempted and actual miss distances, and the magnetic
headings of the aircrafts as provided by the pilots. The aircraft air
speeds were on the order of 140-160 knots for all flights, and in all cases
straight line flight paths were attempted by the pilots.

Two computer programs were developed to process the flight test data.
One program designated as GEOl processed the Wallops radar data and generated
the airéraft flight paths along with geometrical parameters and values
of warning criteria calculated from the geometry. The second program was
the modification of the simulation program as described in Section III.

This latter program is discussed in detail in the following section.

B. FLIGHT TEST SIMULATIONS
During flight test operations, the relative azimuth angle, relative
elevation angle and relative range between the two aircraft are measured

with the ground radar system. Calculations made using the ground radar
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measurements are designated as geometrical values. Also, during flight
test operations the received signal voltages are recorded to give the
values of parameters as measured with the warning system. Calculations

made using these latter measurements are designated as experimental

values. Parameter values calculated using the simulation program are
designated as calculated values.

Figure 18 shows an example of the computer printouts obtained at
5 second intervals throughout each of the flight test. The first line on
the printout provides the flight identification, the elapsed time since
the start of the flight, and the time of day (gmt). The next section on
the printout indicates geometrical parameters calculated directly from the

ground radar data. These parameters include:

(1) xyz coordinates for both aircraft

(2) the relative range between aircraft

(3) closing velocity in knots (Vc)

(4) the rate of change of closing velocity (Vcd)
(5) the normalized range acceleration, R/R (vcn)
(6) the normal velocity component (Vn)

(7) the time to closest approach (T)

(8) the approximate time to closest approach (t)
(9) the approximate miss distance (D)

(10) the exact miss distance (Ro)

(11) geometrical value of RZT (8)

(12) the value of modified tau (Tm)

(13) the relative azimuth and elevation angles for
both aircraft

The next section on the printout sheet gives the transponder outputs for
system 1 and system 2. Following this list the gain variations of each of
the system antennas are listed. The gain variations are referenced to a

0 db level (head~on conditions).
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The receiver outputs are listed for both systems. These outputs
include signal levels, signal to noise plus interference ratio, AGC
voltage, doppler frequency, and the alarm status of the receiver.

The next listing on the computer printout list geometrical, experimental,
and calculated values of various geometrical parameters and warning
criteria. The calculated values are given in geometrical units and also
as voltages measured at the various receiver outputs. Also, in this
section the percent errors are calculated for the difference between
experimental and geometrical values, calculated and geometrical values,
and experimental and calculated values. A description of the expressions
used to calculate the values in this section is given in Appendix D .

The last section on the computer printout gives an error breakdown
for 3 parameters measured by the receiver; range, tau, and beta. The first
column in this section repeats the percent error between the experimental
and geometrical (ground radar) values of the parameter. The second column
indicates the error due to amplitude variations in the receiver doppler
filter. The third column gives the percent error due to deviations of the
detector characteristics from linearity. The fourth column indicates the
error and measurement due to gain variations of the elevation patterns
(transmitter, transponder, and receiver). The fifth column indicates the
percent errors due to the complete antenna patterns, again considering all
patterns in the system. The sixth column is a fixed error source due to
gain calibration errors in the flight test system. That is, the calculated
or simulated values of range are based on exact gain calibrations that
provide a -85 dbm signal level at a range of 5 miles. During flight test
it was determined that the overall gain of the warning system was down
somewhat, and this error source reflects the value of range and analogous
to the deficiency in system gain of the flight systems.

The last two columns in the error breakdown section indicate residual
errors between the experimental and geometrical values that are unaccounted
for by the error sources previously considered. The first residual
column does not take into account variations in the azimuth patterns of
the antennas, while the last residual column is the percent error remaining
after effects of the doppler filter, detector slope, and the total

antenna patterns are removed. The percent error remaining in this last
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column, then, is due to system errors not subtracted out in the calcula-
tion (e.g. saturation of the transponder) and factors not considered in
the simulation such as aircraft deviations from straight line, level
flight.

It should be noted that the systems were calibrated over a range from
1 to 5 nautical miles, hence relatively large errors outside of this range

were expected and are felt to be unimportant in system evaluation.

C. FLIGHT TEST RESULTS

Extensive analyses of the flight test data have been conducted by LRC
personnel, using the results of the flight test simulation program to
determine contribution to the measurement errors of various system components.
Thus, in this section the major emphasis will be on documentation of the
flight paths and comparison of the simulated and experimental relative range
data. Since the relative velocity between aircraft is simply a frequency
measurement on the doppler signal, errors in measurement of this parameter
were small.

For each flight test as listed in Table 2, the following plots have been
made:

(1) the flight path of the aircrafts.

(2) the geometrical, calculated and experimental
range measurements vs. flight time.

(3) the percent difference between calculated
and experimental range measurements plotted
vs, the value of geometrical range.

These curves indicate the accuracy of the simulation of the actual flights.
It should be recalled that the residual differences between the calculated
and experimentally measured values of range are most likely due to variations
of the aircraft from straight line level flight. Computer printouts listing
the data at the approximate time the alarm was received in the simulated

system are given in Appendix F.
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Inspection of the plots indicates that for most flights the difference
between simulated and experimental values of range was within 15 percent
over the calibration range of the equipment. An exception to this agree-~
ment was found in flight 8C, where the experimental and calculated values
disagreed by as much as 80 percent. Although the cause for this
discrepancy has not yet been determined, it is felt to be due to a mistake

in calibration of the experimental data in the digitizing process.
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Figure 19-A. Ground tracks for flight test 7A.
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Figure 19-B. Ground radar experimental, and calculated values of relative
range vs. time, test 7A.
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Figure 19-C, Percent error between calculated and experimental range measure-
ments plotted vs ground radar (geometrical) range, test 7A.
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Figure 20-A. Ground tracks for flight test 7B.
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Figure 20-B. Ground radar experimental, and calculated values of relative
range vs. time, test 7B.
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Figure 20-C. Percent error between calculated and experimental range measure-
ments plotted vs ground radar (geometrical) range, test 7B.
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Figure 21-A. Ground tracks for flight test 7C.
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Figure 21-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 7C.
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Figure 21-C. Percent error between calculated and experimental range measure-
ments plotted vs ground radar (geometrical) range, test 7C.
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Figure 22-A, Ground tracks for flight test 7D.

h A GROUND RADAR

© CALCULATED
¥ EXPERIMENTAL

RANGE BETWEEN AIRCRAFT (N.M.)

40 80 120 160 200 240 280
ELAPSED TIME (SEC.)

Figure 22-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 7D.

40

°o

A
5

H‘J\,/dl — == = '

2 3 4 H 6
GEOMETRICAL RANGE (N.M.)

