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Abstract

A computer program for evaluating the electromagnetic field pattern of a
known arbitrary incident field scattered from a perfectly conducting reflector of
arbitrary shape is presented.

It is shown that the commonly used assumption of far-field behavior for the
incident field leads to poor results in some cases; an exact method is developed in
which a spherical-wave expansion is used to represent the incident field, and it is
shown that this method yields the correct result in these cases.

The scattering surface is represented by a Fourier type of expansion in one
variable, where the coefficients are specified as tabular functions of the remaining
variable, A tilted figure of revolution is a case of practical importance, and it is
shown that, for small tilt angles, three Fourier components are usually sufficient
to represent the surface.

A new nonlinear integration technique is used that is four to eight times faster
than Simpson’s rule integration, under specified conditions. Other techniques to
maximize program efliciency are described, and a comparison is given that indi-
cates the program to be 11 to 19 times faster than a similar existing program.

The subreflector and main reflector patterns of an 85-fi-diam Cassegrainian
antenna are computed, using both the far-field approximation and a spherical-
wave expansion to represent the incident fields. The results are compared, and it
is shown that the spherical-wave expansion of the subreflector pattern agrees in
remarkable detail with an experimentally measured pattern.

Exemplifying the general capabilities of the program, the patterns of a para-

boloid with a displaced feed are computed for three cases, and the results are
compared with approximate theory.
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Calculation of Scattered Patterns
From Asymmetrical Reflectors

l. Introduction

The physical-optics technique has been used with great
success to compute the scattering from perfectly con-
ducting surfaces, such as the subreflector of a Casse-
grainian antenna (Ref. 1). In fact, the technique has
yielded such accurate results that computed patterns
have begun to replace a good deal of experimental data
in antenna development and analysis (Refs. 2 and 3).

A major limitation of the physical-optics technique is
that it requires the evaluation of a double integral with
a rapidly oscillating integrand that typically results in
the need for large blocks of stored data and increased
computer time. In some cases, with special symmetry
conditions, one integration may be performed analyti-
cally (Ref. 4). The program described in this report was
developed so that the broad class of scattering problems,
which do not necessarily have any symmetries, could be
resolved in the most efficient manner possible. The great
majority of computer time and storage requirements may
be directly attributed to the numerical evaluation of the
integral; therefore, the major contribution towards effi-
ciency in this program is the application of a new
integration technique (Ref. 5).
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The case of scattering from an infinite plane reflector
is one of the few electromagnetic scattering problems
that has a simple known solution; the resulting field is, of
course, identically the reflection of the incident field.
An earlier version of the computer program described
herein implicitly assumed far-field behavior for the
incident-field pattern. When the program was checked,
with the plane reflector problem as a test case, it was
found that the computed scattered pattern was not the
same as the incident pattern and that the result was
dependent upon the wavelength of the incident field.
(Data for this test case are presented in detail in
Section IIL)

Of the several possible explanations for this anomaly,
it was hypothesized that the far-field behavior of the
incident fields was the cause. A technique based upon
spherical-wave theory (which yields an exact repre-
sentation of the incident fields) was developed, and the
application of this technique eliminated the error.

The spherical-wave representation of the incident fields
is in principle completely general. Also, a general repre-
sentation of the scattering surface was used in the




development of the program. Practical considerations
required that some of this generality be sacrificed in
the actual programming, but the theory could easily be
applied to extend the results if required.

The only important assumption made in the develop-
ment of this program was the physical-optics approxi-
mation in which the currents on the reflecting surface
were assumed to be determined by the incident magnetic
field. The validity of this procedure is discussed in
Section II; however, the agreement between experimental
and computed results presented in Section VI and else-
where (see Refs. 1-3) is, in fact, the strongest demon-
stration that the physical-optics approximation is a useful
and valid engineering method.

l. The Physical-Optics Technique

If the currents K induced on a surface S by incident
fields E; and H; can be determined, then the scattered
fields E, and H, caused by these currents are given by

E, (P) = — dweﬁ (K- V)V + kK] £ ds
(1a)
and
H,(P) = / (K X v) £ as (1b)

The coordinate system is shown in Fig. 1.

Since these equations (Ref. 6) are exact, the scattering
problem consists of (1) determining the currents K and
(2) evaluating the integrals.

One method for obtaining the currents is to use the
following boundary condition on S:

nX (E; +E)=0 (2)

This method leads to the following integral equation for
the currents K:

_ R /
n XE; n><41m€

—jkr
/ (K- V)V + kBK] e; ds
8
3
This formulation has been known for some time

(Ref. 6), but the speed and size of the present generation
of computers have made the technique much more

attractive. This integral equation method has been used
recently with great success in solving two-dimensional
scattering problems and problems involving a surface of
revolution (Ref. 7). The major disadvantage of this
approach is that, in these restricted cases, the surface
must not be wider than approximately 20 wavelengths
(Refs. 8 and 9). In the case of an arbitrary surface, the
limitation is more severe.

An approximate alternate method for obtaining the
currents is to assume that, on areas directly illuminated
by the source, the currents are the same as they would
be if the incident fields were reflected optically:

K = 2n X H; (4)

On shadowed regions, the currents are assumed to be
zero. These assumptions are known as the physical-optics
approximation.

For smooth reflectors, this approximation is valid in the
limit of zero wavelength (in Ref. 10, Cullen gives proof
of this for the case of a convex body illuminated by a
plane wave) and, in contrast to the integral-equation
method, the approximation improves as surface
dimensions become large compared to a wavelength.

However, not only does this approximation vyield
results when it is not practical to apply the integral-
equation technique, but it yields the results almost free
in terms of computer time. Therefore, the generally
time-consuming integral-equation technique should be
used only when the physical-optics approximation is
inadequate. In the typical scattering problem, the cur-
rents are of little direct interest; they are only an inter-
mediate step toward obtaining the scattered fields.
Therefore, the physical-optics approximation should not
be judged by whether it yields the correct currents, but
by whether the final computed scattered fields are correct.

In some cases Eq. (4) is a poor approximation of the
true currents, but it results in an excellent approximation
of the true scattered fields. The reason for this may be
understood by the following: let the true currents be K,
and define AK by

AK=K —2n X H; )

Typically, AK exhibits oscillatory behavior over the
surface, and its net integrated contribution to the scattered
fields is small. Watson (Ref. 11) has shown this analyti-
cally for the particular case of the fields in the focal
region of a paraboloid that is large with respect to a
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Fig. 1. Coordinate system

wavelength, Presumably, the primary effect of AK is
to produce local fields that represent stored rather than
propagating energy.

The similarity between the currents computed by the
integral equation technique and the physical-optics
approximation has also been pointed out by Andreasen.
The oscillatory nature of the difference may be seen in
his results that are for scattering surfaces only a few
wavelengths wide (Ref. 9). Surface currents for small
spheres—0.18 to 3.2 wavelengths radius—obtained from
a classical boundary value solution are given by King
and Wu in Ref. 12, and even here, Eq. (4) is a reasonable
approximation.

Therefore, Eq. (4) is not only a necessary step toward
reaching a result in problems involving a large reflector,
but also a sound engineering approximation for surfaces
larger than a few wavelengths in size.

If it is assumed that n and H; are known, the integrals
of Eq. (1) can be evaluated to obtain the scattered fields
at any point. However, the problem is greatly reduced if
it is assumed that E, and H, are to be evaluated only at
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very large distances from S. As R— o0, E; and H, must
satisfy the far-field relations:

€ Yo
H= (_I-'v_) iR XE (63.)

and

e—ij

R

E(R,@,Cb) = [Ee(@,@) io + E@(@,@) i@] (6b)

Therefore, only Ee and Es need be evaluated. Also
in this case, Eq. (1) may be written so that the only term
in the integrand that is dependent on the location of the
field point P is the argument of the exponential term.
The remainder of the integrand may be initially com-
puted over S and stored to be used repeatedly in the
evaluation of the integral for every field point P. This
method represents a substantial reduction in computer
time.

The assumption that the scattered fields are to be
evaluated at R = o« does not represent a loss of gen-
erality. If near-field results are required, they may be




obtained from the far-field data using the spherical-wave
expansions described later.

The far-field version of Eq. (1), with the currents that
are obtained from Eq. (14), is derived in Silver (Ref. 6):

e-ij
E(P) = Ioo + Lsis) —3 (7)
where
I=— fop / (n X H;) exp (jkp +iz) dS
2 Js

The final result, the total field E, is obtained by adding
the incident fields to the scattered fields as shown in

Eq. (8):

ET = ES + Ez (8)

The problem has now been reduced to the following
steps: (1) specify the surface data p and n, (2) specify
the incident field data H;, and (3) evaluate the integral.

lll. Specification of the Scattering Surface

In the derivation of the scattering integral equations
(see Eq. 1), the surface S is assumed to completely en-
close some region of space. Examples of surfaces are a
sphere (which separates space into an infinite region
and a finite region) and an infinite plane (which sep-
arates space into two infinite regions). There are obvious
numerical difficulties with infinite surfaces; the finite
closed surface also presents some potential problems
which are discussed in the following paragraphs.

As discussed in Section IV, the origin of the coordinate
system is determined by the location of the source, and
the natural system in which to describe the incident
fields is spherical coordinates. To define a surface, it is
necessary and sufficient to specify one variable as a
function of the other two. The most natural and con-
venient choice for this problem is a function p(6,4). In
the case of a sphere that does not enclose the origin, a
line § = const ¢ = const, in general, intersects the surface
twice so it cannot be described by a single function of
this form. However, with the assumed current approx-
imation, the back portion of the sphere has zero currents
and can be ignored. The illuminated portion is precisely
the portion that can be defined by a single function.
There is still one potential difficulty. At the point at

which p is just tangent to the surface, the partial deriva-
tive ¢p/060 is infinite and, as will be seen shortly, is re-
quired. Therefore, it is necessary to discard a further
portion of the surface. In the case of an infinite surface,
all but some finite portion is ignored. In both cases the
remainder may be identified as a truncated surface.
Therefore, an “arbitrary reflecting surface” is defined as
a surface that can be represented by a function p(6,¢)
whose partial derivatives exist at every point on the
surface. This definition is basically a consequence of
the physical-optics approximation used to obtain the
currents, and is sufficiently general to include virtually
all antenna reflectors. (Discontinuous surfaces may be
represented by two or more segments satisfying these
requirements, and the results may be superimposed.)

