
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



X-552-70-27
-T

i::,.A » ^: 63 83 9

F
i a

0

DETERMINATION OF MEAN ORBITAL
ELEMENTS FROM INITIAL CONDITIONS
FOR A VINTI BALLISTIC TRAJECTORY

HARVEY WALDEN

?.3y^
DECEMBER 1969

MAR 1979:

RECEIVED
USA are FFt^.;rr
RUT M

Al

GODDARD SPACE FLIGHT CENTER
N 7o _ y- 1 UARYLAND

0a
IACCE55t0,

G	 UMUER)	 ^L
F	 ITM qy^i
^	 iPAGEBiV`3^•	 iCOD^i

iNA A CR O TMX OR -AO 1, SERI

icA 7[OORY^



1

DETERMINATION OF MEAN ORBITAL ELEMENTS FROM INITIAL

CONDITIONS FOR A VINTI BALLISTIC TRAJECTORY

by

Harvey Walden

December 1969

National Aeronautics and Space Administration

Goddard Space Flight Center

Greenbelt, Maryland



CONTENTS

Page

	

ABSTRACT ........................................	 iii

	

INTRODUCTION .....................................	 1

	

DETERMINATION OF MEAN ORBITAL ELEMENTS ............	 3

NUMERICAL APPLICATIONS TO A BALLISTIC

	

TRAJECTORY .................................	 7

	

ACKNOWLEDGMENT ................................. 	 12

	

REFERENCES ...................................... 	 13

APPENDIX	 ........................................	 15

ii



Deter

rlal V UY VValUGll

4

A method previously proposed for determining mean orbital

elements for Vinti's spheroidal theory of drag-free satellite motion

directly from either initial conditions or Keplerian osculating ele-

ments is shown feasible for application to ballistic trajectories. The

method, originally intended for use with multi-revolution satellite

orbits, is an iterative procedure involving a first-order Taylor's

series expansion of position and velocity components at epoch time.

The determination of mean orbital elements by this iterative method

is shown to be a valid alternative to the factorization of two quartic

polynomials arising in the inversion of the integrals of motion and

solv ed by successive approximations carried through second order

in the earth's oblateness parameter. Numerical results for a bal-

listic trajectory are presented, demonstrating that convergence of

the iterative fitting to initial conditions is rapid and exact.
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DETERMINATION OF MEAN ORBITAL ELEMENTS FROM INITIAL

3 3

CONDITIONS FOR A VINTI BALLISTIC TRAJECTORY

INTRODUCTION

The determination of a set of constants of motion for an orbital satellite

theory is a commonly encountered problem inasmuch as mathematical theories

of satellite motion are generally given as functions of mean orbital elements

rather than osculating elements. In practice, it is the set of initial conditions

of position and velocity components at a given epoch time which is readily avail-

able, such as from nominal conditions for an orbit insertion maneuver or as

output of a stepwise numerical integration technique for trajectory prediction.

Such initial conditions are readily converted, by means of the Keplerian two-body

transformations, into osculating orbital elements, but the problem of producing

mean elements for use as constants of motion in an analytic development remains.

A method has been proposed (Reference 1) for determining mean orbital

elements directly from initial conditions or Keplerian osculating elements for

the spheroidal theory for satellite orbits developed by Vinti. The spheroidal

theory (References 2 and 3) provides an algorithm for calculating an accurate

reference orbit of any drag-free satellite moving in the gravitational field of an

axially symmetrical oblate planet. As applied to the actual gravitational potential

of the earth, the reference orbit accounts exactly for the effects of all zonal

harmonic terms in the series expansion of the geopotential through the third,

and it accounts for the major portion of the fourth zonal harmonic as well.
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The spheroidal theory is applicable '.o all bounded orbits of arbitrary inclination

and eccentricity. The method for determining mean orbital elements for Vintils

satellite theory was applied (Reference 1) to an actual trajectory corresponding

to a near-earth satellite orbit of medium inclination and moderately high eccen-

tricity which remained above the portion of the atmosphere ind • icing appreciable

drag effects.	 •

A recent paper (Reference 4) describes a method of utilizing differential coef-

ficients to fit orbital parameters to assumed initial position and velocity vectors

representing a ballistic trajectory. This latter method adopts an earlier spheroi-