» ERROR

Figure 22-C. Percent error between calculated and experimental range measure—
ments plotted vs ground radar (geometrical) range, test 7D.
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Figure 23-A. Ground tracks for flight test 8B.
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Figure 23-B, Ground radar, experimental, and calculated values of relative
range vs. time, test 8B,
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Figure 23-C, Percent error between calculated and experimental range measure-
ments plotted vs ground radar (geometrical) range, test 8B.
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Figure 24-A. Ground tracks for flight test 8C.
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Figure 24-B. Ground radar, experimental, and calculated values of relative
range vs., time, test 8C.
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Figure 24-C. Percent error between calculated and experimental range measure-
ments plotted vs ground radar (geometrical) range, test 8C.
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Figure 25-A. Ground tracks for flight test 9B.
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Figure 25-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 9B.
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Figure 25-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 9B.
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Figure 26-A. Ground tracks for flight test 9C.
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Figure 26-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 9C.
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Figure 26-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 9C.
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Figure 27-A. Ground tracks for flight test 9D.
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Figure 27-B. Ground radar experimental, and calculated values of relative
range vs. time, test 9D.
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Figure 27-C., Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 9D.
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Figure 28-A. Ground tracks for flight test 9E.
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Figure 28-B. Ground radar experimental, and calculated values of relative
range vs. time, test 9E.
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Figure 28-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical range, test 9E.
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Figure 29-A. Ground tracks for flight test 10A.
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Figure 29-B. Ground radar, experimental, and calculated values of relative
range vs., time, test 10A.
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Figure 29-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 10A.
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Figure 30-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 10B.
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Figure 30-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 10B.
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Figure 31-A. Ground tracks for flight test 10C.
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Figure 31-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 10C.
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Figure 31-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 10C.
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Figure 32-A. Ground tracks for flight test 10D.
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61



AIRCRAFT 2

7 COOR. (N. H.)
I [
~

\

S~

\

\
-~

ALRCRAFT |

2 - X COOR. (N.M.)

Figure 33-A. Ground tracks for flight test 10E.
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Figure 33-B. Ground radar, experimental, and calculated values of relative
range vs. time, test 1l0E.
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Figure 33-C. Percent error between calculated and experimental range measure-
ments plotted vs. ground radar (geometrical) range, test 1lOE.
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Vi. MISCELLANEOUS STUDIES

A. GENERAL

During the course of the contract, several studies were undertaken
that have general applicability to the collision-warning problem. These
studies include: (1) common definitions of warning times for various
system warning criteria, (2) the possibility of alarm suppression due to
relative range acceleration threshold logic, (3) comparison of warning
times of various systems with equal alarm probability, and>(4) warning
times required for escape maneuvers.

Other studies were concerned with extension of the "modified tau"
warning criteria developed by Collins personnel, Reference [4]. The
extensions involved consideration of relative aircraft accelerations as a
random variable and the introduction of additional constraints on aircraft
acceleration vectors. Also, general results were derived for determination
of the DC output of a product detector-limiter circuit with multiple
input signals. . Results of these latter studies are given in Appendices A
and B respectively, while the general studies on system warning times are

presented in the following.
B. DEFINITION OF WARNING TIMES

Since some system warning criteria and warning times are derived
based on the assumption of nonaccelerating flight, while others are based
on accelerating flight with acceleration constraints, it can be misleading
to speak of a warning time attained without further elaboration as to
the assumptions used.

To provide a common basis for comparison of the protection afforded

by the various systems, we define warning times as follows:

tn = minimum warning time for a nonaccelerating

co—-altitude collision with a maximum
relative velocity of Vm' (i.e. this is the
time-to-collision assuming a roll-out to
linear flight at the instant the alarm is

received, and a subsequent collision)
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mh minimum warning time achieved for a co—-altitude
threat under the worse possible conditions
within the assumed velocity (Vm) and accelera-
tion (U) constraints. (i.e. this is the time-
to-collision assuming flight paths subsequent
to the alarm at the maximum relative accelera-
tion and/or the maximum relative velocity until
collision occurs)

v___ = warning time for a nonaccelerating collision

wv
occurring in the vertical plane with a maximum

s

relative rate of descent or ascent of hm°

In Section VI-C, inhibition of the alarm by range acceleration
discrimination is considered. This inhibition will be shown to occur
for sets (Sl) of particular trajectories, hence to distinguish warning

times for these cases, we define, for systems using R measurements for

discrimination:
tn,tmh = game as previous definitions, except trajectories
are assumed not in Sl
d d e s ,
t ,t = same definitions as t_, t ,, except that the times
n ’ mh n’ "mh

are calculated using the worst—case member of the

set of trajectories S (i.e. for the trajectory

l.
that provides the smallest warning time.)

Expressions for the times t s and t, are easily derived. Let

t
mh’
R(to) and R(to) be the relative range and closing velocity at which a

given system gives an alarm. The time tn is then

R(t )
t = min j——ii- over C (36)
n R(t)

where C is the contour in the R, R plane defined by the system warning

criteria,
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The minimum warning %ime for a system that provides an alarm at
range R(to) and closing velocity R(to), assuming subsequent relative
accelerations no greater than U is derived in [4] (i.e. the modified -

tau expression)

SRCE ) + [RE(e ) + 2ur(e )13/2
(o] (s} (o]
£ = . (37)

where tl designates this warning time. For the case where the trajectory
providing the alarm time £ does not exceed the velocity comstraint, we

have for the time tm’

£ = min { tl[ﬁ(to), R(to)] over C (38)

where C is again the contour in the R, R plane defined by the system warning
criteria. If the trajectory exceeds the velocity constraint, (i.e. if
ﬁ(to) - Uty > Vm) graphical or approximation techniques can be used to
determine L assisted by the phase plane plot of trajectory slope isoclines
given in Appendix C.

For those systems using altitude discrimination of the formFIAAl < bA,
the minimum warning time for closing paths in the vertical plane, assuming

no acceleration in this plane, is

AA
v o
h
m
Thus, by assuming a maximum closing velocity Vm’ a maximum rate of
ascent (or descent) of ﬁm, and a maximum relative acceleration U, the
defined warning times achieved by the various systems may be determined
to provide a common basis of comparison of the protection afforded by the

systems.

65



°D-IA UOTID9S UT DPOSSNOSTP SB UOTIBRUTWIIOSTP AITO0TSA Tguigu 10 Y £q peoutwislsp oq osTe Keum
sowr) 3uTuIBA WNWTUTHW 3YJ, °IST[BWS ST I249YyOTysm_°* s\x<< 10 "po3sTT uorssaidxe syl woaj
anTeaA @Yyl ST oSWI} JSuTUIEM WNWIUTW 2Yy3 °posn ST Ax<<.v _<<_v UOTIBUTWIIOSTP 9pNATITE JI :°o710N
S

w Nw W
w AZ qu 1> 1
. T
. nej peTITPON ‘¥
E>
<
S
€/T g a0
1
nd w
%0z + Tty o+ e e 2 > u ey > 14
4 € € 3
/1 9 28uex - 1 ¥ °¢
JOo Io7TeUS m\H Z
Lin 1, Ty s q s
H&m prbm + Nxmu + hg- o8uei-nel °g
Z/T
A A asu
Ly Iy ofuey °T
w u .
3 Jo enyep 1 IO ®nTeA proyseayl pue 2dL] wolsLg
¥ ,
w
Ty

ST JU@DSE I0 JUSDSSP 3JO 83181 SATIB[OI UNUIXEW o9Y] pPUB f] ST UOTIRISTIIOB
aAT3eToa wnurxew oyl ‘Tp ST pounsse K37ooT2A SupsoTo wnuixew oyl °sod£3
wo1sds snoTliea 103 T-IA UOTIOSS UT pourjep Se Wy pue U7 sowry Suruiey °¢ aTqe],

66



For the RZT and tau systems, the minimum warning time approaches
zero as the relative closing velocity approaches zero. However, a
supplementary (over-riding) range threshold can be used to prevent this
situation. Hence, in the work that follows, we will consider these
systems with a supplementary range threshold of magnitude Rk.

In Table 3 , expressions are given for the defined warning times for
the various systems that have been considered, in terms of the warning
thresholds and the assumed constraints Vm, ﬁm and U. The gffect of range
acceleration discrimination on the defined warning times is considered
in the following section.