Because this surface may be thought of as a portion
of a closed surface, the derivation of Eq. (1) is still valid,
except for one point. A truncated surface has an edge,
and the currents obtained from Eq. (14) will in general
be discontinuous there. To ensure that the results are
consistent with Maxwell’s equations and the radiation
condition, Silver (see Ref. 6) introduced a line charge
on this edge in the derivation of Eq. (7). Sancer (Ref. 13)
has shown that the surface integrals of Eq. (1) intrinsi-
cally contain the contour integral representing the con-
tribution of this charge, and that the term introduced by
Silver arises automatically as a mathematical consequence
of truncating the surface,

The surface data required to evaluate the integral of
Eq. (7) are p and n. Using a result from differential
geometry (Ref, 14), Dickinson (Ref. 15) pointed out the
useful relationship:

ndS = %% x L. dgdy ®
where
P =pip
%%zg—gip+psin0i¢ (10)
=25, + pis

Therefore, specification of p and its partial derivatives
is a complete description of the surface. Since these
quantities must be specified on a set of points on S, which
will be called the integration grid and can easily involve
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several thousand points, the storage and transmission of
a description of a surface in this form can be a problem.
For this reason, it is useful to achieve some sort of data
compression. One trivial case is that in which the surface
is completely described by an analytic expression; for
example, a paraboloid whose focus is at the origin, is
completely described by a single number f as shown in
Eq. (11):

p = fsec? —g— (11)

A compromise between the complete generality of two-
dimensional tabular input and the severe restriction of a
simple analytic equation may be developed from the
general form:

p(6,¢) = i an(0) cos me + b,(6) sinmé (12)

m=0

Then
P _ N 0y cos me + Obw. sin m¢ (13a)
06 Ll o8 o6
and
w
.g_g = z — ma,(8) sin meé + mb,(8) cos m¢ (13b)

m=1

Suppose that for a given surface it is necessary to
include terms of order up to M to determine p with
sufficient accuracy; then by the sampling theorem it
would be necessary to specify p at 2M values of ¢ to
accurately represent details of the surface variations using
tabular data. Therefore, this Fourier type of represen-
tation is in principle always at least as efficient as an
ordinary tabular representation.

If M is allowed to be arbitrarily large, Eq. (12) is in
fact completely general; however, the reason for choosing
this form is that the first few terms are sufficient to
accurately represent a slightly tilted surface of revolution,
which is a case of substantial practical importance.
For example, Fig. 2 shows the peak error that occurs
when a tilted plane reflector is represented by three terms
of the expansion, a,(f), a.(6), and a,(d). (The axis of
rotation is taken to be the y-axis, so all of the b,,() terms
are zero.) This error is in general a function of the curva-
ture of the reflector, but the data shown in the figure are
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Fig. 2. Peak error with three Fourier components used io
represent a tilted reflector

representative of the accuracy that may be obtained
with this method. A reasonable a posteriori estimate of
accuracy may be obtained by extrapolating the value of
the first neglected term in the expansion. For example,
for a tilt angle of 1 deg, the coefficients at 8. = 20 deg
are a, = 1.064199, a, = 0.006761, and a, = 0.000021. The
values decrease with a nearly constant ratio, and a
reasonable estimate for the neglected third-order term is
about 10-? to 10, which is approximately the peak error.
The relatively poor accuracy obtained for a tilt angle of
10 deg at uqe. = 40 deg is also predictable from the co-
efficients (@, = 1.320015, @, = 0.197465, and 4, = 0.014608)
and would lead to an expected relative error of approxi-
mately 10-3,

The derivatives of the a,,(6) terms must also be written
in as tabular functions of ¢; therefore, six input functions
are required in this example where M=3 and all b,(9)
terms are identically zero. The number of ¢ values at
which p must be known is determined by the require-
ments of the numerical integration technique and is
usually quite large (from fifty to several hundred values
is typical). Therefore, the specification of only six func-
tions is a substantial reduction in the quantity of data
required. A computer program to obtain these functions
for the case of an arbitrary tilt and translation of a surface
of revolution is described in Appendix C.

IV. Specification of the Incident Fields

The most common method (Refs. 1, 6, and 16) for
obtaining the magnetic field on the surface S is to assume
that the incident fields satisfy the far-field relations:

€ L7
Hi - (——) ip X Ei
”

(14a)




and

e“jkp

p

Ei(p,0,¢) = [Eo (6, ) 1o + E¢ (6, ¢) ig] (14b)

Not only is this a relatively simple form, but E, (6, ¢)
and E, (8, ) correspond to the quantities conventionally
measured on an antenna pattern range, so experimental
data may be easily used as input for the incident fields.
Also, as discussed in Section II, theoretical patterns are
easier to compute in this form.

Equation (14) represents a spherical wave diverging
from the origin; therefore, it is not valid unless the origin
is located at the source phase center. The phase pattern
about this point should be constant, but in practice the
relative phase may vary by 90 deg or more over the
region of interest. A nonconstant phase pattern may be
taken into consideration if E, and E4 are allowed to be
complex valued, but the radial components of the field
implied by the nonconstant phase pattern are usually
assumed negligible.

The use of this assumption provides good results for
many practical problems. Serious errors can arise, how-
ever, when the surface is “close” to the source. This fact
has been recognized by Zucker and lerley, who directly
computed the near-field radiation of a conical horn in eval-
uating the scattered pattern of a near-field Cassegrainian
subreflector (Ref. 3). An alternative approach is to take
experimental data at range values corresponding to the
location of the surface; this was done by Hogg and
Semplak (Ref. 17).

The disadvantage of the first method is that horn
patterns computed in this way frequently do not agree
with experimental data, since it is necessary that strong
assumptions be made about the fields in the aperture of
the horn. The disadvantage of the second method is that
each different subreflector configuration in principle
requires a new set of experimental data. These problems
are obviated by the use of the spherical-wave expansions
that are discussed later in this section.

A graphic demonstration of the error that may be intro-
duced if far-field behavior is assumed for the incident
fields is provided by the case of scattering from a large
plane reflector. In the case of an infinite plane, the result
must be the reflection of the incident pattern, inde-
pendent of frequency. Also, in the case of an infinite
plane, Eq. (4) is valid, independent of frequency; there-
fore, this is an excellent direct test of Eq. (14).

The cases shown in Fig. 3 (and one additional case at
z = 160 A, which is not illustrated) were evaluated using
the far-field form for the incident fields given by Eq. (14).
The fields were derived from the experimental pattern
of a conical horn with an aperture diameter of 4.671 A,
illustrated at the origin of Fig. 3. The actual numerical
integration was truncated at an angle at which contri-
butions became negligible. The disks shown in Fig. 3
represent the region over which the integral was actually
evaluated. It should be noted that horn-reflector inter-
actions are not considered, so this is not intended to be
a perfect duplication of a real experimental situation, but

rather a numerical test of the far-field assumption given
by Eq.(14).

The computed scattered fields based on the far-field
approximation of the incident field for the six cases are

A

80

/7

AN

Fig. 3. Plane reflector cases
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shown in Fig. 4 along with the incident-field pattern.
Only the ®-component is illustrated, but the behavior of
the ®-component is similar. All of these patterns should
be identical, but the discrepancies are large. In addition
to the severe distortion of the reflected main lobe when
z =5 and 10 A, a spurious back lobe appears in all cases
—that is, the plane that was assumed to be a perfect
reflector behaves as if it were partially transparent.

In the special case of a plane reflector, the scattered
fields E, are identical in the reflected and backward
directions. When the incident field is added (Eq.8), it
should cancel this backward radiation. Therefore, this

back lobe is identically the error between the reflected
pattern and the incident pattern. (The error includes
both amplitude and phase differences since it is the
difference between complex-valued quantities.)

The power in the computed scattered patterns has been
calculated as a percentage of the power in the incident
fields and is shown in Fig. 5. As indicated in Fig. 5, the
main (reflected) lobe alone accounts for 100 percent of
the incident power in all cases, so the total power in the
computed pattern exceeds the incident power. This excess
is, of course, physically impossible, The spurious power
in the back lobe is strongly dependent on the distance

>IN

RELATIVE POWER, dB

72

108 144 180

POLAR ANGLE 8, deg

Fig. 4. Computed amplitude patterns for plane reflector cases; far-field assumption for incident fields
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from the source to the surface, which is plotted in units of
D2/x where D is the diameter of the source. At z=2D?%/A,
the traditional far-field boundary line, this power has
dropped to less than 2 percent.

The behavior of the phase pattern of Es is shown in
Fig. 6. These phase data have been transformed to a new
coordinate system; the origin was moved from the point
at the source phase center to the image of this point
behind the plane reflector where the phase center of the
total scattered fields should be located. In fact, this is
very nearly the phase center for the first three cases; the
patterns of the last cases are those of a source whose
phase center is closer to the plane surface.

Therefore, instead of the total scattered fields appear-
ing to arise from a perfect image of the source, in the
three worst cases the apparent source is distorted and has
moved toward the plane. In most practical situations, the
agreement shown for the three best cases would be

adequate, but it is significant that even at the furthest
distance z = 160 A (7D?/x of the feed) there is noticeable
error in the results.

This error may be eliminated entirely by the use of a
representation of the incident fields that is valid in the
near field. Spherical waves are a well known set of
solutions to Maxwell’'s equations that satisfy this require-
ment. If the incident fields satisfy Maxwell’s equations,
then coefficients a, and b, may be found such that

«@w

H, (p,6,4) = 7—1“; S @y bom,  (15)

n=0

where n, is a transverse electric (TE) and m,, is a trans-
verse magnetic (TM) spherical wave, as given by Eq.
(A-1) in Appendix A,

The method for obtaining coefficients so that the wave
expansion will match an arbitrary input pattern in the
far field is also discussed in Appendix A; therefore, it will
simply be assumed that coefficients have been obtained

90
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-180
108 144 180

POLAR ANGLE @, deg

Fig. 6. Computed phase patterns for plane reflector
cases; far-field assumption for incident fields
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to describe the incident field. The form of Eq. (15) com-
pletely eliminates the approximation of Eq. (14) by
directly yielding H; on the surface. However, the eval-
uation of the spherical-wave expansion does involve
computer time. Although this time is typically less
than 10 percent of the total, the comment made earlier
with regard to the integral-equation technique for ob-
taining the currents also applies here: the expansion
should be used only when the far-field form is inadequate.

