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ABSTRACT

The effects of thermal imbalance (él # 0) on stellar pul-
sational stability have largely been ignored in the literature.
A preliminary investigation of such effects is made here using
the linear, quasi-adiabatic pulsation theory. Analyses of the
standard model and of a white dwarf show that, for fhese cases,
"ordinary" terms in the stability integrals greatly outweigh
the "extra" terms considered here. The latter become more
important when substantial ionization zones exist in the stellar
matter. It is argued that the influence of thermal imbalance
on pulsational stability should be quite small for stars cross-
ing the H-R diagram in early post~main sequence evolution, and
for cooling degenerate stars. On the other hand, during pre-
main sequence contraction the thermal imbalance terms are more
likely to be important, while for thermal runaways in shell-

burning stars, these terms are almost certainly crucial.




I. INTRODUCTION

In the familiar linear quasi-adiabatic theory of pulsations

developed in general form by Thomas (1330), the rate of change

of the dynamical energy of oscillation E may be written (Ledoux 1958)
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where the bar indicates a time average over the pulsaﬁion period

and the subscript 1 denotes equilibrium qguantities. U and S are,

respectively, the specific internal energy and entropy of the gas

p is the mass density, and the quantity § preceding a variable

indicates a first-order departure from equilibrium.

In the stellar pulsations most commonly studied the equilibrium

entropy change
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where ¢ is the nuclear energy generation rate and L, the luminosity

at distance r from the stellar center, is negligible and the right

side of equation (1) reduces to the first integral with
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For those epochs of stellar evolution during which él¢o
(thermal imbalance), the expression (2) must be rewritten as

A
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and contributions from the second, and perhaps the third, in-
tegral on the right side of (1) considered. The latter integral
was ignored by Thomas as vanishing in the mean, but was included
by Ledoux who pointed out that second order contributions from
it might subsist.

The purpose of the present work is to consider boﬁh the second
integral on the right of (1), and the extra term introduced in the
first integral due to the replacement of (2) by (3). Because adia-
batic evolution (él = 0) is so often a good approximation in stellar
model calculations, these terms have, with few exceptions, been
ignored in the literature since the general review of Ledoux (1958).
In what follows, we shall attempt a preliminary investigation of
the problem, proceeding through the use of simple s£ellar models
and semiquantitative estimates to éet an idea of the relative size
of the thermal imbalance terms and to draw some conclusions regard-

ing their importance in various phases of stellar evolution.

In section II we write equation (1) in more convenient form.




Sections III and IV are devoted to evaluating the stability of
the standard model and that of a cooling white dwarf, respec-
tively.’ In section V we consider what effects the presence of
ionization zones in the stellar matter might have, and in section
VI discuss the results of the various calculations. The final
section considers two cases in which thermal imbalance terms are
likely to be important, and for which further investigation should

prove fruitful.
IT. THE STABILITY INTEGRAL

Equation (1) gives the rate of gain or loss of pulsational
energy over a cycle. Let us define the first two integrals on
the right-hand side as
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This represents the contribution to the pulsation analysis of the
terms we will consider.

In the usual notation we have




and using (3), we may rewrite (4) as
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Let us now make the assumption that no sources or sinks of
subatomic energy exist in the stellar matter. 1In that event,

defining the pulsational quantities

8L
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and with the adiabatic condition
t = (r3—1)2
we have
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where f = Lr/L and g = m/M.

For future convenience we shall rewrite (6) as
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where tﬁe integrals (including signs) are labelled in order.

We shall call terms coming from the first integral in (6) (subscript 1)

the "ordinary" terms, while those which arise from the other two

integrals (subscript 2) will be referred to as "extra" or "thermal

imbalance" terms.

A star is considered pulsationally stable if Lé/L < 0. 1In the

event that contributions from subatomic energy do exist in the star,

one must evidently return to equation (5).

ITT. THE STANDARD MODEL

Following Eddington (1959), let us define the quantity n by

the relation
f='r]q.
Then, if u represents the opacity, the standard model is obtained

for

nm = const.

For our analysis, we shall choose the combination

n = const, u = const.