C. ALARM SUPPRESSION DUE TO RELATIVE RANGE

ACCELERATION THRESHOLDS

For systems using discrimination based on R measurements (e.g.
approximate miss distance thresholds assuming nonaccelerating flight),
the measurements will, of course, be erroneous if accelerating flight
occurs. Under accelerating conditions, we must consider the possibility
that accelerations due to maneuvers will effect the measurement in the
worse possible way. These worse case conditions are considered for

various systems in the following.

Tau, Range, Normal Velocity System. In this system, normal velocity

is estimated in accordance with [2]

v = /Jo (40)

which was derived based on nonaccelerating flight paths. The system warning

criteria are

* < v
R/R < Ty and VR ® nk (41)

or R < Rk

where the k subscripts indicate selected threshold constants.
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For closing, nonaccelerating flight, R is positive. For closing
accelerating flight, however, R can be either positive or negative.
If the magnitude of R is sensed, such that the threshold condition

is

"RIR| <V and R/R <t

k k (42)

and if relative accelerations no greater than U are allowed, the pos-
sibility exists that measurements of |R| will equal U. 1If this is the

case, an alarm will be suppressed so long as

SR
RU 2 Vok (43)
or until a range less than
Vnk2
R =7y (44)

is reached. 1If this range is greater than the supplementary range
threshold Rk’ and if the worse case trajectory (within the constraints)
is assumed, the alarm would occur at the maximum closing velocity Vm.

The warning time at this alarm point is determined by division of R

1
by Vm’ or,
2 2
\ \Y)
d d _ ‘nk . nk
fwh = fa T TV oy R (45)
where tih and'ti were defined in Section VI.B. The situation is shown

in the phase space sketch of Fig. 34.
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Figure 34 .

RANGE, NAUT. MI.

Phase plane sketch for the tau-range-normal
velocity system indicating possible alarm
suppression due to the KB|§ < Vnk threshold
(i.e. the magnitude of R is used). See text
for definition of the nomenclature and

assumed constraints.

69

91



As an example of the numerical value of warning time suppression,

we have for Vi = 120 KIS, U= 1/2 g, and Vo= 400 KT8,

k

R, = .42 n. mi. (46)
Hence, unless the supplementary range threshold (Rk) were greater than
this value, we could collide 3.8 seconds after the alarm.

If the sign of R is sensed, such that the threshold condition is

R/R < T and ‘RE © v, ifR> 0
(closing velocity decreasing)
(47)
R/R < T, if R < 0 (closing velocity increasing)

or R < Ry

the situation is not quite so severe, although the alarm can still be
drastically suppressed. We could still suppress the alarm so long as the

relative trajectory is such that

2
\
ey (48)

In the worse case, the path is such that the equality holds, and such that
the trajectory passes through a point in the R, R plane; (Tkym, Vﬁ).

Since we allow acceleration magnitudes no greater than U, the path can
suddenly change to one with acceleration of -U, and a collision can occur.
The alarm will be given at the point of deviation from the path. Thus we

are led to determine the point that provides the minimum warning time.
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For a path defined by

oo nk (49)

and passing through the point (Tka,Vm), the points in the R, ﬁ.plane
defining the trajectory can be found by dividing Equation by R

and integrating,

oy 2 ]
R __nk _dR (50)
ﬁ R R dRr

R
R™ = 2V In ﬁf-+ R (51)

where Ri’ Ri are the initial values of range and closing velocity.
The point of maximum hazard is given approximately by the point of

minimum time to closest approach, or

min {7} where t = R/R (52)

(For accelerating flight, we should actually minimize tl as given by
Equation 37 , however, this minimization is more complex and graphical
considerations indicate that the approximation of Equation 52 does not
lead to significant error in finding the point of maximum hazard). The

point on the path for maximum hazard is thus found as

1 Riz
Rl = Ri EXP 3- 1- . 5
nk
. (53)
Rl B Vnk
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where the initial conditions are Ri = Tka and Ri = Vﬁ, for the worse-case

trajectory.

At the point (Rl, ﬁl), the minimum time to collision is found from

Equation 37 as

> 2 1/2
g "Ry +[R] + 2UR(] (54)
t =
mh U

which assumes an immediate trajectory change to increasing closing velocity.
The situation is shown on the phase plane sketch of Figure 35 . For the

. d
time tn, we have

d L ]
£ = Rl/Rl' (55)

If Rl is less than the supplementary range threshold Rk’ then the

alarm would be given at the point

| .
R =&
1/2
v‘ _ 2 2 Rk .»2 (56)
Rl = Vnk in ﬁ; + Ri

Hence, if Rl < Rk’ we use (Rk, ﬁi) in Equations 54 and 55 to
determine the minimum times remaining until collisionm.

A complication may arise in that the minimum time trajectory used in
calculating the time given by Equation 54 may result in closing
velocities exceeding the assumed maximum (Vﬁ). For velocities on the
order of 2 miles, however, the actual time difference in suing Equation
versus the time for a nonaccelerating path (Rl/ﬁl) is small (e.g.

= 2.5 sec. for U= 1/2 g).
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Figure 35. Phase plane plot for the tau-range-normal velocity system

indicating possible alarm suppression due to a
VR R < Vok threshold when only positive R is used
(decreasing closing velocity).

secs and V . = 240 kts.
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R2T, Range, Normal Velocity System. In this system, the threshold

conditions are

2 s ®
Rt < Bk and R/R < i

(57)

or R < Rk

and we will assume that only positive values of R are used. The alarm

will be suppressed for trajectories such that

2 v, k. (58)

Values of range and closing velocity for the path such that the equality

holds are found by integration as,

S _ 59)
R =R, =¥, (R Ri), (
where ii and Ri are the initial points.

In this case, the hazard increases continually for the worse case
trajectory, and the alarm will be given when the supplementary range

threshold is reached, or at,

R =R

(60)

e
|

1= Ve B~ Ry Ry

The initial conditions for the worse-case trajectory are ( (Bkym)l/B, Vm)

as shown in the sketch of Figure 36 .

74



CLOSING VELOCITY, KTS

500

400

v
m

= 400 KTS\
r )

-

~. é""—

300 (l
[ \POSSIBLE PATHS T
TO COLLISION

o=

e T
-—\— - \» PATH FOR

‘\\\\ R/R < Yy

POINT AT WHICH ALARM IS GIVEN ‘
FOR WORSE-CASE TRAJECTORY

200 (Rys Ry)
100 “J
—RANGE Ry R%; = 1000 NM2-SEC
0 J..\A..D)y ’ ‘
0 1 2 3 4
RANGE, NAUT. MI.
Figure 36, Phase plane plot for the RZT—range—normal

velocity system 1ndlcat1ng possible alarm
suppression due to a R/R < Yy threshold.
For the sketch, yyp = .004 sec l, and

Rt = 1000 nm2-sec are used.
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Modified Tau, Normal Velocity System. For this system, let us

assume that normal velocity measurements are made by

Vn = /R R R>0
(61)
vV =20 R<O0
n =
instead of the relationship valid for accelerating paths,
Vo T y? - R? (62)

where V is the relative velocity.

If measurements are made in accordance with Equation 61 , the
alarm could be suppressed just as described for the tau-range-normal
velocity system. Thus, equations derived for this system (i.e. Equations
54 , 55, and 56 can be used to determine the minimum alarm time under
worse case conditions.

The initial conditions for the worse case trajectory are

Ukaz
Rl = Vm ka + 2
. (63)
R, =V
i m

where the nomenclature has been previously described.

D. WARNING TIMES OF VARIOUS SYSTEMS WITH
EQUAL ALARM PROBABILITY
In ref. [2], several systems that have been discussed in the literature
were compared to determine alarm statistics that can be expected for
approximately equal levels of protection (i.e. coverage in the R, R plane).