Clearly, the far-field form is inadequate in cases z = 5,
10, and 20 A of the data presented in Figs. 4 and 6. These
cases have been recomputed wusing a spherical-wave
coefficient specification of the incident fields. The re-
flected patterns are virtually indistinguishable from the
incident pattern, as shown in Fig. 7. Phase data, trans-
formed to the image point, are shown in Fig. 8; clearly,
the error has been eliminated.

Now that it has been established that the far-field
assumption yields incorrect results that are corrected
when a spherical-wave expansion is used, it is of interest
to consider the physical mechanism of the discrepancy.
Since the theory is based on current integration, the
surface current distribution must reflect the essential
difference between the two methods. The amplitude and
phase of the y component (the principal polarization) of
the surface currents at ¢ = 0 are compared for three
cases in Figs. 9 and 10. The currents in Figs. 9 and 10
are plotted versus the Cartesian coordinate x, rather than
the polar angle # (see Figs. 1 and 3), to illustrate the
true relative spatial distributions of the three cases.

When the far-field approximation is assumed, the
diameter of the region containing significant current mag-
nitudes linearly approaches zero as the source approaches
the reflector. Typically, a smaller source will result in a
broader radiation pattern, but in this case the phase
of the surface currents becomes more uniform as the
source becomes smaller and this fact tends to make the
pattern narrower. Over a considerable range of z values,
these effects nearly cancel out, as demonstrated by the
resulting radiation patterns shown in Fig. 4. However,
in the limiting case of a point source, a broad dipole
pattern would be expected with the phase center of the
pattern on the reflecting surface. This is in fact exactly
the trend exhibited by the data for the far-field case in
Figs. 4 and 6. As mentioned previously, the surface cur-
rents radiate symmetrically on both sides of the plane,
and because a broader pattern cannot result in perfect
destructive interference with the incident pattern, the
result is the back lobe which appears in Fig. 4.

JPL TECHNICAL REPORT 32-1430

When the spherical-wave expansion is used, the phase
behavior is very similar to the far-field result, except that
the 180-deg discontinuities are smoothed out. (Since the
phase data are modulo 360 deg, these discontinuities
could be in either the positive or negative direction. They
were drawn to match the spherical-wave phase data as
closely as possible.) The major difference between the
spherical-wave and far-field cases is that the patterns of
the current magnitudes are broadened, particularly in
the z = 5 A case. Because the phase patterns are nearly
the same, the larger source produces a narrower radiation
pattern that brings the result into agreement with the
incident pattern, as shown in Fig. 7.

It is of interest to note that the radial field component
of the incident magnetic field—which is completely ne-
glected in the far-field approximation—makes a noticeable
contribution to the total current, as shown in Fig. 1L
When z = 5 A, this current contributes about 3 percent
of the field strength of the scattered pattern on axis, so a
small but not negligible part of the correction to the
far-field approximation is the inclusion of the radial field
components. However, these surface current data lead to
the conclusion that the primary cause of the error result-
ing from the use of the far-field approximation is that
the current magnitude patterns are too narrow.

The computer program developed in this report (see
Appendix D) includes a subroutine FIELDS that pro-
vides the main program with values of H; on the surface
integration grid. Two such subroutines were written.
In one subroutine the incident fields are specified by a
set of spherical-wave coeflicients a, and b,. In the other
subroutine the far-field relations of Eq. (14) are assumed,
and E, and E4 are represented by exactly the same type
of series as the surface data (see Eq. 12). In the case of
the field data, the m =1 azimuthal variation term is
of special significance and is the only term present in an
important class of sources (Ref. 18). For this reason, the
FIELD subroutines were written for any single value m
for the order of azimuthal variation. If more than one
value is required, the cases may be run individually and
the results superimposed. The far-field subroutine is
intended for cases in which the reflecting surface is
sufliciently removed from the source, or in which the
available number of spherical waves (limited by storage
and other considerations) is inadequate to expand the
incident-field pattern. The spherical-wave subroutine
should be used whenever the reflector is close to the
source, and in borderline cases (which include most
practical Cassegrainian antenna systems) when assured
accuracy is the overriding concern.
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V. Evaluation of the Integral

The numerical evaluation of the integral, Eq. (7), may
justifiably be considered the most important part of the
scattering problem, A primary engineering function of a
scattering program is the evaluation of the effect of one
or more parameters on the resulting pattern; this appli-
cation is severely restricted if each case requires 6 or 8 h
of computer time.

The fast Fourier transform technique has been applied
to the evaluation of diffraction integrals by Pratt and
Andrews (Ref. 19), but this formulation is applicable
only when the argument of the exponential term is linear
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in each of the variables of integration. In the case con-
sidered here, the integral to be evaluated (see Eq. 7) may
be written as follows:

109) =~ 52 [ [ Kogoesen dody (0

where
y=priz—p
= p [sin#sin O (cos ¢ cos & + sin ¢ sin B)

+ cosfcos® — 1] 17
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Since y is a nonlinear function of 6 and ¢, the fast Fourier
transform technique is not applicable. Techniques that
have been successfully applied to Eq. (16) are Gaussian
quadrature, which was used by Allen (Ref. 20), and
Romberg quadrature, which was recently used by Rusch
and Strachman (Ref. 21). The Romberg method is par-
ticularly useful in the case of computing the main-beam
and near-sidelobe regions of a high-gain pattern, and
could in fact be used with the method presented below
to increase efficiency in this situation.

Before describing the integration technique developed
by the author, some general features involved in evaluat-
ing this integral will be discussed. Suppose 1(0,®) is to be
evaluated on a set of points (the output grid) given by
(0, @), 1 <j<IMAX, 1 <k <KMAX. Typical values
are JMAX =91, KMAX = 2, The integral will be eval-
uated numerically when the integrand is specified at a
set of points (the integration grid) given by (6., ¢u),
1 <m<MMAX, 1 <n<NMAX. A modest grid size is
MMAX = 50, NMAX = 181. (The effect of these grid
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parameters on computed pattern accuracy is discussed
below and is considered in detail in Ref. 22.)

As mentioned in Section II, with the far-field assump-
tion, F does not depend on @ and &, so it need only be
computed once on the integration grid—9050 points in
this example. This operation requires little computer time,
but since F has three Cartesian components (each of which
is complex), 6 X 9050 = 54,300 values must be stored.
Many computers do not have this capacity. Therefore, the
program was written so that several integration grids may
be specified—i.e., the reflector is divided into segments—
and the resulting scattered fields from each segment are
superimposed.

Unavoidably, the function Y must be computed at
JMAX X KMAX X MMAX X NMAX points (1,647,100 in
this example). This example demonstrates the tremendous
advantage of storing F rather than recomputing it for
every output point, Also, the number of points (1,647,100)
represents the number of summations involved to evaluate
the integral for all of the output points. Several steps were
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taken to minimize the time used in this portion of the
program:

(1) The trigonometric functions sin 8, cos 8, sin ¢, cos ¢,

sin O, cos @, sin &, cos ® are precomputed at the
required grid angles and stored so that the compu-
tation of y will involve only multiplication and
addition of stored quantities, rather than the time-
consuming evaluation of trigonometric functions.
For this reason, Eq. (17) is not written in the form
cos ¢ cos ® + sin ¢ sin & = cos (¢ — ®), which
would have to be computed at every permutation
of ¢ and @ values,

(2) A fast machine-language subroutine was written to

compute cos ky + § sin ky. This subroutine is de-
scribed in Appendix B.

(8) A special numerical integration technique was

developed that reduces the required values of
MMAX and NMAX.

The numerical integration technique is described in

Ref. 5, but for completeness the description will be par-
tially repeated here. For a fixed output point (0,, ®,) the
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integral is of the form

where

F=

eu ¢N
INR NI
p H, +psingdHy )i
a¢‘ P ¢ ] 1o
. 0p .
+ | —psin6 H, — WHP ip
[ 9 .
+ (-gg—smﬁH.p — “ﬁHe)lP (19a)
Hpip + Heio + H¢i¢. Epejkp H@ (19b)

Since the unit vectors of Eq. (19) vary over the region of
integration, Cartesian components are used in the actual
evaluation of the integral.

In the near field, the radial variation of H; will approxi-
mate e~*?/p behavior; therefore, if this dominant variation
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is factored out, H,, Ho, and H as defined in Eq. (19) will
be nearly constant with respect to p, which makes it much
easier to numerically approximate F. The e-7*F factor has
been included in the path length function y, and the 1/p
factor is canceled by a p factor in the term for incremental
area dS. Deviations from e~/*P phase behavior are included
by allowing Hp, H,, and Hg to be complex valued. (Since
aradial component of H; is included, this does not involve
any assumptions or approximations).

Consider the behavior of the integrand over an incre-
mental area of S,

ASpn = {(0,¢) 0 K0 s, P S B < anﬂ} (20)

Suppose that the physical dimensions of AS,,, are on
the order of a wavelength, A = 2= /k. Then the path length
term jky cannot vary by more than 2, and since electro-
magnetic fields cannot generally change abruptly over

distances on the order of a wavelength, F will not vary
much. Thus, in virtually any problem, F and y will be
very well behaved and slowly varying over AS,,,. How-
ever, the possible 2r variation in the exponential term
could cause the real and imaginary parts of the integrand
to behave like a full cycle of a sinuscid. To apply a tech-
nique such as Simpson’s rule to the entire integrand would
require a further subdivision of AS. However, if the func-
tions F and y are approximated individually a simple linear
form will operate satisfactorily over AS,... Explicitly,
write

F(0>¢) =~ 8mn + hmn (0 - am) + Cmn (¢ - d’n) (21&)

7(0#’) = Omn + an (0 - (9>m) + gmn (QS - ¢’n> (21b)

for (9,(15) € AS .