dal satellite theory by Vinti (Reference 5) which does not have the advantage of

incorporating the effects of the third zonal harmonic term into the spheroidal

potential. Also, the inversion of the integrals of motion in the form suggested

by Izsak (Reference 6) for the solution of Vinti's dynamical problem is utilized

for the co-ordinates, while the equations for the velocities are those given by

Borchers (Reference 7). However, the method of determination of the Izsak-

Borchers orbital elements from initial conditions is nearly identical to the

method proposed earlier (Reference 1) in that both methods are iterative pro-

cedures involving a first-order Taylor's series expansion ac epoch time dependent

upon partial derivatives assuming the form of differential coefficients. The

minor differences between the two iterative procedures shall be discussed

further below, but it is to be emphasized that the methods are substantially the

same.

The purpose of the present paper, appearing as a sequel to the earlier

results (Reference 1), is to demonstrate the feasibility of applying the method as

originally presented to ballistic trajectories. Such trajectories are eiliptic
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(or circular) segments of orbital arcs which eventually intersect the earth's

surface, i . e., their "perigee" heights are less than unity when measured in

units of the earth ' s radius. These trajectories may correspond to the free-

flight portion of an ascent to satellite orbit or to a spacecraft re-entry into the

atmosphere.

DETERMINATION OF MEAN ORBITAL ELEMENTS

The constants of the motion q (i = 1,2,..., 6), which are the mean orbital

elements for Vinti ' s spheroidal theory of satellite motion, include the following:

the semi-major axis a, the eccentricity e, a parameter S corresponding to sin e i

(where i is the inclination of the orbital plane to the Equator) in Keplerian two-

body motion, and three parameters Q l , ^32 , and 83 , which correspond to the

negative of the time of passage through perigee T, to the argument of perigee

and to the right ascension of the ascending node ^, respectively, in the reduction

to Keplerian motion. The given initial conditions for a satellite orbit are generally

provided in the form of rectangular inertial position components "o , yo , Zo and

velocity components z o , yo , ao specified for a particular epoch time t o . For the

case in which the given initial conditions are provided in the form of Keplerian

osculating orbital elements, namely, a, e, i, -r , a , and fl , these may readily be

transformed to inertial Cartesian position and velocity vector components by

the usual two-body transformation equations.

The problem of determining the proper set of mean orbital elements from

the given initial conditions has been approached by Vinti (Reference 8) through a

method of factorization of two quartic polynomials arising in the inversion of

the integrals of motion. This factorization is carried out iteratively, beginning

3
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with a zeroth-order solution corresponding to Keplerian two-body motion. A

set of four non-linear equr ions that results is solved by a method of successive

approximations carried through second order in the oblateness parameter 2 .
The second-order transformation equations for the orbital elements used in the

equations of the final solution for the satellite co-ordinates and velocities

(References 9 and 10) are provided explicitly (Reference S). To obtain the solution

to the non-linear system to arbitrarily high order, a method applying the Newton-

Raphson iteration scheme has been proposed by Borchers (Reference 7).

-- 1

	

	 An alternative method for the determination of mean orbital elements for

Vinti's spheroidal satellite theory, based upon differential corrections applied

to position and velocity residuals at epoch time, has already been specified

(Reference 1). A summary of this method appears in order here. This method

is capable of determining mean elements directly from initial conditions. elim-

inating the need for numerical factorization through successive approximation,

=	 and has no connection to the traditional differential correction of satellite orbits

-_-	 utilizing observational data.

If the Keplerian osculating orbital elements, a, e, i, T , w, and 0, are adopted

as the constants of the motion in Vinti's spheroidal satellite theory, then the

rectan,(NIar inertial position and velocity vectors predicted analytically by the

theory for the epoch time to may be denoted x, y, z and x , y, i. These components	 I=

will differ from the initial crnditions because the spheroidal theory incorporates

an earth model considerably more sophisticated than the Keplerian elliptic model.

