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Abstract 

A computer program for evaluating the electromagnetic field pattern of a 
known arbitrary incident field scattered from a perfectly conducting reflector of 
arbitrary shape is presented. 

It is shown that the commonly used assumption of far-field behavior for the 
incident field leads to poor results in some cases; an exact method is developed in 
which a spherical-wave expansion is used to represent the incident field, and it is 
shown that this method yields the correct result in these cases. 

The scattering surface is represented by a Fourier type of expansion in one 
variable, where the coefficients are specified as tabular functions of the remaining 
variable. A tilted figure of revolution is a case of practical importance, and it is 
shown that, for small tilt angles, three Fourier components are usually sufficient 
to represent the surface. 

A new nonlinear integration technique is used that is four to eight times faster 
than Simpson's rule integration, under specified conditions. Other techniques to 
maximize program efficiency are described, and a comparison is given that indi- 
cates the program to be 11 to 19 times faster than a similar existing program. 

The subreflector and main reflector patterns of an 85-ft-diam Cassegrainian 
antenna are computed, using both the far-field approximation and a spherical- 
wave expansion to represent the incident fields. The results are compared, and it 
is shown that the spherical-wave expansion of the subreflector pattern agrees in 
remarkable detail with an experimentally measured pattern. 

Exemplifying the general capabilities of the program, the patterns of a para- 
boloid with a displaced feed are computed for three cases, and the results are 
compared with approximate theory. 
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Calculation of Scattered Patterns 
From Asymmetrical Reflectors 

I. Introduction 

The physical-optics technique has been used with great 
success to compute the scattering from perfectly con- 
ducting surfaces, such as the subreflector of a Casse- 
grainian antenna (Ref. 1). In fact, the technique has 
yielded such accurate results that computed patterns 
have begun to replace a good deal of experimental data 
in antenna development and analysis (Refs. 2 and 3). 

A major limitation of the physical-optics technique is 
that it requires the evaluation of a double integral with 
a rapidly oscillating integrand that typically results in 
the need for large blocks of stored data and increased 
computer time. In some cases, with special symmetry 
conditions, one integration may be performed analyti- 
cally (Ref. 4). The progranl described in this report was 
developed so that the broad class of scattering problems, 
which do not necessarily have any symmetries, could be 
resolved in the most efficient manner possible. The great 
majority of computer time and storage requirements may 
be directly attributed to the numerical evaluation of the 
integral; therefore, the major contribution towards effi- 
ciency in this progranl is the application of a new 
integration technique (Ref. 5). 

The case of scattering from an infinite plane reflector 
is one of the few electron~agnetic scattering problems 
that has a simple known solution; the resulting field is, of 
course, identically the reflection of the incident field. 
An earlier version of the computer progranl described 
herein implicitly assumed far-field behavior for the 
incident-field pattern. When the progranl was checked, 
with the plane reflector problem as a test case, it was 
found that the con~puted scattered pattern was not the 
same as the incident pattern and that the result was 
dependent upon the wavelength of the incident field. 
(Data for this test case are presented in detail in 
Section 111.) 

Of the several possible explanations for this anomaly, 
it was hypothesized that the far-field behavior of the 
incident fields was the cause. A technique based upon 
spherical-wave theory (which yields an exact repre- 
sentation of the incident fields) was developed, and the 
application of this technique eliminated the error. 

The spherical-wave representation of the incident fields 
is in principle con~pletely general. Also, a general repre- 
sentation of the scattering surface was used in the 
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developnlent of the program. Practical considerations 
required that some of this generality be sacrificed in 
the actual progran~ming, but the theory could easily be 
applied to extend the results if required. 

The only important assumption made in the develop- 
ment of this program was the physical-optics approxi- 
mation in which the currents on the reflecting surface 
were assumed to be determined by the incident magnetic 
field. The validity of this procedure is discussed in 
Section 11; however, the agreement between experimental 
and computed results presented in Section VI and else- 
where (see Refs. 1-3) is, in fact, the strongest demon- 
stration that the physical-optics approximation is a useful 
and valid engineering method. 

11. The Physical-Optics Technique 

If the currents K induced on a surface S by incident 
fields Ei and Hi can be determined, then the scattered 
fields E, and H, caused by these currents are given by 

[ ( K . V ) V  + I ~ Z K I C  E, (P) = - - 
T 

dS 

(la) 

and 

e-jkr 
( K X  V)?dS 

The coordinate system is shown in Fig. 1. 

Since these equations (Ref. 6) are exact, the scattering 
problem consists of (1) determining the currents K and 
(2) evaluating the integrals. 

One method for obtaining the currents is to use the 
following boundary condition on S: 

n X (Ei + E,) = 0 (2) 

This method leads to the following integral equation for 
the currents K: 

This formulation has been known for some time 
(Ref. 6), but the speed and size of the present generation 
of conlputers have made the technique much more 

attractive. This integral equation method has been used 
recently with great success in solving two-dimensional 
scattering problems and problems involving a surface of 
revolution (Ref. 7). The major disadvantage of this 
approach is that, in these restricted cases, the surface 
must not be wider than approximately 20 wavelengths 
(Refs. 8 and 9). In the case of an arbitrary surface, the 
limitation is more severe. 

An approxinlate alternate method for obtaining the 
currents is to assume that, on areas directly illuminated 
by the source, the currents are the same as they would 
be if the incident fields were reflected optically: 

On shadowed regions, the currents are assumed to be 
zero. These assumptions are known as the physical-optics 
approximation. 

For smooth reflectors, this approximation is valid in the 
limit of zero wavelength (in Ref. 10, Cullen gives proof 
of this for the case of a convex body illuminated by a 
plane wave) and, in contrast to the integral-equation 
method, the approximation improves as surface 
dimensions become large compared to a wavelength. 

However, not only does this approximation yield 
results when it is not practical to apply the integral- 
equation technique, but it yields the results almost free 
in terms of computer time. Therefore, the generally 
time-consuming integral-equation technique should be 
used only when the physical-optics approximation is 
inadequate. In the typical scattering problem, the cur- 
rents are of little direct interest; they are only an inter- 
mediate step toward obtaining the scattered fields. 
Therefore, the physical-optics approximation should not 
be judged by whether it yields the correct currents, but 
by whether the final computed scattered fields are correct. 

In some cases Eq. (4) is a poor approximation of the 
true currents, but it results in an excellent approximation 
of the true scattered fields. The reason for this may be 
understood by the following: let the true currents be K, 
and define AK by 

Typically, AK exhibits oscillatory behavior over the 
surface, and its net integrated contribution to the scattered 
fields is small. Watson (Ref. 11) has shown this analyti- 
cally for the particular case of the fields in the focal 
region of a paraboloid that is large with respect to a 
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Fig. 1. Coordinate system 

wavelength. Presumably, the primary effect of AK is very large distances from S. As R+ co, E, and W, must 
to produce local fields that represent stored rather than satisfy the far-field relations: 
propagating energy. 

The similarity between the currents computed by the . , 

integral equation technique and the physical-optics 
approximation has also been pointed out by Andreasen. and - - 
The oscillatory nature of the difference may be seen in e - j k ~  

E(R,@,@) = [Eo(@,@) i n  + Em(@,@) ir] -jj- his results that are for scattering surfaces only a few (6b) 

wavelengths wide (Ref. 9). surface currents for small - 
spheres-0.18 to 3.2 wavelengths radius-obtained from 

Therefore, only Ee and Em need be evaluated. Also a classical boundary value solution are given by King 
in this case, Eq. (1) may be written so that the only term and Wu in Ref. 12, and even here, Eq. (4) is a reasonable 
in the integrand that is dependent on the location of the 

approximation. 
field point P is the argument of the exponential term. 

Therefore, Eq. (4) is not only a necessary step toward The remainder of the jntegrand may be initially corn-' 

reaching a result in problems involving a large reflector, puted over S and stored to be used repeatedly in the 
evaluation of the integral for every field point P. This but also a sound engineering approximation for surfaces 
method represents a substantial reduction in computer larger than a few wavelengths in size. 
time. 

If it is assumed that n and Hi are known, the integrals 
of Eq. (I)  can be evaluated to obtain the scattered fields The assun~ption that the scattered fields are to be 
at any point. However, the problem is greatly reduced if evaluated at R = co does not represent a loss of gen- 
i't is assumed that E, and H, are to be evaluated only at erality. If near-field results are required, they may be 
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obtained from the far-field data using the spherical-wave 
expansions described later. 

The far-field version of Eq. ( l) ,  with the currents that 
are obtained from Eq. (14), is derived in Silver (Ref. 6): 

where 

The final result, the total field ET, is obtained by adding 
the incident fields to the scattered fields as shown in 
Eq. (8): 

The problem has now been reduced to the following 
steps: (1) specify the surface data p and n, (2) specify 
the incident field data Hi, and (3) evaluate the integral. 

ill. Specification of the Scattering Surface 

In the derivation of the scattering integral equations 
(see Eq. l) ,  the surface S is assumed to completely en- 
close some region of space. Examples of surfaces are a 
sphere (which separates space into an infinite region 
and a finite region) and an infinite plane (which sep- 
arates space into two infinite regions). There are obvious 
numerical difficulties with infinite surfaces; the finite 
closed surface also presents some potential problems 
which are discussed in the following paragraphs. 

As discussed in Section IV, the origin of the coordinate 
system is determined by the location of the source, and 
the natural system in which to describe the incident 
fields is spherical coordinates. To define a surface, it is 
necessary and sufficient to specify one variable as a 
function of the other two. The most natural and con- 
venient choice for this problem is a function p(0,+). In 
the case of a sphere that does not enclose the origin, a 
line 0 = const + = const, in general, intersects the surface 
twice so it cannot be described by a single function of 
this form. However, with the assumed current approx- 
imation, the back portion of the sphere has zero currents 
and can be ignored. The illuminated portion is precisely 
the portion that can be defined by a single function. 
There is still one potential difficulty. At the point at 

which p is just tangent to the surface, the partial deriva- 
tive ap/aO is infinite and, as will be seen shortly, is re- 
quired. Therefore, it is necessary to discard a further 
portion of the surface. In the case of an infinite surface, 
all but some finite portion is ignored. In both cases the 
remainder may be identified as a truncated surface. 
Therefore, an "arbitrary reflecting surface" is defined as 
a surface that can be represented by a function p(6,+) 
whose partial derivatives exist at every point on the 
surface. This definition is basically a consequence of 
the physical-optics approximation used to obtain the 
currents, and is sufficiently general to include virtually 
all antenna reflectors. (Discontinuous surfaces may be 
represented by two or more segments satisfying these 
requirements, and the results may be superimposed.) 

Because this surface may be thought of as a portion 
of a closed surface, the derivation of Eq. (1) is still valid, 
except for one point. A truncated surface has an edge, 
and the currents obtained from Eq. (14) will in general 
be discontinuous there. To ensure that the results are 
consistent with Maxwell's equations and the radiation 
condition, Silver (see Ref. 6) introduced a line charge 
on this edge in the derivation of Eq. (7). Sancer (Ref. 13) 
has shown that the surface integrals of Eq. (1) intrinsi- 
cally contain the contour integral representing the con- 
tribution of this charge, and that the tern1 introduced by 
Silver arises automatically as a mathematical consequence 
of truncating the surface. 

The surface data required to evaluate the integral of 
Eq. (7) are p and n. Using a result from differential 
geometry (Ref. 14), Dickinson (Ref. 15) pointed out the 
useful relationship: 

where 

-- aP - -ip + pi. ae ae 

Therefore, specification of p and its partial derivatives 
is a complete description of the surface. Since these 
quantities must be specified on a set of points on S, which 
will be called the integration grid and can easily involve 
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several thousand points, the storage and transmission of 
a description of a surface in this form can be a problem. 
For this reason, it is useful to achieve some sort of data 
compression. One trivial case is that in which the surface 
is completely described by an analytic expression; for 
example, a paraboloid whose focus is at the origin, is 
completely described by a single number f as shown in 
Eq. (11): 

A compromise between the complete generality of two- 
dimensional tabular input and the severe restriction of a 
simple analytic equation may be developed from the 
genera1 form: 

Af 

p(6,+) = a,,(@) cos m+ + b,,,(e) sin m+ (12) 
n l = O  

Then 

M 

ap - ~ t  ab,,, 
ae cos m+ + - ae sin md, (13a) 

and 

Af 

= 2 - ma,,(B) sin md, + mb,,(~) cos md, a+ (13b) 

Suppose that for a given surface it is necessary to 
include terms of order up to M to determine p with 
sufficient accuracy; then by the sampling theorem it 
would be necessary to specify p at 2M values of d, to 
accurately represent details of the surface variations using 
tabular data. Therefore, this Fourier type of represen- 
tation is in principle always a t  least as efficient as an 
ordinary tabular representation. 

If M is allowed to be arbitrarily large, Eq. (12) is in 
fact completely general; however, the reason for choosing 
this form is that the first few terms are sufficient to 
accurately represent a slightly tilted surface of revolution, 
which is a case of substantial practical importance. 
For example, Fig. 2 shows the peak error that occurs 
when a tilted plane reflector is represented by three terms 
of the expansion, a,(@, a,(O), and a,(B). (The axis of 
rotation is taken to be the y-axis, so all of the b,,(e) terms 
are zero.) This error is in general a function of the curva- 
ture of the reflector, but the data shown in the figure are 

MAXIMUM ANGLE Omox SUBTENDED BY REFLECTOR, deg 

Fig. 2. Peak error with three Fourier components used to 
represent a tilted reflector 

representative of the accuracy that may be obtained 
with this method. A reasonable a posteriori estimate of 
accuracy may be obtained by extrapolating the value of 
the first neglected term in the expansion. For example, 
for a tilt angle of 1 deg, the coefficients at  Om,, = 20 deg 
are a, = 1.064199, a, = 0.006761, and a, = 0.000021. The 
values decrease with a nearly constant ratio, and a 
reasonable estimate for the neglected third-order term is 
about to lo4, which is approximately the peak error. 
The relatively poor accuracy obtained for a tilt angle of 
10 deg at O,,, = 40 deg is also predictable from the co- 
efficients (ao = 1.320015, a, = 0.197465, and a, = 0.014608) 
and would lead to an expected relative error of approxi- 
mately 

The derivatives of the a,,,($) terms must also be written 
in as tabular functions of 8; therefore, six input functions 
are required in this example where M = 3  and all bn,(6) 
terms are identically zero. The number of + values at 
which p must be known is determined by the require- 
ments of the numerical integration technique and is 
usually quite large (from fifty to several hundred values 
is typical). Therefore, the specification of only six func- 
tions is a substantial reduction in the quantity of data 
required. A computer program to obtain these functions 
for the case of an arbitrary tilt and translation of a surface 
of revolution is described in Appendix C. 

IV. Specification of the Incident Fields 

The most common method (Refs. 1, 6, and 16) for 
obtaining the magnetic field on the surface S is to assume 
that the incident fields satisfy the far-field relations: 
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and The cases shown in Fig. 3 (and one additional case at 
z = 160 A, which is not illustrated) were evaluated using 

Not only is this a relatively simple form, but Ee (0,+) 
and Eg ( 0 , ~ )  correspond to the quantities conventionally 
measured on an antenna pattern range, so experimental 
data may be easily used as input for the incident fields. 
Also, as discussed in Section 11, theoretical patterns are 
easier to compute in this form. 

Equation (14) represents a spherical wave diverging 
from the origin; therefore, it is not valid unless the origin 

the far-field form for the incident fields given by Eq. (14). 
The fields were derived from the experimental pattern 
of a conical horn with an aperture diameter of 4.671 A, 
illustrated at the origin of Fig. 3. The actual numerical 
integration was truncated at an angle at which contri- 
butions became negligible. The disks shown in Fig. 3 
represent the region over which the integral was actually 
evaluated. It should be noted that horn-reflector inter- 
actions are not considered, so this is not intended to be 
a perfect duplication of a real experimental situation, but 
rather a numerical test of the far-field assumption given 
by Eq. (14). 

is located at the source phase center. The phase pattern 
about this point should be constant, but in practice the The computed scattered fields based on the far-field 

relative phase may vary by 90 deg or more over the 
approximation of the incident field for the six cases are 

region of interest. A nonconstant phase pattern may be 
taken into consideration if Ee and Eg are allowed to be 
complex valued, but the radial components of the field 
implied by the nonconstant phase pattern are usually 
assumed negligible. 

The use of this assumption provides good results for 
many practical problems. Serious errors can arise, how- 
ever, when the surface is "close" to the source. This fact 
has been recognized by Zucker and Ierley, who directly 
computed the near-field radiation of a conical horn in eval- 
uating the scattered pattern of a near-field Cassegrainian 
subreflector (Ref. 3). An alternative approach is to take 
experimental data at range values corresponding to the 
location of the surface; this was done by Hogg and 
Semplak (Ref. 17). 

The disadvantage of the first method is that horn 
patterns computed in this way frequently do not agree 
with experimental data, since it is necessary that strong 
assumptions be made about the fields in the aperture of 
the horn. The disadvantage of the second method is that 
each different subreflector configuration in principle 
requires a new set of experimental data. These problems 
are obviated by the use of the spherical-wave expansions 
that are discussed later in this section. 

A graphic demonstration of the error that may be intro- 
duced if far-field behavior is assumed for the incident 
fields is provided by the case of scattering from a large 
plane reflector. In the case of an infinite plane, the result 
must be the reflection of the incident pattern, inde- 
pendent of frequency. Also, in the case of an infinite 
plane, Eq. (4) is valid, independent of frequency; there- 
fore, this is an excellent direct test of Eq. (14). Fig. 3. Plane reflector cases 
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shown in Fig. 4 along with the incident-field pattern. 
Only the +-component is illustrated, but the behavior of 
the @-component is similar. All of these patterns should 
be identical, but the discrepancies are large. In addition 
to the severe distortion of the reflected main lobe when 
;z = 5 and 10 A, a spurious back lobe appears in all cases 
-that is, the plane that was assumed to be a perfect 
reflector behaves as if it were partially transparent. 

In the special case of a plane reflector, the scattered 
fields E, are identical in the reflected and backward 
directions. When the incident field is added (Eq. 8), it 
should cancel this backward radiation. Therefore, this 

back lobe is identically the error between the reflected 
pattern and the incident pattern. (The error includes 
both amplitude and phase differences since it is the 
difference between complex-valued quantities.) 

The power in the computed scattered patterns has been 
calculated as a percentage of the power in the incident 
fields and is shown in Fig. 5. As indicated in Fig. 5, the 
main (reflected) lobe alone accounts for 100 percent of 
the incident power in all cases, so the total power in the 
computed pattern exceeds the incident power. This excess 
is, of course, physically impossible. The spurious power 
in the back lobe is strongly dependent on the distance 

POLAR ANGLE 8, deg 

Fig. 4. Computed amplitude patterns for plane reflector cases; far-field assumption for incident fields 
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RANGE, 
~ ~ / h  

Fig. 5. Power in computed scattered patterns 

from the source to the surface, which is plotted in units of 
D2/h where D is the diameter of the source. At z =2D2/h, 
the traditional far-field boundary line, this power has 
dropped to less than 2 percent. 

The behavior of the phase pattern of Em is shown in 
Fig. 6. These phase data have been transformed to a new 
coordinate system; the origin was moved from the point 
at the source phase center to the image of this point 
behind the plane reflector where the phase center of the 
total scattered fields should be located. In fact, this is 
very nearly the phase center for the first three cases; the 
patterns of the last cases are those of a source whose 
phase center is closer to the plane surface. 

Therefore, instead of the total scattered fields appear- 
ing to arise from a perfect image of the source, in the 
three worst cases the apparent source is distorted and has 
moved toward the plane. In most practical situations, the 
agreement shown for the three best cases would be 

adequate, but it is significant that even at the furthest 
distance x = 160 h (7D2/h of the feed) there is noticeable 
error in the results. 

This error may be eliminated entirely by the use of a 
representation of the incident fields that is valid in the 
near field. Spherical waves are a well known set of 
solutions to Maxwell's equations that satisfy this require- 
ment. If the incident fields satisfy Maxwell's equations, 
then coefficients a ,  and b,, may be found such that 

where n, is a transverse electric (TE) and m.,, is a trans- 
verse magnetic (TM) spherical wave, as given by Eq. 
(A-1) in Appendix A. 

The method for obtaining coefficients so that the wave 
expansion will match an arbitrary input pattern in the 
far field is also discussed in Appendix A; therefore, it will 
simply be assumed that coefficients have been obtained 

-180l I I 
108 1 44 180 

POLAR ANGLE 8, dog 

Fig. 6. Computed phase patterns for plane reflector 
cases; far-field assumption for incident fields 
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to describe the incident field. The form of Eq. (15) com- 
pletely eliminates the approxinlation of Eq. (14) by 
directly yielding Hi on the surface. However, the eval- 
uation of the spherical-wave expansion does involve 
computer time. Although this time is typically less 
than 10 percent of the total, the comnlent made earlier 
with regard to the integral-equation technique for ob- 
taining the currents also applies here: the expansion 
should be used only when the far-field form is inadequate. 

Clearly, the far-field form is inadequate in cases x = 5, 
10, and 20 x of the data presented in Figs. 4 and 6. These 
cases have been recomputed using a spherical-wave 
coefficient specification of the incident fields. The re- 
flected patterns are virtually indistinguishable from the 
incident pattern, as shown in Fig. 7. Phase data, trans- 
formed to the image point, are shown in Fig. 8; clearly, 
the error has been eliminated. 

Now that it has been established that the far-field 
assun~ption yields incorrect results that are corrected 
when a spherical-wave expansion is used, it is of interest 
to consider the physical nlechanisnl of the discrepancy. 
Since the theory is based on current integration, the 
surface current distribution must reflect the essential 
difference between the two methods. The amplitude and 
phase of the y component (the principal polarization) of 
the surface currents at + = 0 are compared for three 
cases in Figs. 9 and 10. The currents in Figs. 9 and 10 
are plotted versus the Cartesian coordinate x, rather than 
the polar angle (see Figs. 1 and 3), to illustrate the 
true relative spatial distributions of the three cases. 

When the far-field approximation is assumed, the 
diameter of the region containing significant current mag- 
nitudes linearly approaches zero as the source approaches 
the reflector. Typically, a smaller source will result in a 
broader radiation pattern, but in this case the phase 
of the surface currents beconles more uniform as the 
source becomes smaller and this fact tends to make the 
pattern narrower. Over a considerable range of x values, 
these effects nearly cancel out, as denlonstrated by the 
resulting radiation patterns shown in Fig. 4. However, 
in the limiting case of a point source, a broad dipole 
pattern wouId be expected with the phase center of the 
pattern on the reflecting surface. This is in fact exactly 
the trend exhibited by the data for the far-field case in 
Figs. 4 and 6. As mentioned previously, the surface cur- 
rents radiate symmetrically on both sides of the plane, 
and because a broader pattern cannot result in perfect 
destructive interference with the incident pattern, the 
result is the back lobe which appears in Fig. 4. 

When the spherical-wave expansion is used, the phase 
behavior is very siinilar to the far-field result, except that 
the 180-deg discontinuities are smoothed out. (Since the 
phase data are n~odulo 360 deg, these discontinuities 
could be in either the positive or negative direction. They 
were drawn to match the spherical-wave phase data as 
closely as possible.) The major difference between the 
spherical-wave and far-field cases is that the patterns of 
the current magnitudes are broadened, particularly in 
the z = 5 A case. Because the phase patterns are nearly 
the same, the larger source produces a narrower radiation 
pattern that brings the result into agreement with the 
incident pattern, as shown in Fig. 7. 

It is of interest to note that the radial field component 
of the incident magnetic field-which is completely ne- 
glected in the far-field approximation-makes a noticeable 
contribution to the total current, as shown in Fig. 11. 
When z = 5 A, this current contributes about 3 percent 
of the field strength of the scattered pattern on axis, so a 
small but not negligible part of the correction to the 
far-field approxinlation is the inclusion of the radial field 
components. However, these surface current data lead to 
the conclusion that the primary cause of the error result- 
ing from the use of the far-field approximation is that 
the current magnitude patterns are too narrow. 

The conlputer program developed in this report (see 
Appendix D) includes a subroutine FIELDS that pro- 
vides the main program with values of Hi on the surface 
integration grid. Two such subroutines were written. 
In one subroutine the incident fields are specified by a 
set of spherical-wave coefficients a,, and b,,. In the other 
subroutine the far-field relations of Eq. (14) are assumed, 
and E ,  and E$ are represented by exactly the same type 
of series as the surface data (see Eq. 12). In the case of 
the field data, the m = 1 azimuthal variation term is 
of special significance and is the only term present in an 
important class of sources (Ref. 18). For this reason, the 
FIELD subroutines were written for any single value m 
for the order of azimuthal variation. If more than one 
value is required, the cases may be run individually and 
the results superimposed. The far-field subroutine is 
intended for cases in which the reflecting surface is 
sufficiently removed from the source, or in which the 
available number of spherical waves (limited by storage 
and other considerations) is inadequate to expand the 
incident-field pattern. The spherical-wave subroutine 
should be used whenever the reflector is close to the 
source, and in borderline cases (which include most 
practical Cassegrainian antenna systems) when assured 
accuracy is the overriding concern. 
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POLAR ANGLE 8, deg 

Fig. 7. Computed amplitude patterns for plane reflector cases; spherical-wave expansion of incident fields 

V. Evaluation of the Integral in each of the variables of integration. In the case con- 
sidered here, the integral to be evaluated (see Eq. 7) may 

The numerical evaluation of the integral, Eq. (7), may be ,,itten as follows: 
justifiably be considered the most important part of the 
scattering problem. A primary engineering function of a 
scattering program is the evaluation of the effect of one I(@,@) = - Is ~ ( 9 , ~ )  ejQ &d;p (16) 
or more parameters on the resulting pattern; this appli- 
cation is severely restricted if each case requires 6 or 8 h 
of computer time. where 

y =  p o i R - p  
The fast Fourier transform technique has been applied 

to the evaluation of diffraction integrals by Pratt and = p [sin e sin O (cos + cos @ t sin + sin @) 
Andrews (Ref. 19), but this formulation is applicable 
only when the argument of the exponential term is linear -t cos e cos 0 - 11 (17) 
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Fig. 8. Computed phase patterns for plane reflector 
cases; spherical-wave expansion of incident fields 

Since y is a nonlinear function of e and 4, the fast Fourier 
transform technique is not applicable. Techniques that 
have been successfully applied to Eq. (16) are Gaussian 
quadrature, which was used by Allen (Ref. 20), and 
Romberg quadrature, which was recently used by Rusch 
and Strachman (Ref. 21). The Romberg method is par- 
ticularly useful in the case of computing the main-beam 
and near-sidelobe regions of a high-gain pattern, and 
could in fact be used with the method presented below 
to increase efficiency in this situation. 