The method used for determining the coefficients is to best-fit a plane (least squares sense) to the values of
the function at the corners of AS,,,. For example, in the case of the function F this method yields the following:

1
Amn — ‘Z [SF(am:ﬁbn) - F(0m+17¢n+1) + F(0m+1>¢n) + F(0m,¢n+l)] (223)
1
bmn = W [F(0m+1,¢n) - F(Gmyd’n) + F(0m+1:¢n+1) - F(0n1,¢11+1)] (22b)
1
Cnn EZ(]S— [F(9;7u¢11+1) - F(anuﬁbn) + F(0m+1,¢n+1) - F(am+1>¢n)] (220)
where
Aam = 077z+1 - 0»1
Af;bn = ¢n+1 - Cﬁn

An identical relation holds between the coefficients aun, Bmn, Emn and the function y. The integration over AS,.,
may then be performed analytically, yielding the contribution:

i , exp ikB,n,nA{)m -1 exp ikénnzA(t’n —1
AL, = €xp 7kam n {amn [ 7k B ]k o
Af,, . _ exp ikanAem -1 exp fkénmAan —1
+ hm n [ ]k ,an exp 7k,8 mnAgm ( ( 7k ﬁnm)2 > ]k ém N
exp jkﬂm,,AOm —1 Ady R exp ikémnA¢n —1
+ mn ; 3 k émznA n y 23
¢ [ 7kBn Tty O P IREmAS (ikémn)? (23)

Since it is possible for 8, or &., to be near or equal to zero, it is necessary to develop separate equations for
this case (they are easily derived from the above equation) to avoid large numerical errors.
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It should be noted that many of the computations
involved in evaluating each single vector component
do not have to be repeated for the remaining five com-
ponents, For example, in Eq. (23) only the components
of the au,, by, and e, coefficients will change. There-
fore, although the six vector components present a severe
storage problem, the effect on computer time is con-
siderably less than a factor of six.

The basic idea behind this method—to isolate the oscil-
latory behavior of the integrand—is conceptually similar
to the Eikonal technique used in deriving geometrical
optics from Maxwell's equations (Ref. 23) and is also a
feature of Filon’s method for evaluating Fourier integrals
(Ref. 24). In fact, Allen has also applied Filon’s method
to antenna problems and concluded that it is competitive
with Gaussian quadrature (Ref. 20). The essential dif-
ference of the method presented here is that the “fre-
quency” terms B, and &, are re-estimated for each
incremental area of integration, rather than assumed as
known constants.

If radiation integrals are considered as analytic forms
of a Huygens type of principle in which infinitesimal
electric or magnetic dipoles radiate a simple pattern and
are summed as in an array, then another way of inter-
preting this technique is to describe it as replacing in-
finitesimal elements with elements about a wavelength
square that radiate a more complicated pattern as given
by Eq. (23).

Although this technique appears obvious and has an
intuitive appeal from an engineering standpoint, it is
somewhat unusual mathematically. The integral is a linear
operator, and virtually all quadrature formulas are also
linear, except this one. The easiest way to show this is to
note that the functions 1 and e/ are both of the form for
which the technique will be exact. However, their sum

1+ e* = 2 cos _k2_0 eikesz (24)

is not of the form (a + bg) e/*@+B2 and the sum of the
(numerical) integrals is not equal to the (numerical) inte-
gral of the sum. However, if F and y are well behaved,
the technique does in fact converge to the integral oper-
ator (and therefore becomes linear) in the limit of zero
step size {Ref. 5).

Convergence tests for the case of scattering from a
hyperboloid show that with this technique, incremental
areas 2/3 of a square wavelength in size result in errors
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more than 40 dB below the pattern maxima (Ref. 22).
Similar tests of a program that uses Simpson’s rule to
evaluate a one-dimensional integral show that the areas
must be at most 0.04 square wavelengths for the two-
dimensional case, and possibly smaller (Ref. 22). There-
fore, the number of integration points may be reduced
by at least a factor of 16 relative to Simpson’s rule. The
plane reflector data presented in a previous section were
computed with the step sizes given in Ref. 22. These
data are an absolute test of numerical accuracy and are
further confirmation of the convergence tests.

Although the complicated form of Eq. (23) seems to
indicate that this technique would require an order of
magnitude more time per data point than Simpson’s rule,
the fact is that in this type of problem the evaluation
of e’ = cos x + § sin x tends to dominate machine time.
For example, an IBM 7094 will multiply or divide two
numbers in about 10 s, or add two numbers in about
15 ps (Ref. 25). However, computation of the sine and
cosine to obtain the real and imaginary parts of e/ re-
quires 571 ps with the library subroutine, or 281 ps with
the fast subroutine described in Appendix B (see
Table B-1).

It is estimated that time per data point for this tech-
nique is increased by a factor of 2 to 4, relative to
Simpson’s rule, which means that the net reduction in
total running time is a factor of 4 to 8. In practice, this
technique can result in a reduction from 8 hto 1 or 2 h
of computer time, so it is of substantial practical impor-
tance. For example, Slobin (Ref. 16) has reported that a
program using Simpson’s rule integration requires 1.3 min
of IBM 3860/75 computer time per output point to com-
pute the scattered pattern of a 56-wavelength-diam tilted
subreflector. Thus, 3.90 h would be required for 180
output points., These data have been obtained in 1.01 h
of IBM 7094 Mod I computer time with the program
described here. (The 1.01 h includes 9.8 min to evaluate
the spherical-wave expansion of the incident fields at
each of the integration grid points.) The 360/75 is faster
than the 7094 Mod I by a factor of between 3 and 5;
therefore the program described here is 11 to 19 times
faster than this particular program that uses Simpson’s
rule. (It is interesting to note that the new technique
works better on an old computer than the old technique
on a new computer.)

It should be noted that in the case of rotational sym-
metry, when one integration may be performed analyti-
cally, these same data can be obtained by evaluating a
one-dimensional integral (with a Bessel function in the
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integrand) in about 6 min (Ref. 22). Therefore, it is
grossly inefficient to evaluate a double integral in sym-
metrical cases, and the program described here should
only be applied to problems involving asymmetrical con-
figurations.

These convergence data are representative of the “low-
gain” case in which the contributions from currents on
the surface do not add in phase at any output point. A
special case of considerable practical interest is the com-
putation of the main lobe and first few sidelobes of the
scattered pattern of a high-gain antenna such as a para-
boloidal reflector. In this case, contributions are adding
nearly in phase, i.e., the phase of the integrand is very
slowly varying. Tests recently completed indicate that, in
this case, integration points may be spaced at intervals
of 20 wavelengths or more without seriously affecting the
accuracy of the results. (Actually, in many practical cases
closer spacing will be required to represent sufficient
detail of the surface and incident-field data.) The results
of these recent tests are similar to results reported by
Allen for Filon’s method and Gaussian quadrature for
this case (Ref. 20), so the integration technique used here
is nearly equivalent to the techniques in this situation. As
mentioned previously, any of ‘these methods may be im-
proved by a Romberg type of modification in this case.
The large spacings allowable between grid points means
that the patterns of reflectors over 1000 wavelengths in
diameter may be computed. However, beyond the first
few sidelobes the situation begins to approach the “low-
gain” case described earlier.

VI. Comparison With Experimental Data
and Other Results

An improved theory is important if it confirms the
results of an approximate theory, since the approximation
may then be used with confidence; it is also important
if an improved theory corrects the results of an approxi-
mate theory. The application of spherical-wave theory
developed in this report is considered valuable on both
counts. A case in which the far-field approximation yields
an incorrect result has already been presented; a case in
which this approximation is adequate, except for the
most precise calculations, is discussed in this section of
the report.

A basic criterion in selecting this sample case was that
it represent a real problem. The standard NASA/JPL
Deep Space Network antenna is an 85-ft-diam parabo-
loid, with a Cassegrainian feed system, operated at
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S-band. This configuration is also common for communi-
cations satellite terminals, so this sample case is clearly
one that is of practical interest.

The object of the analysis was to compute the radiation
pattern of the overall antenna, with particular emphasis
on the pattern maximum that determines the antenna
gain. The antenna is illustrated in Fig. 12, The design of
this particular antenna is well documented (Ref. 26), and
JPL provided experimental patterns of the fields scat-
tered by the subreflector used with this configuration.

There is reason to question the application of the far-
field approximation to the analysis of this antenna, because
the subreflector is at 1.65 D?/x of the primary feed, and
the main reflector is at 0.148 D?/x of the subreflector.
Because the results of a far-field analysis generally agreed
with experimental data, it was certain that the approxi-
mation was reasonably good, but the amount of error
introduced was uncertain until the completion of the
analysis presented in this report.

—offe— A= 4.92in.

19 ft

_— N

"J\\/

f=236ft =

Fig. 12. Configuration of the 85-fi-diam antenna
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The primary feed for this antenna was the same dual
mode conical horn (Ref. 27) used for the plane reflector
cases. The spherical-wave coefficients for this feed were
obtained from an experimental pattern using the tech-
nique discussed in Appendix A; the incident-field pat-
terns shown in Figs. 7 and 8 represent an evaluation of
the spherical-wave expansion at p = . Two parallel
analyses were performed on the antenna. One analysis
was made with the spherical-wave expansion FIELDS
subroutine and the other with the far-field approximation
FIELDS subroutine. The analyses were identical in all
other respects.

The two computed scattered patterns of the subre-
flector (which consists of a vertex plate, a hyperboloidal
section, and a conical flange) were virtually identical.
This is not surprising, because the subreflector is near
the 2D?/x distance from the primary feed.

The experimental subreflector pattern was measured
at a range that was nearly equal to the distance to the
main reflector. In Fig. 13, these experimental data show
good agreement with the pattern computed with the far-
field approximation. The pattern computed using a
spherical-wave expansion was in turn expanded in a
series of spherical waves. In Fig. 14, the spherical-wave
expansion, evaluated at the same radius at which the
experimental data were measured, is compared to the ex-
perimental pattern. The agreement is even better than
that in Fig. 13. The computed data closely follows the
experimental pattern, demonstrating that the agreement
between theory and experiment is outstanding.