We found unreasonably high alarm probabilities in some cases. In this
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section, the type and range of measurements required and level of protection
achieved are determined under constraints on the alarm statistics. In
particular, the idealized systems simulated are compared using the
statistical results in ref. [2] to determine warning times afforded for a
given fraction of flying time in an alarm status. For the comparison,

the results obtained from the most congested hour of data (hour 11) are used.
For calculation of warning times, we use the results of Section VI-B.

Table 4 indicates the measurements required, detection ranges, and
warning times achieved for various ideal systems that were in an alarm
status 1% of the time. The applicable threshold values were taken from
Figures 3 through 1l in ref. [2]. The maximum detection ranges are based
on a 400 KT closing velocity, as is the warning time (tn) as discussed in

. . . : d
the preceding section. The smallest of the warning times tm tv, and tm

h’ h

indicates the minimum warning assured for closing velocities from 0 to
400 KTS, for relative aircraft accelerations not exceeding 1/2 g, and for
vertical rates of descent or ascent of 25 fps.

The zero minimum warning times in the 7 and RZT systems have been
eliminated in Table 4 by using a range threshold in conjunction with the
T or R2T criteria. The supplementary range criteria was not investigated
directly (i.e. simulated with T and RZT systems using the data base),
however, we see from Fig. 3 that a 1 nm range threshold will not significantly
increase the percent of time in an alarm status for those criteria without
altitude discrimination. For systems using altitude discrimination of * 500
ft, a range threshold of 1.5 nm does not significantly increase the alarm
probability. Hence, in Table 4 we have calculated a minimum warning time
for the T and'Rzr criteria using a range threshold of 1 mm or 1.5 nm as
applicable. The warning time calculations are made using the expressions
listed in Table 3 and relationships in Section VI-C as applicable for the

cases where R discrimination is used.
E. WARNING TIMES REQUIRED FOR ESCAPE MANEUVERS

A recent-analysis of warning times (in the horizontal plane) required

for a CAS has been conducted by Holt and Anderson [ 6]. In this analysis,
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reasonable statistical distributions were assumed for altimeter errors,
pilot reaction time, data processing time, and aircraft servo system
delays. A computer simulation approach was then used to determine the
statistical distribution of the time required for execution of an altitude
separation maneuver to assure a 150 ft altitude separation,

To execute the altitude evasive maneuver, where the pilot has been
previously alerted and is in straight lime, level flight, a warning time
of 25 seconds is recommended as a result of the above study.

For a roll-out alarm (i.e. if in a turn, stop turning) a warning
time of 30 seconds is recommended.

For a pilot alert, a warning time of 41 seconds is recommended.
This allows an average pilot reaction time of 2.5 seconds and then 10
seconds to level-off prior to execution of a possible evasive maneuver.
(All times assume only one aircraft maneuvers).

In the vertical plane, it is estimated by Perkinson [ 7], that for
most aircraft, altitude rate can be reduced to zero within 15 seconds
after warning. Hence, if descending or ascending aircraft level off after
warning, a 21 second warning of an aircraft above or below would assure
safe clearance of 150 ft for a maximum rate of descent (or ascent) of
25 fps, assuming no vertical acceleratioms.

For a pilot warning indicator that depends upon visual acquisition
to evaluate the threat and to determine the required maneuver, further
study is necessary to evaluate the time required to visually acquire the

target and evaluate the threat. This is presently under study by the FAA .
F. SUMMARY

Comparison of the minimum assured warning time for systems that were
found to be in an alarm status 1% of the time (Table 4 ) with the desired
pilot alert time on the order of 40 seconds indicates that none of the
systems provide this minimum warning time. Although the 17 alarm

probability is quite arbitrary, it is felt to be a reasonable upper bound.
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If we assume an average alarm duration of 10 seconds, Equation
indicates that the probability of an alarm during a thirteen minute
flight is * .5 under hour 1l conditions. Hence, we are reluctant
to relax this constraint.

The systems operating on range alone and range-range rate measure—
ments only should be eliminated from further consideration as not feasible.
The data clearly indicate that added discrimination in altitude and
possibly in (true) normal velocity is desirable if the required warning
times are to be achieved without excessive alarms under normal
operational conditions.

Discrimination based on range accleration measurements is effective
in increasing the maximum warning time for fixed levels of alarm
probability. Unfortunately, as indicated in Table 4 and Section VI-C,
discrimination based on R measurements has an adverse effect on the
minimum warning times achieved under certain worse-case trajectories,
when accelerating flight is considered. The effect is particularly bad
when measuring‘ﬁ/ﬁ in the Rzr—range system. Thus, R measurements do not
appear desirable for use in alarm logic, although this measurement may
prove useful for indications of the effectiveness of avoidance maneuvers
after an alarm is received.

Normal velocity discrimination is effective in the modified tau
system, providing (under the conditions discussed) a minimum warning
time of 32 seconds as compared to 26 seconds obtained without this form
of discrimination. Derivation of true normal velocity, however, requires
an exchange of velocity vector data between aircraft, and adds considerably
to thé system complexity.

We thus conclude that, unless an unduly high alarm rate is accepted,
the minimum measurements required are relative range, closing velocity,
and altitude. With these measurements, minimum alarm times on the order of

30 seconds can be obtained using the modified tau or Rzr—range warning

Lriteria (see Table 4 ) under the acceleration and velocity constraints
assumed. For longer warning times and/or reduced false alarms, it appears

necessary to exchange velocity vector data between aircraft.
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Under the velocity and acceleration constraints assumed, the
required detection range is on the order of 5 miles for the modified

tau - altitude system providing a 32 second warning time.
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VII. CONCLUSIONS

The simulation of the system using the most congested hour (hour 11)
of the Atlanta data base indicated that interference levels from all
sources were small in comparison to the signal from a potentially hazardous
aircraft., Transponder saturation by multiple aircraft interrogations
does not appear to be any problem with the system parameters now used.

The probability, under hour 11 conditions, that the transponder saturation
factor will exceed a value of 1.4 (i.e. a gain reduction of 1.45 db)

is on the order of .0l. The probability that the total output of the
transponder will exceed 16 dbm is of this same order (.01). Thus, the
transponder is operating well within its designed values under congested
conditions, and appears to be somewhat conservatively designed.

In the receiver, a dynamic range of 45 db should be adequate to prevent
saturation, with high probability. There is a low probability (4 x 10-5)
that the noise plus the interference power will exceed a threshold level
providing a 60 second warning at a 240 knot closing velocity. Thus, alarms
caused by interfering signals are expected to be negligible under the
conditions represented during the simulation. The cross-product power
term is the most significant interference source.

Using the threshold level mentioned above, the system was in an alarm
status 2.4 percent of the time. The probability that the second largest
received signal will exceed the threshold level is on the order of 4 x lO_4
under hour 11 conditions. While the receiver is an alarm status, the
probability that the largest signal to noise plus interference ratio will
exceed 20 db is on the order of .9. No cases were observed in which the
signal to noise plus interference ratio was less than 10 db for the signal
causing the alarm,

Detailed study of the distribution of power levels from the aircraft
in the population indicated that the power levels are approximately
distributed normally. Actual distributions were found for the five closest
aircraft to a randomly selected aircraft, and knowledge of the theoretical

distributions permits extrapolation to higher density terminal area models.
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In the flight tests, comparison of simulated and experimental values
of range measurements indicated differences on the order of 10-15 percent
over the calibration range of the equipment. This degree of accuracy
permitted the determination of the sources of the measurement errors in
the flight systems. Analyses of these sources of error were conducted
by LRC personnel, using the results of the flight tests simulation.