Before describing the integration technique developed 
by the author, some general features involved in evaluat- 
ing this integral will be discussed. Suppose I(@,@) is to be 
evaluated on a set of points (the output grid) given by 
(@,, a,), 1 < i 5 JMAX, 1 5 k < KMAX. Typical values 
are JMAX = 91, KMAX = 2. The integral will be eval- 
uated numerically when the integrand is specified at a 
set of points (the integration grid) given by (O,,,, +,,), 
1 < m 5 MMAX, 1 < n < NMAX. A modest grid size is 
MMAX = 50, NMAX = 181. (The effect of these grid 

parameters on computed pattern accuracy is discussed 
below and is considered in detail in Ref. 22.) 

As mentioned in Section 11, with the far-field assump- 
tion, F does not depend on O and @, so it need only be 
computed once on the integration grid-9050 points in 
this example. This operation requires little computer time, 
but since F has three Cartesian components (each of which 
is complex), 6 X 9050 = 54,300 values must be stored. 
Many computers do not have this capacity. Therefore, the 
program was written so that several integration grids may 
be specified-i.e., the reflector is divided into segments- 
and the resulting scattered fields from each segment are 
superimposed. 

Unavoidably, the function e j k y  must be computed at 
JMAX X KMAX X MMAX X NMAX points (1,647,100 in 
this example). This example demollstrates the tremendous 
advantage of storing F rather than recomputing it for 
every output point. Also, the number of points (1,647,100) 
represents the number of summations involved to evaluate 
the integral for all of the output points. Several steps were 

FAR-FIELD APPROXIMATION 
. . . . . . . . . SPHERICAL-WAVE EXPANSION 

NORMALIZED COORDINATE, X/X 

Fig. 9. Surface currents on plane reflectors; 
amplitude behavior 
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FAR-FIELD APPROXIMATION 

I . . . . . . . . . . SPHERICAL-WAVE EXPANSION 

NORMALIZED COORDINATE, x/h 

Fig. 10. Surface currents on plane reflectors; Fig. 11. Surface currents on plane reflectors; contribution 
phase behavior of the radial component of the incident fields 

taken to minimize the time used in this portion of the integral is of the form 
program: 

(1) The trigonometric functions sin 0, cos 0, sin 4, cos +, 
sin 0,  cos 0, sin a, cos @ are precomputed at the 

/.:/+>(0,+) exp iky, (0,+) ded+ (18) 

required grid angIes and stored so that the compu- where 
tation of y will involve only multiplication and 
addition of stored quantities, rather than the time- 
consuming evaluation of trigonometric functions. F =  (-$-H, + p s i n O ~ +  i. 

For this reason, Eq. (17) is not written in the form 
cos 4 cos + sin 4 sin a = cos (4 - a), which 

) 
would have to be computed at every permutation -p  sin 0 He - H ~ )  i+ 

of 4 and a values. 

(2) A fast machine-language subroutine was written to 
compute cos ky + j sin ky .  This subroutine is de- 
scribed in Appendix B. 

a~ sin 0 H+ - - H.) ip (19a) 
a4 

(3) A special numerical integration technique was 
developed that reduces the required values of Since the unit vectors of Eq. (19) vary over the region of 

MMAX and NMAX. integration, Cartesian components are used in the actual 
evaluation of the integral. 

The numerical integration technique is described in 
Ref. 5, but for completeness the description will be par- In the near field, the radial variation of Hi will approxi- 
tially repeated here. For a fixed output point (O,, a,) the mate e-jQ/p behavior; therefore, if this dominant variation 
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is factored out, H p ,  He,  and H g  as defined in Eq. (19) will 
be nearly constant with respect to p, which makes it much 
easier to numerically approximate F. The e-jkp factor has 
been included in the path length function y, and the l / p  
factor is canceled by a p factor in the term for incremental 
area dS. Deviations from e-jkp phase behavior are included 
by allowing H p ,  Ho, and H+ to be complex valued. (Since 
a radial component of Hi is included, this does not involve 
any assumptions or approximations). 

Consider the behavior of the integrand over an incre- 
mental area of S, 

distances on the order of a wavelength, F will not vary 
much. Thus, in virtually any problem, F and y will be 
very well behaved and slowly varying over AS,,,,. How- 
ever, the possible 2~ variation in the exponential term 
could cause the real and imaginary parts of the integrand 
to behave like a full cycle of a sinusoid. To apply a tech- 
nique such as Simpson's rule to the entire integrand would 
require a further subdivision of AS. However, if the func- 
tions F and 7 are approximated individually a simple linear 
form will operate satisfactorily over AS,,,,,. Explicitly, 
write 

Suppose that the physical dimensions of AS,,,, are on Y(Q,+) - allin + Pill?, (0 - on,) + tljl,, (4 - (21b) 
the order of a wavelength, = 2T/k. Then the path length 
term jky cannot vary by more than 2 ~ ,  and since electro- 
magnetic fields cannot generally change abruptly over for (8,+) E~S,,, , , .  

The method used for determining the coefficients is to best-fit a plane (least squares sense) to the values of 
the function at the corners of AS,,,. For example, in the case of the function F this method yields the following: 

1 
a,,,, = - [3F(On1,+,i) - F(0,1+1,+1t+1) + F(Qrn+~,+n) + F(@l,1,+n+l)I 

4 (224 

where 

An identical relation holds between the coefficients a,,,,,, P,,,, t,,,, and the function y. The integration over AS,,,,, 
may then be performed analytically, yielding the contribution: 

A~llI,t = exp jka,,,,, 
~ x P  ik~jn , ,~Onl  - 1 exp jkt ,,,,, A+,, - 1 

ikt,,,, I 

Since it is possible for p,,,,, or ~j,l,,L to be near or equal to zero, it is necessary to develop separate equations for 
this case (they are easily derived from the above equation) to avoid large numerical errors. 
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It should be noted that many of the computations 
involved in evaluating each single vector component 
do not have to be repeated for the remaining five com- 
ponents. For example, in Eq. (23) only the conlponents 
of the a ,,,,,, b ,,,, and c, , I , ,  coefficients will change. There- 
fore, although the six vector components present a severe 
storage problem, the effect on con~puter time is con- 
siderably less than a factor of six. 

The basic idea behind this method-to isolate the oscil- 
latory behavior of the integrand-is conceptually similar 
to the Eikonal technique used in deriving geometrical 
optics from Maxwell's equations (Ref. 23) and is also a 
feature of Filon's method for evaluating Fourier integrals 
(Ref. 24). In fact, Allen has also applied Filon's method 
to antenna problems and concluded that it is competitive 
with Gaussian quadrature (Ref. 20). The essential dif- 
ference of the method presented here is that the "fre- 
quency" terms p,,,, and b,,,, are re-estimated for each 
incremental area of integration, rather than assumed as 
known constants. 

If radiation integrals are considered as analytic forms 
of a Huygens type of principle in which infinitesimal 
electric or magnetic dipoles radiate a simple pattern and 
are summed as in an array, then another way of inter- 
preting this technique is to describe it as replacing in- 
finitesimal elements with elements about a wavelength 
square that radiate a more conlplicated pattern as given 
by Eq. (23). 

Although this technique appears obvious and has an 
intuitive appeal from an engineering standpoint, it is 
somewhat unusual mathematically. The integral is a linear 
operator, and virtually all quadrature formulas are also 
linear, except this one. The easiest way to show this is to 
note that the functions 1 and ej" are both of the form for 
which the technique will be exact. However, their sum 

is not of the form (a + be) ejk("+fle), and the sum of the 
(numerical) integrals is not equal to the (numerical) inte- 
gral of the sum. However, if F and r are well behaved, 
the technique does in fact converge to the integral oper- 
ator (and therefore becomes linear) in the limit of zero 
step size (Ref. 5). 

Convergence tests for the case of scattering from a 
hyperboloid show that with this technique, incremental 
areas 2/3 of a square wavelength in size result in errors 

more than 40 dB below the pattern maxima (Ref. 22). 
Similar tests of a program that uses Simpson's rule to 
evaluate a one-dimensional integral show that the areas 
must be at most 0.04 square wavelengths for the two- 
dimensional case, and possibly smaller (Ref. 22). There- 
fore, the number of integration points may be reduced 
by at least a factor of 16 relative to Simpson's rule. The 
plane reflector data presented in a previous section were 
computed with the step sizes given in Ref. 22. These 
data are an absolute test of numerical accuracy and are 
further confirmation of the convergence tests. 

Although the complicated form of Eq. (23) seems to 
indicate that this technique would require an order of 
magnitude more time per data point than Simpson's rule, 
the fact is that in this type of problem the evaluation 
of ejx = cos x + j sin x tends to dominate machine time. 
For example, an IBM 7094 will multiply or divide iwo 
numbers in about 10 p, or add two numbers in ab'out 
15 ps (Ref. 25). However, computation of the sine and 
cosine to obtain the real and imaginary parts of ejx re- 
quires 571 p with the library subroutine, or 281 ps with 
the fast subroutine described in Appendix B (see 
Table B-1). 

It is estimated that time per data point for this tech- 
nique is increased by a factor of 2 to 4, relative to 
Simpson's rule, which means that the net reduction in 
total running time is a factor of 4 to 8. In  practice, this 
technique can result in a reduction from 8 h to 1 or 2 h 
of computer time, so it is of substantial practical impor- 
tance. For example, Slobin (Ref. 16) has reported that a 
program using Simpson's rule integration requires 1.3 min 
of IBM 360/75 computer time per output point to com- 
pute the scattered pattern of a 56-wavelength-diam tilted 
subreflector. Thus, 3.90 h would be required for 180 
output points. These data have been obtained in 1.01 h 
of IBM 7094 Mod I computer time with the program 
described here. (The 1.01 h includes 9.8 min to evaluate 
the spherical-wave expansion of the incident fields at 
each of the integration grid points.) The 360/75 is faster 
than the 7094 Mod I by a factor of between 3 and 5; 
therefore the program described here is 11 to 19 times 
faster than this particular program that uses Simpson's 
rule. (It is interesting to note that the new technique 
works better on an old computer than the old technique 
on a new computer.) 

It should be noted that in the case of rotational sym- 
metry, when one integration may be performed analyti- 
cally, these same data can be obtained by evaluating a 
one-dimensional integral (with a Bessel function in the 
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integrand) in about 6 min (Ref. 22). Therefore, it is 
grossly inefficient to evaluate a double integral in sym- 
metrical cases, and the program described here should 
only be applied to problems involving asymmetrical con- 
figurations. 

These convergence data are representative of the "low- 
gain" case in which the contributions from currents on 
the surface do not add in phase at any output point. A 
special case of considerable practical interest is the com- 
putation of the main lobe and first few sidelobes of the 
scattered pattern of a high-gain antenna such as a para- 
boloidal reflector. In this case, contributions are adding 
nearly in phase, i.e., the phase of the integrand is v e q  
slowly varying. Tests recently completed indicate that, in 
this case, integration points may be spaced at intervals 
of 20 wavelengths or more without seriously affecting the 
accuracy of the results. (Actually, in many practical cases 
closer spacing will be required to represent sufficient 
detail of the surface and incident-field data.) The results 
of these recent tests are similar to results reported by 
Allen for Filon's method and Gaussian quadrature for 
this case (Ref. 20), so the integration technique used here 
is nearly equivalent to the techniques in this situation. As 
mentioned previously, any of,these methods may be im- 
proved by a Romberg type of modification in this case. 
The large spacings allowable between grid points means 
that the patterns of reflectors over 1000 wavelengths in 
diameter may be computed. However, beyond the first 
few sidelobes the situation begins to approach the "low- 
gain" case described earlier. 

VI. Comparison With Experimental Data 
and Other Results 

An improved theory is important if it confirms the 
results of an approximate theory, since the approximation 
may then be used with confidence; it is also important 
if an improved theory corrects the results of an approxi- 
mate theory. The application of spherical-wave theory 
developed in this report is considered valuable on both 
counts. A case in which the far-field approximation yields 
an incorrect result has already been presented; a case in 
which this approximation is adequate, except for the 
most precise calculations, is discussed in this section of 
the report. 

A basic criterion in selecting this sample case was that 
it represent a real problem. The standard NASA/JPL 
Deep Space Network antenna is an 85-ft-diam parabo- 
loid, with a Cassegrainian feed system, operated at 

S-band. This configuration is also common for communi- 
cations satellite terminals, so this sample case is clearly 
one that is of practical interest. 

The object of the analysis was to con~pute the radiation 
pattern of the overall antenna, with particular emphasis 
on the pattern maximum that determines the antenna 
gain. The antenna is illustrated in Fig. 12. The design of 
this particular antenna is well documented (Ref. 26), and 
JPL provided experimental patterns of the fields scat- 
tered by the subreflector used with this configuration. 

There is reason to question the application of the far- 
field approximation to the analysis of this antenna, because 
the subreflector is at 1.65 D 2 / ~  of the primary feed, and 
the main reflector is at 0.148 D2/i  of the subreflector. 
Because the results of a far-field analysis generally agreed 
with experimental data, it was certain that the approxi- 
mation was reasonably good, but the amount of error 
introduced was uncertain until the completion of the 
analysis presented in this report. 

-f =36 ft ~-4 

Fig. 12. Configuration of the 85-ft-diam antenna 
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The primary feed for this antenna was the same dual 
mode conical horn (Ref. 27) used for the plane reflector 
cases. The spherical-wave coefficients for this feed were 
obtained from an experimental pattern using the tech- 
nique discussed in Appendix A; the incident-field pat- 
terns shown in Figs. 7 and 8 represent an evaluation of 
the spherical-wave expansion at p = CQ. Two parallel 
analyses were performed on the antenna. One analysis 
was made with the spherical-wave expansion FIELDS 
subroutine and the other with the far-field approximation 
FIELDS subroutine. The analyses were identical in all 
other respects. 

The two computed scattered patterns of the subre- 
flector (which consists of a vertex plate,. a hyperboloidal 
section, and a conical flange) were virtually identical. 
This is not surprising, because the subreflector is near 
the 2D2/h distance from the primary feed. 

The experimental subreflector pattern was measured 
at a range that was nearly equal to the distance to the 
main reflector. In Fig. 13, these experimental data show 
good agreement with the pattern computed with the far- 
field approximation. The pattern computed using a 
spherical-wave expansion was in turn expanded in a 
series of spherical waves. In Fig. 14, the spherical-wave 
expansion, evaluated at the same radius at which the 
experimental data were measured, is compared to the ex- 
perimental pattern. The agreement is even better than 
that in Fig. 13. The computed data closely follows the 
experimental pattern, demonstrating that the agreement 
between theory and experiment is outstanding. 

The next step in the analysis was to use the subreflector 
pattern to illuminate the main paraboloidal reflector, 
again by the use of a spherical-wave expansion and the 
far-field approximation in the respective cases. The two 
computed main reflector patterns are compared in Fig. 15. 
Although the most noticeable difference is in the side- 
lobes, this difference will generally be of little impor- 
tance. Of greatest significance is that the peak of the 
main beam (i.e., the computed gain) differs by 0.127 dB 
in the two cases. 

With the scale used in Fig. 15, a 0.127-dB difference 
is difficult to detect, and in many applications of com- 
puted antenna data it will be of no importance whatso- 
ever. Therefore, for these applications (and for ahtennas 
of this approximate design) it has been shown that the 
faster and simpler far-field analysis is inadequate. For 

example, the far-field analysis will be used for the feed 
displacement calculations to be presented shortly. Use 
of the far-field analysis is of particular importance in the 
case of development work involving a large amount of 
computer time. 

However, there are cases in which a 0.127-dB differ- 
ence is significant. Computed data have reached a level 
of sophistication where they are frequently weighted 
about equally with experimental data in calibrating large 
ground antennas (Ref. 28). An 85-ft antenna costs about 
one million dollars (Ref. 29), and it can be argued 
(Ref. 30) that an uncertainty of 0.127 dB in the gain of 
such an antenna is worth $40,000. In fact, the costs of 
the time and effort spent to calibrate an antenna with 
this precision are even greater than $40,000. Since the 
IBM 7094 computer time required for the two cases 
shown in Fig. 15 (including the spherical-wave expansion 
of the subreflector pattern) was 23.24 and 8.60 min for 
the spherical-wave and far-field analysis, respectively (a 
difference of about $61.00 at the current price of com- 
puter time) it is probably safe to say that most engineers 
would choose the more accurate analysis. (Since the evalu- 
uation of the spherical-wave expansion on the integration 
grid is independent of the number of output points, the 
relative times would be more nearly equal for a larger 
number of output points.) 

In all of the cases evaluated so far, rotational syrn- 
metry has been assumed. As a last example, the problem 
of an offset feed system will be considered to illustrate 
some of the capabilities of the program for asymmetric 
geometries. 

The case considered is the offset feed geometry shown 
in Fig. 16. To provide a basis of comparison, the dis- 
placements along the dashed curve shown in the figure 
are the same as a case previously analyzed by Ruze 
(Ref. 31). However, the true subreflector pattern has 
been retained, thereby eliminating the need to assume 
a simple form for the illumination of the main reflector. 
In addition to the displacement translations, the feed 
system was rotated so that the edge angle of the main 
reflector remained nearly constant, to minimize spillover. 
The offset angle fi  is measured in the conventional 
manner. The computed patterns for a zero offset and 
two nonzero offsets are shown in Fig. 17. The analysis 
given by Ruze, which is based on scalar theory, includes 
the case of an illumination function of the form 
f ( x )  = 0.3 + 0.7(1 - x2) ,  that approximates the reflector 
illumination in the case considered here. 
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Fig. 13. Comparison of experimental and computed subreflector patterns; far-field approximation case 

For this geometry and illumination, Ruze predicted 
a beam deviation factor of 0.84. The beam deviation 
factors of the results given in Fig. 17 are 0.835 and 0.840, 
for the 1- and 2-deg cases, respectively. The coma lobes 
agree within 1 dB with the values predicted by Ruze and 
the half and tenth-power beamwidths agree within 
0.04 deg. The gain loss agrees (as well as it is possible to 
read the graphs given by Ruze) within approximately 
0.1 dB. 

This agreement is so complete that it might seem 
irrelevant to bother with the more rigorous analysis. 

However, in addition to the confidence factor mentioned 
earlier, the approximate analysis has several restrictions: 
(1) it assumes a simple analytic illumination function, 
(2) the displacements must be along the specific curve 
shown in Fig. 16, and (3) the displacements are assumed 
to be small compared to the focal length. In the case 
considered in this section, these restrictions were met by 
design to obtain a comparison with independent data, 
but the program is capable of a case with (1) a very 
complicated illumination pattern (for example, a pattern 
with a central null produced by a vertex plate, including 
the phase pattern perturbations typical in this situation), 
(2) the displacements in any direction and, (3) a tilt 
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Fig. 14. Comparison of experimental and computed subreflector patterns; spherical-wave expansion case 

angle that is restricted to approximately 5 deg in the 
present program (the wavelength determines the allow- 
able peak error that in turn determines the tilt angle as 
shown in Fig. 2), but that could be made arbitrarily large 
if more Fourier components were included, or if a spe- 
cial surface subroutine were written for the particular 
case of a tilted paraboloid. 

VII. Summary 

The results shown in the previous section clearly 
demonstrate the usefulness of the physical-optics tech- 
nique. The agreement between theoretical and experi- 

mental data is excellent, and in the case of the 85-ft 
antenna, the application of a technique such as the 
integral-equation method to obtain the surface currents 
is virtually hopeless because of the large size of the 
reflector. 

It was demonstrated in Section IV that the far-field 
approximation for the incident fields can lead to poor 
results, and that the spherical-wave representation cor- 
rects the results. The far-field expansion is still useful in 
many practical cases, but if precise results are required, 
and if the reflectors are in or close to the near-field 
region, the spherical-wave representation should be used. 
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10 1 I I I I I coincident with a coordinate boundary, an approximate 

POLAR ANGLE @, deg 

--- COMPUTED WITH FAR- 

FIELD APPROXIMATION 
. . . . . . . . . . COMPUTED WITH SPHERICAL- 

WAVE EXPANSION 

Fig. 15. Computed patterns of 85-ft-diam main reflector; 
comparison of far-field and spherical-wave expansion 

. - - -  
boundary must be constructed out of trapezoidal-like 
segments. An interesting extension of the integration 
method developed here would be to compute the scat- 

cases 

tered pattern of a triangular-shaped segment to be used 
in constructing edges that are at least continuous. An- 
other possible improvement is to modify the program to 
accept an arbitrary number of Fourier components in the 
surface representation that would eliminate the small 
restriction on the reflector tilt angles. 

The main area of future work lies in applying the 
scattering program. Parameter studies of near-field 
Cassegrainian antennas using actual experimental feed 
patterns is an obvious example. In all of the cases con- 
sidered above, the spherical-wave coefficients of an 
incident-field pattern were obtained with the program 
described in Appendix D, but the scattering program will 
accept coefficients regardless of how they are obtained. 
For example, if the currents excited on a feed device, 
such as log-periodic wire antenna, are known (perhaps 
from the integral equation method), the spherical-wave 
coefficients may be obtained directly from the currents. 

A Fourier type of representation of the scattering sur- 
face is efficient in the case of a slightly tilted figure of 
revolution, and in many cases three components are 
sufficient to accurately specify the surface. 

In the case of a low-gain asymmetrical reflector the 
program developed here is an order of magnitude faster 
than an earlier program; in the high-gain case the inte- 
gration technique loses much of its advantage over prior 
methods, but the other timesaving techniques used still 
result in efficient operation. For symmetrical geometries, 
one integration should be performed analytically. 

VIII. Possible Improvements and Future 
Applications of Computer Program \ // \ 

The computer program could be improved in several 
ways. For example, a Romberg type of procedure could 

1 
OFFSET 

be incorporated into the integration method. Also, in the 
/ \  POSITION 

existing program, when the edge of the reflector is not Fig. 16. Geometry of offset-feed cases 
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101 I I 1 I I Also spherical-wave coefficients have been obtained 

I I I I I I  
- 

analytically for cases such as a plane wave and an arbi- 
trarily located and oriented dipole (Ref. 32). This dipole 
case is precisely the expansion required to compute the 

0 
fields in the focal region of a reflector by the use of 
the same reciprocity technique recently used by Rusch 
(Ref. 21). This is a very interesting area for future work, 
since focal-region fields studied have involved assump- 

m tions and restrictions, whereas this method is, in principle, 
71 . -10 
CT 

exact. Also, this method is applicable to nonparaboloidal 
g antennas, such as shaped Cassegrainian antennas 
2 (Ref. 33), that have never been analyzed to obtain the 
W z focal-region fields. The reciprocal part of this problem is 

2 -20 
the computation of the pattern of reflectors with de- 

cd focused feeds, and this is also a very interesting area for 
application of the scattering program, as discussed in the 
previous section. 

-30 The spherical-wave expansion program also has future 
applications independent of the scattering program. For 
example, a study is currently being pursued to apply 
spherical-wave expansions to the determination of cor- 

-40 
-2 - 1 0 1 2 

rection factors for near-field gain measurements (Ref. 34). 
The usefulness of mode expansions in the solution of 

POLAR ANGLE 6, deg 
boundary-value problems has not been exhausted, and 

Fig. 17. Computed patterns of 85-ft-diam main cases may be found in which the method is superior to 
reflector with offset feed the currently popular integral-equation method. 
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Appendix A 

Spherical-Wave Expansions of Electrornagnetic Fields 

In a source-free, homogeneous, isotropic medium, 
spherical-wave solutions of Maxwell's equations are given 
by Stratton (Ref. 35): 

a COS 
- zn (kp) - PF (cos 8) m+ i+ a0 sin 

( A-la) 

2 (kp) sin n;,, = n(n + 1) - P; (cos 8) m+ ip 
kp cos 

1 a a sin +-- 
kp a~ [ p ~ t  (kp)le (cos 8) COS m+ i o  

1 a m~ 2 (COS 0) cos 
A - - [ P Z ~  sin 8 sin 7,&$ kp ap 

where 

ejWt = time dependence (implicitly 
assumed) 

(p,8,+) = spherical coordinates (see Fig. 1) 

k = U(E~)'" = %/A = propagation constant 

x,, (kp) = any solution of the spherical Bessel 
equation 

Pt (cos 6) = associated Legendre function 

In the following derivation, an electromagnetic field is 
understood to be a pair of vector valued functions E 
and H (defined everywhere in a source-free, linear, ho- 
mogeneous, isotropic region V) that satisfies 

are defined and finite. 