The next step in the analysis was to use the subreflector
pattern to illuminate the main paraboloidal reflector,
again by the use of a spherical-wave expansion and the
far-field approximation in the respective cases. The two
computed main reflector patterns are compared in Fig. 15.
Although the most noticeable difference is in the side-
lobes, this difference will generally be of little impor-
tance. Of greatest significance is that the peak of the
main beam (i.e., the computed gain) differs by 0.127 dB
in the two cases.

With the scale used in Fig. 15, a 0.127-dB difference
is difficult to detect, and in many applications of com-
puted antenna data it will be of no importance whatso-
ever. Therefore, for these applications (and for antennas
of this approximate design) it has been shown that the
faster and simpler far-field analysis is inadequate. For
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example, the far-field analysis will be used for the feed
displacement calculations to be presented shortly. Use
of the far-field analysis is of particular importance in the
case of development work involving a large amount of
computer time.

However, there are cases in which a 0.127-dB differ-
ence is significant. Computed data have reached a level
of sophistication where they are frequently weighted
about equally with experimental data in calibrating large
ground antennas (Ref. 28). An 85-ft antenna costs about
one million dollars (Ref. 29), and it can be argued
(Ref. 30) that an uncertainty of 0.127 dB in the gain of
such an antenna is worth $40,000. In fact, the costs of
the time and effort spent to calibrate an antenna with
this precision are even greater than $40,000. Since the
IBM 7094 computer time required for the two cases
shown in Fig. 15 (including the spherical-wave expansion
of the subreflector pattern) was 23.24 and 8.60 min for
the spherical-wave and far-field analysis, respectively (a
difference -of about $61.00 at the current price of com-
puter time) it is probably safe to say that most engineers
would choose the more accurate analysis, (Since the evalu-
uation of the spherical-wave expansion on the integration
grid is independent of the number of output points, the
relative times would be more nearly equal for a larger
number of output points.)

In all of the cases evaluated so far, rotational sym-
metry has been assumed. As a last example, the problem
of an offset feed system will be considered to illustrate
some of the capabilities of the program for asymmetric.
geometries.

The case considered is the offset feed geometry shown
in Fig. 16. To provide a basis of comparison, the dis-
placements along the dashed curve shown in the figure
are the same as a case previously analyzed by Ruze
(Ref. 31). However, the true subreflector pattern has
been retained, thereby eliminating the need to assume
a simple form for the illumination of the main reflector.
In addition to the displacement translations, the feed
system was rotated so that the edge angle of the main
reflector remained nearly constant, to minimize spillover.
The offset angle g is measured in the conventional
manner, The computed patterns for a zero offset and
two nonzero offsets are shown in Fig. 17. The analysis
given by Ruze, which is based on scalar theory, includes
the case of an illumination function of the form
f(x) = 0.3 + 0.7(1 — a?), that approximates the reflector
illumination in the case considered here.
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For this geometry and illumination, Ruze predicted
a beam deviation factor of 0.84. The beam deviation
factors of the results given in Fig. 17 are 0.835 and 0.840,
for the 1- and 2-deg cases, respectively. The coma lobes
agree within 1 dB with the values predicted by Ruze and
the half and tenth-power beamwidths agree within
0.04 deg. The gain loss agrees (as well as it is possible to

read the graphs given by Ruze) within approximately
0.1dB.

This agreement is so complete that it might seem
irrelevant to bother with the more rigorous analysis.
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However, in addition to the confidence factor mentioned
earlier, the approximate analysis has several restrictions:
(1) it assumes a simple analytic illumination function,
(2) the displacements must be along the specific curve
shown in Fig. 16, and (3) the displacements are assumed
to be small compared to the focal length. In the case
considered in this section, these restrictions were met by
design to obtain a comparison with independent data,
but the program is capable of a case with (1) a very
complicated illumination pattern (for example, a pattern
with a central null produced by a vertex plate, including
the phase pattern perturbations typical in this situation),
(2) the displacements in any direction and, (3) a tilt

17




RELATIVE POWER, dB
)
S

-30
EXPERIMENTAL
----------- COMPUTED WITH
SPHERICAL - WAVE
EXPANSION
-40
| L L % 106

POLAR ANGLE 8, deg

Fig. 14. Comparison of experimental and computed subreflector patterns; spherical-wave expansion case

angle that is restricted to approximately 5 deg in the
present program (the wavelength determines the allow-
able peak error that in turn determines the tilt angle as
shown in Fig. 2), but that could be made arbitrarily large
if more Fourier components were included, or if a spe-
cial surface subroutine were written for the particular
case of a tilted paraboloid.

VII. Summary

The results shown in the previous section clearly
demonstrate the usefulness of the physical-optics tech-
nique. The agreement between theoretical and experi-
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mental data is excellent, and in the case of the 85-ft
antenna, the application of a technique such as the
integral-equation method to obtain the surface currents
is virtually hopeless because of the large size of the
reflector.

It was demonstrated in Section IV that the far-field
approximation for the incident fields can lead to poor
results, and that the spherical-wave representation cor-
rects the results. The far-field expansion is still useful in
many practical cases, but if precise results are required,
and if the reflectors are in or close to the near-field
region, the spherical-wave representation should be used.
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Fig. 15. Computed patierns of 85-ft-diam main reflector;
comparison of far-field and spherical-wave expansion
cases

A Fourier type of representation of the scattering sur-
face is eflicient in the case of a slightly tilted figure of
revolution, and in many cases three components are
sufficient to accurately specify the surface.

In the case of a low-gain asymmetrical reflector the
program developed here is an order of magnitude faster
than an earlier program; in the high-gain case the inte-
gration technique loses much of its advantage over prior
methods, but the other timesaving techniques used still
result in efficient operation. For symmetrical geometries,
one integration should be performed analytically.

VIIl. Possible Improvements and Future
Applications of Computer Program
The computer program could be improved in several
ways. For example, a Romberg type of procedure could

be incorporated into the integration method. Also, in the
existing program, when the edge of the reflector is not
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coincident with a coordinate boundary, an approximate
boundary must be constructed out of trapezoidal-like
segments. An interesting extension of the integration
method developed here would be to compute the scat-
tered pattern of a triangular-shaped segment to be used
in constructing edges that are at least continuous. An-
other possible improvement is to modify the program to
accept an arbitrary number of Fourier components in the
surface representation that would eliminate the small
restriction on the reflector tilt angles.

The main area of future work les in applying the
scattering program. Parameter studies of near-field
Cassegrainian antennas using actual experimental feed
patterns is an obvious example. In all of the cases con-
sidered above, the spherical-wave coeflicients of an
incident-field pattern were obtained with the program
described in Appendix D, but the scattering program will
accept coeflicients regardless of how they are obtained.
For example, if the currents excited on a feed device,
such as log-periodic wire antenna, are known (perhaps
from the integral equation method), the spherical-wave
coeflicients may be obtained directly from the currents.
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Fig. 16. Geomelry of offset-feed cases
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Also spherical-wave coefficients have been obtained
analytically for cases such as a plane wave and an arbi-
trarily located and oriented dipole (Ref. 32). This dipole
case is precisely the expansion required to compute the
fields in the focal region of a reflector by the use of
the same reciprocity technique recently used by Rusch
(Ref. 21). This is a very interesting area for future work,
since focal-region fields studied have involved assump-
tions and restrictions, whereas this method is, in principle,
exact. Also, this method is applicable to nonparaboloidal
antennas, such as shaped Cassegrainian antennas
(Ref. 33), that have never been analyzed to obtain the
focal-region fields. The reciprocal part of this problem is
the computation of the pattern of reflectors with de-
focused feeds, and this is also a very interesting area for
application of the scattering program, as discussed in the
previous section.

The spherical-wave expansion program also has future
applications independent of the scattering program. For
example, a study is currently being pursued to apply
spherical-wave expansions to the determination of cor-
rection factors for near-field gain measurements (Ref. 34).
The usefulness of mode expansions in the solution of
boundary-value problems has not been exhausted, and
cases may be found in which the method is superior to
the currently popular integral-equation method.

JPL TECHNICAL REPORT 32-1430




Appendix A

Spherical-Wave Expansions of Electromagnetic Fields

In a source-free, homogeneous, isotropic medium,
spherical-wave solutions of Maxwell’'s equations are given
by Stratton (Ref. 35):

mP™ (cos 6) sin

- me¢i
sin 4 oS ¢ 1o

me,, = F 2, (kp

0 0 .
— za (kp) e P™ (cos 6) 211? me iy (A-1a)

ne,, = n(n + 1) =5+ z,,(kp) P (cos 6) zt)r; me ip

in

1 .
+ T 7 [pz,, (kp)] ——P’” (cos 6) zos me io

d mPR(cosf) cos A

1
* 75 50 [pza (kp)] 1y

p 0p sin # sin
(A-1b)

where

e’»t = time dependence (implicitly
assumed)
(p,9,¢) = spherical coordinates (see Fig. 1)
k = w(ep)” = 2xr/\ = propagation constant

Zx (kp) = any solution of the spherical Bessel
equation

P (cos §) = associated Legendre function

In the following derivation, an electromagnetic field is
understood to be a pair of vector valued functions E
and H (defined everywhere in a source-free, linear, ho-
mogeneous, isotropic region V) that satisfies

V X Eand V X H exist everywhere in V

and

V XE= —iw,uH
} (A-2a)

VXH:](AEE

where € and . are physical constants, and « is a nonzero
positive constant, and where
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/;elElzdv
/V,u,]H[Zdv

are defined and finite.

(A-2b)

Since V +V X A =0 for any vector A, Eq. (A-2a) is
equivalent to the assumption that Maxwell’s equations
are satisfied; by Poynting’s theorem, Eq. (A-2b) is equiva-
lent to the requirement that sources radiate finite power
(assuming finite energy in any resonant fields).

The parallels between electromagnetic theory and the
theory of complex variables are intriguing, and it is
interesting to note that by Eq. (A-2a), the existence of the
first derivative (V X E and V X H) assures the existence
of derivatives of all orders (V X V X --+ X ¥V X E, etc.).
Other striking analogies are between the field integrals
(which express the fields everywhere in a volume in terms
of the values on the surface enclosing the volume) and
Cauchy’s theorem, and between spherical-wave expan-
sions and Laurent series.