In that case,since £ = g = 1 at the stellar surface, we must have

n = 1, and our choice corresponds to a physically reasonable case




of electron scattering opacity, and luminosity increasing linearly
outward with mass fraction.

The standard model is a polytrope of index 3 with a constant
ratio B of gas pressure to total pressure through the star. The

value of @ depends only on the product Muz

e , where pj is the mean

molecular weight of the matter, and may thus be chosen arbitrarily.
All of the non-pulsational quantities in (6) may be evaluated with
the aid of Emden tables (British Association for the Advancement of
Science 1932).

The relative pulsational amplitudes ¥, Z of the standard model
have been given by Schwarzschild (1941) for various values of p,
both in the fundamental and higher modes. We have chosen the lowest
of these values of g in the fundamental mode as the combination most
conducive to pulsational instability (see, e.g., Simon and Stothers

1969) . This 1is

g = 0.510, Ty - 1 =0.372.
Furthermore, we may write
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where, for a radiative star with constant opacity,
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The remaining unexplicit quantity in (6) 1is
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The function Wl(B) is always negative, with endpoint values
of -0.111, and a minimum of -0.149 at g = 0.93. A glance at the
last integral in (6) shows that so long as the luminosity increases
(decreases) outward, this term serves to energize (damp) pulsa-

tions. For p = .510, we have Wl(B) = -0.119.

We are now in a position to evaluate Lé/L. Results are dis-
played in Table 1. It is easily seen that contributions arising

from the additional term in &S (IZ) and from the integral J, are




approximately equal, and both contribute to energizing the pulsa-
tion. Their combined effect, however, is quite small, amounting

to less than 8% of the ordinary damping.

IV. WHITE DWARF

We shall discuss here the model of Marshak (1940) treated by
Ledoux and Sauvenier-Goffin (1950). Though somewhat outdated,

this model is quite adequate for our purposes. In particular,

the luminosity distribution £(q) is rather similar to that obtained

from more modern treatments of cooling white dwarfs (e.g. Vila

1969) .

Following Ledoux and Sauvenier-Goffin, we shall take

z = -3% = const.
t = (rT-l);
where
x2+ 2

Tp ~ 1= 3(x2+1)

and x 1s the ratio of the Fermli momentum and mc.

We begin with the second integral in (6). Integrating by parts

we obtain

1
22
I, = 4F ~ 18% g (TT~l)fd(rT—l),
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where we have taken ?m—l = 2/3 at the stellar surface. Given the
L

model parameters we may easily evaluate the integral, obtaining

~~2
I =1.6 x .
2 .

Turning now to J2 we must calculate

3
T

: U2 B %fl S{rp-1) ]

3S3p Pis P

T T 3x o)
= - =-1) - —— o -1) .
(T l)gjf(rT ) =11+ < apIS — (Tp-1)
Using the familiar expressions for a degenerate electron gas

(Chandrasekhar 1939) and retaining only terms of lowest order in

(kT/mcz), we find

OX | = X_
Bpg 30
and finally,
2 3 4 2
E_'_é_gz - WZ(X) _ _ 2x"+ Zx +22_
2T 3S3p 18(x“+1)

This function falls to a minimum of -0.153 at x=1. At the endpoints
(=0, X-w), WZ(X)= -0.111. Since W2(x)< G, it turns out again

that, for luminosity increasing outward, J, is an energizing term.

2

We have for the present case

1
2
J2 = -9x g Wz(x)df.
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The values of x for our model range from 2.4 at the center to 0.4

at the surface, encompassing values of ]W’(x)] in the narrow range

2

0.13-0.15. Using an average value [W?(x)[= 0.14, we obtain

The remaining term in (6) is given by Ledoux and Sauvenier-

Goffin: Il = —18§2.

Setting ¥ = 1, we again summarize our results in Table 1.
In the present case, as with the standard model, the contributions
12 = 1.6 and J, = 1.3 both serve to energize, and are roughly equal.