Assuming that the reg lxired corrections to the orbital elements are sufficiently

small sc that their squares and higher powers may be neglected (as is traditionally

the case with linear approximations), the residual differences in co-ordinates
L
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and velocities may be expressed by a truncated Taylor's series expansion as

6

X0  T
ax aq,,

aq,

Yo—Y L' aq,

6

ip 	 T
—i_	 -Ii ^ql.

aq;

Here the predicted values x, y, z, x,y , and i are considered functions of the

six independent variables q, (i = 1, 2, ..., 6) which are to be improved by the

respective additive increments ^sq, (i = 1, 2, ..., 6). Note that the time t o has

been omitted as an independent variable inasmuch as it remains a constant value

throughout. The thirty-six differential coefficients appearing in the Taylor's

expansions have been evaluated explicitly (References 1 and 11) and retain the

accuracies of the original Vinti orbital theory. The above simultaneous system

of six linear algebraic equations admits a solution for the six unknowms ^ q j , which

are used to correct the orbital elements, as follows:

	

q,' = q ; + ^s q,	 , i = 1, 2, . . . , 6 .

The corrected (primed) orbital elements are then used to predict analytically

through the spheroidal theory a new set of position and velocity vectors at

epoch time and to re-evaluate the differential coefficients. The process of im-

proving the elements is then continued iteratively until the absolute values of

the position and velocity residuals at epoch time, I x o - x I, I Yo -Y I , ..., I i o - z I ,

reach some sufficiently small predetermined values.

5
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Comparison of the method outlined above with that presented by Allen

(Reference f) shows striking; similarities. A truncated Taylor's series expansion

is giver, by Equations 54 and 55 (Reference 4), after elimination of the apparent

typcgraphical errors, as follows:

F aYl

where

'^ Yi = Yi (Ni ) - Yi 0P).

In this Taylor's °xpansion, ,3, = I? i (y ) is a component of a matrix consisting of

the six Izsak - Borchers orbital elements. These are analogous to the mean

orbital elements used in Vinti's spheroidal theory, xvithout inclusion of the

third zonal harmonic term in the reference geopotential (References 5 and 8).

The parameters PO are the Kepler two-body orbital elements obtained by setting

the principal oblateness parameter J., equal to zero in the Izsak - Borchers

equations of motion and fitting to the initial vectors. Also, Y; represents a com-

ponent, of a matrix consisting of the six oblate spheroidal co-ordinates and their

time derivatives used in the solution of the Vinti dynamical problem. The dif-

ferential coefficients a^3jPyj appearing in this form of the Taylor's series are

in some sense "inverses" of the previous differential coefficients, inasmuch as

they consist of partial derivatives of the orbital elements xith respect to the

co-ordinates and velocities rather than the reverse. However, the differential

coefficients are evaluated by Allen for the simplified mo-4,A of a spherical

earth only and do not include any oblateness effects. In Allen's version of

iterative improvement, the mean orbital elements are improved indirectly
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through the residuals ny . in the oblate spheroidal co-ordinates and velocities

between the "exact" values yl 0, )based upon the latest corrected elements and

the approximate values -/, (80) based upon the elements of the previous iteration.

Note also that the six Taylor's series expansions may be solved successively in

turn as independent equations rather than as a simultaneous system of six linear

0	 algebraic equations to be solved by Gaussian elimination.

NUMERICAL APPLICATIONS TO A BALLISTIC TRAJECTORY

The iterative method of determining a set of mean orbital elements from

initial conditions for Vinti's spheroidal satellite theory has already been applied

(Reference 1) to an actual satellite orbital trajectory corresponding to an incli-

nation of 46 degrees, an eccentricity of 0.24, a period of 195 minutes, and apogee

and perigee heights of 4600 and 1300 statute miles, respectively. The same method

is now to be applied to a ballistic trajectory represented by initial conditions

given in the first column of Table t as inertial rectangular co-ordinates and their

time derivatives. These data are precisely those specified by Allen (Reference 4)

with the units of the velocity components converted from units of earth radii

per second, as presumably adopted by Allen, to earth rad ii per canonical time

unit, the latter defined to ae 806.823 seconds as indicated in the footnote. The

second column of Table 1 provides the osculating Keplerian orbital elements

corresponding to the initial conditions. These classical Keplerian elements

were obtained through use of the two-body equations of motion, considering

only the central term. in the geopotential. The final column displays the converged

values for the mean set of orbital elements for Vinti's satellite theory obtained

after two iterations. A measure of the degree of improvement in the orbital

s.	 elements is provided by Table 2 which displays the residuals in position and

7
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TABLE 1

Determination of Mean Orbital Elements from Initial Conditions

Osculating Mean

Initial conditions* Keplerian elements* Vinti elements*

x = 0.4650 a=	 0.78809935 a =	 0.78675654

y = 0.7254 e=	 0.59910027 e=	 0.60188516

z = 0.6010 sinz i =	 0.37911289 S =	 0.37863865

x = 0.7915 - T =	 1.1628914
181 =	 1.1638504

y = 0.03026 w = - 0.66925097 82 = -0.69029205

z = 0.08673 0 =	 3.0392151 3 =	 3.026054

The position components x, y, z are in earth equatorial radii (e. r .), and the velocity components

x, y, z are in e. r. 'c. u. t. , where 1 canonical unit of time (c. u. t.) is equal to 806.823 seconds. i