Since V V X A = 0 for any vector A, Eq. (A-2a) is 
equivalent to the assumption that Maxwell's equations 
are satisfied; by Poynting's theorem, Eq. (A-2b) is equiva- 
lent to the requirement that sources radiate finite power 
(assuming finite energy in any resonant fields). 

The parallels between electromagnetic theory and the 
theory of complex variables are intriguing, and it is 
interesting to note that by Eq. (A-2a), the existence of the 
first derivative ( V  X E and V X If) assures the existence 
of derivatives of all orders ( V  X V X X V X E, etc.). 
Other striking analogies are between the field integrals 
(which express the fields everywhere in a volume in terms 
of the values on the surface enclosing the volume) and 
Cauchy's theorem, and between spherical-wave expan- 
sions and Laurent series. 

The objective of this section is as follows: given an 
electromagnetic field in a region V that consists of all 
space outside of a sphere of radius p, (i.e., all sources are 
enclosed in this sphere), determine coefficients a;,, and 
b;,, so that everywhere in V 

V X E and V X H exist everywhere in V 
k 

H(p,8,+) = T-- C 2 agmn n;mn f b;,nn m;mn (A-3b) 
IUP 111 n 

and 
Jones (Ref. 32) has shown that any electromagnetic 

V X E = - j ~ p H  field can be written in this form. Furthermore, since 
(A-2a) sources were assumed to be of a finite extent, only the 

V X H = jocE solutions involving 1z,(,2) (kp) (the spherical Hankel func- 
tion of the second kind that satisfies the radiation condi- 

where E and p. are physical constants, and o is a nonzero tion and corresponds to an outward traveling wave, as 
positive constant, and where discussed in Refs. 36 and 37) need be included. 
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Bouwkamp and Casimir (Ref. 38) obtained expressions 
for the coefficients in terms of the source currents; 
Kennaugh (Ref. 36) gives expressions in terms of the 
tangential E and H fields on a surface enclosing the 
sources; Jones (Ref. 32) includes expressions in terms of 
all components of either E or H. Since the data involved 
here are the tangential components of E on a sphere of 
radius p, > p,, a derivation for this case will be given. 
(Note that the case Jones considers is equivalent for the 
determination of TE wave coefficients but not for the de- 
termination of TM wave coefficients.) 

As a first step, let a;,, and b;,, be any set of coeffi- 
cients so that Eq. (A-3) is satisfied. (As mentioned above, 
Jones has shown at least one such set must exist.) 

Define 

a Eg ( 8 , ~ )  = C C - a:,, ; P (cos 8) 'OS m+ 
~ ? 1  n sin 

mP: (cos 8) cos 
--+ bgmn m+ (A-5b) 

sin8 sin 

where 

Ea (8,+) E E(PI,~>+) '0 

Eg (8,+) = E(p1,6,+) i$ 

The azimuthal components ,are separated out by the 
use of an ordinary Fourier expansion. (These equations 
are true for m > 0. For m = 0, an additional factor of 2 
should be included but has been omitted for clarity.) 

mP; (cos 0) 
= - T C T a;,, 

n sin 0 

Then, since Eq. (A-3) is true everywhere in V, in par- 
ticular, there must be equality of the tangential com- 
ponents at p = p,: Bm: (0) - Eg ( 6 , ~ )  m+ d+ 12" 

, mP; (cos 8) ,in 
Ea (e,+) = C C T a:mn 

n~ 91 sin 0 cos m+ 
a + b;,- P; (COS 6) sin m+ ae COS 

(A-5a) 
mP; (cos 0) 

r+ bzmn  
sin e 

For the next step, the following relationship is needed: 

4'[mPat;e) 2 - a P; (COS o) m ~ ;  (COS e) a 
a8 

+-P;(cose) s inode= I[ sine - a 8  I 

( 0  for 1 + n 

2 (n + m) ! n(n + 1) for I = n 
2 n S  1 (n-m)! (A-7) 

The equation above may be obtained by the performance of one integration by parts 

4"[ a mP," mPy a - ~.:- + - - P" sin 0 do = 
38 sme sme a8 

1' [$ P;. 31 sin B do + [m~:  P"; - 1" [ & ~ , Z ] s i n e d e  = o 

and application of a result given by Stratton (Ref. 35) (Section 7.13, Chapter VII). 
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Then it is easily verified that 

~ P P  (COS 6) a l"[* sin6 
( + ! ( 1  + 1) (A-9a) A,; (6) + , PT (cos 6) B.; (011 sin o do = r a;.,, 21 + l ( 1  -m)! 

nzP? (cos 6) 2 (B+nz)! lr[- $ P:. (COS 6) (6) i B; (o)] sin 6 d6 = r bgmi - 21 + 1 (1 - m ) !  1(1 + 1) (A-9b) 
sin 6 

Equations (A-4) through (A-9) may be rewritten in the expected form: 

Equation (A-10) not only gives an explicit form for the 
desired coefficients, but, by the well known properties of 
trigonometric and Legendre function expansions, the co- 
efficients are uniquely determined. Therefore, this illus- 
trates the fact that an electromagnetic field as defined 
earlier is uniquely determined by the value of the tan- 
gential E field on any sphere of radius p, > p,. 

The spherical-wave expansion program (orthogonality 
version) given in Appendix D evaluates Eq. (A-10) to 
obtain admn and bimn. That is, it is assumed that the 
azimuthal Fourier expansion of Eq. (A-6) has already 
been performed, and the input data to the spherical-wave 
expansion program are the (tabular) functions A,,. (6) and 
B.,. (6). Because successive cases with different values of 
m may be evaluated, in principle an arbitrary pattern 
can be expanded. However, the m = 1 case is of particular 
importance, as mentioned previously, which is why the 
program was written to handle only a single azimuthal 
component at one time. The odd components have also 
been neglected to avoid unnecessary complication, since 
the vast majority of problems may be analyzed using 
linear polarization. In the case of far-field input data, 

Eq. (A-4) may be rewritten with the asymptotic form of 
the Hankel functions, thereby ~ielding for p1 + co 

The scattering program implicitly assumes Eq. (A-11) 
so it accepts the wave coefficients as output from the 
spherical-wave expansion program (it is assumed a 
far-field pattern is input to the spherical-wave expansion 
program). 

Since the solution is known to exist and because it is 
unique, it is also possible to solve Eq. (A-6) directly. I t  is 
well known that if all sources are enclosed in the sphere 
of radius p,, only modes for which n 5 k, will make a sig- 
nificant contribution to the field (Refs. 39-41). Therefore, 
Eq. (A-6) can be solved as a system of linear equations 
to obtain the coefficients. Again, with only even terms 
and a single m component, the m and ; subscripts can be 
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dropped and the matrix equation can be written: 

where 

mPr (cos 0) 
F; (0) = 

sin 0 

Since F r  (0 deg) = G:(O deg) and Fr(180 deg) = -GF 
(180 deg), the values 0 = 0 and 180 deg would make the 
above matrix singular; therefore, they must not be used 
as data points. Even excluding these values, the first 
attempts to invert this system of equations indicated that 
the matrix was extremely ill-conditioned (on physical 
grounds it can not be singular if  the e values are distinct 
and if 0 = 0 and 180 deg are excluded). I t  was sub- 
sequently determined that the matrix was ill-conditioned 
because the data points were concentrated in the region 
between 0 and 40 deg (where A(0) and B(0) had sig- 
nificant amplitudes). When the data points were equally 
spaced between 0 and 180 deg, the matrix was easily 
inverted. The program that was used to accomplish 
this, the spherical-wave expansion program (linear equa- 
tion version), is also presented in Appendix D. When 
properly used, both programs yielded the same results 
except for modes containing a negligible fraction of the 
total power. 

The linear equation method is included here primarily 
because it may be easily generalized to be valid when 
the fields are known on any surface, whereas the formu- 
Iation of the orthogonality technique is valid only over 
the surface of a sphere. Furthermore, the linear equation 
method provides an interesting numerical check on the 
other program. However, the orthogonality method is 
more convenient for a number of reasons: (1) it is faster 
to perform the numerical integration than to invert the 
matrix, (2) the number of mode coefficients is not re- 
stricted to the number of input 6 values, and (3) Parseval's 
formula can be used to show that a sufficient number of 
modes have been considered, rather than the well docu- 
mented but essentially qualitative arguments leading to 
the N = kp relationship. 

The equations for obtaining wave coefficients derived 
here differ slightly from those obtained previously. The 
main difference is that these equations have been pro- 
grammed and used to obtain wave expansions of three 
kinds of patterns-analytical, numerically computed, and 
experimental. Previous work has been restricted to inter- 
esting but idealized cases in which the coefficients were 
obtained analytically in closed form; e.g., Potter (Ref. 41) 
found the coefficients for a circularly symmetric optimum 
illumination pattern; Kennaugh and Ott (Ref. 42) found 
the wave excited by a plane wave normally incident on 
a paraboloid; Jones (Ref. 32) gives the coefficients for a 
plane wave and for an arbitrarily located electric dipole. 

J P L  TECHNICAL R E P O R T  32- 1430 



Appendix B 

Fast Trigonometric Subroutine 

The machine-language function subroutine* EXPJX 
was written for the IBM 7094 conlputer and returns the 
complex-valued result ej" = cos x + j sin x, for real x, in 
one-half the time required by the IBM library subroutine, 
and with only slight reduction in accuracy. 

A table lookup technique is employed where 64 values 
of sin x, at x,, = m (~/128) + (~/256); m = 0, 1, . ., 63 are 
built into the subroutine. 

The basic algorithm used is as follows: 

(1) sin (-x) = -sin (x), cos (-x) = cos (x), assume 
x 2 0. 

(2) Write x = n (a/128) + r (~/128) where n is an 
integer, and 1 > r 2 0. 

(3) Reduce n mod 256 to discard multiples of 2 ~ .  

(7) Use the quadrant index q and the sign of the orig- 
inal argument to obtain sin x and cos x for the 
unreduced (true) argument, and return the com- 
plex number (cos x, sin x). 

The reason for choosing 64 (or in general 2") tabular 
values is that a single multiplication of the input argu- 
ment x(128/~) results in a binary number in which the 
fractional part is r, the next six higher order bits are m, 
the next two bits are q, and higher order bits represent 
multiples of %. Therefore, steps (2), (3), and (4) may be 
accomplished very quickly by one multiplication followed 
by shifting and masking operations. 

The MAP subroutine, which was named EXPJX, re- 
quires a total of 167 (decimal) storage locations, com- 
pared to 123 locations for the IBM Fortran IV library 
routine FCSN. 

(4) Write = 64 + m, where C3 O, Then + An accuracy and timing test was made in which re- 

is the quadrant of the argument, and m is the in- sults from EXPJX and FCSN were compared to the IBM 

dex of the tabular value x):,,, closest to x (reduced double precision Fortran IV library routine FDSC. The 

to the 1st quadrant). library routine was called twice to obtain values for both 
sin x and cos x. Values were computed for 50 X lo3 

(5) Define AX = - xn, = (r - 1/21 T/128; and I AX I random arguments uniformly distributed over the range 
< ~/265. (-5 to &), with results as shown in Table B-1. 

(6) Use cos x.:,, = sin x~~-],,, the expansions The relative accuracy of EXPJX becomes poor for 
small values of sin x or cos x, and for arguments / x I > 8~ 

sin (x ,  + AX) = sin x, cos AX + cos x,, sin AX the loss of significance in the reduced argument will in- 
crease the errors. 

= sin x., (1 - s) + cos z,,, (Ax - $) 
The subroutine of Printout B-1 has been submitted for 

cos (x,,, + Ax) = cos x,, cos AX - sin x), sin AX distribution through SHARE (SHARE library distribu- 
tion number SDA 3534), and COSMIC (Program NPO 

.- cos x., - $) - sin z, (Ax - $) 10439). 

and the approximation 

for 1 AX I < (~/256) to compute sin x and cos x in 
the 1st quadrant. 

*J. Hatfield of JPL Section 314, and H. Thacher of Notre Dame 
University were associated with the author in the development 
of this subroutine. 

Table B-1 . Performance statistics for fast 
trigonometric subroutine 
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Printout B - 1 .  Computer printout of fast trigonometric subroutine 

S I B M A P  E X P J X  
L B  L  
T T L  
REM 
R E M  
R EM 
R EM 
R EM 
S P A C E  
E N T R Y  

N S E T  
S P A C E  
R E M  
S P A C t  
R E M  
S P A C  t 
R E M  
REM 
REM 
S P A C E  
R EM 
SPAC t 
R E M  
R EM 
REM 
REM 
R EM 
R EM 
REM 
R EM 
REM 
REM 
R E M  
REM 
R E M  
R E M  
R EM 
R E M  
REM 
R E M  
R EM 
R E M  
R EM 
S P A C E  

E X P J X  S X A  
s XA 
SXA 
S P A C t  
LDQ*  
S  T Q  
FMP 
S S P  
U F  A  
R Q L  
L R S  
ANA 
LGR 
P A C  
PXA 
L G L  
P A C  
P A X  
MPY 
S U B  
S T 0  
A R S  
CHS 
XCA 
MPY 
A L S  

L I S T t R E F y M 9 4 ,  ( ) O K  
E X P J X I B ~ G I N 1  
C O M P L E X  E X P O N E N T I A L  S U B R O U T I N E . .  . @ E X P J X @  
?&>:>;* *.**.;;?6;;*:?;:~;~*;;~\;;9;*$; *.;::;>s<6;* A\**.x;;;c:~;~..., , .,,. L., .,, G,.b,.,.... ..,d, .,,.L .,?,.k.,, .. &* r,.:f,.?..i,,~?.-r.,-- ,.r l.r .c'r  ..~.,..i-*.l *; Q ;,, ' " " r * . r b  

*+* *X<*>* 

* " "" ."" ." 
*-.-~-*-*i* CUPIPLEX E X P U N E I V T I A L  S U B R U U T I N t . .  .@tXPJX@*?6*C**:LP .... L. ... .n. .., .., .a, ,...,. Q. .,. -4. .,. ,,. *****::* 

;x .., ,.,, .< $ :;:%;<.. , ,, ", , .b .C .L ,,,++, * .y Q;: ;i FIe-rl,.vT... .mi i, .,, 2, .,, .ii*r.r, ~ , ~ ~ , . T T T ~ ~ ~ P + ) ~ + - r ,  r, 4. .r .,. . A 1_ ..,.,<$. ...* 1 . 1  ,,~,~>X*:%*?6>::>$*ii4* .L c .. 
1 
E X P J X  
64 SIZE OF S I N E - C O S I N E  T A B L E  
2  
T H I S  S U B R O U T I N E  C O M P U T E S  
1 

E X P ( J * X ) = C O S ( X ) + J * S I N ( X )  
1 
G I V E N  T H E  F L O A T I N G  PT.  V A L U E ,  X. 
THE C U S ( X )  A'NO SIN(X) A R E  TABULAR EVALUATEU AND ~ E X P J X ~  
R E T U R N S  W I T H  T H E I R  R E S P E C T I V E  R E S U L T S  I N  T H E  AC. A N D  MQ. 
3  
PROC EDUKE.. . 

1. C O M P U T E  Y = ( l / D T H E T A ) * X  AND S A V E  S I G N  U F  X  
2. U N F L O A T  Y  W I T H  I l V T E b E R  I N  AC. AND F R A L T I O N  II\I MQ 
3. U N P A C K  I N T E G E R  S O  T H A T  QUAD. NO. A N 0  T A B L E  I N D E X  

ARE B I T S  2 8 - 2 9  AND 3 0 - 3 5  R t S P t C T I V t L Y  
4. C O M P U T E  O X = A B S  ( F R A C T I O N  O F  Y  ) i : O T H E T A - U T H E T A / 2  
5. C O M P U T E  T l = S I N ( D X )  AND T Z = C O S ( O X )  U S I N G  S E R I E S  

E V A L U A T I O N  ( A T  MUST TWO T E R M S )  
6 .  C O M P U T E  F l = S I N ( X @ ) ; : T l + C O S ( X @ ) * T 2  

F 2 = C O S ( X @ ) * T l - S I N ( X d ) * T 2  
WHERE S I N ( X @ )  A N 0  C O S ( X @ )  A R E  O B T A I N E D  FROM 
I T a S  C O R R E S P O N D I N G  T A B L E  X@=X-OX 

7. F O R  T H E  A P P R O P R I A T E  QUADRANT COMPUTE..  
1 S T  QUAD. S I N ( X ) = ( S I G N )  F l  

C O S ( X ) = F Z  
2 N u  QUAD. S I N ( X ) = ( S I G N )  F 2  

C O S ( X ) = - F l  
3 R D  QUAD. S I N ( X ) = - ( S I G N )  F 1  

C O S (  X  ) = - F 2  
4 T H  QUAD. S I N ( X ) = - ( S I G N )  F 2  

C O S ( X ) = F 1  
8. F L O A T  S I N ( X )  AND C O S ( X )  

3 
E X I T 1 1 4  
E X I T 1 + 1 1  1 
E X I T 1 + 2 1 2  
1 
3 1 4  
S I G N  
1 0 V D 7  

F t T C H  X  ( I N  R A D I A N S )  

C O M P U T E  X / O T H E T A  

U N F L O A T  I T  ( I  I N A C C . ,  F I N  MQ.) 
S C A L E  F  A T  B I T  0 I N  MQ. 
S E T  S I G N  O F  F  P O S I T I V E  
M A S K  I FOR Q U A D R A N T  AND I N D E X  NUMBERS 

X R ~ = Q U A O R A N T  NUMBER 

X R Z = I N O E X  NUMBER FOR S I N E  
X R 4 = I N D E X  NUMBER FOR C O S I N E  

COMPUTE F @ = F * ( P I / 2 ) / 6 4  

S A V E  D E L T A X = F a - ( P I / 2 ) / 1 2 8  

C H A N G E  S C A L E  FROM B I T  2  TO B I T  1 
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Printout B-1 (contdl 
r 

ADD = 1 8 1  
S T 0  T  1 T 1 = 1 - U t L T A X * * Z / L  ( C O S ( D E k T A X )  ) 
L D Q  S I N X p 2  
MPY T  1 
s TO F  1 F l = S I N ( X @ ) * T l  
L D Q  C O S X l 4  
MPY T  2  
A  OD F 1 
S  TO F  1 
LDQ S I N X v 2  
MPY T  2  
S T 0  F  2  
L D Q  C O S X l 4  
MPY T  1 
SUB F  2  
S T 0  F  2  
TR A  :%+I, 1 
TRA Q U A 0 1  
TRA QUAD2 
TR A  Q U A D 3  
TRA Q U A 0 4  
SPACE 1 

QUAD1 C L A  F  1 
LDQ S I G N  
L L S  0  
LDQ F  2 
TRA E X I T  
S P A C t  1 

QUAD2 LOO F  2  
C L A  S I G N  
L R S  0  
C L S  F  1 
XC A  
TR A  E X I T  
S P A C E  1 

Q U A D 3  LOG) F 1 
C L A  S I G N  
CHS 
L R S  0  
C L S  F  2  
XCA 
TRA E X 1  T  ( S I N ( X ) = - S I G N . F l ,  C O S ( X ) = - F 2 )  
SPACE 1 

QUAD4 C L A  F  2  
L D Q  S I G N  
L L S  0 
CHS 
L D Q  F  1 ( S 1 N ( X ) = - S I G N . F Z 7  C O S ( X ) = F l )  
SPACE 

E X I T  s T O  S I N ( X )  
CLA = 0 2 0 2  PACK I N  EXPONENT F U R  B I T  2  S C A L E  
L L S  0 B U T  B t  S U R t  AND R E T A I N  S I G N  O F  
LR S  8  COS(X). . .  T H E  R E S U L T  I S  AN 
XCA U N N O R M A L I Z E O  F L .  PT. NU. ( I N  ACC.) 
F A D  = 0  N O R M A L I Z E  C O S ( X )  AND S A V t  
S  TO C O S ( X )  T H t  F L D A T I N L  P O I N T  R t S U L T  
LDQ S I N ( X )  
C L  A  = 0 2 0 2  PACK I N  EXPONENT FUR B I T  2 S C A L E  AND 
L L S  0 MAKE SURE T H E  S I G N  Uk S I N ( X )  I S  
L R S  8  R E T A I N E D . . . T H ~  R E S U L T  I S  A N  
XC A  U N N O K M A L I Z E D  F L .  PT. NU. ( I N  ACC.) 
F A D  =O N O R M A L I Z E  S I N ( X )  AND 
XCA P L A C E  R E S U L T  I N  MQ. 
C L  A  C O S ( X )  P L A C E  C U S ( X )  I N  ACC. 

E X I T 1  A X T  +*,4 
A X T  %*, 1 
A X T  i i*,2 
TRA 114 
E J E C T  

DT DEC 0 . 0 2 4 5 4 3 2 9 9 9 B l  ( P I / 2 ) * ( 1 / 6 4 ) * 0 . 9 9 9 9 8 4  ( S C A L E D  A T  B I T  1) 
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Printout B-1 (contd) 

D T O V 2  D E C  0 , 0 1 2 2 7 1 6 4 9 9 8 1  ( P I / 2 ) * ( 1 / 6 4 ) / 2 * 0 . 9 9 9 9 8 4 ( S C A L E 0  A T  B I T  1 )  
l O V D T  DEC 4 0 . 7 4 3 6 6 5 4  l / D T H E T A  ( F L O A T .  PT.)  
DX P Z E  Q:: D E L T A X  
S I G N  P Z E  .%. 4. -. .,. S I G N  OF X 
T  1 P Z E  00 C O S I N E  OF D E L T A X  ( S C A L E D  A T  B I T  1 )  
T 2  EQU D X  S I N E  O F  D E L T A X  ( S C A L E D  A T  B I T  1) 
F 1 P Z E  0 3, S I N ( X ) * T ~ + C O S ( X ) : X T ~  ( S C A L E D  A T  B I T  2 )  
F  2  P Z E  * $ C O S ( X ) * T l - S I N ( X ) * T 2  ( S C A L ~ D  A T  B I T  2 )  
S I N ( X )  P Z E  .L 4, +.,. A B S O L U T E  V A L U E  O F  S I N ( X )  
C O S ( X )  P Z E  * .b +- A B S O L U T E  V A L U t  OF C O S ( X )  

E J E C 1  
REM 
REM 

S I N X  N U L L  
DEC 
DEC 
D E C  
DEC 
DEC 
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
DEC 
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
DEC 
D E C  
DEC 
DEC 
DEC 
D E C  
D EC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
DEC 
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
DEC 
D E C  
D E C  
D E C  
DEC 
D E C  
D EC 
DEC 

T H E  F O L L O W I N G  T A B L E  C O N T A I N S  F I X E D - P O I N T  V A L U E S  
S C A L E D  A T  B I T  1 
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Printout B- 1 [contd) 

DEC 0.983105487481 
D EC 0.987301418281 
DEC 0.990902635481 
DEC 0 .993906970081 
DEC 0.996312612281 
DEC 0.998118112981 
DEC 0.999322384681 
DEC 0 .999924701881 

CUSX EQU SINX+N-1 
END 
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Appendix C 

Tilted Reflector Program 

The tilted reflector program was written for an IBM are mapped into the new system for each input @' 
1620 computer and outputs a deck of cards containing value. Note that the cuts +' = 0 or 180 deg map 
the quantities (see Eq. 12): into + = 0 or 180 deg, but in general +' = 90 deg 

maps into a cut which will be identified by +,,(8). 
a,o(e), a,(@), a2(0), The result of this step is data 

The input data are tabular values p'(tY) describing a that are known at a set of 6 values that is in gen- 
surface of revolution, as illustrated in Fig. C-1. Also era1 different for each + cut, and different from the 
specified are the translations to the new origin XF and set of desired output values. The remaining steps 
ZF; a coordinate rotation is specified by the intersection (2) through (4) are performed for each desired 
point ZROT. output value 6,. 

The procedure used is as follows: 
(2) A cubic interpolation polynomial in e is fitted 

(1) By the use of a straightforward coordinate trans- locally at four points to the functions p(8,O deg), 
formation, the data P(O,+~~), p(6,180 deg) and +90(0). These polynomials 

pf (B,O deg) = p'(@',90 deg) and their derivatives are evaluated at 8 = do to 
yield +90(60) and a+,,/ae at 0 = 0,; and p(O,,O deg), 

= pf(tY,180 deg) 
p(Oo,180 deg) and dp/& at 4 = 0, 490, 

= P'(#) and 180 deg. 

Fig. 6-1. Reflector coordinate transformation 
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(3) Given the assumed form 

p(0,+) = a,(e) + a,($) cos + + a,(@) cos 2+ 

it follows that 

By the use of +go(80) from step (2), the program 
then inverts the matrix and obtains a,(@,), a,(o,), 
and a2(6,). 

For the matrix to be well-conditioned, it is suffi- 
cient that +,, -- 90 deg. If +,, lies outside the range 
of 60 to 120 deg the program sets a,(e) = 0 and 
solves the two-dimensional matrix problem for 
a,(@) and a,(O). 

(4) Also, from the assumed form, 

ap - -- 
a+ - a,(@ sin + - 2a2(6) sin 24 

By the use of the relationship 

a+ = [al(B) sin + + 2a2(B) sin 241 - ao 
and the values of dp/do and a+,,/ae at 8 = 8, 
obtained in step (2), values of ap/ae are obtained 
at + = 0 deg, +,,, and 180 deg. Then the same 
matrix inverse obtained in step (3) is used to yield 
aa,/ae, aa,/ao and aa2/ae. 

The input data for the tilted reflector program are 
shown in Table C-1; the parameters are defined below: 

TITLE any alphanumeric statement 

XF, ZF, ZROT see Fig. C-1 

T, R 6',pf (Note that 8' must be monotoni- 
cally decreasing with its index.) 