Here, however, their effect is somewhat more important, offsetting

about 16% of the ordinary damping.
V. TONIZATION ZONES

When ionization zones cover substantial regions of the stellar
matter, the pulsational stability of a star can be strongly affected.
In the absence of thermal imbalance, such effects have been studied
in the literature in great detail.

When thermal imbalance exists in a star, the terms I2 and J2
begin to contribute, and they are affected by ionization through
the thermodynamic coeffients (r3— 1) and (p2/2T)a3U/asap2. (It should
be noted that the quasi-adiabatic theory may not be adequate here,
depending upon the location of the ionization zones in a given star.

The theory should be good enough, however, to give us some picture

of the relative importance of thermal imbalance to the pulsational

stability) .
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If in the presence of ionization zones, we impose the restriction
that only one critical state of ionization exists in a given range of

temperature and density, then we may write (Ledoux 1958)

[16—123—1.582+B(4—l.53+ah)AT'P]fl+Ap,T]
Iy = 12-10.5¢ + p(1.5+h) Ay

Ty pL+Ry o)
(4—3(.>)~1~5A,I.lp

I\B—l -

where

B B
A = - -, =B (1.5+n
p,T 1+B Br,p l+B( :

i
i

B[2.5+h-+§i%:ﬁﬁ,

Further, if X represents the abundance (by number) of the
element with critical ionization, y the fraction of the electrons
in question that have been removed, and x the total number of free

electrons per ion, then

- Xxy (1-v) )
x(14x) + Xy (1l-y)

The quantity h is the ratio of the ionization potential to kT: h=x/kT.

Once more, we must calculate the guantity

2 3
L 8 U = 3 = i - - _ 1 8




The necessary derivatives are (ap/ap)s, given once more by

(7), and

OX _ {(1+x) V
L4 = A"/ A + “1)YA .
ap|S p [ p,T (T3 ) I:p]

Finally, after cumbersome but straight-forward computation we obtain

5 ) :
a&nﬁlS(Tg—l) = H(l—e)[rl—4(r3—l)] [6+Ap (6-4h) ]+ p[6(1-g)~(4-3a)h]

1+x) A
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2

[12—10.55-F8(1.5+h)AT'p]

where

(1+x)x2(1-2y)+[Xy(l—y)]2— xXx2y (1-y)

[%(1+x) +Xy(1-y) 1°

To get some idea of the size of W3(p,T) we have calculated it
for a range of densities and temperatures for four different cases
of critical ionization: H I, He I, He II, C VI. The ratio of parti-
tion functions for the states involved was always taken to be the
ratio of statistical weights. The latter quantities, along with
values for ionization potentials, were taken from Unsdld (1955). In
each case a composition consisting solely of the element in question

was assumed for simplicity. This means, of course, that the effect
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of the ionization zones will be overestimated.
Table 2 presents these results. The last entry in the table
is the ratio

W5 (p,T)
R = ————

(r4-1)°
Since ordinary damping terms (at least forvthe case of radiative
damping) as well as the integral I, will be proportional to (r3—l)2,
the quantity R gives some guide as to the importance of the last
integral in (6) .

In evaluating Table 2, it will be useful to compare W3(p,T)
with the quantities Wl(ﬁ) and W2(x) calculated in preyious sections.
We first note that W3 is not necessarily negative. In certain
regions, the derivative [a(r3—l)/aénpjs can become positive and
large enough to outweigh the first term in (8). This happens in
general for large positive Q and for B ¥ 1. 1In that case, a star
with luminosity increasing (decreasing) outward would tend to be
damped (energized) by the last integral in (6). However, this effect
seems to occur in relatively few parts of the (p,T) plane. Overall,
those regions with W3 < O are likely to dominate, giving a result
qualitatively the same as in the absence of ionization zones.

Perhaps a more important difference involves the size of the
effect. We see from Table 2 that W, can become quite large in ab-

3

solute value, exceeding the maximum values of ]W and [Wzi by a

1

factor as great as 3. Furthermore, the ratio R attains large negative
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values (e.g., He I, log p = -8, log T = 4.2), particularly in
low density regions. The largest values occur for r3—l i 0.1, and
run as high as R =-5.78 for the cases calculated. (As one goes to
ionizations with larger potentials, e.g. C VI, the effect begins
to diminish. This is due to increasing domination by radiation
pressure in the low density regions, and ﬁo the fact that the ratio
x of electrons to ions is increasing. 1In fact, as g - O or x - o,
W3 - Wl). The corresponding ratios for Wl and W2 can never exceed
unity in absolute value, and are generally much smaller.