The objective of this section is as follows: given an
electromagnetic field in a region V that consists of all
space outside of a sphere of radius p, (i.e,, all sources are
enclosed in this sphere), determine coefficients a¢mn and
be,, so that everywhere in V

E(Pﬂ ¢‘ - Z Z Al mgmn_’— bgmn nén,

m n

(A-3a)

H(p,0 (f)) = Z Z Almn Mepmp + bgmn mn (A-3b)

n n

Jones (Ref. 32) has shown that any electromagnetic
field can be written in this form. Furthermore, since
sources were assumed to be of a finite extent, only the
solutions involving h(® (kp) (the spherical Hankel func-
tion of the second kind that satisfies the radiation condi-
tion and corresponds to an outward traveling wave, as
discussed in Refs. 36 and 37) need be included.
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Bouwkamp and Casimir (Ref. 38) obtained expressions
for the coefficients in terms of the source currents;
Kennaugh (Ref. 36) gives expressions in terms of the
tangential E and H fields on a surface enclosing the
sources; Jones (Ref. 32) includes expressions in terms of
all components of either E or H. Since the data involved
here are the tangential components of E on a sphere of
radius p; > po, a derivation for this case will be given.
(Note that the case Jones considers is equivalent for the
determination of TE wave coeflicients but not for the de-
termination of TM wave coeflicients.)

As a first step, let az,, and be,, be any set of coefhi-
cients so that Eq. (A-3) is satisfied. (As mentioned above,
Jones has shown at least one such set must exist.)

m COS
Urn g P (cos 6) L, me

mP (cos ) cos
sin sin

me (A-5Db)
where
E, (6.¢) =E(p0,$) * Lo
Ey (0 ¢’)_ plaa 4’)
The azimuthal components are separated out by the
use of an ordinary Fourier expansion. (These equations

are true for m > 0, For m = 0, an additional factor of 2
should be included but has been omitted for clarity.)

27 .
Define Apg ()= / E, (6,¢) 23; me do
0
; n = emnh(2) - , m
Ay =a (kpl) (A-4a) - . Z o mP™ (cos 6)
, sin §
bz’"” = bom" k [ph {2 ( p)]P=P1 (A'4b)
+ bo,,m 3 P™(cos §) (A-6a)
Then, since Eq. (A-8) is true everywhere in V, in par-
ticular, there must be equality of the tangential com- ram cos
ponents at p = py: B (6) E‘fo Ey (6,9) sin m¢ dé
mP " (cos 6) sin _
E,(6,¢) = Z Z ¥ aomn——w— cos M = WZ Aein 80 P (cos 6)
m sin + mP™ (cos )
+ be emnmg P (cos 6) m¢ (A-5a) +bhey, " (A-6b)
o 30 cos 0 Sin @
For the next step, the following relationship is needed:
mP? (cos 6) N mP™ (cos 6) " ] )
l [T_ aaP ( O)J[T_aop (COSO) sin 6 d§ =
T mszPm d um um P
L n P mn . pm : —_
_A[sinzf) g Py B }S‘“9d9+/[ P <me + e aoP]smo‘w
Ofor L %4 n
2 (n + m)! _ i
) (n_m)!n(n-l-l) for i =n (A-7)
The equation above may be obtained by the performance of one integration by parts
[T2rme om0 b ngan -
s L6 "t sing +sm0—87 sin 6 ag =
HIEl s mpmin_ [T] 2 mmPZJ. _
ﬁ [—a—(;PL sin0]sm0d0+ [mP P77 ﬁ [ﬁPl pe) sinfdg =0 (A-8)

and application of a result given by Stratton (Ref. 35) (Section 7.13, Chapter VII).
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Then it is easily verified that

/W[i— MA% (6) +—a— P (cos §) B (9)] sinfdf = rac
o

sin 8

mP7 (cos 6)
sin @

T a m f—
/; |:— _65_1)2 (cos 8) Aye (6) =

Equations (A-4) through (A-9) may be rewritten in the expected form:

. 1 2n+1 (n—m)
Gmt = Tzn (kp)l” m2n(n + 1) (1 + m)
1 2n+1 (n—

be,,, =

: 5 X
{ ,;, = [plz,xkpl)]} Zn(n+ 1) ("J”"'

Equation (A-10) not only gives an explicit form for the
desired coefficients, but, by the well known properties of
trigonometric and Legendre function expansions, the co-
efficients are uniquely determined. Therefore, this illus-
trates the fact that an electromagnetic field as defined
earlier is uniquely determined by the value of the tan-
gential E field on any sphere of radius p, > p,.

The spherical-wave expansion program (orthogonality
version) given in Appendix D evaluates Eq. (A-10) to
obtain az,, and be,,. That is, it is assumed that the
azimuthal Fourier expansion of Eq. (A-6) has already
been performed, and the input data to the spherical-wave
expansion program are the (tabular) functions A. () and
B, (). Because successive cases with different values of
m may be evaluated, in principle an arbitrary pattern
can be expanded. However, the m = 1 case is of particular
importance, as mentioned previously, which is why the
program was written to handle only a single azimuthal
component at one time. The odd components have also
been neglected to avoid unnecessary complication, since
the vast majority of problems may be analyzed using
linear polarization. In the case of far-field input data,
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I

2 L+
i 57 +1§ m; 1A+1) (AGa)
B (e)] sin 08 = 7 bips 5T ((‘ + "3 ge+1) (A
/ / 'mn * Ei(pl:eﬁb)tangential sin da dfl) (A'loa)
mn ¢ Ei (pl»a’ﬁb)tangential Sln0d0 d¢ (A'].Ob)

Eq. (A-4) may be rewritten with the asymptotic form of
the Hankel functions, thereby yielding for p, —

a,%mn = @mn 7 exp( _];ijl) (A-11a)
bey, = be, o <R 1K) (A-11b)
0 o kP1

The scattering program implicitly assumes Eq. (A-11)
so it accepts the wave coeflicients as output from the
spherical-wave expansion program (it is assumed a
far-field pattern is input to the spherical-wave expansion
program).

Since the solution is known to exist and because it is
unique, it is also possible to solve Eq. (A-6) directly. It is
well known that if all sources are enclosed in the sphere
of radius p,, only modes for which n < k, will make a sig-
nificant contribution to the field (Refs. 39-41). Therefore,
Eq. (A-6) can be solved as a system of linear equations
to obtain the coefficients. Again, with only even terms
and a single m component, the m and ¢ subscripts can be
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dropped and the matrix equation can be written:

m

- Fm

A6, 7] m(0) —G™(6,) Fn(6:)- —G2(6.)7][ @,

B(#,) G™ (6,) —F™(6,) G7 (6,) - —F% (6,) b

A(6,) F™ () —G™ (6:) Fr (6:) -+ —G%(62) a,

B(6,) G™ () —F™ (8,) G (6,)-- —Fm(6) b!
=T (A-12)

A(6y) Fy (8v) —Gr(6y) Fy (6x) - —Gy () ay

| B(6y) | | G7 (6y) —F™(6y) GP(6y)-— —F%(65)_| | by

where The linear equation method is included here primarily
because it may be easily generalized to be valid when
mP™ (cos 6) the fields are known on any surface, whereas the formu-
Fy (H)E_J;’I—Eg—‘“ lation of the orthogonality technique is valid only over

G (6) E—a% P™ (cos 6)
N ~ kp,

Since F™ (0 deg) = G™(0 deg) and F7 (180 deg) = —G»"
(180 deg), the values § = 0 and 180 deg would make the
above matrix singular; therefore, they must not be used
as data points. Even excluding these values, the first
attempts to invert this system of equations indicated that
the matrix was extremely ill-conditioned (on physical
grounds it can not be singular if the ¢ values are distinct
and if 6 =0 and 180 deg are excluded). It was sub-
sequently determined that the matrix was ill-conditioned
because the data points were concentrated in the region
between 0 and 40 deg (where A(8) and B(6) had sig-
nificant amplitudes). When the data points were equally
spaced between 0 and 180 deg, the matrix was easily
inverted. The program that was used to accomplish
this, the spherical-wave expansion program (linear equa-
tion version), is also presented in Appendix D. When
properly used, both programs yielded the same results
except for modes containing a negligible fraction of the
total power.

24

the surface of a sphere. Furthermore, the linear equation
method provides an interesting numerical check on the
other program, However, the orthogonality method is
more convenient for a number of reasons: (1) it is faster
to perform the numerical integration than to invert the
matrix, (2) the number of mode coeflicients is not re-
stricted to the number of input ¢ values, and (3) Parseval’s
formula can be used to show that a sufficient number of
modes have been considered, rather than the well docu-
mented but essentially qualitative arguments leading to
the N ~ kp relationship.

The equations for obtaining wave coefficients derived
here differ slightly from those obtained previously. The
main difference is that these equations have been pro-
grammed and used to obtain wave expansions of three
kinds of patterns—analytical, numerically computed, and
experimental. Previous work has been restricted to inter-
esting but idealized cases in which the coeflicients were
obtained analytically in closed form; e.g., Potter (Ref. 41)
found the coefficients for a circularly symmetric optimum
illumination pattern; Kennaugh and Ott (Ref. 42) found
the wave excited by a plane wave normally incident on
a paraboloid; Jones (Ref. 32) gives the coefficients for a
plane wave and for an arbitrarily located electric dipole.

JPL TECHNICAL REPORT 32-1430




Appendix B

Fast Trigonometric Subroutine

The machine-language function subroutine* EXPJX
was written for the IBM 7094 computer and returns the
complex-valued result ¢?* = cos x + § sin «, for real x, in
one-half the time required by the IBM library subroutine,
and with only slight reduction in accuracy.

A table lookup technique is employed where 64 values
of sin x,, at x,, = m («/128) + (#/256); m =0, 1, -+, 63 are
built into the subroutine.

The basic algorithm used is as follows:

(1) sin (—x) = —sin (x), cos (—«) = cos (x), assume
x>0,

(2) Write x = n(«/128) + 7(#/128) where n is an
integer, and 1 > r > 0.