9999.0 any number > 400 (A last card indi- 
cator. NMAX must be 5 200. If the 
input consists of more than 200 cards, 
the program will type out an error 
message; the program can be reset to 
read title card.) 

NMAX number of 6 values desired 

TOUT desired 6 values 

The program prints out the input data (p',6') and 
transformed data (p,O) at + = 0, 180 deg, and +,,. Then 
p and ap/aO are printed out at the desired 6 values 
(Printout C-1). 

The Fourier coefficients and their derivatives are 
punched but not printed. 

Table C-1. Input data for the tilted reflector program 
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Card 

1 

2 

3 

NMAX + 2 

N M A X  + 3 

N M A X  + 4 

NMAX + 5 

Parameters 

TITLE 

XF ZF ZROT 

T(1) R(1) 

T(2) R(2) 

T(NMAX) R(NMAX) 

9999 .0  

M M A X  

TOUT(1) TOUT(2) . . . TOUT(8) 

TOUT(9) TOUT(l0) . . 

. . TOUT(MMAX) 

Format 

20A4  

8F10.0 

20X, 2F10.0 

ZOX, 2F10.0 

20X, F10.0 

1015 

8F10.0 

8F10.0 



Printout C-1. Computer printout of the tilted reflector program 

C T I L T E D  REFLECTOR PROGRAM 
C 

D I M E N S I O N  T ( 2 0 0 ) , R ( 2 0 0 )  
DIMENSION T I T L E 1 2 0 1  
DIMENSION R 0 ( 2 0 0 ) ~ T 0 ( 2 0 0 ) ~ R E ( 2 0 0 ) ~ T E ( 2 0 0 ) ~ R N ( 2 0 0 ) ~ T N ~ 2 O O ~ t P N ~ 2 0 0 ~  
DIMENSION T O U T ( 7 0 )  
DTR=0.017453293 

1 READ l O O l t T I T L E  
PUNCH 1 0 0 1 , T I T L E  
PRINT 2 0 0 1 , T I T L E  
READ 1002,XFtZF,ZKOT 
PRINT ZOOZpXFtZF,ZROT 
DZ=ZROT-ZF 
CALL ATANXY(DZ,XF,BETA) 
BEDEG=BETA/DTR 
PRINT 2003,BEOEG 
s I B = S I N F (  BETA) 
COB=COSF(BETA) 

C 
C READ I N  SHAPED SUBREFLECTOR 
L 

N=O 
1 0  N=N+1 

READ 1 0 0 3 , T ( N ) , R ( N )  
T ( N ) = T ( N ) * D T R  
I F ( T ( N ) - 4 . 0 ) 1 5 ~ 2 0 , 2 0  

1 5  I F ( N - 2 0 0 )  1 0 1 9 9 9 9 9  
2 0  NMAX=N-1 

PRINT 2004tNMAX 
L 

C TRANSFORM DATA TO NEW SYSTEM 
C 

CALL TRANQ(RtT,RO,TO,PN,O.O, l.O,SIBtCOB,XFpZF,NMAX) 
DO 2 4  N=l,NMAX 

2 4  T O ( N ) = T O ( N ) * C O S F ( P N ( N ) )  
CALL T R A N Q ( R , T , R E , T E , P N , ~ . ~ , - ~ . O , S I B , C O B ~ X F , Z F , N M A X ~  
DO 2 5  N=l,NMAX 

25  TE(N)= -TE(N) *COSF(PN(N)  
CALL TRANQ(R,T,RN,TN,PN,l.Ot O.O,SIB,COB,XF,ZF,NMAX) 
PRINT 2 0 0 8  
DO 2 6  N=l,NMAX 
TOO=TO ( N )  /OTR 
TNN=TN(N)/DTR 

PNN=PN ( N )  /DTR 
2 6  PRINT ~ O O ~ , T T T , R ( N ) , T O O ~ R O ( N ) P T E E , R E ( N ) ~ T N N , R N ( N ) , P N N  

C 
C READ DESIRED THETA VALUES 
C 

READ 1004tMMAX 
IF(MMAX- 7 5 1 2 9 , 2 9 3 9 9  

2 9  READ 1 0 0 2 , ( T O U T ( N ) , N = l ~ M M A X )  
NLASTO=NMAX-2 
NLASTE=NMAX-2 
NLASTNzNMAX-2 
PRINT 2 0 0 7  
DO 3 0  MM=l,MMAX 
TTD=TDUT(MM)*DTR 

L 

C INTERPOLATE TO DESIRED THETA VALUES 
C 

CALL Q B U R P ( T O , R O ~ T T O , R R O , D R O t N L A S T O ~ N M A X )  
CALL QBURP(TE,RE,TTO,RRE,DRE,NLASTE,NMAX) 
CALL QBURP(TNtRN,TTO,RRN?DRNtNLASTNvNMAX) 
CALL Q B U R P ( T N t P N t T T 0 t P P N t D P N t N L A S T H t N M A X )  
PNN=PPN/DTR 

C 
C F I N D  FOURIER C O E I F F I C I E N T S  
C 
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Printout C-1 (cantdl 

CALL  F K Q S F ( R R O , R R E , R R N ~ P P N t A O , A l , A 2 )  
D R N = D R N + ( A ~ * S I N F ( P P N ) + ~ . ~ ~ ~ A ~ * S I N F ( ~ . O * P P N ) ) * D P N  
P R I N T  2005,TOUT(MM),RRO,DRO,RRE,ORE,RRN~DRN,PNN,DPN 
CALL F K Q S F ( D R O , D R E , D R N ~ P P N , D A O t D A l , D A 2 )  
PUNCH ~ O O ~ ~ T O U T ( M M ) , A O , A ~ , A ~ ~ D A O ~ D A O ~ O A ~ , D A ~  

3 0  CONTINUE 
GO TO 1 

C 
9 9  TYPE 2 0 1 0  

PAUSE 
GO TO 1 

C 
1 0 0 1  F O R M A T ( ~ O A ~ )  
1 0 0 2  FORMAT(BF10.0)  
1 0 0 3  f O R M A ~ ( 2 0 X , 2 F 1 0 . 0 )  
1 0 0 4  FORMAT ( 1 0 1  5  
2 0 0 1  FORMAT ( l H 1 1 2 0 A 4 )  
2 0 0 2  FORMAT(2BH COORDINATES OF NEW O R I G I N /  

*7H  X=?E15 .8 /  
*7H  Z=,E15.8/ 
* 2 6 H  POINT  OF ROTATION ZROT=,E15.8) 

2 0 0 3  FORMAT(23H ROTATION ANGLE BETA=rF8.4 ,9H D t G R k E S )  
2 0 0 4  FDRMAT(31H NUMBER OF INPUT PDINTS N M A X z y I 4 )  
2 0 0 5  FDRMAT(Fl0.5,3(F14.5,F12.5) ~ 2 F 1 1 . 5 )  
LOO6 FORMAT ( 7 F l 0 . 4 )  
2 0 0 7  FORMAT( l H 1 9 4 7 H  R  AND I T S  P A R T I A L  D E R I V A T I V E  WITH KtSPECT TO, 

* 3 1 H  T H t T A  AT DESIRED OUTPUT P O I N T S / /  
*20X5HPHI=0,21X7HPHI=180~2lX16HPHI AS TABULATED/ 
* 1 0 H  THETA ,3(BX, lHR, lOX,7HOR/DT ) , 4 X 3 H P H I , 7 X 7 H O P H I / D T )  

2 0 0 8  F D R M A T ( / / 5 2 H  SURFACE DATA I N  INPUT AND TRANSFORMEU COORDINATES/ /  
*7X , lOHINPUT D A T A , l l X t l 5 H P H I =  0  DEGREES, lOX,15HPH1=180 DEGREES915X 
* ,16HPHI  AS TABULATED/ 
* 4 ( 8 H  THETA,BX, lHK,BX) ,4H P H I )  

2 0 0 9  FDRMAT(F10.5,F12.5,3(F13.5,Fl2.5),F11.5) 
2 0 1 0  FORMAT ( 4 1 H  INPUT DATA EXCEEDS DIMENS I O N  STATtMENT/  

* 4 2 H  RELOAD DATA AN0 PUSH START TO TRY AGAIN)  
END 

SUBROUTINE QBURP(T,R,TTvRR,DR,NLAST,NMAX) 
D IMENSION T ( 2 )  , R ( 2 )  
D IMENSION B ( 4 , 5 ) , A ( 4 )  

C  
C  T H I S  SUBROUTINE NUMERICALLY INTkRPOLATES AND D I F F E R t l q T I A T E S  THE 
C  FUNCTION R ( T )  BY F I T T I N G  A  CUBIC TO R ( T )  AT FOUR PUINTS 
C  
C  F I N D  NLAST SUCH THAT T ( N L A S T - 1 )  AN0 T ( N L A S T 1  STRADDLt  THE 
C  DESIRED VALUE TT. I T  I S  ASSUMED THAT THE TABULAR VALUES OF T  
C  DECREASE WITH INCREASING N 

9 I F ( T ( N L A S T ) - T T ) 1 0 , 1 0 , 2 0  
1 0  I F ( N L A S T - 2 ) 2 0 , 2 0 , 1 5  
1 5  NLASTzNLAST-1  

GO TO 9 
2 0  CONTINUE 

C  
C  S O L V t  THE SYSTEM OF FOUR EQUATIONS TO DETERMINt  THE C U E I F F I C I E N T S  
C  
C  E S T A B L I S H  MATRIX 

DO 3 0  1 ~ 1 9 4  
NK=NLAST+I-2  
B ( I  , 5 ) = R ( N K )  
DO 3 0  J = 1 , 4  
JJ= J-1 

3 0  B ( I , J ) = T ( N K ) * * J J  
C  
C  D I A G O N A L I Z E  SYSTEM 

DO 5 0  K=1,3  
KK=K+ l  
DO 5 0  I=KK ,4  
D = B ( I p K ) / B ( K , K )  
DO 5 0  L=K,5 

5 0  B ( I , L ) = B ( I , L ) - D * B ( K t L )  
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Printout C-1 (contd) 

C  
C  SOLVE B Y  B A C K  S U B S T I T U T I O N  

A ( 4 ) = 8 ( 4 , 5 ) / 8 ( 4 , 4 )  
DO 70 I I = 1 9 3  
I =4 - I  I 
L = 5 - I 1  
DO 6 0  J = L 1 4  

6 0  B ( I , ~ ) = B ( I P ~ ) - B ( I , J ) * A ( J )  
7 0  A ( I ) = B ( I ~ ~ ) / B ( I P I )  

C 
C  E V A L U A T E  C U B I C  AND I T S  D E R I V A T I V E  A T  I N T E R P O L A T I O N  P O I N T  T T  
C  

R R = A ( ~ ) + A ( ~ ) + T T + A ( ~ ) * T T * T T + A ( ~ ) * T T * T T * T T  
O R = A ( 2 ) + 2 . 0 * A ( 3 ) * T T + 3 . 0 = A ( 4 ) * T T * T T  
RETURN 
END 

S U B R O U T I N E  F K Q S F ( O , E , F N Y P ? A O ~ A ~ , A ~ )  
C  
C  T H I S  S U B R O U T I N E  COMPUTES THE C O E I F F  I C  I E N T S  FOR THE TRUNCATED 
C  F O U R I E R  S E R I E S  R ( T H E T A ) = A O + A l * C O S ( T H E T A ) + A 2 * C O S ( 2 o T H E T A )  

l i D = R ( Z E R O  R A D I A N S )  
E = R ( P I  R A D I A N S )  
F N = R ( P  R A D I A N S )  WHERE P  SHOULD L I E  BETWEEN 1 . 0 5  A N 0  2 . 0 9  

C  
I F ( P - 1 . 0 5 ) 1 0 0 ~ 2 0 ~ 2 0  

2 0  I F ( 2 . 0 9 - P ) 1 0 0 , 2 0 0 , 2 0 0  
1 0 0  A O = ( O + E ) / 2 . 0  

A l =  ( 0 - E ) / 2 . 0  
A2=0.  
R E T U R N  

2 0 0  C = C O S F ( P )  
C 2 = C O S F (  Z.O*P) 
D=2.O* (C2-1 .0 )  
AO=(C+C2)*0-2.0*FN+(C2-C)*€ 
AO=AO/O 
A l =  ( C 2 - 1 . 0 ) * 0 + ( - C 2 + 1 . O ) * E  
A l = A l / O  
A2= (-~-1.01*0+2.0*~N+(C-l.O)*E - 
A 2 = A 2 / D  
R E T U R N  

C  T H I S  S U B R O U T I N E  PERFORMS A  COORDINATE T R A N S L A T I O N  AND R O T A T I O N  
C  

D I M E N S I O N  R ( ~ ) , T ( ~ ) , R R ( ~ ) v T T ( ~ ) ~ P P ( ~ )  
C  
C  CONVERT TO RECTANGULAR C O O R D I N A T E S  

DO 1 0  N = 1  ,NMAX 
X = R ( N ) * S I N F ( T ( N )  ) * C O  
Y = R ( N ) * S I N F ( T ( N ) ) * S I  
Z = R ( N ) * c O S F ( T ( N )  ) 

C  
C  PERFORM T R A N S L A T I O N  

X=X-XF 
Z=Z-ZF 

L 

C  PERFORM R O T A T I O N  
D=X 
X = X * C O B + Z * S I B  
Z=-D*SIB+Z*COB 

C  
C  CONVERT T O  POLAR C O O R D I N A T E S  I N  NEW SYSTEM 

R R ( N ) = S Q R T F ( X * X + Y * Y + Z * Z )  
D = S Q K T F ( X * X + Y * Y  
C A L L  A T A N X Y ( Z , D , T T ( N ) )  
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Printout C-1 (conid) 

1 0  CALL ATANXY(X ,Y ,PP(N) )  
RETURN 
END 

SUBROUTINE ATANXY(X,Y,PHI)  
P1=3 .1415927  
I F ( X ) 1 0 , 2 0 , 3 0  

1 0  P H I = A T A N F ( Y / X ) + P I  
GO TO 4 0  

2 0  I F ( Y ) 2 1 , 2 2 , 2 3  
2 1  P H I = - P I / 2 . 0  

GO TO 5 0  
2 2  PHI=O.O 

GO TO 5 0  
23 P H I = P I / 2 . 0  

GO TO 5 0  
3 0  P H I = A T A N F ( Y / X )  

GO TO 5 0  
4 0  I F ( P H 1 - P I ) 5 0 , 5 0 , 4 1  
4 1  PHI=PHI -2 .0uPI  
5 0  RETURN 

END 
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Appendix D 

Scanering and Spherical-Wave Expansion Programs 

The scattering program consists of the following pro- The spherical-wave expansion program (linear equa- 
grams* (see Fig. D-l): tion method) consists of the following subprograms (see 

Fig. D-2): 
MAIN asymmetrical scattering program 

FIELDS subroutine that provides Hi on surface MAIN spherical-wave expansion program (linear 
(see Section IV) equation method) 

SURF subroutine that provides p and its deriva- SOLVE a package of subroutines to solve a set of 
tives (see Section 111) linear equations 

SETUP subroutine that establishes integration and LEGEND Legendre function subroutine 
output grids, and tables of precomputed 
trigonometric functions 

- 

PRTIM subroutine that prints out execution times 

PATHL subroutine that established the path length The input data required by the main scattering pro- 
term, Eq. (17) gram are shown in Table D-1; the ~arameters are as " 

FINT numerical integration subroutine (see Sec- follows: 
tion V) 

LEGEND Legendre functions subroutine 

SPHANK spherical Hankel function subroutine 

EXPJX fast trigonometric subroutine (see Appen- 
dix B) 

VECTOR subroutine that converts from rectangular 
to polar coordinates 

ADJUST subroutine that normalizes angles to the 
range - 180 to 180 deg 

PRTIM subroutine that prints out execution times 

The spherical-wave expansion program (orthogonality 
method) consists of the following subprograms (see 
Fig. D-2): 

MAIN spherical-wave expansion program (or- 
thogonality method) 

TITLE any alphanumeric statement 

PC propagation constant, %/A 

XT, YT, ZT translations to reference point for 
phase pattern of output data (nor- 
mally the expected phase center of the 
scattered pattern) 

SCALE a scale factor for the output fields; if 
this is left blank or if input is zero, 
program sets SCALE = 1.0 

JMAX number of O values desired, JMAX 
< 181 

TT1 initial O value 

DTT increment for O values, DTT > 0 

TT(l), TT(2), . . . explicit list of O values 

MULT a general purpose matrix multiplication KMAX number of @ values desired in output, 
subroutine KMAX < 8 

LEGEND Legendre function subroutine PP1 initial cP value 

VECTOR subroutine that converts from rectangular 
to polar coordinates 

DPP increment for @ values, DPP 2 0 
- 

PRTIM subroutine that prints out execution times PP(l), PP(2), - explicit list of 4, values 

NG1 number of integration grids, NG1 5 5 
*All the programs presented in this section, except SOLVE and 
PRTIM, were developed and programmed by the author. The MM(1) number of 0 values in the Ith integra- 
matrix inversion package SOLVE was developed by Richard tion grid, MM < 15 
Hanson of the Computation and Analysis Section of JPI;; PRTIM, 
which prints out the actual computation time during program T1 initial B value 
execution, was developed by Charles Lawson, also of the Com- 
putation and Analysis Section. DT increment for 0 values, DT > 0 
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4 READ IN CASE DATA; ESTABLISH 
OUTPUT GRID AND PRIG TABLES I 

ESTABLISH ITH INTEGRATION GRlD 
AND TRIG TABLES, AND SURFACE- 
AND INCIDENT-FIELD DATA O N  
ITH GRlD 

OUTPUT GRID LOOP; INCREMENT 
OUTPUT POINT 1 

t 
EVALUATE PATH LENGTH; PERFORM 

INTEGRATION AND OUTPUT 
RESULTS 

2 

YES 
l NTEGRATION 

ESTABLISH DIRECT RADIATION 
FROM INCIDENT FIELDS O N  
OUTPUT GRID; OUTPUT RESULTS 

SUPERIMPOSE DIRECT RADIATION 
AND FIELDS SCATTERED FROM 
ALL INTEGRATION GRIDS; TRANS- 
LATE PHASE CENTER, SCALE 
AMPLITUDES, AND OUTPUT RESULTS 

CASE? 

(a) ORTHOGONALITY VERSION (7) 
READ INPUT PATTERN I 

EVALUATE ORTHOGONALITY 
INTEGRALS TO 0 BTAI N 
WAVE COEFFICIENTS; 
COMPUTE WAVE POWERS 
AND OUTPUT RESULTS 

AT p = AND OUTPUT AT 
DESIRED 8 VALUES 

(b) Ll NEAR EQUATION VERSIO N 

READ INPUT PATTERN I 

INVERT SYSTEM OF LINEAR 
EQUATIONS TO OBTAl N WAVE 
COEFFICIENTS; OUTPUT 
RESULTS 

Fig. D-2. Block diagram of spherical-wave 
expansion program 

T(I,l), T(I,2), . . . explicit list of 8 values for Ith grid 

NN(1) number of (b values in the Ith integra- 
tion grid, NN 5 91 

P1 initial (b value 

DP increment for (b values 

P(I,l), P(I,2), . explicit list of (b values for Zth grid 

(LAST) a last case indicator; punched as 
shown in columns 1 through 6 

1 THlS ISA  JMAXx  KMAX LOOP 

2 THlS STEP INTERNALLY CONTAINS 
SEVERAL MMAX x NMAX LOOPS 

In all cases, a set of angle values may be specified by 
an initial value and a positive increment, or by an ex- 
plicit list of values (not necessarily equally spaced). All 
angles are in degrees. If a positive increment is given, the 

Fig. D-1 . Block diagram of scattering program data cards containing explicit values must be omitted. If 
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Table D-1. lnput for MAIN scattering program Table D-2. Input for spherical-wave FIELDS subroutine 

the data cards containing explicit values are included, 
the increment must be written in as identically zero. 

PC XT YT ZT SCALE 

J M A X  TT1 DTT 

TT(1) TT(2) . . 

K M A X  PP1 DPP 

PP(1) PP(2) . . 

M M ( 1 )  T l  DT 

T(1,l) T(1,2) . . . 
T(1 ,MM( l ) )  

NN(1)  P1 DP 

P(1,l) P(1,2) . . 

The input data required by the spherical-wave version 
FIELDS subroutine are shown in Table D-2; the param- 
eters are as follows: 

(Lost) 

TITLE any alphanumeric statement 

LMAX maximum mode order, 5 60 

P(l ,NN(l))  

M M ( N G 1 )  T I  DT 

T(NG1,l) T(NG1,2) . . . 
. . T(NG1 ,MM(NGl ) )  

N N ( N G 1 )  P I  DP 

P(NG1,l) P(NG1,2) . . 
. . .  P(NG1 ,NN(NGl ) )  

[ Input f o r  FIELDS Subrout ine]  

[ Input  f o r  SURF Subroutine] 

TITLE 

PC XT YT ZT SCALE 

(Data f o r  fur ther cases, 

some as above) 

(LAST) 

MCOMP order of azimuthal variation 

15,2F10.0 

8F10.0 

8F10.0 

15,ZFlO.O 

8F10.0 

8F10.0 

- 
- 

1 3 A 6  

LMAX M C O M P  

1 A(1,l) A(1,2) B(1,l) B(l,2) 

A(N,l), A(N,2) real and imaginary parts of TENCo&rp,N 
wave coefficient (see Appendix A and 
following program) 

B(N,l), B(N,2) real and imaginary parts of TMNCoMP,N 
wave coefficient (see Appendix A and 
following program) 

The input data for the far-field version FIELDS sub- 
routine are shown in Table D-3; the parameters are as 
follows : 

TITLE any alphanumeric statement 

JMAX not used 

JO not used 

JIN number of input points, JIN 181 

IC1 < 0 for input in dB; > 0 for input in V 

IC2 > 0 to set phase pattern zero everywhere 

MCOMP order of azimuthal variation 

PSI polar angle 6 (see Fig. 1) 

E I E,(8,90 deg) 1, in V or dB 

EP argument {Es(8,90 deg)), in deg 

H I E+(6,O deg) I, in V or dB 

HP argument {E$(8,0 deg)), in deg 

The input data for the SURF subroutine are shown in 
Table D-4; the parameters are as follows: 

TITLE any alphanumeric statement 

TIN input 6 value (see note below) 
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Table D-3. lnput for far-field FIELDS subroutine 

JMAX JO JIN IC1 IC2 

PSl(1) E(1) EP(1) H( l )  HP(1) 

AO, Al, A2 a,, a,, a, (see Eqs. 12 and 13, and 
Appendix C) 

aa, aa, 
(see Eqs. 12 and 13, DAO, DA1, DAB T, T, ,, 

and Appendix C) 

The TIN values must agree.with the specified inte- 
gration grid values. (If they disagree, an error message is 
printed but the program continues to run.) The values 
for each integration grid are stacked in order. 

Computer time is nearly proportional to the quantity 

P =  C NMAX X MMAX 
NGl integration 

grids 

For an IBM 7094, the time can vary by a factor of 2 
depending on which model is being used; time for a 
slower model is given by 

t = P X [JMAX X KMAX] 8.4 X lk5 min 

plus 

t = P X [LMAXI25 X 1k6 min 

if  the spherical-wave version FIELDS subroutine is used. 

The input data required by the spherical-wave expansion 
program (orthogonality version) are shown in Table D-5. 
All of these parameters have been previously defined, 
except for JMAXO = 180/AB + 1, where A8 is the 
desired output increment, and JOUT is the number of 
output values starting with 0 = 0. The program evaluates 
the spherical-wave expansion at p = co and prints and 

Table D-4. lnput for SURF subroutine 

TIN(1) AO(1) A1 (1) A2(1) DAO(1) 
DAl(1)  DA2(1) 

TIN(2) AO(2) A1 (2) A2(2) DAO(2) 
DAl(2) DA2(2) 

TIN(MM) AO(MM) A1 (MM) A2(MM) 
DAO(MM) DAI (MM)  DA2(MM) 

TIN(1) AO(1) A l (1 )  . . . 

punches the results at a set of output values determined 
by these parameters. 

The input data required by the spherical-wave expan- 
sion program (linear equation version) are identical except 
that the first two cards and the last card are omitted. 

Both of these programs use less than 1 min of computer 
time to evaluate 60 TE and 60 TM wave coefficients. 

Two computer printouts are included in this appendix: 
the first (Printout D-1) is a computer printout of the asym- 
metrical scattering program; the second (Printout D-2) 
is a printout of the spherical-wave expansion program. 