Thus it turns out that the thermodynamics of ionization =zones
is such that the contribution to stability analysis of "thermal
imbalance" terms may become greatly enhanced. Whether this actually

happens depends of course on the detailed properties of the stars

in question. We shall have more to say about this in the next section.
VI. DISCUSSION

Up to now we have seen that the thermal imbalance terms investi-
gated will, in general, tend to energize pulsations in stars with
luminosity increasing outward. This will be the case for gravita-
tionally contracting stars or stars experiencing thermal cooling.
Expansion, on the other hand, will tend to damp pulsations.

In sections IITI and IV it has been shown for two different cases
that the extra terms make a small contribution compared to that from

ordinary damping terms. It is simple and instructive to further
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compare these extra terms with the energizing due to nuclear re-
actions. For the case of the white dwarf, Ledoux and Sauvenier-~-Goffin
(1950) have shown that nuclear energizing would be enough to overcome
the damping for very modest values of the temperature exponent vy

(v = 9.5 for a core source; y = 2.6 for a shell source). Thus, this
energizing is at least six times as effective as the thermal im-
balance contribution given in Table 1.

For the standard model, a comparison is not so straight-forward.
However, since, apart from the temperature exponent, the amount of
nuclear energizing will depend mainly on the size of pulsational
amplitudes in the burning region (let us say in the core), it seems
reasonable to compare the standard model to a model with a similar
value of relative radius amplitude at its center. One such model
in the literature is that of a 28.2 M, main-sequence star (Schwarzschild
and Harm 1958) . It has a central radius amplitude ie = 0.39, while
the value for standard model of section IITI is ;C = 0.32. With a
temperature exponent y = 13, Schwarzschild and Harm (1959) found nuclear
energizing LPN/L = 4.4 -~ a value more than an order of magnitude
larger than that due to thermal imbalance in the standard model
(Table 1) .

The above comparisions are, of course, somewhat artificial
since 1) any region of a star in nuclear thermal equilibrium (élz 0)
cannot contribute to the thermal imbalance terms, and 2) the standard

model could not represent in detail a star with physically reasonable
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nuclear processes. Nevertheless, we may safely say that, given the
thermodynamics of sections III and IV, ordinary pulsation terms will
tend to greatly outweigh thermal imbalance terms, with the latter
providing only relatively small corrections.

For the thermodynamics of section V (ionization zones) the
outlook changes somewhat. We have seen in this case that the coeffi-

cient |W can become relatively large, tending to enhance the con-

3l
tribution due to thermal imbalance. On the other hand, such effects
occur mainly in diffuse regions, where the density is low. The
classic example is in the ordinary Cepheid variables. In the well-
known modern calculations of Cepheid variability (Christy 1966a,
Baker and Kippenhahn 1965), thermal imbalance is ignofed, and the
equilibrium luminosity taken as constant in the energizing region.
Due to the extreme central condensation of Cepheid models, only the
outer 1 or 2 per cent of the stellar mass is affected by the pulsa-
tion (Christy 1966b), and even if thermal imbalance does exist in
these layers, it is hardly to be expected that they contribute
enough luminosity to sensibly affect the stability.

Further, it seems possible on the basis of our results to
rule out important contributions for any star expanding or con-
tracting across the H-R diagram during normal post-main sequence
evolution, at least through core helium burning. Although con;
siderable regions of such stars can be in a state of thermal im-
balance (see, e.g., Iben 1966), the central condensation of these

objects (Pc/<p> 2 103- 105, as compared with p./<p> = 54 for the
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standard model) is such that radiative damping will almost certainly
crush any of the extra terms we have considered.