A comparison of idealized systems on the basis of warning times
achieved for a given probability of alarm indicates that achieving the
required protection without excessive alarms is an extremeiy difficult task.
Systems based on proximity alone and on range and range rate measurements
only are felt to be not feasible. As a minimum, altitude difference data
should be used in the warning logic.

Use of approximate miss distance discrimination is effective in
reducing the number of false alarms, however, it was found that dangerous
suppression of the warning time can occur under accelerating conditions,
and that discrimination based on relative range acceleration should not be
used in warning logic. The use of approximate miss distance measurements
as assistance to the pilot in evasive maneuvers should be investigated
further in future work.

The extended modified tau criteria developed in Appendix A should have
a beneficial effect on the false alarm performance, while not adversely
effecting the system protection. This extended criterion, when simulated
using the hour 11 data base, reduced the percent of time in alarm status
from 2.27% to 1.47% for the criterion TS 35 secs. and alt. diff. < 500 ft.

In summary, we can conclude that saturation and interference is not
a problem with the system as presently designed, and under the flight
conditions represented by the most congested hour of the data base.
Simulations of the flight tests indicate that, in most cases, the sources of
measurement error in the system are well known and can be accounted for
satisfactorily. Comparisons of idealized systems indicate that the alarm
threshold should be set to provide an alarm on the order of 30 seconds and
that the modified tau (or extended modified tau) criterion should be used
in warning logic, along with altitude discrimination on the order of = 500

feet.
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APPENDIX A
EXTENSIONS OF THE "MODIFIED TAU" WARNING CRITERIA

The "modified tau" criteria provides a warning based on the measure-

ment of ramge (R) and range rate (ﬁ), and an alarm is sounded if

. =R* (22 + 2ur] /2 <
n U Tmk (a-1)

where U and Tk are selected constants. The criteria, as shown in

collide within T seconds if they make the worse possible maneuvers
with a constant relative acceleration of U.

This is a "worse case" criteria that requires relatively large
regions in the R, ﬁ plane to assure reasonable warning times Tk’

To obtain a more realistic idea of the warning time to be expected
‘using this criteria, and assuming‘that pilot intent is unknown, .it seems that
probabilistic description shéuld be used for the accelerafion constraint
U. That is, we consilder the maximum relative acceleration as a random
variable, and determine the expected or average value of thé time~to=
collision, again assuming that the aircrafts make the worse possible

maneuvers.
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The value of this approach is that a more realistic estimate of the
degree of hazard is obtgingd, and hence smaller regions in the R, R
plane are required to provide sufficient protection. The fact that the
worse possible maneuver is still assumed provides an'aéditional margin
of safety.

We find the expected or average value of T by use of the -
expression.

-

~

B Ayt = f () £Qu) du a-2)

- 00

where f(u) is the probability density function of maximum acceleration,
considered now as a random variable. Tm(u) is given by Equation A-1 with

U = u. As an example of the calculation, assume that any value of u is

equally likely, O <u z'U, so that the probability density of u

is
fu) = = 0Tu=uU
U b (4-3)

The expected value of T is then

» R [ 2uR d
B{t } =5 f ([1 + —Il:—f] —1) -;1‘1 (A-4) -
(o}

90



This integral is evaluated to give

2

2R
—E ¢“—““"““"‘( D+ 1 (&-5)

§ (¢(u) - 1) + log

T =E{t} =
em m

where

1/2
v = 2UR
o(uy = [1+_R2 ] .

and Tem is used to designate the expected value of time-to-collision
under fhe assumptions made. Curves of constant T;m have been plotted

in the R? R plane in Figure A-1 for comparissn with values of Ty As
may be séen, the cur&es have the same general shape of the T cﬁrves
except for the region where closing velocity is small. For a given
measured value of R and ﬁ, we find, as would be expected, that values of
Ten areAconsiderably less than value of T

The reliability of the estimated value Tem could be improved if

the assumption as to the density function of U could be removed.

Further Extensions

The modified tau criteria contains an unrealistic feature in that
no distinction is made between normal and axial accelerations of the
individual aircrafts involved. Axial (along path) acceleration components

are known to be small in comparison to the normal aceceleration components,
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particularly in the terminal area with imposed speed limits. Also, omne
feels intuitively that hazards due to aircraft accelerations become less
important as the measured closing velocity increcases. That is, if a
large closing velocity is measured, a near head-on encounter is
indirectly implied.

Thus, we are led to formulate mathematically a criteria that takes
into account additional constraints on the allowable relative accelera-
tion profile-

Consider the diagram of Figure A-2. Here the present positions of
the protected and intruding aircrafts are indicated by Q and Eé(T)
respectively (i.e. aircraft 1 is at the origin of coordinates defined
by unit vectors.l-r and T;, with T; in the direction of EQ(T)). The

positions of the aircrafts at some time t later are given by

T+t s T+t s
fi(r) dtds = Zi(r) dtds (A-0)
T T T T
and
T+t s T+t s
5&(1) dtds = Kﬁ(r) dtds (A=7)
T T T T

»where'KiCr) and Kﬁ(r) are the acceleration functions of aircrafts 1 and
2, respectively.
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Evaluations of the integrals on the left hand side gives

T+t s
-El(T +t) = Ei(T) t + J .J Al(T) dtds (A-8)
T T
. T+t s
DT+ £) = p,y(T) + py(T) t + j j A, (1) drds (4-9)
T T

Now, since if a point can be reached in a given time by any sort of
acceleration profile, it can also be reached by a constant acceleration

of no greater magnitude, we assume a constant accleration to obtain

n

P,(T + ©) P(D €+ Kltz/z (A-10)

Po(T + t) Py (T) + P (T) t + Kztz/z (A-11)

- These equations define the sets of points reachable by the aircrafts in
a time te where A varies over all allowable constant vectors and t varies
from 0 to t_.

: e

For the set of allowable Zﬁ and Ké vectors, we assume that axial

components are negligible and that the relative magnitude is limited to

U. Thus the acceleration constraints are .

Al . pl(T) = 0
A2 . pZ(T) =0 (A-12)
and |A, - All < U



For a collision to take place within a time L, we must have

Py (T + t) = p (T + t) (-13)

for some t, 0 < t < te. Using Equations A-10 and A-11, we obtain

T(T) + T(T) ¢ + &, - &) £2/2 = 0

- - -~ Kk . (A-14)
where r(T) = pz(T) gnd r(T) = pz(T) - pl(T).

Now resolve Equation A-14 into components normal to and along the

relative range vector.