Table D-5. lnput for spherical-wave expansion program 

JMAX JO JIN IC1 IC2 

PSl(1) E(l) EP(1) H(1) HP(1) 

PSI(JIN) E(JIN) EP(JIN) H(JIN) 
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Printout D-1. Computer printout of asymmetrical scattering program 

(a) Main program 

8 I B F T C  M A I N  
C  A S Y M M E T R I C A L  S C A T T E R I N G  PROGRAM 
C  PROGRAM COMPUTES S C A T T E R I N G  FOR P E R F E C T L Y  C O N D U C T I N G  SMOOTH 
C  S U R F A C E  O F  A R B I T R A R Y  SHAPE A. L U D W I G  1 - 1 5 - 6 9  
C  
C  
C  

COMMUN/GRI~l/SIT(15),COT(15) , S I P ( ~ ~ ~ ) , C O P (  1 8 1 ) , T ( l 5 ) ~ P ( 1 8 1 )  
C O M M O N / G R I D 2 / S I T T ( 1 8 1 ~ ~ C O T T ( 1 8 1 ~ ~ S I P P (  8 ) , C O P P (  8 ) , T T ( 1 8 1 ) , P P ( 8 )  
D I M E N S I O N  T I T L E ( 1 3 )  
D I M E N S I O N  F (  1 5 ,  9 1 ) 9 F T (  1 5 9  9 1 ) 9 F P (  1 5 ,  9 1 ) p G A M t  1 5 ,  9 1 )  
I N T E G E R  T I T L E  
COMPLEX H R (  1 5 ,  9 1 ) , H T (  1 5 ,  9 1 ) , H P (  1 5 ,  9 1 )  
COMPLEX E T T ( 1 8 1 ,  B ) , E P p ( 1 8 1 ,  8 )  
COMPLEX E T T O t E P P O  
COMPLEX A (  1 5 ,  9 1 ~ 3 )  
COMPLEX S T O T ( 3 )  
COMPLEX T l ~ T 2 y T 3  
COMPLEX T E T , T E P  
E Q U I V A L E N C E  (A(l,l,l),HR),(A(1,1,2),HT),(A(1,1,3),HP) 
E Q U I V A L E N C E  (GAM, F T )  
D A T A  L C / 6 H (  L A S T )  / 

C  S T A R T  T I M I N G  R O U T I N E  
C A L L  P R T I M l  
R E A D ( 5 , l O O l ) T I T L E  

1 W R I T E ( 6 t 2 0 0 1 ) T I T L E  
R E A O ( 5 , 1 0 0 2 ) P C , X T , Y T , Z T , S C A L E  
I F ( S C A L E ) 2 2 , 2 1 , 2 2  

2 1  SCALE=1.0  
2 2  C O N T I N U E  

W R I T E ( 6 , 2 0 0 3 ) P C  
C  
C  R E A D  I N  G R I D  D A T A  AND E S T A B L I S H  OUTPUT G R I D  AND F I R S T  I N T E G R A T I O N  
C  G R I D  

C A L L  S E T U P ( N G l , I t J M A X , K M A X , M M A X N M A X )  
C A L L  P R T I M Z  
W R I T E  ( 6 , 2 0 0 2 ) T I T L E  

L 

C  R E A D  I N  E X C I T A T I O N  F I E L D  D A T A  
C A L L  F I E L D S  
C A L L  P R T I M 2  

C  
C  B E G I N  LOOP FOR I N T E G R A T I O N  G R I D  SEGMENTS 

DO 90 J=1, J M A X  
DO 9 0  K = ~ , K M A X  
ETT(J ,K)=(O.O,O.O)  

9 0  E P P (  J,K)=(O.O,O.O) 
1 0 0  W R I T E ( 6 , 2 0 0 2 ) T I T L E  

C  
C  E S T A B L I S H  SURFACE PARAMETERS ON I N T E G R A T I O N  G R I D  

C A L L  SURF(MMAX,NMAX,F ,FT,FP)  
DO 410 M = ~ , M M A X  
DO 4 1 0  N = l , N M A X  

410 F ( M , N ) = P C * F ( M , N )  
C  E S T A B L I S H  E X C I T A T I O N  F I E L D S  ON I N T E G R A T I O N  G R I D  

C A L L  F IELD~(MMAX,NMAX,HR,HT,HP,F)  
C  C O M B I N E  SURFACE AND F I E L D  D A T A  T O  D E T E R M I N E  COMPLEX VECTOR A  

00 4 0 0  M = ~ , M M A X  
DO 4 0 0  N = l , N M A X  
Tl=FT(M,N)*SIT(M)*HP(M,N)-FP(MtN)*HT(M,N) 
T2=FP(M,N) :XHR(M,N)+F(M,N)*SIT(M)*HP(M,N) /PC 
T 3 = - F T ( M , N ) * S I T ( M ) * H R ( M v N ) - F ( M , N ) * S I T ( M ) * H T ( M , N ) / P C  
A(M,N~l)=Tl*SIT(M)*COP(N)+T29COT(M)*COP(N)-T3*SIP(N) 
A(M,N,2)=Tl*SIT(M)*SIP(N)+T2*COT(M)*SIP(N)+T3*COP(N) 
A ( M , N , 3 ) = T l > ; C O T ( M ) - T 2 * S I T ( M )  

4 0 0  C O N T I N U E  
W R I T E ( 6 , 2 0 0 7 ) 1  
C A L L  P R T I M 2  

C  
C  B E G I N  OUTPUT G R I D  L O O P  
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Printout D-1 [contd) 

W R I T E ( 6 , 2 0 0 6 ) I  
C  

00 5 0 0  K = ~ , K M A X  
T O = P P ( K ) / 0 . 0 1 7 4 5 3 2 9 3  
W R I T E ( 6 , 2 0 1 1 ) T O  
DO 5 0 0  J = l , J M A X  

C  
C E S T A B L I S H  P H A S € / P A T H  L E N G T H  P A R A M E T E R  UIV I N T E G R A T I O I U  G R I D  

C A L L  P A T H L  ( F  , J 1 K 7 M N A X , N M A X 9 G A M )  
C  
C  P E R F D K M  I N T E G R A T I O N  

C A L L  F I N T ( T , P q A , G A M , M M A X - 1 , N M A X - 1 , S T O T )  
C 
C C O N V E R T  R E S U L T  T O  P O L A R  C O O R O I N A T E S  A N D  S U P t R I N P U S E  t I E L O S  
C  

ETTO=COTT(J)*(STOT(l)*CflPP(K)+STOT(2)+SIPP~K))-STDT(3)*SITT(J) 
E P P O = S T O T ( 2 ) * C D P P ( K ) - S T O T ( l ) : % S I P P ( K )  
E T T O = - ( O . O , l . O ) * P C / 6 . 2 8 3 1 8 5 4 * E T T U  
E P P O = - ( O . O , l . O ) * P C / 6 . 2 8 3 1 8 5 4 * E P P O  
T O = T T (  J ) / 0 . 0 1 7 4 5 3 2 9 3  
A l = R k A L ( E T T O )  
A Z = A I M A G (  E T T O )  
A 3 = R t A L  ( E P P O )  
A 4 = A I M A G (  E P P O )  
C A L L  V E C T O R ( A l , A 2 p t T A M P ~ E T P H I )  
C A L L  VECTOR(A3,A4,tPAMP,EPPHI) 
W R I T t ( 6 r 2 0 1 2 ) T O , E T A C l P ~ E T P H I , E P A M P ~ k P P H I  
E T T ( J , K ) = E T T ( J , K ) + E T T O  
E P P ( J , K ) = E P P ( J , K ) + E P P O  

5 0 0  C O N T I N U E  
C A L L  P R T I M Z  

C  
C  
C  I F  MORE I N T E G R A T I O N  G R I D S  R E M A I N  L O O P  B A C K  
C  

I F ~ I - N G 1 ) 6 0 0 q 7 0 0 , 7 0 0  
600 C A L L  R E S E T ( I , M M A X , N ~ A X )  

GO T O  1 0 0  
7 0 0  I= I+1  

C  E S T A B L I S H  D I R E C T  R A D I A T I O N  O N  O U T P U T  G R I D  
W R I  T E ( 6 r 2 0 0 9  
DO 7 5 0  K = l , K M A X  
T O = P P ( K ) / 0 . 0 1 7 4 5 3 2 9 3  
W R I T E ( 6 , 2 O l l ) T O  
DO 7 5 0  J = l , J M A X  
C A L L  F I E L D ~ ( J ~ K ~ E T T O , E P P O )  
T O = T ~ ( J ) / O . 0 1 7 4 5 3 2 9 3  
A l = R E A L ( E T T O )  
A Z = A I M A G (  E T T O )  
d 3 = R E A L  ( E P P O )  
A 4 = A I M A G I  E P P O )  
C A L L  V E C T O R ( A ~ , A ~ , E T A M P , E T P H I )  
C A L L  V E C T O R ( A 3 , A 4 , E P A M P , E P P H I )  
W R I T E ( 6 , 2 0 1 2 ) T O , E T A M P , E I P H I i E P A M P t k P P H I  
E T T ( J , K ) = E T T ( J , K ) + k T T O  
E P P ( J , K ) = E P P ( J t K ) + E P P O  

7 5 0  C O N T I N U E  
C A L L  P R T I h 2  

C  
C  T R A N S L A T E  P H A S t  C E N T E R ,  S C A L E  A M P L I T U D E S ,  AND O U T P U T  T O T A L  F I E L D S  
C 

PUIYCH 1001 , T I T L E  
W R I T E ( 6 , 2 0 0 2 ) T I T L E  
W R I T t ( 6 t 2 0 1 0 ) X T q Y T , Z T q S C A L E  
DO 7 6 0  K = l , K M A X  
TO=PP ( K  / 0 . 0 1 7 4 5 3 2 9 3  
W R I T t ( 6 , Z O l l ) T O  
DO 7 6 0  J = l , J M A X  
T O = T T (  J )  / 0 . 0 1 7 4 5 3 2 9 3  
A l = R t A L ( E T T ( J , K ) )  
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Printout D-1 (contd) 

A ~ = A I M A G ( E T T ( J P K ) )  
A 3 = R E A L ( E P P (  J 1 K ) )  
A ~ = A I M A G ( E P P ( J ~ K ) )  
C A L L  V E C T O R ( A ~ , A ~ ~ E T A M P , E T P H I )  
C A L L  V E C T O R ( A ~ , A ~ , E P A M P ~ E P P H I )  
D P = X T * S I T T ( J ) * C O P P ( K ) + Y T ~ S I T T ( J ) * S I P P ( K ) + ~ T ~ ( C O T T ( J ) + ~ . O )  
DP=DP*PC:857 .29578  
E T P H I = E T P H I - D P  
E P P H I = E P P H I - D P  
C A L L  A D J U S T  ( E T P H I  ) 
C A L L  A D J U S T ( E P P H I )  
t T A M P = E T A M P * S C A L E  
EPAMP=EPAMP*SCALE 
W R I T ~ ( ~ ~ ~ O ~ ~ ) T O , E T A M P ~ E T P H I , ~ P A ~ P ~ ~ P P H I  
PUNCH ~ O ~ ~ , T O , E T A M P ~ E T P H I ~ E P A M P I E P P H I  

7 6 0  C O N T I N U E  
C A L L  P R T I M 2  

C 
C  T E S T  FOR ANOTHER D A T A  BLOCK 

R E A D ( 5 , l O O l ) T I T L E  
I F ( T I T L E ( 1 ) - L C ) 1 , 8 0 0 ~ 1  

8 0 0  C O N T I N U E  
W R I T t  ( 6 , 2 0 0 4 )  
STOP 

1 0 0 1  F O R M A T (  1 3 A 6  ) 
1 0 0 2  FORMAT ( 1 O F 1 0 . 0 )  
2 0 0 1  F O R M A T ( 3 2 H 1  L U D W I G  S C A T T E R I N G  P R O G K A M / / 5 X 7 1 3 A 6 / / )  
2 0 0 2  FORMAT ( 5 H l  , 1 3 A 6 / / )  
2 0 0 3  F O R M A T ( 2 6 H  P R O P A G A T I O N  C O N S T A N T = , E 1 4 . 8 / / )  
2 0 0 4  F O R M A T ( 1 8 H l  END OF L A S T  C A S E )  
2 0 0 6  F O R M A T ( 2 9 H O  S C A T T E R E D  F I E L D S  FKOM G R I D , I 2 )  
2 0 0 7  F O R M A T ( 3 0 H 1  B E G I N  I N T E G R A T I O N  OVER G K I D y I 2 )  
2 0 0 9  F O R M A T ( 4 0 H l  D I R E C T  R A D I A T I O N  FKOM I N C I D E N T  F I t L D S )  
2 0 1 0  F O R M A T ( 6 3 H  S U P E R P O S I T I O N  OF A L L  G R I D  S C A T T t R t D  F I t L U S  AND U I R E C T  

1 F I E L U S / 3 2 H  PHASE C E N T E R  T R A N S L A T E D  BY X = , F 1 0 . 4 , 5 H  Y=,F10 .4 ,  
2 5 H  Z = , F 1 0 . 4 /  
3 3 9 H  A M P L I T U D E  V A L U E S  S C A L E D  B Y  FACTOR O F i E 1 5 . 8 )  

2 0 1 1  F O R M A T ( 7 H O  P H I = , F 7 . 2 /  
1 1 7 X 9 7 H E  T H E T A ,  1 5 X y 5 H E  P H I /  
2 9 H  T H E T A 1 2 ( 2 0 H  V O L T S  PHASE ) 

2 0 1 2  F O R M A T ( F ~ . ~ , F ~ ~ . ~ V F B . ~ ~ F ~ ~ . ~ , F ~ . ~ )  
2 0 1 3  F O R M A T ( F 1 0 ~ 2 ~ F 1 0 ~ 6 ~ F 1 0 ~ 2 ~ F 1 0 ~ 6 ~ F 1 0 0 2 )  

END 

(b) Subroutine FIELDS (spherical-wave expansion) 

$ I B F T C  F I E L D  
S U B R O U T I N E  F I E L D S  

C  
C  T H I S  S U B R O U T I N E  E V A L U A T E S  A  S P H E R I C A L  W A V t  E X P A N S I U l v  TO O B T A I N  
C  T H E  M A G N E T I C  F I E L D S  ON A  S U R F A C t  S. W A V t  C U ~ I F F I C I E N T ~  ARE I N P U T  
C  ON CARDS. A. L U D W I G  1 - 1 4 - 6 9  
C  

C O M M O N / G R I D ~ / S I T ( ~ ~ ) ~ C O T ( ~ ~ ) ~ S I P ~ ~ ~ ~ ~ ~ C O P ~ ~ ~ ~ ~ ~ T ~ I ~ ~ ~ P ~ ~ B ~ ~  
COMMUN/GRID~/S ITTI  ~ B ~ ) , C O T T (  1 8 1  ) , s I P P ( ~ )  , C O P P ( B )  , f ~ ( 1 8 1 )  , P P ( B )  
D I M E N S I O N  F ( l O l ) , G ( l O O )  
D I M E N S I O N  N A M E (  1 3 )  
D I M E N S I O N  A ( 1 0 0 , 2 ) , B ( 1 0 0 , 2 )  

C  
C  R E A D  I N  WAVE C O E I F F I C I E N T S  
C  

R E A D ( 5 , l O O l ) N A M E  
W R I T E ( 6 , 2 0 0 1 ) N A M E  
R E A D ( 5 , l O O l ) N A M E  
R E A D ( 5 , 1 0 0 2 ) L M A X , M C U M P  
R E A D ( 5 ~ 1 0 0 3 ) ( J ~ A ( J ~ l ) ~ A ~ J ~ 2 ) , B ~ J ~ l ~ ~ B ( J ~ 2 ~ ~ L ~ l ~ L M A X ~  
FMC=MCOMP 
W R I T E  ( 6 , 2 0 0 3 ) M C O M P  
WRI  T E ( 6 ,  2 0 0 2 ) N A M E  
W R I T E ( ~ , ~ ~ ~ ~ ) ( J , A ( J , ~ ) ~ A ( J , ~ ) ~ B ( J ~ ~ ) P B ( J , ~ ) , J = ~ , L M A X )  
R E T U R N  
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C  
C  ENTRY P O I N T  FOR M A G N E T I C  F I E L D S  A T  F I N I T E  R  
C  

ENTRY F I E L D 1 ( M M A X , N M A X p H R p H T y H P 9 R )  
D I M E N S I O N  R (  1 5 ,  9 1 )  
COMPLEX H R (  1 5 ,  9 1 ) , H T (  1 5 ,  9 1 ) , H P (  1 5 ,  9 1 )  
I E N T = 1  
M=O 

1 M=M+1 
S N = S I T  ( M I  
Z = C O T ( M )  
TOUT=T ( M )  
GO TO 99 

C  
C  ENTRY P O I N T  FOR E L E C T R I C  F I E L D S  A T  I N F I N I T E  R  
C  

ENTRY F I E L D ~ ( J O , K O ~ E T T O , E P P O )  
COMPLEX E T T O ,  EPPO 
I E N T = 2  
S N = S I  T T  ( J O )  
Z = C O T T ( J O )  
TOUT=TT ( J O )  

C  
C  E S T A B L I S H  LEGENDRE F U N C T I O N  T A B L t S  FOR M-TH T H E T A  V A L U E  
C  

9 9  IF(ABS(SN)-~00001)200~100~100 
1 0 0  DO 1 0 5  N = ~ , M C O M P  
1 0 5  F ( N ) = O  

N C = L M A X + l  
C A L L  LEGEND(NC,MCOMP,Z,F)  
DO 1 1 0  N z l l L M A X  
T l = N - M C O M P + l  
T 2 = N + 1  
G(N)=Tl*F(N+l)-TZ*Z+F(N) 

1 1 0  G ( N ) = G ( N ) / S N  
DO 1 1 5  N = ~ , L M A X  

1 1 5  F ( N ) = F ( N ) / S N  
C  F ( L )  I S  M U L T I P L I E D  B Y  FMC L A T E R  

GO TO ( 3 0 0 1 5 0 0 ) , I E N T  
C  S P E C I A L  E Q U A T I O N S  FUR TH=O AND T H = 1 8 0  DEG 

2 0 0  I F ( M C U M P - 1 ) 2 1 0 , 2 2 0 , 2 1 0  
2 1 0  DO 2 1 5  N z l q L M A X  

F ( N ) = O  
2 1 5  G ( N ) = O  

GO TO ( 3 0 0 , 5 0 0 ) , I E N T  
2 2 0  DO 2 2 5  N = l , L M A X  

F N = N * ( N + l )  
F ( N ) = F N / Z . O  

2 2 5  G ( N ) = F N / Z . O  
IF(T0UT-1.57)250,250,230 

2 3 0  DO 2 3 5  N = l , L M A X , Z  
F ( N + l ) = - F ( N + l )  

2 3 5  G ( N ) = - G ( N )  
2 5 0  GO TO ( 3 0 0 , 5 0 O ) , I E N T  

C  
C  FOR E A C H  P H I  V A L U E  T H t  HANKEL F U N C T I O N S  ARE E V A L U A T t U  AT T H E  
C  CORRESPONDING V A L U E  FOR R  AND T H E  WAVE E X P A N S I O N  I S  SUMMED 
C  

3 0 0  DO 4 5 0  N = l , N M A X  
HRR=O 
H R I = O  
HTR=O 
H T I = O  
HPR=O 
H P I = O  
C A L L  SPHANK(l,R(M~N)pSORiSOI) 
DO 400 L - 1 ,  LMAX 
F L = L  
F N = ( F L + l . O ) / R L M , N )  
N C = L + l  
C A L L  SPHANK(NC,R(MvN),SlR,SlI) 

Printout D-1 (contd) 
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F I R = - A ( L ,  l ) * S l R + A ( L , Z ) * S l I  
FlI=-A(L,l)*SlI-A(L,2)*SlR 
F 2 R = F N * ( A ( L , l ) * S O I + A ( L p 2 ) * S O R )  
F2I=FN*(A(L,2)*SOI-A(Ltl)*SOR) 
F 3 R = - B ( L ,  l ) * S O R + B (  L t 2 ) * S O I  
F ~ I = - B ( L I ~ ) * S O I - B ( L , ~ ) * S O R  
HRR=HRR+FZR*F ( L  * F L  
H R I = H R I + F Z I * F ( L ) * F L  
F ( L ) = F ( L ) * F M C  
H T R = H T R + F l R * G ( L ) + F Z R * G [ L ) + F 3 R * F ( L )  
HTI=HTI+F~I+G(L)+F~I*G(L)+F~I*F(I) 
H P R z H P R - F ~ R * F ( L ) - F ~ R * F ( L ) - F ~ R * G ( L )  
HPI=HPI-FlI*F(L)-F2I*FtL)-F3IeG(L) 
S O R = S l R  
S O I = S l I  

4 0 0  C O N T I N U E  
HRR=HRK*SN*COS ( FMC*P ( N )  ) 
H R I = H R I * S N * & C O S (  F M C * P ( N )  ) 
H R ( M , N ) = C M P L X ( H R R v H K I  
HTR=HTR*COS(  F M C * P (  N )  
H T I = H T I * C O S ( F M C * P ( N )  
H T ( M , N ) = C M P L X ( H T R , H T I )  
H P R = H P R * S I N ( F M C * P ( N ) )  
H P I = H P I * S I N ( F M C * P ( N ) )  
H P ( M , N l = C M P L X ( H P R , H P I )  

4 5 0  C O N T I N U E  
I F  (M-MMAX) 1 t 4 6 0 1 4 6 0  

4 6 0  R E T U R N  
5 0 0  C O N T I N U E  

ETR=O.O 
E T I = O  
EPR=O 
E P I = O  
DO 5 5 0  L = l , L M A X  
F ( L ) = F ( L ) * F M C  
E T R = E T R + A ( L , l ) * F ( L ) + B ( L , l ) * G ( L )  
ETI=ETI+A(L,Z)*F(L)+B(L,Z)*G(L) 
EPR=EPR+A(L,l)*G(L)+B(L*l)*F(L) 
EPI=EPI+A(L,~)*G(L)+B(L,~)*F(L) 

5 5 0  C O N T I N U E  
E T R = E T R * S I N ( F M C * P P ( K O  
E T I = E T I * S I N ( F M c * P P ( K o )  
E T T O = C M P L X ( E T R , E T I )  
EPR=EPR*COS(  F M C * P P ( K O )  ) 
E P I = E P I * C O S ( F M C * P P ( K O )  ) 
EPPO=CMPLX ( E P R I E P I  
R E T U R N  

1001 FORMAT ( 1 3 A 6 )  
1 0 0 2  F O R M A T ( 5 1 5 )  
1 0 0 3  FORMAT(I5r2E17.8,2X,ZE17.8) 

2 0 0 2  F O R M A T ( 5 X , 1 3 A 6 / / / 2 0 X 1 4 H A ( N ) t 3 2 X , 4 H B ( N ) /  
1 5 H  N ,7X4HREAL ,13X ,4H IMAG,15X4HREAL~13X f4H IMAG)  

2 0 0 3  FORMAT ( 2 5 H  A Z M U I T H A L  ORDER MCOMP= , I Z )  
2 0 0 4  F O R M A T ( 1 5 , 2 € 1 7 . 8 ~ 2 X 1 2 E 1 7 . 8 )  

END 
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(c) Subroutine FIELDS (far-field approximation) 
I 

S U B R O U T I N E  F l  E L D S  
C  
C  T H I S  S U B R O U T I N E  ASSUMES F A R - F I E L D  B E H A V I O R  FOR T H t  I N C I D E N T  F I E L D S  
C  TO O B T A I N  T H E  M A G N E T I C  F I E L D S  ON A  S U R F A C t  S  
C  A. L U D W I G  MARCH 1 9 6 9  
r. 