Similarly, cooling degenerate bodies such as white dwarfs
are highly unlikely to become pulsationally unstable due to contribu-
tions from thermal imbalance, such contributions being simply too
small to overcome damping in the thin radiative zones at the surface

of these stars.
VII. AREAS FOR FUTURE WORK

We begin this section by noting that our investigation remains
incomplete due to the omission of the last integral in (1) . However,
there are reasons to believe that inclusion of this térm will not
change qualitatively the conclusions of the previous section. Call-
ing the integral in question LK,, taking the time average and nor-

malizing with the luminosity, we obtain

1 ,
e N AL
where (ép/p)z indicates the surviving time-averaged second order
amplitudes.
We have already seen in the cases studied that the integrals

I, and J2 provide small, approximately equal contributions. Since

4

~2
we must expect that (6p/p)2 ~ Z , it follows that K2 ~I,, J or

perhaps somewhat larger due to the relative largeness of (r3— 1)

compared with the thermodynamic coefficients of I, and J,. Even
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if the integral K, proved to have the same sign as 12 and J2 in

the cases investigated, it would need to be nearly ten times larger

for the white dwarf and more than twenty times larger than I, or

J, for fhe standard model in order to qualitatively affect the
stability. Although a full second order theory must be developed
to exactly evaluate the size of K,, such large values seem unlikely.

On the other hand, when the terms 12 and J., begin to become

2
comparable to the ordinary damping or energizing terms, the in-
tegral K2 must obviously be considered in detail. We shall suggest

two stages of stellar evolution for which this may be the case:

1. Thermally unstable shell-burning stars. Rose has found

that certain thermally unstable models become pulsatidnally unstable
as well, for both helium (Rose 1967) and hydrogen (Rose 1968) shell
burning. The seat of the instability is strongly enhanced nuclear -
energizing arising from a thermal runaway in the shell. However, the
flood of photons released in the shell is almost totally absorbed in

the expanding layers above, with the luminosity dropping by orders

of magnitude from shell to surface. Although Rose has not published
the runs of luminosity or pulsational amplitudes, he does give
enough information to enable us to put limits on I, and J2 for his

2

unstable models.

Table 3 shows the relevant quantities for two typical models:
3B (Rose 1967) and 2A (Rose 1968) . The entries are, in order, the

shell and surface luminosities, the relative pressure amplitudes
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& = 8P/P, the nuclear energizing N, (normalized by L), and the

1

ordinary damping I The last two entries give limits on the

1"
thermal imbalance terms calculated as follows.
Since the envelopes of Rose's models are non-degenerate or

only slightly degenerate, we have used (r3— l)2 and Wl(B) as the

thermodynamic coefficients for 12 and J2, respectively, and have

set p = 1 for simplicity. Using these quantities and neglecting

with respect to f we obtain

fsurface shell’

- _1 ~2
I, +1 =-L1r¢ 9
175 = “she1r = F 7 ()

~2
where < p > is an average over the envelope luminosity distribu-

. d =
tion, an fShell LN/L'

The sum (9) is negative (i.e., a damping term) as we expect

for luminosity decreasing outward. Using the limiting values of
~2
p as given by Rose, we obtain the last two entries in Table 3.
Consider the minimum damping due to thermal imbalance (12+ J2) L.
min

For model 2A it is comparable to the ordinary damping I while for

ll

3B it far exceeds Il. In both cases the nuclear energizing dominates,

so there is no qualitative effect. On the other hand, if we use

the upper limit (12 + J , the thermal imbalance damping completely

)
2" max
overwhelms all other terms and the instability is nullified. Because

pulsational amplitudes will tend to drop off rapidly from the sur-

face inward, the true value of 12 + J2 is probably closer to the
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lower than to the upper limit. However, the size of even the minimum
terms indicate that thermal imbalance contributions must be taken
into account in any evaluation of the pulsational stability during

a thermal runaway. To do this will require a full second order
theory.

2. Stars in pre-main-—-sequence contraction. Such stars are

favored by three characteristics: 1) a large percentage of the
luminosity is provided by gravitational contraction; 2) the central
condensation is lowered substantially by the influence of convec-
tion; and 3) deep ionization zones can exist in such stars, depend-
ing on mass and the state of evolution. Detailed pre-main-sequence
contraction models have been constructed by Iben (1965) and Ezer

and Cameron (1967).