(3) Reduce n mod 256 to discard multiples of 2.

(4) Write n = 64 q +m, where 63 > m >0. Then g + 1
is the quadrant of the argument, and m is the in-
dex of the tabular value x,, closest to x (reduced
to the 1st quadrant).

(5) Define Ax =% — x,, = (r — 1/2) #/128; and ]Ax |

(6) Use cos %, = Sin %gs_n, the expansions

sin (x,, + Ax) = sin x,, cos Ax + cos %, sin Ax

. Ax? Ax?®
o~ SIN X, (1 — —g-> -+ COS Xy, (Ax — —3'!—>

cos (x, + Ax) = cos %, cOs AX — sin x,, sin Ax

Ax? ) Ax?
~ COS Xy, <l — ?> — sinx,, (Ax — —8_'—>

and the approximation

3
x— -%f_ ~ Ax(1 — 016 X 10-*)
for | Ax| < (v/256) to compute sin x and cos x in
the Ist quadrant,

*]. Hatfield of JPL Section 314, and H. Thacher of Notre Dame
University were associated with the author in the development
of this subroutine.
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(7) Use the quadrant index ¢ and the sign of the orig-
inal argument to obtain sin x and cos x for the
unreduced (true) argument, and return the com-
plex number (cos x, sin x).

The reason for choosing 64 (or in general 2") tabular
values is that a single multiplication of the input argu-
ment %(128/x) results in a binary number in which the
fractional part is , the next six higher order bits are m,
the next two bits are ¢, and higher order bits represent
multiples of 2x. Therefore, steps (2), (8), and (4) may be
accomplished very quickly by one multiplication followed
by shifting and masking operations.

The MAP subroutine, which was named EXPJX, re-
quires a total of 167 (decimal) storage locations, com-
pared to 123 locations for the IBM Fortran IV library
routine FCSN.

An accuracy and timing test was made in which re-
sults from EXPJX and FCSN were compared to the IBM
double precision Fortran IV library routine FDSC. The
library routine was called twice to obtain values for both
sin ¥ and cos x. Values were computed for 50 X 103
random arguments uniformly distributed over the range
(—35 to 5r), with results as shown in Table B-1.

The relative accuracy of EXPJX becomes poor for
small values of sin x or cos %, and for arguments | x| > 8
the loss of significance in the reduced argument will in-
crease the errors,

The subroutine of Printout B-1 has been submitted for
distribution through SHARE (SHARE library distribu-
tion number SDA 8534), and COSMIC (Program NPO
10439).

Table B-1. Performance statistics for fast
trigonometric subroutine

Proaram Absolute Maximum Asve;::e
g error (rms) absolute error peed,
ns
EXPJX 8.2 X 107° 3.7 X 1077 281
FCSN 0.28 X 10°* 0.13 X 107 571*°

8For both sine and cosine.
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Printout B-1. Computer printout of fast trigonometric subroutine

$I1BMAP EXPJX
LBL
TTL
REM
REM
REM
REM
REM
SPACE
ENTRY

N SET
SPACE
REM
SPACE
REM
SPACE
REM
REM
REM
SPACE
REM
SPACE
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
SPACE

EXPJX SXA
SXA
SXA
SPACE
LDQ*
57Q
FMP
sSSP
UFA
RQL
LRS
ANA
LGR
PAC
PXA
LGL
PAC
PAX
MPY
SuB
STO
ARS
CHS
XCA
MPY
ALS

LISTREF,M94, {)OK
EXPJIXyBEGIN,
COMPLEX EXPONENTIAL SUBROUTINE...2EXPJXa

S e ¥k < ¥ S5 6 ok 3 3 ¢ sk 3% 3 3 2k ok 3K 3 3k 3K e
3% 3 e 3k 35 e okl o e Sk o ek ok SR ol

ES
AR A IRCR

COMPLEX EXPOUNENTIAL SUBROUTINE «eedbXPJIXa%

EXPJX
64 SI1ZE OF SINE~COSINE TABLE

2
THIS SUBRQUTINE COMPUTES
1
EXP{JxX)=COS(X)+JI%SIN{X)
1
GIVEN THE FLOATING PT. VALUE, X.
THE COS{X) AND SIN(X) ARE TABULAR EVALUATEL AND 3EXPJX3
RETURNS WITH THEIR RESPECTIVE RESULTS IN THE AC. AND MQ.
3
PROCEDURE ...

1. COMPUTE Y=(1/DTHETA)*X AND SAVE SIGN UF X

2. UNFLOAT Y WITH INTEGER IN AC. AND FRACTION IN MQ

3. UNPACK INTEGER SO THAT QUAD. NO. AND TABLE INDEX
ARE BITS 28-29 AND 30-35 RESPECTIVELY

4. COMPUTE DX=ABS(FRACTION OF Y)%DTHETA-DTHETA/2

5. COMPUTE T1=SIN(DX) AND T2=COS(DX) USING SERIES
EVALUATION (AT MOST TWO TERMS)

6. COMPUTE F1=SIN{X@)*T1+COS(Xa)*T2

F2=COS{Xa)*T1-SIN(Xa)*T2

WHERE SIN(Xa@) AND COS{Xa@a) ARE OBTAINED FROM
1TaS CORRESPONDING TABLE X@=X-DX

7. FOR THE APPROPRIATE QUADRANT COMPUTE..

1ST QUAD. SIN(X)={SIGN) F1

COS(X)=F2
2Np QUAD. SIN(x)={SIGN) F2
COS({X)=-F1
3RD QUAD. SIN{X)==(SIGN) F1
COS(X)==F2
4TH QUAD. SIN{X)=-{SIGN} F2
COS(X)=F1
8. FLOAT SIN{X) AND COS(X)
3
EXIT1l 4
EXITl+#1,1
EXIT1+242
1
314 FETCH X {IN RADIANS)
SIGN
10VDT COMPUTE X/DTHETA
=0233000000000 UNFLOAT IT (I IN ACC., F IN MQ,)
8 SCALE F AT BIT 0 IN MQ.
0 SET SIGN OF F POSITIVE
=0377 MASK I FOR QUADRANT AND INDEX NUMBERS
6
0y1 XR1=QUADRANT NUMBER
0,0
6
042 XR2Z2=INDEX NUMBER FOR SINE
044 XR4=INDEX NUMBER FOR CUSINE
DT COMPUTE Fa=F*(P1/2)/64
pTOvV2
DX SAVE DELTAX=Fg=(P1/2)/128
1
DX
1 CHANGE SCALE FROM BIT 2 TO BIT 1
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Printout B-1 (contd)

QUAD1

QuUAD2

QUAD3

QU AD4

EXIT

EXIT1

D7

ADD
STO
LDQ
MPY
sTO
LDQ
MPY
ADD
STO
LDQ
MPY
STO
LDQ
MPY
SuB
STO
TRA
TRA
TRA
TRA
TRA
SPACE
CLA
LDQ
LLS
LDQ
TRA
SPACE
LDQ
CLA
LRS
CLS
XCA
TRA
SPACE
LDQ
Cha
CHS
LRS
CLS
XCA
TRA
SPACE
CLA
LDQ
LLS
CHS
LDQ
SPACE
STO
CLA
LLS
LRS
XCA
FAD
sTO
LDQ
CLA
LLS
LRS
XCA
FAD
XCA
CLA
AXT
AXT
AXT
TRA
EJECT
DEC

SIGN

EXIT
1

F1
SIGN

0
F2

EXIT
1

F2
SIGN
0

Fl

SIN(X)
=0202
0

8

=0
COS(X)
SIN(X)
=0202
0

8

=0

COS(x)
Xy 4
*%y 1
X%y 2
1y 4

0.02454329998B1

T1=1-DELTAX*%*2/2 (COS(DELTAX))

Fl=SIN(X@)*T1

F1=SIN(X@)*T1+COS(Xa)*T2

F2=SIN(X@)*T2

F2=COS{Xa)*T1-SIN(Xa)*T2

(SIN(X)=SIGN.Fly COS(X)=F2)

(SIN(X)=SIGN.F2, CUS(X)=-F1)

(SIN(X)=—SIGNJ.Fl, COS(X)=-F2)

(SIN{X)=~SIGN.F2, COS{(X)=F1)

PACK IN EXPONENT FUR BIT 2 SCALE
BUT BE SURE AND RETAIN SIGN OF
COS{X)ee, THE RESULT IS AN
UNNORMALIZED FLe PTo NOs (IN ACC.)
NORMALIZE COS{X) AND SAVE
THE FLOATING POINT RESULT

PACK IN EXPONENT FOR BIT 2 SCALE AND
MAKE SURE THE SIGN OF SIN(X) IS
RETAINED. . THE RESULT IS AN
UNNORMALIZED FL. PT. NUe (IN ACCs)

NORMALIZE SIN{X) AND
PLACE RESULT IN MQ.

PLACE COS(X) IN ACC.

(P1/2)1%(1/64)%0.,999984 (SCALED AT BIT 1)
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Printout B-1 (contd)

DTOVZ2
10VDT
DX
SIGN
T1

T2

F1

F2
SINI(X)
COS({X)

SINX

DEC
DEC
PLE
PZE
PZE
EQU
PZE
PLE
PZE
PZE
EJECT
REM
REM
NULL
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC

0,0122716499B1 (P1/2)%(1/64)/2%0.999984(SCALED AT BIT 1)

407436654 1/DTHETA (FLOAT. PT.)