The semi-major axis a is in e. r., the time of perigee passage -and 8, are in c. u. t., and the

argument of perigee - the right ascension of the ascending node 0 1 ^ 21 and 33 are in radians.

velocity components at the epoch time, using the osculating Keplerian elements

initially and then the mean Vinti elements obtained upon convergence after two

iterations. As an indication of the convergence speed of the iterative method,

Table 3 presents the residuals in position and velocity at each iteration, where

iteration 0 corresponds to the use of Keplerian elements.

The results of an application to improve the mean orbital elements for Vinti's

satellite theory following the use of iterative factorization of the quartics through

second order is summarized in Table 4. The initial conditions for the ballistic

trajectory are identical to those included in Table l.. The second column now

provides the mean orbital elements for Vinti's satellite theory determined by

8
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TABLE 2

Magnitude of Residuals in Position and Velocity Components

Initially	 Upon convergence

Residual*	 (Keplerian elements) 	 (mean Vinti elements)

A x 25032.81 0.33

'n' Y 9598.04 0.14

^ z 2?478.12 0.24

^A xl 3282.7721 0.0236

A Y 5.2298 0.0328

A i 6006.7360 0.0044

*The position residualsore in meters, and the velocity residuals in centimeters per second

TABLE 3

Convergence of the Computed Position and Velocity

to the Initial Conditions

Iteration Position residual* Velocity residual*

0 0.006	 019	 025 0.008	 659	 108

1 0.000	 085	 298 0.000	 064	 523

_	 2 0.000	 000	 068 0.000	 000	 051

*The position residual is defined by ^ L̂ x) 2 +(,^Sy) 2 + (Oz) 2 and is given in e.r., and the velocity

residual is defined by (Tx) 2 + (^y) 2 +	 i) 2 and is given in a.r./c.u.t.

11
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TABLE 4

Improvement of Mean Orbital Elements After Use of

Second-Order Factorization

Factored Mean

Initial conditions* Vinti elements* Vinti elements*

x = 0.4650 a =	 0.78675646 a = 0.78675653

y = 0.7254 e =	 0.60188502 e = 0.60188516

z = 0.6010 S =	 0.37864354 S = 0.37863868

x = 0.7915 Ql =	 1.1638503 ^, = 1.1638504

Y = 0.03026 a2 =-0.69029421 182 = -0.69029207

z = 0.08673 Q,4 =	 3.0260707 '33 = 3.0260546 

. The units for all variables are as indicated in the footnote to Table 1.

iterative factorization of the quartic polynomials in the integrals of motion

carried through second order in the earth's oblateness parameter. The final

column gives the converged values for the improved mean set of orbital elements,

again obtained after two iterations. Table 5 shows the residuals in position and

velocity components with use of the factored elements initially and then the mean

elements obtained upon convergence after two iterations. The convergence of

the residuals in position and velocity is indicated in Table 6, where iteration 0

now corresponds to the use of the factored Vinti orbital elements. Note that near

convergence is attained after only a single iteration.

The conclusions reached in the earlier study (Reference 1) are valid as well

in the numerical application of the iterative method to a ballistic trajectory. The

converged values of mean orbital elements for Vinti's spheroidal satellite theory

10
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TABLE 5

Magnitude of Residuals in Position and Velocity Components

Initially Upon convergence

Residual* (factored elements) (mean Vinti elements)

A x 91.43 0.21

A Y 34.02 0.05

^Azl 27.70 0.10

A is 0.4830 0.0059

A Y 10.8230 0.0121

0 i 1.3488 0.0103

• Units are as indicated in the footnote to Table 2.