. 2 . 2 . _
lr [R(T) + R(T)t - Azt /2 sin © Alt /2 sin Gl] =0

2
(A-15)
1. {v() t-A t2/2 cos 6, + A t2/2 cos © = 0
8 n 2 2 1 1

where, dropping the T notation for simplicity, R = T . T, R=1 .7,

T . r

- = - — . I ! . _
v, = le - T, A, = IAZI, A= ]Al], sin 6, = A and sin 6,
;r ) A2
A

Each vector component must equal zero, and squaring and adding the

cbmponents gives (A-16)

2 2
(Al + A2 ) ) AlAZ
4 2

4

. 12 2 _
(R + RE)™ + (Vnt) = cos (62 + el) t .
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The term in the brackets is, of course, the square of the
magnitude of the relative acceleration vector. We desire to place
additional constraints on the magnitude of this vector based on the
fact that only components of acceleration normal to the velocity wvectors
are being considered. This appears impossible in general unless the
relative headings of each aircraft is known, or unless additiomal
assumptions are made. Following the latter course, we assume that

Py = [p,(D)]| (A-17)

and that Vn(T) = 0. The first assumption is reasomnable in the terminal
area with imposed speed limits, while the latter assumption is
equivalent to that assumed in the derivation of the "modified tau"
criteria-

With these assumptions, we note that 6, = 6, and that the maximum

1 2

relative acceleration vector that will provide a solution is obtained

when A; = A,.  In reference [4], it is shown that if a solution to

Equation A-l6exists for some IZ& - Kil and some t, 0 < t < t,» it also

exists for all greater valuesof lzé - Zi}. We have

2
. _ _ 2 Ay
max. effective |A2 - All < 5 (1 - cos 26) (A-18)
and since ZA.l < U if Al = A, and lA2 - All < U, we have also
Al2 _ UZ
—5 (1 - cos 28) < 5 (1L ~ cos 26) (A-19)

96



Thus, under our assumption, a hazard will exist if

2
R + Rt)2 = —g— (1 - cos 28) t4

for some t, 0 < t < te. Taking the square root of both sides gives

1/2
R+ Rt = L [1 - cos 26] t2
2/2
or
2
R+ Rt = P—%— sin 6

The remaining task in developing this criteria is to estimate
sin O from potentially measurable data. If we assume a reasonable

maximum relative velocity exists, say Vma , (e.g. about 400 KTS in

X

the terminal area), then an estimate of sin 6 based on a range rate

measurement is

L2 1/2 L
sin 8 * [1 - ( v ) ] R<V »
max
20 R>V
max
L
Since cos 8 ¥ == — (when lVlI = lel and 6, = 6, as assumed).
max

(A-20)

(A-21)

(A-22)

(A-23)

Thus, we have developed a criteria that has the desired behavior

as initially discussed. At low values of ﬁ, the criteria behaves as

"modified tau," while at large value of R, the criteria reduces to the

"tau" criteria (t = R/R)., The criteria is summarized as: a hazard

exists if there exists a t, 0 < t < te such that,
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Figure A-2. Coordinate system.
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Figure A-3. Plot of the extended modified tau criteria (assumes accelera-
tion components normal to the velocity vectors).
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. 5e2 X 21 2.
R+Rt= == |1-(5g—) ER<V oy
maxJ
. (A=24)
R+ Rt =0 ifR>V
maxe.

This criteria is plotted in Figure A~3 for several values of te

for comparison with the modified tau and tau criteria.
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APPENDIX B

THE D.C. OUTPUT OF A PRODUCT DETECTOR-LIMITER CIRCUIT
WITH MULTIPLE INPUT SIGNALS

Introduction

The detector circuit used in the collision warning receiver has a
configuration as shown in Figure B-1l. The Doppler tone signal is differenti-
ated and split into two parts, one of which passes through a limiter and
thence is combined with the other in the product detector. A low pass

filter is used to eliminate high-order harmonics and smooth the output

voltage.
e Prod.
w—3p Differentiation > Det. L-P S N
Doppler Filter _
Output Sum d-c
Figure B-1. Detection block diagram.
Analysis

Assume that four doppler signals of magnitudes P,Q,R, & S and noise

n(t),are present at the doppler output, i.e.

e(t) = P cos pt + Q cos qt + R cos rt + S cos st + N(t) (B-1)

101



where p,q,r, & s are the doppler frequencies. The output of the differ-

entiator el(t) is

el(t) =P p sin pt + Q q sin qt + Rr sin rt + Ss sin st + n(t) (B-2)
4
p,q,r or s < 2m x 10

note that the derivative of the noise term is indicated only. Additional
comments will be made in the subsequent analysis, for the case in which
n(t) corresponds to white noise.

The signal el(t) is also the input to the limiter. The output of
the limiter will now be derived, based on an extension of the results
given by Rice [ 2]. The auto-correlation of the output from the limiter
@L(T) is

@L(T) = J j ’f(ea) f(eb) p(ea,eb) de_ de. (B-3)

-0

in which the output voltage of the nonlinear element is e, = f(el) and

2
p(eaeb) is the joint probability-density function of ey that is

eb(t) = ea(t + 1) for the ergodic case. This equation will now be

expressed in terms of the transform of f(e), which is defined as

o

F(ju) = J f(e)e I ge (B-4)

- OO

Substituting (4) into (3) and interchanging the order of integration

gives

® ® = Jue_ + jve B-5
@L(T) ='Zi§ J F(ju) duJ F(jv) va J P(eaeb) e 2 b dea deb (B-3)

-0 -0 —C0 OO
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(the constant term arises from inversion of (4). The last term in this

equation may be recognized as the characteristic function of v, and v, , i.e.,’

b b
=7 jue_ + jve
. d a b B-6
M(Ju,jv,t) = j f P(eaeb) e dea deb . ( )
Thus (5) can be written as
¢L(T) = —;5- J F(ju) du J F(jv) M(ju,jv,t) dv . (B-7)
4nr

-0

Assuming that the individual terms in (2) are independent, the charac-
teristic function can be written in terms of the component sinusoidal

and noise terms,
M(Gu,3v, D)= M, (§u,3v,7) My (Gu,3v,1) Mp (Ju,3v,7) Mg(u,iv,T) M (Ju,jv,0).  (B-8)

Consider a typical term such as Mr(ju,jv,r), by use of the ergodic hypothesis,

. T
MR(ju,jv,T) =TE§2 %- J exp[ju R cos rt + jv R cos r(t+r)] dt

(o}

and by use of the relationship,

ucos rt+vcosrr (t+tt) = Vu2+v2+2uv cos rt €os rt + 6)
(where 6 is the phase angle), then integration yields
M (ju,jv,T) = J_(RTp) . (B-9)

The notation T used in the above equation is defined by the expression,

T.=+v 2 2

i u + v + 2uv cos it .
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One other result is needed at this point. The characteristics func-

tion for the gaussian noise voltage is given by,

M, Qu, jv,T) = exp [ - E%‘ (u2 + v2) - ¥_uv]. (B-10)

In this equation wT is the correlation function of n(t) and wo is the
mean-square noise. The autocorrelation function, in terms of the above

quantities, is

o] —Euzoo —lp-g-vz
. (1) = 1 F(ju) e 2 du F(jv) e
L 2
4w o -
(B-11)
—wruv
X
e JO(PFP) Jo(qu) J(RT ) J_(ST) dv
By use of the expansion
MR (ju, jv,1) = 2 £ (—1)n J (Ru) J_(Rv) cos nrr,
n n n
n=o0
the autocorrelation function (1l) can be written as
T Y YT %Y v 1 k.2 e
o (D=1 T 1§ 1 Fiph n
L f=0 g=o0 h=o0 i=o0 k=0 ki "T “fghik
(B-12)

x cos f pT cos g qT cos hr T cos i sT.
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The Hfghik term in this equation is given by

fHgt+htitk oo Kk '
N ;
Hfghik 5 F(ju) u Jf(Pu) Jg(Qu) Jh(Ru)
- (B~13)
- ¥ 2
7 U
Ji(Su) e du.
As Rice has pointed out, the dc and periodic terms in this expression are
obtained by letting T -+ =,
Lol [0 oo <« 2
O > w = ¥ ) ) ‘z e H fghi ©°° fpt cos gqt
f=0 g=o h=0 i=o
(B-14)

X cos hr t cos 1 s 1

This equation represents the autocorrelation function for the signal at
the output of the limiter. Specific terms will be examined following
analysis of the product detector. Note that the above expressions assumed
an input of the same form as (1), for an input such as (2) each of the

P, Q, R, and S terms should be replaced by Pp, Q4, etc.