O I M E N S I O N  T I T L E ( 1 3 ) ~ P S 1 ( 1 ~ 1 ) , € ~ 1 8 1 ) ~ E P ( 1 8 1 ) ~ H ( 1 8 1 ) ~ h P ~ 1 8 1 ~  
O I M E N S I O N  ~ u M ( 2 )  
C O M P L t X  EE t E X P J X  
E Q U I V A L E N C E  ( E E , O U M ( ~ ) , C O ) , ( D U I ~ ( ~ ) ~ S I )  
C O M M U N / G R I D l / S I T (  1 5 ) , C O T (  ~ ~ ) , S I P ( ~ B ~ ) , C O P ( ~ B ~ ) ~ T (  1 5 ) , P ( 1 8 1 )  
C O M M U I \ J / G R I ~ 2 / S I T T ( 1 8 1 ) ~ C O T T ( 1 B 1 ) ~ S I P P (  B ) , C O P P (  B ) , T T ( 1 8 1 ) y P P ( B )  
DTR=0.0 1 7 4 5 3 2 9 3  
W R I ~ t ( 6 , 2 0 0 1 )  

L O O 1  F O R M A T ( 5 Z H  I L L U M A T I O M  F I E L D  F R O l l  C I K C U L A R I L Y  S Y M M t T R I C  F E k I ) / / )  
C  
C. RFAO I N  I N P l l T  F I F L D S  

C  
C  FOR I C 1  L E S S  THAN OR E Q U A L  TO 0 CONVERT FROM Dt) TO V U L T S  

I F ( I C l ) 1 0 , 1 0 ~ 2 O  
1 0  DO 1 5  J = l , J I N  

E ( J ) = l O . O * * ( E ( J ) / Z U . O )  
1 5  H ( J ) = l O . O * * ( H ( J ) / 2 0 . 0 )  
2 0  C O N T I N U E  

C  
C  FOR I C 2  GREATER T H A N  ZERO NEGLECT F E E D  P H A S E  PATTkRI ' J  

I F ( I C Z ) 4 0 , 4 0 , 3 0  
3 0  DO 35 J = l , J I N  

E P ( J ) = O  
35 H P ( J ) = O  
4 0  C O N T I N U E  

C  
c P R I N T  OUT F I E L D  I L L U M I N A T I O N  

M R I T E ( 6 , 2 0 0 2 ) T I T L E  
W R I T E ( ~ , ~ ~ ~ ~ ) ( P S I ( J ) , E ( J ) , E P ( J ) , H ( J ) , H P ( J ) , J = ~ ~ J I N )  

r. 
CONVERT POLAR ANGLES TO R A D I A N S  
DO 4 5  J = 1 ,  J I N  

4 5  P s I ( J ) = D T R * P S I ( J )  
L 

C  CONVERT T O  R E A L  AND I M A G I N A R Y  
I F ( I C 2 ) 5 0 , 5 0 , 6 0  

5 0  DO 5 5  J = l v J I N  
TH=DTR*EP ( J )  
E E = E X P J X ( T H )  
E P ( J ) = E ( J ) % S I  
E ( J ) = k ( J ) ' C O  
T H = D T K * H P ( J )  
E E = E X P J X ( T H )  
H P ( J ) = H ( J ) * S I  

5 5  H ( J ) = H ( J ) * C O  
6 0  C O N T I N U E  

C 
C  SET F I E L D S  O U T S I D E  O F  I N P U T  RANGk EQUAL TO ZERO 

I F ( J 1 N M - J I N - 1 1 7 2 , 7 1 1 7 0  
7 0  P S I (  J I N + 2 ) = 3 . 1 4 2  

E (  J I N + Z ) = O  
E P ( J I N + Z ) = O  
H ( J I l V + 2 ) = 0  
H P ( J I N + 2 ) = O  

7 1  P S I  ( J I N + l ) = P S I  ( J I N ) + . 0 1  
E ( J l N + l ) = O  
E P L J I N + l ) = O  1 H I J I N + l ) = O  
H P (  J I N + l )  =O 
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7 2  C O N T I N U E  
R E T U R N  

C  
C  E N T E R  HERE FOR G R I D 1  F I E L D S  
C  

ENTRY FIELDl(MMAX,NCtAX,HR,HT,HFtR) 
D I M E N S I O N  R ( 1 5 9 9 1 )  
COMPLEX H R ( 1 5 , 9 1 ) , H T ( 1 5 , 9 1 ) 1 ~ F ( 1 5 , 9 1 )  

C  L I N E A R I L Y  I N T E R P O L A T E  F I E L D S  T O  I N T E G R A T I O N  G R I D  POLAR A N G L E S  
J=1 
DO 2 0 0  M = ~ , M M A X  

1 0 9  IF(PSI(J)-T(~))110~110t120 
1 1 0  J = J + l  

GO TO 1 0 9  
1 2 0  F=(T(M)-PSI(J-l))/(PSL(J)-PSI(J-1)) 

OF=l .O-F  
ETR = F * E ( J ) + O F * E ( J - 1 )  
€ T I  = F * E P ( J ) + O F * E P ( J - 1 )  

E P R  = F * H (  J )  +UF*H ( J - 1 )  
1 0 0  E P I  =F:?HP( J ) + O F * H P (  J-1) 

DO 2 0 0  N = l , N M A X  
T l = E T R  * S I N ( F M C * P ( N ) )  
T 2 = E T I  * S I N ( F M C * P ( N ) )  
T 3 = E P R  *COS(FMC1:P(N) ) 
T 4 = E P I  * C O S (  FMC::P(N) ) 

C  ASSUME FAR F I E L D  B E H A V I O R  H R = O , H P = t T , H T = - t P  
HR(M,N)=(O.O,O.O)  
H T ( M , N ) = C M P L X ( - T 3 , - T 4 )  
H F ( M , N ) = C M P L X ( T l , T Z )  

2 0 0  C O N T I N U E  
R E T U R N  

C  
C  E N T E R  HERE FOR G R I D 2  F I E L D S  

ENTRY F I E L D 2 ( J O , K O v E T T O , E P P O )  
COMPLEX E T T O t  EPPO 

C  
C  L I N E A R L Y  I N T E R P O L A T E  F I E L D S  TO U U T P U T  G K I U  POLAR A N b L t S  

J =  1 
J J= J O  

5 0 9  I F ( P S I ( J ) - T T ( J J ) ) 5 1 0 , 5 1 0 1 5 2 0  
5 1 0  I F ( J . E Q . 1 8 1 ) G O  TO 5 2 0  

J=J+ l  
GO TO 5 0 9  

5 2 0  F=(TT(JJ)-PSI(J-~))/(PSI(J)-PSI(J-~)) 
OF=l .O-F  
E T R  =FgcE( J ) + O F x c E (  J - 1 )  
€ T I  = F * E P ( J ) + O F * E P ( J - 1 )  
EPR- = F * H (  J ) + O F * H (  J-1) 

5 0 0  € P I  =FakHP( J ) + O F + H P (  J - 1 )  
C  

K=KO 
T l = E T K  * S I N ( F M C * P P ( K )  
T 2 = E T I  ::SIN(FMC?;PP(K) ) 
T 3 = E P K  * C O S (  F M C * P P ( K )  ) 

T 4 = E P  I ?COS(FMC;KPP ( K )  
E T T O = C M P L X ( T l , T 2 )  
EPPO=C19PLX ( T 3 t T 4 )  
R E T U R N  

1 0 0 1  FORMAT(  1 3 A 6 )  
1 0 0 2  F O R M A T ( l O I 5 )  
1 0 0 3  F O R M A T ( 5 F 1 0 . 6 )  
2 0 0 2  F O R M A T ( 1 3 A 6 / 4 7 H  POLAR E-PLANE H - P L A N E /  

1 5 0 H  ANGLE V O L T S  DEG V O L T S  D E G )  
2 0 0 3  F O R M A T ( F 1 0 . 2 , F 1 2 . 6 , F 8 . 2 ~ F l 3 . 6 ~ F 8 . 2 )  

E N 0  
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(dl Subroutine SURF 

$ IBFTC SURFDK 
SUBRUUTINE SURF(MMAX,NMAX,F,FT,FP) 

C  T H I S  SUBROUTINE PROVIDES THE MAIN PROGRAM WITH RHO AIVU I T S  
C  PARTIAL DERIVATIVES WITH RESPECT TU THETA AND P H I  
C  RHO I S  DENOTE0 BY F I N  T H I S  PROGRAM FOR SUME OBSCURt REASON 
C 

DIMENSION T I N ( 1 5 ) ~ A 0 ( 1 5 ) ~ A 1 ( 1 5 ~ ~ A 2 ( 1 5 ) , U A O ~ 1 5 ) ~ D A l ~ l 5 ~ ~ D A 2 ~ 1 5 ~  
DIMENSION T I T L E ( 1 2 )  
C O M M O N / G R I D ~ / S I T ( ~ ~ ) ~ C O T ( ~ ~ )  , S 1 P ( 1 8 l ) , C O P ( l 8 1 )  v T ( 1 5 )  ~ P ( 1 8 1 )  
DIMENSION F(15,91),~T(15,91),FP(15,91) 

c 
READ I N  FOURIER C O E I F F I C I E N T S  

4  R k A l ~ ( 5 r  1 0 0 1 ) T I T L t  

C  I E CHECK THAT INPUT DATA AND INTEGRATION GRID AGREE 

99 W R I T E ( 6 , 2 0 0 2 ) T I N ( M ) , T C H E  I 1 0  CONTINUE 
C 
C  F I L L  OUT SURFACE TABLE 
C 

DO 5 0  N=l,NMAX 
DO 5 0  M=l,MMAX 
COP2P=1.0-2.0*SIP(N)*SIP(N) 
F ( M , N ) = A O ( M ) + A l ( M ) * C O P ( N ) + A 2 ( M ) * C O P 2 P  
F T ( M , N ) = D A O ( M ) + D A ~ ( M ) * C O P ( N ) + D A ~ ( Y I ) * C O P ~ P  
s I P ~ P = ~ . O * S I P ( N ) * C O P ( N )  
FP(M,N)=  - A ~ ( M ) * S I P ( N ) - ~ . ~ * A ~ ( M ) * S I P ~ P  

5 0  CONTINUE 
RETURN 

1 0 0 1  F O R M A T ( ~ Z A ~ )  
1 0 0 2  FORMAT( 7F10 .4 )  
2 0 0 1  FORMAT(44HO SURFACE DATA INPUT I N  T H t  FORM OF F O U R I t R /  

*37H COEFFICIENTS AND THEIR O E R 1 V A T I V E S / / l Z A 6 / /  
*44H THETA A0 (THETA) A 1  (THETA)  A2 (THETA 1 ,  
*37H DAO/DTHETA DA l /DTHETA DA2/DTHETA) 

2 0 0 2  FORMAT(55H SURFACE INPUT DATA INCONSISTANT WITH I N T t G R A T I O N  GRID/  
*14H INPUT ANGLE1F7.2118H DEG GRID ANLLE,F7.2,4H OEG) 

2 0 0 3  FORMAT(F8.2,6F12.4) 
END 

(e) Subroutine SETUP 

$ I B F T C  SET0 
SUBROUTINE S E T U ~ ( N G ~ , I , J M A X , K M A X , M M A X , N M A X )  

C  
C  T H I S  PROGRAM ESTABLISHtS  THE OUTPUT GRIU AND UP TO 5  INTEGRATION 
C GRIDS, AND PRECOMPUTES TRIG FUNCTIONS ON ALL OF THE GRID POINTS 

DIMENSION MM( 5 ) , N N ( 5 ) ,  T (  1 5 ,  5 ) v P ( 1 8 1 9  5 )  
C O M M O N / G R I D ~ / S I T (  15) ,COT( 1 5 ) , S I P ( 1 8 1 ) , C O P (  1 8 1 )  , T G l (  15 ) ,PG1(  1 8 1 )  
C O M M O N / G R I D ~ / S I T T ( ~ ~ ~ ~ ~ C O T T ( ~ ~ ~ ) , S I P P (  8),COPP( 8 ) , T T ( 1 8 1 ) , P P ( 8 )  

- - - - - , - . 

EQUIVALENCE ( E , D U M ( ~ ) , C O ) , ( D U M ( ~ ) , S I )  
DATA L 1 / 0 6 0 6 0 6 0 6 0 6 3 7 4 / ~ L 2 / 0 6 0 6 0 6 0 6 0 4 7 7 4 / ~ L 3 / 0 6 0 6 0 6 0 6 3 6 3 7 4 /  

I DATA ~ 4 / 0 6 0 6 0 6 0 4 7 4 7 7 4 /  1 L 5 / 0 3 4 1 3 ~ 0 0 0 0 0 0 0 /  I 
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G R I D  VALUES MAY BE READ I N  BY INPUTING ONLY -MAX VALUES, OR I F  
EQUALLY SPACED VALUES ARE DESIRED, PROGRAM W I L L  COMPUTE VALUES 
G I V E N  A  STARTING P O I N T  AND AN INCREMENT 

C  
C  READ I N  OUTPUT G R I D  

R E A D ( ~ T ~ O O ~ ) J M A X , T T ~ , D T T  
I F ( D T T ) 1 0 ~ 2 0 , 1 0  

1 0  DO 1 5  J= l , JMAX 
F J = J - 1  

1 5  T T ( J ) = T T l + F J * D T T  
GO TO 3 0  

2 0  R E A D ( ~ , ~ O O ~ ) ( T T ( J ) T J = ~ ~ J M A X )  
3 0  R E A D ~ ~ T ~ O O ~ ) K M A X , P P ~ , D P P  

I F ( D P P ) 4 0 , 5 0 , 4 0  
4 0  DO 4 5  K=l,KMAX 

- - 

FK=K-1 
4 5  PP(K)=PP l+FK*DPP 

GO TO 6 0  
5 0  R E A D ( 5 v l 0 0 2 ) ( P P ( K ) , K = l , K M A X )  
6 0  CONTINUE 

L 

C  READ I N  INTEGRATION GRIDS 
R E A D ( ~ T ~ O D ~ ) N G ~  
DO 1 0 0  I = l , N G l  
R E A D ( ~ T ~ O O ~ ) M M ( I ) , T ~ , D T  
MMM=MM( I )  
I F ( D T ) 1 1 0 ~ 1 2 0 ~ 1 1 0  

1 1 0  DO 1 1 5  M=~,MMM 
FM=M-1 

130' R E A D ( ~ ~ ~ O O ~ ) N N ( I ) T P ~ T O ~  
NNN=NN ( I 
I F ( D P ) 1 4 0 , 1 5 0 ~ 1 4 0  

140 DO 1 4 5  N=l,NNN 
FN=N-1 

1 4 5  P (N , I )=P l+FN*DP 
GO TO 1 0 0  

1 5 0  R E A D ( ~ , ~ O D ~ ) ( P ( N , I ) , N = ~ , N N N N )  
1 0 0  CONTINUE 

C  
C  P R I N T  OUT G R I D  DATA 

W R 1 T E ( 6 ~ 2 0 0 1 )  
- W R I T E ( ~ , ~ O O ~ ) ( L ~ T J , L ~ T T T ( J ) T J = ~ , J M A X )  

W R I T E ( 6 , 2 0 0 2 )  
W R I T E ( ~ ~ ~ ~ ~ ~ ) ( L ~ T K T L ~ ~ P P ( K ) T K = ~ ~ K M A X )  
W R I T E ( 6 , 2 0 0 4 ) N G l  
DO 1 5 5  1 = 1 ~ N G l  
W R 1 T E ( 6 ~ 2 0 0 5 )  I 
MMM=MM ( I 
NNN=NN ( I ) 
W R I T E ( ~ , ~ O O ~ ) ( L ~ , M , L ~ ~ T ( M T I ) , M = ~ , M M M )  
W R I T E ( 6 , 2 0 0 2 )  

1 5 5  W R I T E ( ~ ~ ~ O ~ ~ ) ( L ~ , N , L ~ ~ P ( N ~ ~ ) , N = ~ ~ N N N N )  
C 
C  E S T A B L I S H  G R I D 2  TABLE 

DTR=D.017453293 
DO 2 0 0  J = l * J M A X  
T T ( J ) = D T R * T T ( J )  
E = E X P J X ( T T ( J ) )  
s I T T (  J - ) = S I  

2 0 0  C O T T ( J ) = C O  
DO 2 1 0  K=l,KMAX 
P P ( K ) = D T R * P P ( K )  
E = E X P J X ( P P ( K ) )  
S I P P ( K ) = S I  

2 1 0  COPP(K)=CO 
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C  
C  E S T A B L I S H  G R I D 1  T A B L E S  

I = O  
C  
C  
C  FOR N G 1  GREATER T H A N  1, R E - E N T E R  S U B R O U T I N E  H E R E  FOK NEW G R I D 1  
C  

E N T R Y  R E S E T ( I , M M A X , N M A X )  
I = I + l  
M M A X = M M ( I )  
D O  400 M= l ,MMAX 
T G l ( M ) = D T R * T ( M , I )  
E = E X P J X ( T G l ( M ) )  
S I T ( M ) = S I  

400 C O T ( M ) = C O  
N M A X = N N ( I )  
D O  410 N = l , N M A X  
P G l ( N ) = D T R * P ( N , I )  
E = E X P J X ( P G l ( N ) )  
S I P  ( N ) = S I  

4 1 0  C O P ( N ) = C O  
R E T U R N  

1001 F O R M A T ( I ~ , ~ F ~ O . O )  
1 0 0 2  F O R M A T (  8 F 1 0 . 0  
2 0 0 1  F O R M A T ( 5 0 H  T H E  F U L L O W I N G  O U T P U T  G R I D  H A S  B E E N  E S T A B L I S H E D /  

1 2 5 H  A L L  A N G L E S  I IU  D E G R E E S / / )  
2 0 0 2  FORMAT ( / / I  
2 0 0 4  F O K M A T ( 1 7 H O  T H E  F O L L O W I N G , I 3 , 4 0 H  I N T E G R A T I O N  G R I D S  H A V E  B E E N  E S T  

l A B L I S H E D / )  
2 0 0 5  F O R M A T (  1 8 H O  SEGMENT NUMBER, I 3 /  
2 0 0 6  F O R M A T ( 5 ( A 6 , 1 3 , A 2 v F 9 . 4 ) )  

E N D  

(fl Subroutine PATHL 
--- - - 

B I B F T C  P A T H L D  
S U B R O U T I N E  PATHL(RHU,J,K,MMAX,NMAX,GAM) 

C  T H I S  S U B R O U T I N E  E V A L U A T E S  THE P A T H  L E N G T H  F U N C T I O N   AMM MA 
D I M E N S I O N  R H O (  1 5 ,  9 1 ) , G A M (  1 5 ,  9 1 )  
C O M M O I U / G R I D l / S I T (  1 5 )  , C O T (  1 5 )  , S I P (  1 8 1 )  1 C U P ( 1 8 1 )  
C O M M O N / G R I D ~ / S I T T ( ~ ~ ~ ) ~ C O T T ( ~ ~ ~ ) , S I P P (  B ) , C O P P (  8 ) t T T ( 1 8 1 )  , P P ( B )  
D O  10 M= l ,MMAX 
T ~ = S I T ( M ) * S I T T ( J ) * C ~ P P ( K )  
T2=SIT(M)*SITT(J)*SIPP(K) 
T 3 = C O T ( M ) * C O T T (  J)-1.0 
D O  10 N = l , N M A X  

10 G A M ( M , N ) = R H O ( M , N ) * ( T ~ ~ C O P ( N ) + T ~ : ~ S I P ( N ) + T ~ )  
R E T U R N  
END 

(g) Subroutine FlNT 

B I B F T C  F I N T O  
S U B R O U T I N E  F I N T ( X , Y , F , R , M M A X , N ~ ~ A X , S T O T )  1 

C  T H I S  S U B R O U T I N E  N U M E R I C A L L Y  I N T t G R A T E S  
T H E  K A D I A T I O N  I N T E G R A L  
A. L U D W I G  J U N E  1 9 6 8  

D I M E N S I O N  X (  1 5 ) , Y ( 1 8 1 ) , R (  1 5 1  9 1 )  
D I M E N S I O N  D U M ( 2 )  
C O M P L E X  F (  1 5 ,  Y ~ , ~ ) , S T O T ( ~ ) , E , T ~ T T ~ , T ~ , A , B , C , E X P J X ,  F 1 2 7 F 2 3 ,  

l F 1 4 , S U M , T D T  
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00 2 0 0  M z l y M M A X  
D S = D Y * ( X ( M + l ) - X ( M )  
R l = R ( M + l , N + l ) - R ( M , N )  
R Z = R ( M , N + l ) - R ( M + l , N )  
R 3 = R ( M , N ) + R ( M + l , N )  
B E = ( R l + R 2 ) * 0 . 5  
CE= ( R l - R 2 ) * 0 . 5  
A L = ( R 3 - C E ) * 0 . 5  
I F ( A B S ( B E ) - 0 ~ 0 1 ) 1 0 0 , 1 0 0 ~ 1 1 0  

100 F 3 I = B E * 0 . 3 3 3 3 3 3 3 3  
F l I = B E * O . 5  
F l R = l . O - F l I : s F 3 1  
F 3 R = 0 . 5 - B E * B E / 8 . 0  
GO T O  140 

110 E = E X P J X (  B E )  
F l R = S I / B E  
F 1 1 = ( 1 . 0 - C O ) / B E  
F 3 R = F l R - F 1 I  / B E  
F 3 I = ( F l R - C O ) / B E  

1 4 0  I F ( A B S ( C E ) - 0 . 0 1 )  1 5 0 , 1 5 0 , 1 6 0  
1 5 0  F 4 I = C E * 0 . 3 3 3 3 3 3 3 3  

GO TO 170 
1 6 0  E = E X P J X ( C E )  

F 2 R = S  I / C  E 
F Z I = ( ~ . O - C O ) / C E  
F 4 R = F 2 R - F 2 I  / C E  
F 4 I = ( F Z R - C O ) / C E  

170 E = E X P J X ( A L )  
F 1 2 = C M P L X ( F l R * F 2 R - F l I > * F 2 1  , F l I : * F 2 K + F l R : ; F 2 1  ) 
F 2 3 = C M P L X ( F Z R * F 3 R - F Z I * F 3 I , F Z R " F 3 1 )  

00 2 0 0  L:1,3 
T l = F ( M + l , N + l , L ) - F ( M , N d )  
T 2 = F ( M , N + l + L ) - F ( M + l , N , L )  
T 3 = F ( M , N y L ) + F I M + l , N , L )  
B = T l + T 2  
C = T l - T 2  
A=T3-0 .5 *C  
S U M = A * F 1 2 + B * F 2 3 + C : * F 1 4  
TOT=E*SUM*DS 

2 0 0  S T O T ( L ) = S T O T ( L ) + T O T  
R E T U R N  
END 

(h) Subroutine PRTlM 

$ I B F T C  P R T M l 3  P R I N T  TI I~ERS 
SUBROUT I N E  P R T I  ~1 P R T M  2 0  

C V E R S I O N  2 ,  F E B R U A R Y  1, 1 9 6 7  PRTM 3 0  
C V E R S I O N  37 A P R I L  1 9 6 8 .  

T O T A L = O .  P R T M  4 0  
PART=O PRTM 5 0  
C A L L  G k T T I M  ( N T I M E )  PRTM 6 0  
GO TO 10 P R T M  70 

C PRTM 8 0  
C PRTM 90 

I E N T R Y  P R T I M Z  
C A L L  G E T T I M ( I T I M E )  

PRTM 1 0 0  
P K T M  1 1 0  
PRTM 1 2 0  I 

T O T A L = F L O A T ( I T I M ~ - N T I M E ) / ~ ~ O O .  PRTM 1 3 0  
P A R T = F L O A T ( I T I M E - I P A R T ) / ~ ~ O O .  P R T t I  1 4 0  

10 T O T S E C  = T O T A L * 6 0 .  
P A R S E C  = P A R T * 6 0 .  
W R I T E ( b , l O O O ) P A R T , P A R S E C , T O T A L , T 0 T S E C  
C A L L  G E T T I M (  I P A R T )  PRTM 1 6 0  
R E T U R N  P K T M  1 7 0  

1000 F D R M A T ( ~ ~ H O P A R T I A L  T I M E  = F 1 0 . 4 , 5 H  M I N S , 3 X , l H = , F 1 2 . 4 , 5 H  SECS,  
* 1 0 X , 1 2 H T O T A L  T I M E  = F 1 0 . 4 , 5 H  M I N S , 3 X , l H = , F 1 2 . 4 , 5 H  S t C S )  

E N 0  P R T M  2 0 0  
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Printout D-1 (contd) 

$ I B M A P  F S T I M E  F E T C H  AND STORE LOC 5  F S T I  10 
* F S T I M E  FETCH A N 0  STOKE LOC 5 F S T I  20 

F S T I  30 
,,. C A L L  S t T T I M (  I T I M E )  F S T I  4 0  
& C A L L  G E T T I M ( I T 1 M E )  F S T I  50 
*. F S T I  60 

ENTRY S E T T I M  F S T I  70 
F N l K Y  G E T T I M  F S T I  80  

S E T T I M  C L A *  3 7 4  F S T I  90 
S  TO 5  F S T I  1 0 0  
TR A  1 1 4  F S T I  110 

G E T T I M  C L A  5 F S T I  1 2 0  
STO*  314  F S T I  130  
TR A  1 9 4  F S T I  140 
END F S T I  150 
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Printout D-2. Computer printout of spherical-wave expansion program 

(a) Main program (orthogonality technique) 

$ 1  BFTC MA I NDK 
C  SPHERICAL WAVE EXPANSION PROGRAI~ - ORTHOGUNnLITY T t C H N I Q U E  
C  T H I S  PROGRAM DETERMINES THE S P H t R I C A L  WAVt C O E I F F I C I t N T S  FOR THF 
C  M-TH FOURIER COMPOIVENT OF A  RADIATION PATTERN. (SE t  STKATTON P  4 1 6 )  
C  C O E I F F I C I E N T S  A R t  OBTAINED FROM URTHOGUNALITY INTEGKALS 
C  THE EXPANSION HATCHES THE FAR-FIELD INPUT P A T T t K N  WITH THE FAR- 
C  F I E L U  FORM OF SPHERICAL WAVES. ART LUDWIG 1 2 / 2 3 / 6 8  
C  

D IMENSION N A M E ( ~ ~ ) , N A M E J ( ~ ~ ) , N D U M ( ~ ~ )  
D IMENSION P A ( 6 0 ) , P B ( 6 0 )  
D IMENSION T ( 1 8 1 ) ~ E ( 1 8 1 ) ~ E P ( 1 8 1 ) ~ H ( 1 8 1 ) ~ H P ( 1 8 1 )  
D IMENSION F ( 6 0 , 1 8 1 ) , G ( 6 0 ~ 1 8 1 ) ~ P b t ( 6 1 )  
D IMENSION A ( 1 8 1 , 2 ) , B ( 1 8 1 t 2 )  
D IMENSION ACOE(60 ,2 ) ,BCOE(60 ,2 )  
D IMENSION AOUT(1 ,2 ) ,BOUT(1 ,2 )  
DATA N D U M / 1 3 * 0 6 0 6 0 6 O 6 0 6 0 6 0 /  
D T R = 0 . 0 1 7 4 5 3 2 9 3  

C  
C  READ I N  M-TH COMPONENT OF INPUT PATT tRN 
C  / 1 R E A D ( 5 r l O O l ) N A M E J  

CALL P R T I M l  

c FOR I C 1  LESS THAN OR EQUAL TO 0  CUNVkRT FROM DB TO VOLTS 
I F ( I C 1 ) 1 0 , 1 0 ~ 2 0  

1 0  DO 1 5  J = l , J I N  
E ( J ) = l O . O * * ( E ( J ) / 2 0 . 0 )  

1 5  H ( J ) = l O . O * * ( H ( J ) / 2 0 . 0 )  
2 0  CONTINUE 

C  FOR I C 2  GREATER THAN 0  NEGLECT PHASE 
I F ( I C 2 ) 4 0 , 4 0 , 3 0  

3 0  DO 3 5  J = l , J I N  
E P (  J)=O. 