A start on a stability analysis for such stars has been made
by Kato and Unno (1967) and Okamoto (1967). The former authors
developed a second order theory and, with the aid of a number of
restrictive assumptions, managed to write the stability integrals
(1) in approximate form. This form was in turn used by Okamoto to
test the stability of a fully convective homologously contracting
polytrope of index 1.5. Ionization zones were neglected.

Emphasizing the tentative nature of the calculation, Okamoto
concluded that stars with masses < 2M® were probably pulsationaily
unstable against energization due to thermal imbalance. Establish-
ment of this conclusion must await the development of a full second-

order theory including all the terms in equation (1) .
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TABLE

1

Values of the Stability Integrals

I 12 J2 LP/L
Standard Model -4.8 0.20 18 -4.4
White Dwarf -18 1.6 .3 -15




Some Thermodynamic Properties of Ionization Zones

TABLE 2

H I, x(ev) = 13.59
log p = -9.0 log p = -5.0 log g = =2.0
log T 3.7 3.8 4.0 4.1 4.2 3.9 4.0 4.1 4.4 4.5 4.6 £.2 4.8 5.3
v 0.000 | 0.005| 0.523 | 0.956 | 0.997 | 0.001! 0.008| 0.045| 0.792{ 0.943 | ¢.984| C.006 | C.213 | 0.245
e 0.996 | 0.992 | 0.980 | 0.970 | 0.943 | 1.000 [ 1.000| 1.000| 1.000| 1.000 | 1.000| 1.000 | 1.00¢ | 1.000
ry 1.625 | 1.339 | 1.124 | 1.277 | 1.563 | 1.602 | 1.430| 1.277| 1.339| 1.459 | 1.620| 1.560 | 1.452 | 1.660
r, -1 0.620 { 0.319) 0.086 | 0.239 | 0.525 | 0.597 | 0.407| 0.231] 0.261| 0.449 { 0.602] 0.544 | 0.272 | 0.648
SZ%E £ (T3-1) -0.300 | -0.462 | +0.008 | +0.287 |+0.150 | -0.290 -0.322. ~0.060 | +0.108 | +0.304 |{+0.180 | -0.149 | +0.058 | +0.022
Ww_ (e, ~-0.268 | -0.340 | -0.036 | +0.053 [-0.050 | -0.265 | -0.282 ] ~0.119 | ~0.042 | 40.028 |-0.030| ~0.199 | -0.088 | -0.103
-R -0.70 |-3.33 [ -4.80 |+0.92 {-0.18 {-0.74 |-1.70 | -2.23 | ~0.62 | 40.14 |-0.08 | -0.67 |~G.64 |-0.24
He I, x{ev) = 24.58
log p = -8.0 log p = -4.0 log p = -1.0
log T 4.0 4.1 4.2 4.3 4.5 4.2 4.5 4.7 4.8 4.4 4.6 4.8 5.0 5.5
v 0.002} 0.036| 0.357 | 0.924 | 1.000 | 0.004| 0.479 | 0.962| 0.991 | 0.005 | 0.061 | 0.283 | 0.646| 0.979
. 0.988| 0.977 ] 0.965 | 0.952 { 0.838 [ 1.000| 1.000 | 1.000{ 1.000 { 1.000 1:000 | 1.000 | 1.000| 1.000
r, 1.465| 1.150 | 1.099 | 1.192 | 1.527 | 1.463| 1.230{ 1.508] 1.631 | 1.547 | 1.401 | 1.407 | 1.505| 1.663
r, -1 0.451| 0.129| 0.077 | 0.165 | 0.463 | 0.446 | 0.157 | 0.466 | 0.619 | 0.531 | 0.346 | 0.321 | 0.420] 0.657
B (T.-1} ~0.692 | ~0.054 | +0.003 [+0.126 | -0.025 |~0.416 | +0.026 | +0.367 | +0.161 | ~0.194 |~0.022 |+0.056 | +0.112| +0.013
3inpls 3
W, (p.,T) -0.470 | -0.083 | -0.034 |~0.006 | -0.137 {~0.331 | -0.054 | +0.059 | -0.038 | -0.222 | -0.124 |-0.081 | -0.066]{ ~0.106
R -2.31 | -5.00 |-5.78 {-0.22 |-0.64 |-1.66 |-2.16 |+0.27 [-0.10 |-0.79 |-1.04 |-0.78 |-0.37 | -0.25