The next task to be discussed is that of deriving an expression for

the dc output of the product detector. The terms related to the dc output
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can be identified by considering the following analysis. For a

signal

Kl Wd cos Wdt

acting as an input to the product detector, and a square wave switching

voltage

sin /2

nﬂ/z COs nw

t,

2K, ) 1
n-—

=1

the output will comprise the product of these terms. The only term con-

tributing to the dc component is

sin m/2 2
2K1K2wd e [cos nwdt]

4 -
=5 Klewd(l cos 2 wdt).

The dc output of a product detector, in which the input and switching volt-
age consists of incommensurable sinusoidal terms, is the sum of fundamental
coefficient products. The expressions for the harmonic and cross product

(fluctuating) terms is extremely messy. These terms will not be considered
since the present purpose is to evaluate distortion in the detected doppler

signal arising from multiple targets.
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The low-pass filter, shown in Figure B-1, uses the circuit shown below

1 f \

€2
The transfer function of this filter is
B2 1
sC 1
ez(S) = %2 s =§2- S - (B-15)
el(S) R, R, sCR, +1

The tramsfer function for a limiter may be found in Middleton p. (639)[9],

F(ju) = 28

The symbols used in this equation are shown in the following sketch.

'\ tau_lB

Figure B-2, Definition of B

107



Returning to (14), the fundamental terms in the output of the limiter
can be seen to result from equating one of the fghi indices to unity
and the others to zero. Thus the magnitude, for the input sinusoidal

Ppcos pt, of the output fundamental term is

. -uR_
g =2 f 28 _1_152, o Jl(pPu) Jo(un) Jo(rRu) JO(sSu) du (B-16)
c -u

2 A
This equation also assumes that wo << RO . The contour for this integra-

tion is shown below.

The dc output of the product detector (using k. as the detector proportionality
factor) is the product of the input signal and the coefficient of the

fundamental terms, i.e.,

Edc = kd [pPHP + qQHq + rRHr + sSHS]. (B-17)

This equation represents the dc output of the sum channel. The outputs
from the other channels are obtained by substituting the proper channel

voltages for the P, Q, R, and S terms in the above equation (e.g., page 9
of ref [3]).

Integration of Equation B-16 is accomplished as follows.
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_ i 1-e 0
2H = - J 2 ———= Jl(Pu) Jo(Qu) JO(Ru) JO(Su) du

Nz g
™

F(PQRSU)

_ 2d8 J 1-(cos u Ro - i sin uR)

2
—u

- F(P, Q, R, S, U) du

C

u=0+3jé

24 Jm F(eQebo)ds Jm cos Roo F(P9£go)do . if sin ROGF()dc

w J(Z ’ ;( 2
u -u . -u

= (0 since Jl is odd = 0 since Jl is odd
28 ®» gin R u
2H == J -———;E——— Jl(Pu)JO(Qu) Jo(Ru) JO(Su) du
48 f sin R u
== ) u2 Jl(Pu) Jo(Qu) JO(Ru) Jo(Su) du (B-18)

Note that the terms such as qQ have been abbreviated simply as Q in this

integration.

Numerical Calculations

Computer programs have been written to solve the integral given in Equation

B-18.. This integral calculates the fundamental output of the limiter, or
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normalized gain for the particular input of interest. Curves have been
calculated for various values of input signal level as shown in Figures B-3
and B-4. Figure B-3 represents the case for two input signals and Figure B-4
shows the normalized limiter gain for the case when a third signal is
present.

In the computer simulation, the dc voltage from the product detector

is calculated using Equation B-17, with Equation B-17 generalized to include

all significant signals.
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APPENDIX C

PHASE PLANE PLOT OF A SET OF COLLISION TRAJECTIORIES
UNDER AN ACCELERATION CONSTRAINT

It is informative, in investigation of the protection afforded by
various systems, to visualize the relative trajectories in the phase
(R, R) plane.

For acceleration limited trajectories, we have

R| <Uor -U<R<U (c-1)

where R is range acceleration. Hence, the slopes of the trajectories in

phase space are given by,

|
we
A

o< (c-2)
R

A set of allowable trajectories are sketched in Figure C-1, for the specific
case of U = 1/2 g. (Corresponding to an aircraft bank angle of about 27°

for one aircraft turning)
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Figure C~1, Phase plane plét indicating slope isoclines for trajectories

with accelerations not exceeding * 1/2 g. A set of
allowable trajectories is also sketched.
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APPENDIX D
RECEIVER DATA PROCESSING

General Description

The following documents the calculations for voltages from the receiver
that are analogs of range, range rate, range acceleration, normal velocity,
tau, beta, miss distance, and modified tau. All of these voltage levels are
calculated from the received power levels and frequencies. The calculations
are based on both theoretical models and empirical data derived during the
receiver calibrations at LRC.

After calculation of the voltage analogs, a conversion is made to the
corresponding geometrical value and the errors relative to the ground based
radar values and experimental values are calculated. The inputs to this
part of the simulation program include the received power levels and
frequencies, the geometrical and experimental values of parameters, and the

applicable system parameters.

Input Parameters

Inputs used in this section of the program include the following:

At = Calculation time increment

Ta' = AGC loop time constant

T41 = Discrimination time constant

sz = Differentiator time constant

f(P,fd) = Receiver response characteristic as a

fraction of IF amplifier input power
level (P) and doppler frequency (fd)
(experimentally determined)

Experimental (determined from reduction of flight records)
values of range, range rate, etc.

Geometrical (derived from ground-based radar) values of
range, range rate, etc.
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Calculations

Using the values of doppler frequency and power at the IF amplifier
input, the voltage from the receiver-detector is calculated from the

function £(P, £ This experimentally determined receiver calibration

d)'
function is shown in Fig, D-1. Figure D-2 indicates the detected voltage
versus power at the IF amplifier input for a particular frequency (1600 Hz).
The output of the detector is a voltage analogous to range in nautical
miles. It should be noted that the function shown in Fig. D-1 is
introduced into the computer as points at 100 Hz intervals of frequency,
and linear interpolation is used to calculate values at intermediate
frequencies.

The time response characteristics are introduced into the calculation

by the following technique: The detector low-pass filter output voltage is

given by the equation

~n 1
Vo = V3 {Ta S+ 1] (>-1)

where Vi is the input voltage, T, is the filter time constant, and S is the

Laplace variable. In differential equation form,

dv0

—— = - -
Ta 4t vo Vi (D-2)

Approximating the derivitive gives

n n-1
Yo 7V n n
———— = D~

a At Vo TV (D-3)

where the superscrips. indicate the calculation increment. Solving for the

current (nth) value of output voltage gives

v = (volts) (D-4)
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SLOPE = .01720

VOLTS (RANGE)

SLOPE = .01177

A l
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POWER LEVEL (DBM)

Figure D-2. Power at IF amp input (DBM).
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Equation D-4 is then used to calculate the detector output (range) voltage.
Provisions are, of course, made to assure the proper initial conditions to
prevent transients. Similar expressions are used for the discriminator and
differentiator filter voltage outputs.