3 5  H P ( J ) = O .  
4 0  CONTINUE 

C  P R I N T  OUT INPUT PATTERN 
W R I T E ( 6 , 2 0 0 1 ) N A M E J  
WRITE(6 .2006 )MCOMP 

C  CONVERT TO RADIANS AND REAL AND IMAGINARY 
DO 4 5  J = l , J I N  

4 5  T ( J ) = D T R * T ( J )  
I F ( I C 2 ) 5 0 ~ 5 0 , 6 0  

5 0  DO 5 5  J = l , J I N  
TH=DTK*EP ( J  
E P ( J ) = E ( J ) * S I N ( T H )  
E ( J ) = t ( J ) * C O S ( T H )  
TH=DTK*HP(J )  
HP(  J ) = H (  J ) * S I N ( T H )  

5 5  H ( J ) = H ( J ) * C O S ( T H )  
6 0  CONTIIVUE 

C  
C  E S T A B L I S H  A (T&TA)DTHETA AND B(THETA)DTHETA VECTORS 
r. 

A ( 1 ,  l ) = E ( l ) * T ( l )  
A ( 1 , 2 ) = E P ( l ) * T ( l )  
B ( l r l ) = H ( l ) * T (  1 )  
B ( l , Z ) = H P ( l ) * T ( l )  
DO 6 5  J z 2 , J I N  
D T H = T ( J ) - T ( J - 1 )  
A (  J, l ) = E (  J ) * O T H  
A ( J , Z ) = E P ( J ) * D T H  
B (  J ,  l ) = H (  J ) * D T H  

6 5  B ( J , 2 ) = H P (  J ) * D T H  
CALL  PRTIM2  
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Printout D-2 (contd) 
- 

C  
C  O B T A I N  F  A N D  G M A T R I C E S  
C  

FMC=MCOMP 
DO 8 0  J = l , J I N  
Z = C O S ( T ( J ) )  
DO 8 5  l \ I = l t M C O M P  

8 5  PM( I \ I )=O.  
N C = N M A X + l  
C A L L  L E G E I \ I D ( N C t M C O M P , Z  t P M )  
DO 8 0  I = l , N M A X  
F ( I , J ) = P M ( I ) * F M C  
T 1 =  I - M C O M P + l  
T 2 = 1 + 1  
G ( I  , J ) = T l : k p ~ (  I + 1 ) - T 2 * Z * p C 1 (  I )  

8 0  C O N T I N U E  
C  
C  PERFORM N U M E R I C A L  I N T E G R A T I O N  B Y  M A T R I X  M U L T I P L I C A T I O N  
C  

C A L L  M U L T ( J I N , N M A X ~ 2 , F ~ A i A C 0 € ~ 0 1 6 0 ~ 1 8 1 , 1 8 1 , 2 , 6 0 ~ 2 )  
C A L L  M U L T ( J I N , N M A X , ~ , G , B , A C O E , ~ , ~ ~ , ~ ~ ~ ~ ~ H ~ ~ ~ , ~ O ~ ~ )  
C A L L  M U L T ( J I N ~ N M A X ~ 2 , k , B ~ B C O E ~ O t 6 0 ~ 1 8 1 ~ 1 8 1 , 2 , 6 0 , 2 )  
C A L L  M U L T ( J I N ~ N M A X , ~ ~ G ~ A ~ B C O E ~ ~ ~ ~ O , ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ O , ~ )  

C 
C  N O R M A L I Z E  C O E I F F I C I  ENTS AND C O M P U T E  POWERS 
C  

PI02Z=(3.1415927/2.0)*0.0O2655 
PTOT=O. 
DO 9 5  N = l , N M A X  
P A ( N ) = O .  
P B ( N ) = O .  
F A C T = 1 .  
I F ( W C U M P ) 9 2 , 9 2 , 9 0  

90 D O  91 M= l ,MCOMP 
F F = ( N - M + l ) > > ( N + M )  

91 F A C T = F A C T * F F  
9 2  FF=z; :N+l  

F A c T = F A C T / F F  
F F = 2 * N *  ( N +  1 ) 
F A C T = F A C T * F F  
K=O 

9 3  K = K + 1  
B T = B C U E  (N,  K )  
A T = A C U E ( N , K )  
BCOE(N ,K )=BCOE(N ,K ) /FACT  
A C O E ( W , K ) = A C D E ( N , K ) / F A C T  
P A ( N ) = P A ( N ) + A T * A C O t ( I \ I t K ) * p 1 0 2 Z  
P B ( N ) = P B ( N ) + B T * B C O E ( N , K ) * P I O ~ Z  
I F ( K - 1 1 9 3 , 9 3 7 9 4  

9 4  C O N T I N U E  
P T O T = P T O T + P A ( N ) + P B ( N )  

9 5  C O N T I N U E  
C  
C  O U T P U T  C O E I F F I C I E N T S  
C  

W R I T E ( 6 , 2 0 0 l ) N A M E J  
P U N C H  1001 ,NAMEJ 
P U N C H  1 0 0 1 , N A M ~  
P U N C H  2 0 1 0  ,NMAX,MCOMP 
W R I T t ( 6 , 2 0 0 4 ) M C O M P  
PSUM=O 
00 100 J = l , N M A X  
P A ( J ) = P A ( J ) / P T O T  
P B (  J ) = P B (  J ) / P T O T  
P S U M = P S U M + P A ( J ) + P B ( J )  
P U N C H  2 0 0 5 ,  J,ACOE(J,l),ACOE(J,2),BCOE(J,l),BCOE(J,2) 

100 W R I T E ( ~ ~ ~ ~ ~ ~ ) J ~ A C U E ( J ~ ~ ) ~ A C O ~ ( J ~ ~ ~ ~ B C O ~ ( J ~ ~ ) ~ B C O E ~ J ~ ~ ~ ~ P A ~ J ~ ~ P ~ ~ J ~  
* ,PSUM 

W R I T E ( 6 , 2 0 0 7 ) P T O T  
C A L L  P R T I M 2  
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Printout D-2 (contd) 

L 
C OUTPUT SUMMATION OF SPHERICAL MODES 
C. 

R E A D ( ~ , ~ O O ~ ) J M A X T J I N  
JO=O 
I C 1 = 1  
I C 2 = - 1  
PUNCH ~ O O ~ , N A M E J  
PUNCH 1002,JMAX,JO, J I N ,  I C l ,  I C 2  
W R I T t ( 6 , 2 0 0 8 ) N A M t J  
W R I T t ( 6 , 2 0 0 2 ) N D U M  
DT=JPIAX-1 
DT= 1 8 0  .O/DT 
J = l  
TH=O 
IF(MCUMP-1)  1 7 0 , 1 8 0 , 1 7 0  

1 7 0  DO 1 7 5  N=l,NMAX 
F ( l , N ) = O  

1 7 5  G ( l , N ) = O  
GO TO 2 1 5  

1 8 0  DO 1 9 0  N=l,NMAX 
F N = N * ( N + l )  
F ( l , N ) = F N / 2 . 0  

1 9 0  G( l ,N )=FN/Z .O 
GO TU 2 1 5  

2 0 0  F J = J - 1  
TH=F J*DT 
Z=COS(TH*DTR) 
S=SIN(TH*OTR)  
DO 2 0 5  N=l,MCOMP 

205  PM(N)=O 
CALL LEGEND(NC,MCOMP,Z,PM) 
DO 2 1 0  N=l,NMAX 
F ( l , N ) = F M C * P M ( N ) / S  
Tl=N-MCOMP+l 
T2=N+1 
G ( ~ I N ) = T ~ * P M ( N + ~ ) - T ~ * Z * P M ( N )  

2 1 0  G ( ~ , N ) = G ( ~ , N ) / S  
2 1 5  CALL M U L T ( N M A X , 1 , 2 , F , A C O E , A O U T ~ O ,  60 ,181 ,  60 ,2 ,1 ,2 )  

CALL M U L T ( N M A X , ~ , ~ , G , B C I I E ~ A O U T ~ ~ ,  60 ,181 ,  60 ,2 ,1 ,2 )  
CALL l " lULT(NMAX,1 ,2 ,G,ACOE,BOUT~O,  60 ,181 ,  60 ,2 ,1 ,2 )  
CALL M U L T ( N M A X , ~ , ~ , F , B C O E , B O U T , ~ I  6 0 , 1 8 1 ,  6 0 9 2 , l r Z )  
CALL V E C T D R ( A O U T ( ~ , ~ ) , A O U T ( ~ , ~ ) , E A M P ~ E P H I )  
CALL VECTOR(BOUT(l,l),BOUT(1,2),HAVIP,HPHI) 
PUNCH 2 0 0 9 ,  TH,EAMP,EPHI,HAMPvHPHI 

3 7 0  DO 3 7 5  N=l,NMAX 
F ( l , N ) = O  

3 7 5  G ( l , N ) = O  
GO TU 2 1 5  

3 8 0  DO 2 9 0  N=l,NMAX 
I S I G N = - I S I G N  
F N = N * ( N + l ) * I S I G N  
F ( l , N ) = - F N / 2 . 0  

2 9 0  G ( l , N ) = F N / Z . O  
GO TO 2 1 5  

3 0 0  CONTINUE 
CALL PRTIM2 
GO TO 1 

1 0 0 1  FORMAT(13A6)  
1 0 0 2  F O R M A T ( l O I 5 )  
1 0 0 3  FORMAT (5F10 .0 )  
2 0 0 1  FORMAT( 1H1  ~ 1 3 A 6 )  
2 0 0 2  FORMAT( lH0 ,13A6 /46H POLAR t -PLANE 
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Printout D-2 (contd) 

1 5 0 H  ANGLE V O L T S  DEG V O L T S  D E G )  
2 0 0 3  FORMAT(F10 .2 ,F l2 .6 ,~8 .2 ,F l3 .6 ,FB .2 )  
2 0 0 4  FORMAT ( 5 1 H O  S P H E R I C A L  WAVE C O k F F I C  IEI 'JTS FOR A Z M U I T H A L  ORDER, I 2 / /  

l Z O X , 4 H A ( N ) ~ 3 2 X , 4 H B ( N ) , 2 7 X , 2 B H F R A C l I U N  U F  T O T A L  MODE POWER/ 
2 5 H  N , ~ X , ~ H R E A L ~ ~ ~ X ~ ~ H I M A G ~ ~ ~ X , ~ H R E A L , ~ ~ X , ~ H I M A G ,  
3 1 3 X 1 7 H A  M D D E S t 6 X 1 7 H B  M O D E S p 5 X , 1 6 H C U M U L A T I V E  T O T A L )  

2 0 0 5  FORMAT(I5 i2E17.8 i2X,2E17.812~,2X,2t14.5,F14.8)  
ZOO6 FORMAT ( 4 9 H O  I N P U T  P A T T E R N  FOR A Z M U I T H A L  COMPONENT OF ORDER,  I 2  
2 0 0 7  FORMAT ( l H 0 1 1 9 H  T O T A L  MODE POWER,E15.8,6H W A T T S )  
2 0 0 8  FORMAT(  l H 1 , 1 3 A 6 / 4 1 H  FAR F I E L D  SUFIMATION OF S P H E R I C A L  MODES) 
2 0 0 9  F O R M A T ( F ~ O . ~ , F ~ O . ~ , F ~ O ~ ~ , F ~ O O ~ , F ~ O . ~ )  
2 0 1 0  F O R M A T ( Z I 5 )  

END 

(b) Main program (linear equation technique) 

$ I B F T C  M A I N D K  
C S P H E R I C A ~  WAVE E X P A N S I O N  ~ R D G R A ~  - LINEAR E Q I J A T I O N  T E C H N I Q l J E  
C T H I S  PROGRAM D E T E R M I N E S  THE S P H E R I C A L  WAVE C O E I F F I C I t N T S  FOR THE 
c M-TH FOURIER COMPONENT OF A RADIATION PAT'ERN.(SEE S T K A T T O N  P 4 1 6 )  
C  T H E  C U E I F F I C I E N T S  ARE O B T A I N E D  B Y  I N V E R T I N G  A S Y S T t b l  O F  L I N E A R  
C E Q U A T I O N S .  WARNING- T H E  I N P U T  DATA P O I t V T S  SHOULD B E  N t A R L Y  E Q U A L L Y  
C SPACEU BETWEEN 0  AND 1 8 0  DEGREES. O T H E R W I S E  T H E  P R O B L E M  BECOMES 
C VERY I L L  C O N O I T I O N t O  
C THE E X P A N S I O N  M A T C H t S  T H E  F A R - F I E L D  I N P U T  P A T T t R N  W I T H  THE FAR-  
C  F I E L D  FORM OF S P H E R I C A L  WAVES. A R T  L U D N I G  1 2 / 2 3 / 6 8  
C 

D I M E N S I O N  N A M E ( 1 3 )  
D I M E N S I O N  T ( 1 8 1 ) , E ( 1 8 1 ) , E P ( 1 8 1 ) 1 H ( 1 8 1 ) , H P ( 1 8 1 )  
D I M E N S I O N  A ( ~ ~ ~ ~ ~ ~ ~ ) ~ X R ( ~ ~ ~ ) ~ X I ( ~ ~ O ~ , B R ~ ~ O O ) ~ B I ~ ~ O O ~ ~ P M ~ ~ O ~  
D I M E N S I O N  C ( 1 0 0 ~ 1 0 0 ~ ~ S ( 5 0 0 )  
D T R = 0 . 0 1 7 4 5 3 2 9 3  

C 
C READ I N  M-TH COMPONENT O F  I N P U T  PATTER11 
C 

1 R E A D ( 5 , l O O l ) N A M E  
C A L L  P R T I M l  
R E A O ( 5 , 1 0 0 2 ) J M A X , J 0 ~ J I N ~ I C 1 ~ I C 2 ~ M C U M P  
R E A D ( ~ ~ ~ O O ~ ) ( T ( M ) , E ( M ) , E P ( M ~ T H ( V I ) , H P ( M ) , M = ~ ~ J I N )  

C  
C FOR I C 1  L E S S  T H A N  OR EQUAL T O  0 CONVERT FROM D B  5 0  V U L T S  

I F ( I C 1 )  1 0 , 1 0 1 2 0  
10 DO 1 5  J = l v J I N  

E ( J ) = l O . O * * ( E ( J ) / 2 0 . 0 )  
1 5  H ( J ) = l O . O * * ( H ( J ) / 2 0 . 0 )  
2 0  C O N T I N U E  

C FOR I C 2  GREATER T H A N  0  N E G L E C T  PHASE 
I F ( I C 2 ) 4 0 , 4 0 , 3 0  

3 0  DO 3 5  J = l , J I N  
E P ( J ) = O .  

3 5  H P (  J ) = O .  
4 0  C O N T I N U E  

C P R I N T  O U T  I N P U T  P A T T E R N  
W R I T E ( 6 , 2 0 0 2 ) N A M E  
W R I T E ( 6 , 2 0 0 3 ) ( T ( M ) , E ( M ) t E P ( M ) , H ( M ) , H P ( M ) , M = l , J I N )  

C CONVERT T O  R A D I A N S  AND R E A L  AND I M A G I N A R Y  
DO 4 5  J = l , J I N  

4 5  T ( J ) = D T R * T ( J )  
I F ( I C 2 ) 5 0 , 5 0 , 6 0  

5 0  DO 5 5  J = l r J I N  
T H = D T K * E P ( J )  
E P ( J ) = E ( J ) * S I N ( T H )  
E ( J ) = E ( J ) * C O S ( T H )  
TH=DTR*HP ( J )  
H P ( J ) = H ( J ) * S I N ( T H )  

5 5  H ( J ) = H ( J ) * C O S ( T H )  
6 0  C O N T I N U E  
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Printout D-2 (contd) 

C  
C  T H E  C O E I F F I C I E N T  V E C T O R  X  I S  O B T A I N E D  FROM T H E  M A T R I X  k Q U A T I O N  
C  AX=B,  WHERE T H E  B  V E C T O R  I S  D t F I N t O  I N  T H t  F O L L O W I N b  S E C T I O N  
C  BR A N D  8 1  A R E  R E A L  A N D  I M A G I N A R Y  P A R T S  O F  B  
C  

D O  70 J = l , J I N  
B R ( 2 * J - l ) = E ( J )  
B R l 2 * J ) = H ( J )  
B I ( 2 * J - l ) = E P ( J )  

7 0  B I ( Z * J ) = H P ( J )  
C  
C  T H E  E L E M E N T S  O F  T H t  M A T R I X  A  A R E  O B T A I N E D  FROM A S S O L I A T E D  
C  L E G E N D R E  P O L Y N O M I A L S  A N D  THEIR D E R I V A T I V E S  A S  F O L L O W S  
C  

C A L L  P R T I M 2  
FMC=PICOMP 
DO 8 0  K = l , J I N  
Z = C O S ( T ( K ) )  
S = S I N ( T ( K ) )  
DO 8 5  N = l , M C O M P  

8 5  P M ( N ) = O .  
N M A X = J I N + l  
C A L L  L E G E N D ( N M A X , M C U M P , Z 1 P M )  
DO 8 0  J = l , J I N  
F = F M C * P M I J ) / S  
T 1 =  J - M c O M P + l  
r 2 =  J+ 1 
G = T l * P M (  J + 1 ) - T 2 + Z * P M (  J )  
G = G / S  
A ( 2 * K - 1 , 2 * J - l ) = F  
A ( ~ * K , ~ * J ) = F  
A ( 2 * K - l , 2 * J ) = G  
A (  2 * ~ 1 2 * J - 1  ) = G  

8 0  C O N T I N U E  
C  
C  T H E  S Y S T E M  I S  I N V E R T E D  T O  Y I E L D  X  
C  

E P S =  .00000001 
NSOLVE=ZgcJ  I N  
C A L L  P R T I M 2  
C A L L  S O L V E ( l O O , A ~ N S O L V E ~ B R ~ X R , l ~ E P S ~ 2 , I T l ~ C , S )  
C A L L  S O L V E ~ ~ ~ ~ , A , N S O L V E , B I ~ X I , ~ , E P S , ~ , I T ~ ~ C ~ S ~  
C A L L  P R T I M 2  
I F 1  I T 1 ) 9 9 , 9 9 , 9 0  

90 I F ( I T 2 ) 9 9 , 9 9 , 9 5  
99 W R I T E ( 6 , 2 0 1 0 )  I T l p I T 2  
9 5  C O N T I N U E  

C  
C  O U T P U T  R E S U L T S  
C  

P U N C H  1 O O l t N A M E  
W R I T E ( 6 , 2 0 0 4 )  
D O  100 J = l , J I N  
P U N C H  2 0 0 5 ,  J ~ X R I 2 * J - l ) , X I ( 2 * J - l ) t X R ( 2 X )  

100 W R I T E ~ 6 , 2 0 0 5 ) J ~ X R ~ 2 * J ~ 1 ~ ~ X I l 2 * J - 1 ) , X R l 2 * J ~ ~ X I ~ 2 * J ~  
GO T O  1 

1001 FORMAT ( 1 3 A 6 )  
1 0 0 2  F O R M A T (  1 0 1 5 )  
1 0 0 3  FORMAT 1 5 F 1 0 . 0 )  
2 0 0 2  FORMAT ( l H 1 , 1 3 A 6 / 4 6 H  P O L A R  E - P L A N E  H-PLANE/  

1 5 0 H  A N G L E  V O L T S  D E G  V O L T S  D t t i )  
2 0 0 3  FORMAT(F10*2 ,F12 .6 ,F8 .2~F l3 .6 ,F8 .2 )  
2 0 0 4  FORMAT ( 1 H 1 1 2 9 H  S P H E R I C A L  WAVE C O E I F F I E N T S / /  

1 2 0 X , 4 H A ( N ) , 2 6 X , 4 H B ( N ) /  
2 5 H  N ~ ~ X , ~ H R E A L ~ ~ ~ X , ~ H I M A G , ~ ~ X ~ ~ H R E A L ~ ~ ~ X , ~ H ~ M A G / )  

2 0 0 5  F O R M A T l I 5 ~ 2 E 1 7 . B ~ 2 X ~ 2 E l 7 . 8 )  
2 0 1 0  FORMAT ( 4 7 H  C A U T I O N - F U L L  ACCURACY N O T  A C H I E V E D  I N  f i A T R I X /  

1 2 0 H  I N V E R S I O N .  I T l = , I 2 , 7 H  I T 2 = , 1 2 )  
E N D  
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(c) Subroutine LEGEND 

$ I b F T C  LEGUK F U L I S T ,  DECK 
SUBRUUT I N E  L E G E N D ( I ~ Y A X , N , Z  , V A L )  

C  
C T H I S  S U B R O U T I N E  RETURNS V A L U E S  OF T H E  A S S U C I A T t U  L E b t N U R E  F U N C T I O N  
C  W I T H  I N T E G E R  I N D I C E S  FROM N=M T O  N=NPlAX. 
C  0 0  N U T  USE NMAX L E S S  T H A N  Pl+1 
C  V A L U E S  ARE O B T A I N E U  U S I N G  UPWARD R E C U R S I O N ,  AND H A V t  C H E C K E D  W I T H  
C  T A B U L A T E D  V A L U E S  TO 5  ,PLACES T H R U  N = 5 6  F U K  M = l , A N D  lW10 FOR h = 5  
C H I G H t R  I N D I C E S  WERE NOT C H E C K ~ D .  
C  ART L U D W I G  6 / 6 / 6 4  

D I M E N S I O N  V A L ( 1 0 0 )  
DOUBLE P R E C I S I O N  TEKMl ,TEKM2,TEKM3,ZU 
ZD=Z 
FI4=14 
T E R M l = U .  
I F ( M ) 8 , 8 , 9  

8  TERM2=1.0 
GO TO 11 

9 KMAX=2*M-1  
T E R M 2 = (  1 . 0 - Z D * Z D ) ; k : Z ( F h / Z 2 0 )  
DO 1 0  K = l , K M A X , 2  
FK=K 

1 0  T E R M Z = T E R M ~ * (  2.0*FM-FK) 
V A L  ( M  ) = T E R M 2  

11 NN=NI*IAX-1 
DO 2 0  N=M,NN 
FN=N 
T E R M 3 = (  (2 .0*FN+l .O)*ZU: tTERM2-(  F N + F P i ) * T E K b \ l  1 / (  F ib-FM+l.O) 
VAL ( N + 1  ) = T E R M 3  
T E R M l = T E R h 2  

2 0  TERM2=TERM3 
RETUKIV 
END 

(dl Subroutine SPHANK 

$ I B F T C  SPHAND 
S U B R O U T I ~ ~ ~ E  S P H A N K ( k r R 7  x , Y )  

I E THE V A L U E  OF THE S P H E R I C A L  H A N K E L  F U N C T I O N  I S  RETURl \ l tD ,  M U L T I P L I E D  
BY THE FACTOR ( - J ) * * ( N + l )  2: RHO * E X P ( J 4 R H O )  

C 
DOUBLE P R E C I S I O N  T E K M , A R ? A I  
AR=O 
A I = O  
P I - 3 . 1 4 1 5 9 2 7  
K=O 
T E R M = l  
GO TO 1 0 0  

2 0  K = K + l  
T l = N + K  
TZ=N-K+ 1 
T 3 = 2 * K  
T E R M = T E R M * T l : k T Z / T 3  
TERM=T ERM/R 
GO T 0 ( 2 0 0 , 1 0 0 ) , I L U  

1 0 0  AR=AR+TERM 
I G O = 1  
I F ( K - N ) 2 0 ~ 1 0 0 0 ~ 1 0 0 U  

2 0 0  A I = A I - T E R M  
I G O = 2  
TERM=-TERM 
I F ( ~ - N ) 2 0 ~ 1 0 0 0 , 1 0 0 0  

1 0 0 0  X=AR 
Y = A I  
RETURN 
END 
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(el Subroutine VECTOR 

$ I B F T C  VDECK 
SUBROUTINE V E C T D R ( X , Y , A M ~ , ~ H I )  

C T H I S  SUBROUTII\IE CONVER'IS COMPLEX DATA TO POLAR FUKIY 
C. 

200  I F ( Y ) Z l O y 2 2 0 , 2 3 0  
2 1 0  PHI=-YO. 

GO TO 4 0 0  
2 2 0  PHI=O. 

GO TO 4 0 0  
2 3 0  PHI=YO. 