TABLE 2 (Continued)
He IL, x(ev) = 54.4
log p = -8.0 log p = ~4.0 log p = -1.0
log T 4.4 4.5 4.6 4.7 4.9 4.6 4.7 4.8 5.1 5.2 ?.O 5.2 5.4 5.7
0.000 0.019 0.524 0.969 1.000 0.000 0.006 0.096 0.961 0.990 0.00% 0.143 0.520 0.896
¥
B 0.912 0.840 0.766 0.659 0.329 1.000 1.000 1.000 0.999 0.998 1.000 1.000 1.000 1.000
r " 1.565 1.237 1.041 1.353 |- 1.391 1.657 1.515 1.278 1.563 1.642 1.600 1.488 1.542 1.648
l -
r.-1 0.516 0.247 0.120 0.331 0.353 0.657 0.497 0.219 0.532 0.632 0.584 0.421 0.467 0.625
3
_é__l (r3_1) -0.102 | -0.366 |+0.004{ +0.215 | ~-0.001 ;0.090 ~-0.591 | ~0.051 +0.314 | +0.096 -0.164 |+0.017 | +0.104 | +0.053
ainp'S .
W3(p,T) -0.176 | -0.276 |~0.051 | -0.003 | -0.115 | -0.158 | -0.421 |-0.111} +0.033 -0.068 1} -0.203 . {-0.114 | -0.072 | -0.090
R -0.66 -4 .54 -3.53 -0.03 -0.92 -0.37 ~-1.70 -2.31 +.11 -0.17 ~0 .60 -0.64 ~0.33 -0.23
C vI, x{ev) = 489.84
log p = -7-0 log p = -3.0 log p = 0.0
log T 5.4 5.5 5.6 5.7 5.6 5.7 5.8 5.9 6.0 5.8 6.0 6.2 6.4 6.7
v 0.002 0.206 0.928 0.997 0.002 0.039 0.357 0.822 0.965 0.001 0.032 0.334 0.776 0.967
g 0.094 0.051_ 0.029 0.015 0.996 0.992 0.986 0.974 0.950 1.000 1.000 1.000 0.99¢% 0.993
rl 1.348 1.304 1.333 1.336 1.639 1.455 1.314 1.430 1.564 1.663 1.605 1.545 1.620 1.654
F3‘1 0.337 0.324 0.333 0.334 0.633 0.426 0.259 0.380 0.523 0.662 0.588 0.494 0.589 0.645
_E__I (r3_1) -0.003 | -0.026 { +0.007 0.000 | -0.182 |-0.433 | 4+0.020 | +0.270 | +0.113 |-0.019 |-0.126 [+0.056 |+0.101 |-0.006
34np's
Ws(p,T) -0.113{-0.122 {-0.108 { ~0.111 ; -0.207 |~0.339 {-0.086 | +0.017 { -0.068 [-0.122 |-0.184 -0.097 -0.071 | -0.118
R -1.00 -1.17 -0.97 -1.00 ~0.52 -1.87 -1.29 +0.12 -0.25 -0.28 ~-0.53 -0.40 ~0.20 -0.28




TABLE 3

Pulsational Characteristics for Two Thermally Unstable

3B {(Rose 1967) and 22 (Rose 1968).

Models

3B 22
6 4
10
LN/L® 1.5 x 10 2 x
L/Lg 110 200
Pp(surface) -12 -15
P(shell) -0.29 -0.50
3
Ny 3.5 x 10 50
-4.5 -6.3
Iy
2
(1, + Jz)min -2.4 x 10 -5.0
(I, + J.) _4.0 x 10° ~4.5 x 10°

2 27 max