TABLE 6

Convergence of the Computed Position and Velocity

to the Initial Conditions

Iteration	 Position residual* 	 Velocity residual*

0	 0.000 015 900	 0.000 013 810

1	 0.000 000 107	 0.000 000 083

2	 0.000 000 037	 0.000 000 021

* The remarks in the footnote to Table 3 apply here as well.

as determined from initial conditions is virtually independent of whether the

process of second-order factorization of the quartics is utilized prior to the

iterative Taylor's expansion. This is seen from the nearly identical values for

the mean Vinti elements presented in Tables 1 and 4. Hence the iterative method

of determining mean orbital elements for a Vinti ballistic trajectory may be used

11
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as a valid alternative to the factorization procedure. However, if second-order

factorization is applied, then the mean orbital elements are corrected, through

subsequent application of the iterative improvement method, only by increments

of the third order in the oblateness parameter. Convergence of the iterative

fitting to initial conditions in position and velocity is extremely rapid, and de-

creases in the residual components to very low tolerances are achieved, both

with and without use of factorization to determine initial elements.
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APPENDIX

In the interest of thoroughness, efforts were undertaken to duplicate the

numerical calculations of Allen (Reference 4). The following sequence of

tabular displays shows that this effort was, at best, only partially successful. In

Table 7 appear the adopted ballistic initial conditions and, in the second column,

I	 the Keplerian orbital elements associated by Allen with the initial conditions.

The latter are seen to differ substantially from the Keplerian orbital elements

given in Table 1. The final column displays the converged values for the mean

Vinti elements, obtained after three iterations. Table 8 shows the residuals in

position and velocity components with use of Allen's given osculating Keplerian

elements initially and then the mean Vinti elements obtained upon convergence

after three iterations. The convergence of the residuals in position and velocity

is indicated in Table 9, where iteration 0 now corresponds to the use of Allen's

given Keplerian elements. Finally, the converged values for the mean Vinti

elements, obtained after three iterations, shown in the right column of Table 7

may be contrasted with Allen's converged mean orbital elements, obtained after

four iterations. After the required manipulations described in the footnote to

Table 7 are performed, the latter appear as follows: a = 0.78681 ex., e = 0.56072,

S = 0.36196, 81= 1.22172 c.u.t., 82 = -0.71421 rad., and 53 = 2.94749 rad.

k

r
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TABLE 7

Determination of Mean Orbital Elements from Initial Conditions

Using Given Osculating Keplerian Elements

Initial conditions*

Given osculating

Keplerian elements*

Mean

Vinti elements*

x = 0.4650 a=	 0.78771 a=	 0.78675653

y= 0.7254 e=	 0.55812 e=	 0.60188518

z= 0.6010 sine i =	 0.36201 S=	 0.37863866

z = 0.7915 - -r =	 1.23247 51 =	 1.1638504

y = 0.03026 4, _ -0.73416 P2 = -0.69029211

i = 0.08673 2.95757 f s =	 3.0260546

The  units for all variables are as indicated in the footnote to Table 1. The given osculating

Keplerian elements were obtained from Allen's data (Reference 4) by adding one anomalistic

period to the perigee time and by subtracting 2-n and r from the argument of perigee and the

longitude of node, respectively, at perigee time.

TABLE 8

Magnitude of Residuals in Position and Velocity Components

Initially Upon convergence

Residual* (given Keplerian elements) (mean Vinti elements)

A x 20660.69 0.17

Y 14224.53 0.14

A z 20418.46 0.10

D x 2994.5567 0.0059

p y I 410 612.7070 0.0180

i 5:396.8830 0.0015

v Units are as indicated in the footnote to Table 2•
s

16



TABLE 9

Convergence of the Computed Position and Velocity

to the Initial Conditions

19

A
Iteration Position residual* Velocity residual*

0 0.005 071 016 0.061 987 744

1 0.003 066 079 0.000 820 141

2 0.000 010 031 0.000 005 074

3 0.000 000 037 0.000 000 024

• The remarks in the footnote to Table 3 apply here as well.

1

17


	GeneralDisclaimer.pdf
	0027B02.pdf
	0027B03.pdf
	0027B04.pdf
	0027B05.pdf
	0027B06.pdf
	0027B07.pdf
	0027B08.pdf
	0027B09.pdf
	0027B10.pdf
	0027B11.pdf
	0027B12.pdf
	0027C01.pdf
	0027C02.pdf
	0027C03.pdf
	0027C04.pdf
	0027C05.pdf
	0027C06.pdf
	0027C07.pdf
	0027C08.pdf
	0027C09.pdf
	0027C10.pdf
	0027C11.pdf