GO TU 400  
3 0 0  P H I = A T A N ( Y / X ) ; * 5 7 . 2 9 5 7 7 9 5 1  
4 0 0  AMP=SURT(X*X+Y*Y) 

RETUKN 
END 

(fl Subroutine ADJUST 

$ I B F T C  ADJUD 
SUBRUUTINE A u J U S T I P H I )  

C T H I S  SUBROUTII\IE SHIFTS PHI UNTIL I T  L I E S  I l V  T H t  R ~ i \ l b t  -180 ,180  
1 I F ( P H I - 1 8 0 . 0 ) 2 0 y 2 0 , 1 0  

1 0  PHI=PHI -360 .  
GO TO 1 

20  I F ( P H I + l R 0 . 0 ) 3 0 y 4 0 , 4 0  
3 0  P H I = P H I + 3 6 0 .  

GO TU 20  
4 0  RETUKN 

END 

(9) Subroutine MULT 

SIBFTC MULTO F U L I S T  
SUBROUTINE M U L T ( M ~ N ~ K , A Y ~ , C , I C ~ N A ~ ~ ~ A , N B ~ M B , I V C , W C )  

C T H I S  I S  A GENERAL PURPOSE MATRIX H'IIJLTIPLICATIOE\I SUB~UUTII\E 
C 

DIMENSION A ( N A , M A ) , B ( N B , M B ) , C ( N C , M C )  
I F ( I L ) 1 0 , 2 0 , 3 0  

1 0  DO 1 5  I = l , N  
DO 1 5  J = l , K  
DO 1 5  L= l ,M  

1 5  C(I,J)=C(I,J)-A(I,L)QB(L,J) 
RETUKN 

2 0  DO 25 I = l y N  
DO 2 5  J = l y K  
C ( I , J ) = O .  
DO 2 5  L = ~ , M  

2 5  C ( I y J ) = C ( I ~ J ) + A ( I , L ) * B ( L t J )  
RETURN 

3 0  DO 3 5  I = l t N  
DO 3 5  J = l , K  
DO 3 5  L = l y M  

3 5  C(I,J)=C(I,J)+A(I,L)*B(L,J) 
RETURN 
END 
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S K I P  LOOP I F  N  = 0 

S I B M A P  D O T S L V  OOT,SDOT,DAD1 A B D  I L O G 2  F U R  U S E  W I T H  S O L V E ( S L V 1 T )  D O T S  10 
.A 1 7  F E B .  1 9 6 8  D O T S  2 0  

R. J. HANSON,  J P L .  D O T S  30 
4 '  DOT ANU F R I E N D S  R O U T I N E S  FOR U S E  W I T H  S U L V E  ( S L V I T )  D O T S  4 0  

E N T R Y  D O T  ( N , A ( ~ ) , M A ~ B ( ~ ) ~ M B ~ C )  D O U B L E  I N N E R  PKODUCT D O T S  5 0  
E N T R Y  S D O T  ( N , A (  1 )  1 M A 1 8 (  1 )  1 M B v C )  I N N E R  P R O D U C T  D O T S  6 0  
E N T R Y  I L D G 2  ( A )  F L O A T I N G  P O I N T  E X P O N E N T  O U T S  7 0  
E N T K Y  D A D  ( A t B )  A D D  W I T H  RUUNO D O T S  8 0  

D O T S  90 
S N A D  MACRO M STD,  C O M P L E M E N T I N L  I F  N ~ C E S S A R Y  D O T S  100 

C H S  D O T S  110 
A D D  = 1 8 2  D O T S  1 2 0  
A L S  1 8  D O T S  1 3 0  
S  T D  M D O T S  1 4 0  
ENDM S N A D  D O T S  1 5 0  

S A V  M A C K 0  A  D O T S  1 6 0  
S X A  A7 1 D O T S  1 7 0  
S X A  A + 1 1 2  D O T S  1 8 0  
S X A  A + 2 1 4  D O T S  190 
ENDM S A V y N O C R S  D O T S  2 0 0  

R E T U R  M A C 1 0  A  D O T S  2 1 0  
A X T  **,1 D O T S  2 2 0  

*9 ,2  D O T S  2 3 0  
A X T  A X T  *+,4 D O T S  2 4 0  
TR A  1 1 4  D O T S  2 5 0  
ENDM R E T U R t N O C R S  D O T S  2 6 0  

D O T  s A V  R E T  D O T S  2 7 0  
S T Z  S  D O T S  2 8 0  
S T Z  S+ 1 D O T S  2 9 0  
C L A *  8  1 4  D O T S  3 0 0  
L D O  C + 1  D O T S  310 
S T 0  C  D O T S  3 2 0  
CLAZ* 3 1 4  D O T S  3 3 0  
T Z E  NONE D O T S  3 4 0  
S T O  N D O T S  3 5 0  
C L A  4 1 4  D O T S  3 6 0  
P A C  7 1  D O T S  3 7 0  
C L A *  5 7 4  D O T S  3 8 0  
S N A U  MA D O T S  3 9 0  
C L  A  6 1 4  D O T S  4 0 0  
P A C  1 2  D O T S  410 
C L A *  7 1 4  D O T S  4 2 0  
SNAO M B  D O T S  4 3 0  
L X  A  N 1 4  D O T S  4 4 0  

L O O P  L D O  011 D O T S  4 5 0  
F M P  0 1 2  D O T S  4 6 0  
D F A U  S  D O T S  4 7 0  
D S  T  S  D O T S  4 8 0  

MA T X I  *+I, l , a : , ~  D O T S  4 9 0  
M B  T X I  *+1 ,2 , *% D O T S  5 0 0  

T I X  L o o P , 4 1 1  D O T S  5 1 0  
N O N E  D F A O  C D O T S  5 2 0  

F U N  D O T S  5 3 0  
R E T  R E T U R  D O T S  5 4 0  

D O T S  5 5 0  
SOOT S A V  S K E T  D O T S  5 6 0  

S T 2  S  D O T S  5 7 0  
C L A *  8 1 4  D O T S  5 8 0  
S T 0  C  D O T S  5 9 0  
C L A *  3 1 4  D O T S  6 0 0  
T Z E  S N O N t  D O T S  6 1 0  
S  TO N D O T S  6 2 0  
C L A  4 14 D O T S  6 3 0  
P A C  1 1  D O T S  6 4 0  
C L A *  5 1 4  D O T S  6 5 0  
S N A O  SMA D O T S  6 6 0  
C L A  6 1 4  D O T S  6 7 0  
P A C  1 2  D O T S  6 8 0  
C L A G  7 1 4  D O T S  6 9 0  
s N A D  Sf48 D O T S  7 0 0  

( X l ) = ( X l ) + M A  
( X 2 ) = ( X 2 ) + M B  
E h O  UF M A I N  L O O P  
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S L O O P  

SMA 
S M B  

SNONE 

S K E T  * 
I L O G 2  

.L 

D A D  

L X A  
LOO 
F M P  
F A D  
s T O  
T X I  
TX  I 
T I X  
F A D  
F R N  
R E T U R  

C A L *  
ANA 
S U B  
ARS 
T R A  

C L A *  
F A D *  
F R N  
TRA 

E V E N  
P Z E  
P Z E  
P Z E  
P Z E  
P Z E  
P Z E  
E N D  

D O T S  7 1 0  

DOTS 7 2 0  
D O T S  7 3 0  
D O T S  7 4 0  
D O T S  7 5 0  
D O T S  7 6 0  
D O T S  770 
I I O T S  7 8 0  
D O T S  7 9 0  
D O T S  8 0 0  
D O T S  8 1 0  
D O T S  8 2 0  
D O T S  8 3 0  
D O T S  8 4 0  
D O T S  8 5 0  
D O T S  8 6 0  
D O T S  8 7 0  
D O T S  8 8 0  
D O T S  8 9 0  
D O T S  900 
D O T S  910  
D O T S  9 2 0  
D O T S  930  
D O T S  940 
D O T S  9 5 0  
D O T S  9 6 0  
D O T S  970  
D O T S  9 8 0  
D O T S  990 
D O T S 1 0 0 0  
O U T S 1 0 2 0  

(h) Subroutine SOLVE 

$ I B F T C  S L V E I T  F U L I S T t D E C K  S L V E O O l O  
S U B R U U T I N E  S O L V E ( L , A , N , B ~ X , I I \ l ~ E P S ~ I T M A X , I T ~ A A , S )  S L V E 0 0 2 0  

C S O L V E  L I N E A R  E O U A T I O N  S O L V E R  W I T H  I T E K A T I V E  I M P K U V t M E N T  V E R S I O N  I 1  S L V E 0 0 3 0  
C  S O L V E S  A X = B  WHERE A  I S  N X N  M A T R I X  A N D  B  I S  N X 1  V E C T u K  S L V E O O 4 O  
C  S L V E 0 0 5 0  
c I N =  S L V E O O ~ O  
C  1 FOR F I R S T  t N T R Y  S L V F 0 0 7 0  
C  2  F O R  S U B S E Q U E N T  E N T R I E S  W I T H  NEW B  S L V E 0 0 8 0  
C  3  TO R E S T O R E  A  AND B  S L V E 0 0 9 0  
C  4 I F  F I R S T  ENTRY B U T  A N  I N I T I A L  A P P R O X I M A T I O N  1 5  A L R E A D Y  S L V E O l O O  
C  A V A I L A B L E  I N  X  S L V E O l l O  
C  5 C O N T I N U E  C A L C U L A T I N G  I T t R A T I V E  I M P R U V t M E I \ I T  F O K  T H I S  S Y S T t M  S L V E 0 1 2 0  
C  S L V E O 1 3 0  
C  E P S  A N D  I T M A X  A R E  P A R A M E T t R S  I N  T H t  I T t R A T I O N  S L V E O 1 4 O  
C  I T =  S L V E 0 1 5 0  
C  -1 I F  A  I S  S I N G U L A R  S L V E O l 6 O  
C  0 I F  NOT C O N V E R G E N T  S L V E 0 1 7 0  
C NUMBER O F  I T E R A T I O N S  I F  C U N V E K b t N T  S L V E O l 8 0  
C  C A L L S  MAP S U B R O U T I N E S  I L O G 2 ,  DOT,  SOOT AND D A D  S L V E 0 1 9 0  
C  S L V E 0 2 0 0  

D I M E N S I O N  A ( L , L ) , B ( L ) , X ( L ) , A A ( N , N ) , S ( l )  S L V E 0 2 1 0  
M A = L  S L V E 0 2 2 0  

C  MA MUST = D E C L A R E D  D I M E N S I O N  U F  S Y S T E M  S L V E 0 2 3 0  
J l = N  S L V E 0 2 4 0  
J Z = J l + N  S L V E 0 2 5 0  
J 3 = J 2 + N  S L V E 0 2 6 0  
GO T O (  1 0 , 2 3 0 , 3 9 0 , 1 0 , 2 9 0 )  , I N  S L V E 0 2 7  0 

10 N M l = N - 1  S L V E 0 2 8 0  
N P l = N + l  S L V E 0 2 9 0  

C S L V E O 3 0 0  
C  E O U I L I B R A T I O N  S L V E 0 3 1 0  
C  S L V E 0 3 2 0  

DO 4 0  I = l , N  S L V E 0 3 3 0  
K T O P = I L O G ~ ( A ( I , ~ ) )  S L V E 0 3 4 0  
DO 2 0  J = 2 , N  S L V E 0 3 5 0  

2 0  K T O P = P I A X O ( K T O P ~ I L O 6 2 ( A ( I , J ) ) )  S L V E 0 3 6 0  
N 2 = J Z + I  S L V E 0 3 7 0  
S ( N 2 ) = 2 . 0 * * ( - K T O P )  S L V L - 0 3 8 0  

UO 30 J = l , N  S L V E 0 3 9 0  
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3 0  A ( I , J ) = A ( I , J ) * S ( N 2 )  S L V E 0 4 0 0  
40 C O N T I N U E  S ~ v ~ 0 4 1 0  

C  S L V E 0 4 2 O  
C  S A V E  E Q U I L I B R A T E D  D A T A  S L V E 0 4 3 0  
C  S L V E 0 4 4 0  

DO 5 0  I = l , N  S L V E 0 4 5 0  
00 5 0  J = l , N  S L V E 0 4 6 0  

5 0  A A ( I , J ) = A ( I , J )  S L V E 0 4 7 0  
C  S L V E 0 4 8 0  
C  G A U S S I A N  E L I M I N A T I O N  W I T H  P A R T I A L  P I V O T I N G  S L V E 0 4 9 0  
C  S L V E 0 5 0 0  

DO 1 7 0  M = l 1 N ~ 1  S L V E 0 5 1 0  
N 3 = J 3 + M  S L V E 0 5 2 0  
T O P = A B S ( A ( M , M ) )  S L V E 0 5 3 0  

I M A X = M  S L V E 0 5 4 0  
00 7 0  I = M , N  S L V E 0 5 5 0  

IF(T0P-ABS(A(I,M)))60,70,70 S L V E 0 5 6 0  
6 0  T O P = A B S ( A (  I , M I )  S L V E 0 5 7 0  

I M A X = I  S L V E 0 5 8 0  
7 0  C O N T I N U E  S L V E 0 5 9 0  

I F ( T O P ) 9 0 , 8 0 , 9 0  S L V E O 6 O O  
80 I T=-1  S L V E O 6 l O  

C  * S I N G U L A R *  S L V E 0 6 2 0  
R E T U R N  S L V E 0 6 3 0  

9 0  S ( N 3 ) = I M A X  S L V E 0 6 4 0  
1 0 0  I F ( 1 M A X - M ) 1 3 0 , 1 3 0 , 1 1 0  S L V E 0 6 5 0  
110 DO 1 2 0  J = ~ , N  S L V E O 6 6 O  

T E M P = A ( M ,  J )  S L V E 0 6 7 0  
A ( M , J ) = A ( I M A x , J )  S L V E 0 6 8 0  

1 2 0  A ( I M A X , J ) = T E M P  S L V E 0 6 9 0  
1 3 0  MP 1=M+1 S L V E 0 7 0 0  

00 1 6 0  I = M P l , N  S L V E 0 7 1 0  
E M = A (  I ,MI  / A ( M , M )  S L V E 0 7 2 0  
A ( I , M ) = E M  S L V E 0 7 3 0  
I F ( E M ) 1 4 0 , 1 6 0 , 1 4 0  S L V E 0 7 4 0  

140 DO 1 5 0  J = M P l , N  S L V E 0 7 5 0  
I F ( I L O G 2 ( A ( M ? J ) )  + I L o G P ( E M )  .LT.  - 5 4 )  GO T O  1 5 0  S L ~ E 0 7 6 0  

A ( I , J ) = A ( I , J ) - A ( M , J ) * E M  S L V E 0 7 7 0  
C  1 5 0  A ( I , J ) = A ( I , J ) - A ( M , J ) r E M  S L V E 0 7 8 0  

1 5 0  C O N T I N U E  S L V E 0 7 9 0  
1 6 0  C O N T I N U E  S L V E 0 8 0 0  
1 7 0  C O N T I N U E  S L V E 0 8 1 0  

N 4 = N * 4  S L V E 0 8 2 0  
s ( N 4 ) = N  S L V E 0 8 3 0  
I F  ( A ( N p N ) ) 1 9 0 , 1 8 0 , 1 9 0  S L V E 0 8 4 0  

1 8 0  I T = - 1  S L V E 0 8 5 0  
R E T U R N  S L V E 0 8 6 0  

1 9 0  C O N T I N U E  S L V E 0 8 7 0  
C  STORAGE FOR A  NOW C O N T A I N S  T R I A N G U L A R  L  A N 0  U  SO T H A T  ( L + I ) * U = A  S L V E O 8 8 0  
C  S L V E 0 8 9 0  
C  D U P L I C A T E  I N T E R C H A N G E S  I N  D A T A  S L V E 0 9 0 0  
C  S L V E 0 9 1 0  

00 2 2 0  I = l , N  S L V E 0 9 2 0  
N 3 =  J 3 + I  S L V E 0 9 3 0  
I P = S ( N 3 )  S L V E 0 9 4 0  

I F ( 1 - I P ) 2 0 0 , 2 2 0 , 2 0 0  S L V E 0 9 5 0  
2 0 0  DO 2 1 0  J = l * N  S L V E 0 9 6 0  

T E M P = A A ( I , J )  S L V E 0 9 7 0  
A A ( I , J ) = A A ( I P , J )  S L V E 0 9 8 0  

2 1 0  A A ( I P , J ) = T E M P  S L V E 0 9 9 0  
2 2 0  C O N T I N U E  S L V E  1000 

C  S L V E l O l O  
C  PROCESS R I G H T  H A N D  S I D E  S L V E 1 0 2 0  
C  S L V E 1 0 3 0  

2 3 0  DO 2 4 0  I = l , N  S L V E 1 0 4 0  
N 2 =  J 2 + I  S L V E 1 0 5 0  

2 4 0  B ( I ) = B ( I ) * S ( N ~ )  S L V E l O 6 O  
DO 2 5 0  I = l , N M l  S L V E 1 0 7 0  
N 3 = J 3 + I  S L V E 1 0 8 0  
I P = S ( N 3 )  S L V E 1 0 9 0  
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1. 
T E M P = B (  I 1 S L V E l l O O  
~ ( 1  ) = B (  I P )  S ~ v ~ l l l O  
B ( I P ) = T E M P  S L V E l l 2 o  

2 5 0  C O N T I N U E  S L V E 1 1 3 0  
I F (  I N - 4 )  2 6 0 , 2 9 0 , 2 9 0  S L V E 1 1 4 0  

C  S L V E 1 1 5 0  
C  BYPASS I N I T I A L  A P P R O X I M A T I O N  C A L C U L A T I O N  S L V E l l 6 O  
C  I N  G R t A T E R  T H A N  4 CANNOT OCCUR A T  T H I S  P O I N T  S L V E 1 1 7 0  
C  S L V E 1 1 8 0  
C  S L V E 1 1 9 0  
C  S O L V E  FOR F I R S T  A P P R O X I M A T I O N  T O  X  S L V E L Z O O  
C  S L V E 1 2 1 0  

2 6 0  DO 2 7 0  I = l , N  S L V E 1 2 2 0  
N l = J l + I  S L V E 1 2 3 0  

2 7 0  ~ ( N ~ ) = - S D O T ( I - ~ ~ A ( I , ~ ) , M A , S ( J ~ + ~ ) ~ ~ , - B ( I ) )  S L V E 1 2 4 0  
DO 2 8 0  K = l , N  S L V E 1 2 5 0  
I = N P l - K  S L V E 1 2 6 0  
N l = J l + I  S L V E 1 2 7 0  

2 8 0  X ( I ) = - S D O T ( N - I ~ A ( I ~ I + l ) ~ M A ~ X ( I + 1 ) , 1 , - S ( N l ~ ) / A ~ I ~ I ~  S L V E l 2 8 0  
C  S L V E 1 2 9 0  
C  I T E R A T I V E  IMPROVEMENT S L V E 1 3 0 0  
C  S L V E 1 3 1 0  

2 9 0  I F ( I T M A X ) 3 7 0 , 3 7 0 , 3 0 0  S L V E 1 3 2 0  
3 0 0  TOP=O.O S L V E 1 3 3 0  

DO 3 1 0  I = l , N  S L V E 1 3 4 0  
3 1 0  TOP=AMAXl(TOP,ABS(X(I))) S L V E 1 3 5 0  

EPSX=EPS*TOP S L V E 1 3 6 0  
DO 3 6 0  I T = l , I T M A X  S L V E 1 3 7 0  

C  F I N O  R E S I D U A L S  S L V E 1 3 8 0  
DO 3 2 0  I = l , N  S L V E 1 3 9 0  

3 2 0  S ( I ) = - D O T ( N , A A ( I , l ) r  N , X ( l ) , l , - B ( I ) )  S L V E 1 4 0 0  
C  F I N D  I N C R E M E N T  S L V E 1 4 1 0  

DO 3 3 0  I = l , N  S L V E 1 4 2 0  
N l = J l + I  S L V E 1 4 3 0  

3 3 0  S ( N 1 ) = - S O O T ( I - 1 ~ A ( I ~ l ~ ~ M A ~ S ~ J l + 1 ) , 1 ~ - S ~ I ~ ~  S L V E 1 4 4 0  
DO 3 4 0  K = l , N  S L V E 1 4 5 0  
I = N P l - K  S L V E  1 4 6 0  

N l = J l + I  S L V E 1 4 7 0  
3 4 0  S ( I ) = - S D O T ( N - I ~ A ~ I ~ I + ~ ~ ~ M A , S ( I + ~ ) ~ ~ ~ - S ~ N ~ ~ ~ / A ( I ~ I ~  S L V E 1 4 8 0  

C  I N C R E M E N T  AND T E S T  CONVERGENCE S L V E 1 4 9 0  
IUP=O.O S L V E 1 5 0 0  

DO 3 5 0  I = l , N  S L V E 1 5 1 0  
T E M P = X (  I ) S L V E 1 5 2 0  

X ( I ) = D A O ( X ( I ) , S ( I ) )  S L V E 1 5 3 0  
D E L X = A B S ( X ( I ) - T E M P )  S L V E 1 5 4 0  
T O P z A M A X l  ( T O P v D E L X )  S L V E 1 5 5 0  

3 5 0  C O N T I N U E  S L V E 1 5 6 0  
I F ( T 0 P - E P S X ) 3 8 0 , 3 8 0 1 3 6 0  S L V E 1 5 7 0  

3 6 0  C O N T I N U E  S L V E 1 5 8 0  
3 7 0  I T = O  S L V E 1 5 9 0  
3 8 0  R E T U R N  S L V E l 6 O O  

C  S L V E 1 6 1 0  
C RESTORE A  A N 0  B  S L V E 1 6 2 0  
C  S L V E 1 6 3 0  

3 9 0  C O N T I N U E  S L V E 1 6 4 0  
DO 4 2 0  K = l , N  S L V E 1 6 5 0  

I = N P l - K  S L V E 1 6 6 0  
N 3 = J 3 + I  S L V E l 6 7 0  
I P = S ( N 3 )  S L V E  1 6 8 0  

I F ( I - I P ) 4 0 0 , 4 2 0 , 4 0 0  S L V E 1 6 9 0  
4 0 0  T E M P = B ( I )  S L V E 1 7 0 0  

B (  I ) = 8 (  I P )  S L V E 1 7 1 0  
B  ( I  P  )=TEMP S L V E 1 7 2 0  
DO 4 1 0  J = 1 1 N  S L V E 1 7 3 0  

TEMP=AA ( 1, J )  S L V E 1 7 4 0  
A A ( I , J ) = A A ( I P , J )  S L V E 1 7 5 0  

410 A A ( I P , J ) = T E M P  S L V E  1 7 6 0  
4 2 0  C O N T I N U E  S L V E 1 7 7 0  

00 4 3 0  I = l , N  S L V E 1 7 8 0  
N 2 =  J 2 + I  S L V E 1 7 9 0  
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Printout D-2 (contd) 

B ( I  ) = B ( I ) / S ( N 2 )  
00 4 3 0  J = l , N  

A ( I , J ) = A A ( I , J ) / S ( N Z )  
4 3 0  C O N T I I V U E  

R E T U R N  
E N D  

S I B F T C  S L V I N .  D E C K  
S U B R O U T I N E  S L V I N V  ( N D I M , N , A , B , I T , S )  

C  S L V I O O 3 0  
C  T H E  D I M E N S I O N  O F  S  M U S T  B E  A T  L E A S T  N * * 2 + 5 * N  S L V  I 0 0 4 0  
C S L V I O O 5 0  

D I M E N S I O N  B ( N D I M , N D I M ) , S ( N )  S L V I 0 0 6 0  
I T M A X  = 10 S L V I O O 7 0  
I N  = 1 S L V  I 0 0 8 0  
JJ = 4 * N  S L V I O O 9 0  
D O  2 0  J = 1 1 N  S L V I O l O O  
DO 10 1 = 1 , N  S L V I O l l O  
K = J J + I  S L V I O l 2 0  

10 S ( K )  = 0.0 S L V I O l 3 0  
K = J J + J  S L V I O l C O  
S ( K )  = 1.0 S L V I O 1 5 0  
C A L L  S U L V E ( N D I M ~ A ~ N , S ( 4 * N + 1 ) ~ B ( l l J ) , I N , 7 ~ O E - 9 ~ I T M A X ~ I T ~ S ~ 5 * N + l ~ ~ S ~ S L V I O l 6 O  
I F  ( I T . E Q . ( - ~ ) )  GO T O  3 0  S L V I O l 7 0  
I F  ( I T . E Q . 0 1  C A L L  S O L V E  (NDIM,A,N?S(4*N+1)1B(l,J),5,7.0E-9,1TMAX S L V I 0 1 8 0  

1 I T , S ( 5 * N + l ) , S )  S L V I O 1 9 0  
2 0  I N  = 2  S L V I O 2 0 0  

CONTI I \ JUE 

R E S T O R E  T H E  M A T R I X  A  
C  S L V  I 0 2 4 0  1 3 0  C A L L  S O L V E ( N D I M i A , N , S ( 4 * N + l I  , C ( I , J ) ,  3 ~ 7 ~ 0 E - 9 ~ 1 l M A X ~ I T ~ S ~ 5 * N + l I ~ S 1 S L V I O 2 5 0  

I R E T U R N  S L V I O 2 6 0  
E N 0  S L V I O 2 7 0  
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Nomenclature 

Coordinates and Related Quantities 6 electric permittivity 

x,  y, z Cartesian coordinates (basic coordinate 
system with the origin located at the 
source of the incident electromagnetic 
field) 

P field point (the point at which the scat- 
tered or resultant field is evaluated) 

R the vector from the origin to P 

R, O, spherical coordinates of P 

S the scattering surface 

p the vector from the origin to a point 
on S 

p, 6, cp spherical coordinates of a point on S 

p(O,+) a function describing S 

 AS,,^,, an incremental area on S 

r the distance from P to a point on S 

n a unit vector normal to S 

i a unit vector in the direction indicated 
by a coordinate subscript 

p feed offset angle 

V a region of space 

Electromagnetic Quantities 

E electric field 

H magnetic field 

Ei , Hi incident field 

x wavelength 

magnetic permeability 

o angular frequency 

Functions and Constants Used in Derivations 

I a vector function related to E, 

10, I m  components of I 

AI,), incremental contribution to I from AS,,, 

a ( 6 )  b ( 6 )  Fourier components of surface data 

a;,,, b%,*, coefficients related to the spherical- 
wave coefficients 

a,, = azmn 
spherical-wave coefficients 

b,, = b;,, 

n n = n z m n  
spherical-wave functions 

m,a= m E m n  

y the path-length function 

F a vector function related to Hi and p 

anun, bnln, c,),,, interpolation coefficients for the func- 
tion F 

amn, P,,,,,, [,,,,, interpolation coefficients for the func- 
tion y 

mth even or odd Fourier component of 
incident electric field 

E,, H, scattered field 

E, total resultant field Miscellaneous Symbols 

H,,  He ,  H+ components of Hi with radial variation i ( - l ) I h  
factored out V Laplacian operator 

E,,  E+ components of Ei with radial variation h,(kp) spherical Bessel function 
factored out 

P ;  (cos 6) associated Legendre function 
Eo, Em components of E, with radial variation 

factored out f focal length of a paraboloid 

K surface currents D physical diameter of source (also used 

AK difference between true currents and as diameter of a scattering surface) 
physical optics currents F; (B), G; (6) functions related to the associated 

k = W ( E ~ ) ~  =%/A the propagation constant Legendre function 
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