The percentage errors between measured, geometrical and experimental

values (see printout of Fig. 18 ) are calculated as, for example,

Exp. range - Geo. range = 1o

% error EXP-GEQO =
Geo. range

Q. (b-5)
Percentage errors due to power variations (e.g. gain calibration and

antenna pattern characteristics) are calculated from expressions such as,
% error (antenna pattern) = K (AG) (D-6)

where AG is the antenna gain variation in db and K is a constant reflecting
the detector slope (i.e. the '"range" voltage per DBM power at the IF
amplifier input) and a conversion from base 10 logs to base e logs. The
derivation of Equation D-6 is as follows: The detector characteristics at

1600 cps are given by

log R = .02 P +C (D-7)

dbm 1

where R is the range in n. mi. and C is a constant. Differentiation gives

dR .02
R log; e 9P g (D-8)

and Equation D-6 follows immediately since a change in gain is equivalent

to a change in power level.
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The residual errors are calculated as indicated by the numbers on

the printout sheet. For example,

Residual (1 - 2 % 3 % 4 % 6) =

(EXP-GEO 7% error + 100) -
100

(dop. fil. Z error + 100)
100

(det. slope % error + 100)
100 %

(el. pattern 7 error + 100) <
100

(gain calib. % error + 100)
100

] x 100-100.
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APPENDIX E
SYSTEM PARAMETERS

System parameters form an input to the simulation program, and are

a punched card input. Following is a list of the system parameters used.

No. Parameter Units Value
1 Transmitted Power DBM 30.00
2 High Transmitter Freq. MC 4252.50
3 Low Transmitter Freq. MC 2702.50
4 Oscillator Deviation Del MC 2,50
5 Oscillator Deviation Del MC .50
6 Bal. Mixer Bias Power DBM -22.00
7 Transponder Output Sat. Power DBM 30.00
8 Transponder Gain Constant . DB 176.50
9 Transponder Input to Bal. Mixer Gain DB 49.50

10 Transponder Input Channel Bandwidth MC 12.00

il Transponder Output Channel Bandwidth MC 2.00

12 Transponder Noise Figure DB 8.50

13 Transmitter-Transponder Isolation DB -150.00

14 Receiver Noise Figure : DB 6.30

15 Doppler Filter Bandwidth KC 3.00

16 Power Gain Constant-Rec. Input to I.F.

Amp Imput DB 28.50

17 Transponder-Receiver Isolation DB -150.00

18- Spare - 0.00

19 Spare - 0.00

20 AGC Time Constant SECS 3.00

21 Discriminator Time Constant SECS 1.00

22 Differentiator Time Constant SECS 1.00

23 Spare - 0.00

121



No. Parameter Units Value

24 4,25 Transmitter Antenna Gain DB 3.90
25 4.25 Transponder Antenna Gain DB -1.50
26 2.70 Transmitter Antenna Gain DB 5.20
27 2.70 Transponder Antenna Gain DB -1.00
28 1.55 Receiver Antenna Gain DB 1.80
29 1.55 Transponder Antenna Gain DB .50
30 Spare - 0.00

*

Note: Antenna gain values are adjusted for loss factors in some cases.
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APPENDIX F
FLIGHT TEST DATA

In this Appendix, computer printouts for the flight tests discussed
in Section V are presented. Although the printouts were obtained every
5> seconds during each flight test, the printouts are given only for the
first point at which the alarm was receilved in order to conserve space.
In cases where no alarm was received (in the simulated flight) a printout
near the point of minimum R2T is given. For interpretation of the
printouts, see the discussion in Section V-B.

Is should be noted that during the flight test, the systems in the
aircrafts were slightly different. For simulation purposes, however,
both systems were assumed to be configured as was the prime system. Thus
the simulated systems (system 1 and system 2) are identical. System 1
was the prime test aircraft, and the aircraft on which the experimental

data were obtained.
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APPENDIX G
ANTENNA PATTERN MODELS

Pattern Models for Statistical Studies

For the statistical studies, the actual antenna patterns supplied
RII by NASA-LRC were represented by analytical expressions. Figures 1
through 7 show the static patterns with a broken line superimposed to
indicate the corresponding analytical expression. Equations 1 through 9
below are the corresponding analytical expressions (note that the
expressions indicate absolute voltage gain and are converted to power

gain in db in the program).

Transmitter-Azimuth
(4252.5 & 2702.5 MHz)

fo 1. 0479130 - 0% 0 <6 < 130°
(G-1)
A = 0.039 ; 130° < 6 < 180°
Transmitter-Azimuth
(4252.5 & 2702.5 MHz)
A=1 ; 0 <8 <1°
(G-2)
__sin96 R o o
A= %0.162 o s 17 <6180
Transponder-Elevation
(4252.5 MHz)
A = cos 3.83 0 ; 0 <6 <10°
(G-3)
sin 4.87 © o o
A~ 0.00972 P 0T 2o 230
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Transponder~Elevation
(2702.5 MHz)

A = cos 3.74 8 ; 0 <9 <10°
(G-4)
A= sin 461 - 5 10° < 6 < 90°
0.0301 67
Transponder-Elevation
(1550 MHz)
A=1 s 0<8 < 1°
. (G-5)
_ _sin 46 o o
A=T.0722 8 31728290
Receiver-Azimuth
0.847
A=1 _e-0.037l(156—6) ;0<6 < 156
(G-6)
A = 0.056 ; 156° < 6 < 180°
Receiver-Elevation
A= cos 2.34 6 ;s 0 <6 <20° (G-7)
- —sin 3020 ; 20° < 6 < 180° (G-8)
0.00773 ¢~

Pattern Models for Flight Test Simulation

This section describes the antenna pattern models used for the flight
test analysis. The horizontal and vertical plane patterns were subjected

to a Fourier amnalysis to determine the Fourier coefficients for each of the
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patterns supplied RTI by NASA-LRC. The gain at a desired aspect (8,¢)

was then reconstructed from the series representation (ref. G-1),

20 5 onep . .6 . 200p
= Z [ a_ cos S+ Bp sin 2N+l]
p=0
(G-9)
20
¢ 2m¢p , L0 2w¢p]
+ Z [a cos pTas] + B sin N1
p=0
where,
8 is azimuth in degrees (0 < 6 < 360) pos. CW
¢ is elevation in degrees (0 < & < 360) pos. up

from nose

up,B are the fourier coefficients

N is no. of data points/2 (=180)

A brief analysis was conducted to indicate the total number of harmonics
required to accurately describe the pattern signature. It was observed that
10 harmonics did not adequately describe the null regions while it was felt
that in excess of 20 harmonic would introduce computing errors of sufficient
extent to actually degrade the pattern. For the purpose of flight test
analysis, 20 harmonics were used in the calculation of the gains.

The reconstructed patterns (see Fig. G~-8 for an example) were observed
to reproduce the static patterns within approximately two db over the major
portion of the lobing structure and suffered some degradation in the null
regions due to lack of high frequency components. This accuracy is considered

adequate for the analysis

Ref. G-1 Goertzel, G., "Fourier Analysis," Mathematical Methods for
Digital Computers, Wiley 1964
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Figure G-1. Transmitter azimuth pattern (4.252 GHz).
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El. 4252.5 MHz
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El. 4252.5 MHz
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Figure G-3. Transponder receiver, elevation (4.252 GHz) .



El. 2702.5 MHz
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Figure G-4. Transponder receiver, elevation (2.702 GHz). *
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E1l., 1550 MHz
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Figure G-5. Transponder transmitter, elevation (1.5 GHz)
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APPENDIX H

ANTENNA GAIN VARIATION WITH RELATIVE
ELEVATION ANGLE

To determine the variation of measured range with elevation angle,
the antenna patterns obtained in the LRC anechoic chamber have been used
to derive the curve of Figure H-1. This curve shows the ratio of measured
range to actual range as a function of the elevation angle of the
intruder. The curve takes into account the gain variation with elevation
of all antennas in the system.

As may be seen from the curve, the ratio of measured range to actual
range remains relatively constant over a + 10 degree interval, and then

rapidly deteriorates.
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