3% DELTAX

kX SIGN OF X

e COSINE OF DELTAX (SCALED AT BIT 1)
DX SINE DOF DELTAX (SCALED AT BIT 1)
x SIN(X)®*T1+COS(X}*T2 (SCALED AT BIT 2)
% COS({X)*T1=-SIN(X)%T2 (SCALED AT BIT 2}
3 ABSOLUTE VALUE OF SIN(X)

ok ABSOLUTE VALUE OF COS(X)

THE FOLLOWING TABLE CONTAINS FIXED-POINT VALUES

SCALED AT BIT 1

0.0122715383B1
0.0368072229B81
0.0613207363B1
0.085797312381
0.110222207381
0.134580708581
0.1588581433B1
0.1830398880B1
0.2071113762B1
0.231058108381
0.2548656596B1
0.2785196894B1
0.3020059493B1
0.325310292281
0.3484186803B1
0.3713171940B1
0.3939920401B1
0.416429560181
0.4386162385B1
0.460538711081
0.4821837721B1
0.5035383837B1
0.524589682781
0.5453249884B1
0.5657318108B1
0.5857978575B1
0.6055110414B1
0.624859488181
0.643831542981
0.6624157776B1
0.680600997881
0.69837¢2494B1
0.715730825381
0.7326542717B1
0.7491363945B1
0.765167265681
0.7807372286B1
0.795835904681
0.810457198381
0.8245893028B1
0.8382247056B1
0.85135519318B1
0.863972856181
0.8760700942B1
0.8876396204B81
0.8986744657B1
0.909167983181
0.919113851781
0.928506080581
0.9373390119B1
0.945607325481
0.9533060404B1
0.9604305194B1
0.966976471081
0.9729399522B1
0.9783173707B1
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Printout B-1 (contd)

DEC
DEC
DEC
DEC
DEC
DEC
DEC
DEC
COsX EQU
END

0.9831054874B1
0.987301418281
0.9909026354B1
0.9939069700B1
0.996312612281
0.998118112981
0.999322384681
0.999924701881
SINX+N—1
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Appendix C

Tilted Reflector Program

The tilted reflector program was written for an IBM
1620 computer and outputs a deck of cards containing
the quantities (see Eq. 12):

(1’0(0)> 0’1(0)’ 612(9),
24, % 0a,
00 06 ° 06

The input data are tabular values p’(¢) describing a
surface of revolution, as illustrated in Fig. C-1. Also
specified are the translations to the new origin XF and
ZF; a coordinate rotation is specified by the intersection
point ZROT.

The procedure used is as follows:

(1) By the use of a straightforward coordinate trans-
formation, the data

p(#,0deg) = p’(¢,90 deg)

are mapped into the new system for each input ¢
value. Note that the cuts ¢’ =0 or 180 deg map
into ¢ =0 or 180 deg, but in general ¢ = 90 deg
maps into a cut which will be identified by ¢o(4).
The result of this step is data

p(6,0 deg), P(8,¢90), p(6,180 deg)
that are known at a set of 4 values that is in gen-
eral different for each ¢ cut, and different from the
set of desired output values. The remaining steps
(2) through (4) are performed for each desired
output value 4,.

(2) A cubic interpolation polynomial in ¢ is fitted

locally at four points to the functions p(6,0 deg),
P(B,¢00), p(6,180 deg) and ¢oo(4). These polynomials
and their derivatives are evaluated at 6 =6, to
yield ¢90(6,) and 9¢e0/08 at § = 6,; and p(6,,0 deg),

= p/(¢,180 deg) P(Borboo), P(6:,180 deg) and dp/ds at ¢ =0, ¢,
= p'(¢) and 180 deg.
X
xl
A
6
I |
|
I
| S
XF | 8
'. :
|
} &7’
]
. \
4
- ZROT

Fig. C-1. Reflector coordinate transformation
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(3) Given the assumed form XF, ZF, ZROT see Fig. C-1

p(6,4) = ao(8) + a.(6) cos ¢ + a,(6) cos 2 T, R ¢,p" (Note that ¢ must be monotoni-
cally decreasing with its index.)

9999.0 any number > 400 (A last card indi-

it follows that

0(660) 1 1 1 ao(8s) cator. NMAX must be < 200. If the
input consists of more than 200 cards,
Plo,dso) | =| 1  cOspgo  €Os2s0 || ai(6) the program will type out an error
message; the program can be reset to
p(6,,180) 1 -1 1 a5(65) read title card.)

NMAX number of § values desired
By the use of ¢y(f,) from step (2), the program

then inverts the matrix and obtains a,(6,), @:(6,), TOUT  desired § values
d a.(6,).
and :(6) The program prints out the input data (p’,¢") and
For the matrix to be well-conditioned, it is suff.  transformed data (P’?) at ¢ =0, 180 deg, a}nd ¢o0. Then
cient that ¢eo ~ 90 deg. If ¢ lies outside the range P a'md 9p/00 are printed out at the desired 4 values
of 60 to 120 deg the program sets a,(§) =0 and  (Printout C-1).

solves the two-dimensional matrix problem for ) ) ) o
aq(6) and a:(6). The Fourier coefficients and their derivatives are

punched but not printed.
(4) Also, from the assumed form,

p oa, oa, oa, Table C-1. Input data for the tilted reflector program
w0 - o8 + 20 cos ¢ +-50—0052¢
Card Parameters Format
9 . .
—a—g— = —a,(0) sin ¢ — 2a,(6) sin 2¢ 3 THTLE 20A4
. . 2 XF  ZF  ZROT 8F10.0
By the use of the relationship ) ) () 20X, 2F10.0
9 _dp _2p 0 : 02 R(2)
20 do  o¢ o0
_dp , . ¢
=7 + [a.(6) sin ¢ + 2a,(8) sin 2¢] 0
and the values of dp/df and 0¢e/00 at 8 = 6, NmAX £ 2 | TINMAX)  RINMAX) 20X, 2F10.0
obtained in step (2), values of 9p/36 are obtained NMAX 4 20); o '
at ¢ =0 deg, ¢, and 180 deg. Then the same AX T3 ‘ 9999.0 -F10.0
matrix inverse obtained in step (3) is used to yield NMAX +4 | MMAX 1015
92,/26, 2a,/26 and 9a,/26. NMAX + 5 | TOUT{1) TOUT(Z) - - - TOUT(8) 8F10.0
The input data for the tilted reflector program are . TOUT(9) TOUT(10) -
shown in Table C-1; the parameters are defined below:
- TOUT{MMAX) 8F10.0
TITLE any alphanumeric statement
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Printout C-1. Computer printout of the tilted reflector program

(e e

[aNaNel

[gExNg]

o0

OO

ano

10

15
20

24

25

26

29

TILTED REFLECTOR PROGRAM

DIMENSION T(200),R(200)
DIMENSION TITLE(20)
DIMENSION RO(200),T0(200)+RE(200),TE(200)sRN(200),TN(200},PN(200)
DIMENSION TOUT(70)
DTR=0.017453293

READ 1001, TITLE

PUNCH 1001,TITLE

PRINT 2001,TITLE

READ 1002,XFyZF,ZROT
PRINT 20024 XF4ZF,ZROT
DZ=ZROT-~ZF

CALL ATANXY(DZ,XF,BETA)
BEDEG=BETA/DTR

PRINT 2003,BEDEG
SIg=SINF(BETA)
COB=COSF(BETA)

READ IN SHAPED SUBREFLECTOR

N=0

N=N+1

READ 1003, T(N)yR{N)
TIN}=T(N)*pTR
IF{T(N)-4.0}15,20,20
1IF(N-200)10,99,99
NMAX=N~1

PRINT 20044NMAX

TRANSFORM DATA TO NEW SYSTEM

CALL TRANQ(RyTsRO+TGsPNy00y 1405SIB,COB,XFyZF 4NMAX)
DO 24 N=1,NMAX

TOIN)=TO(N}*COSF (PN(N))

CALL TRANQ(R;TsRE;TEyPN;0s0,~140SIB,COB s XFyZF yNMAX)
DO 25 N=1,NMAX

TEIN)==TE (N} *COSF(PN(N))

CALL TRANQ(R,TyRNsTNyPNs140Oy 000,SIB,COB,XFyZF 4NMAX)
PRINT 2008

DO 26 N=1,NMAX

TOO=TO(N) /DTR

TNN=TN(N)/DTR

TEE=TE(N) /DTR

TTT=T(N)/DTR

PNN=PN (N} /DTR

PRINT 2009, TTTsR{N)sTOOsROIN) s TEEJRE(N) yTNNyRN{N) 4 PNN

READ DESIRED THETA VALUES

READ 1004, MMAX

IF (MMAX~ 75)29,29,99

READ 1002, (TOUT(N)sN=1yMMAX)
NLASTO=NMAX-2

NLASTE=NMAX-2

NLASTN=NMAX~-2

PRINT 2007

DO 30 MM=1sMMAX

TTO=TOUT (MM)*DTR

INTERPOLATE TO DESIRED THETA VALUES

CALL QBURP(TO,RO,TTOyRROsDROyNLASTOyNMAX)
CALL QBURP(TE,REsTTOsRRE,DRE,NLASTE ,NMAX)
CALL QBURP{TNsRN,TTO,RRNsDRNyNLASTNyNMAX)
CALL QBURP{TNsPNsTTO9PPNyDPNyNLASTNNMAX)
PNN=PPN/DTR

FIND FOURIER COEIFFICIENTS
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Printout C-1 (contd)

s¥eXaNeXaNa¥al

[aXzRs X

CALL FKOSF{RROJRREJRRNyPPN;AO,AL,A2)
DRN=DRN+{A1*SINF(PPN)+2.0%A2%SINF{2+0%PPN) ) *DPN
PRINT 2005,TQUT(MM),RR0O,DRO,RRE,DRE ,RRNDRN,PNNsDPN
CALL FKQSF(DROsDREsDRN,PPN,DAO,DAL,DA2)
PUNCH 2006,TOUT(MM),A0,A1,A2,DA0,DAL,DA2

30 CONTINUE
GO T0 1

99 TYPE 2010
PAUSE
GO 1O 1

1001 FORMAT (20A4)

1002 FORMAT(8F10.0)

1003 FORMAT{(20X,2F10.0)

1004 FORMAT(101I5)

2001 FORMAT(1H1,20A4)

2002 FORMAT(28H COORDINATES OF NEW ORIGIN/

*7TH X=4E15.8/
*7TH 1=4E15.8/
*26H POINT OF ROTATION ZROT=,E15.8)

2003 FORMAT(23H ROTATION ANGLE BETA=:F8.4,9H DEGREES)

2004 FORMAT(31H NUMBER OF INPUT POINTS NMAX=,14)

2005 FORMAT(F10.593(F14454F1245)92F11.5)

2006 FORMAT{7F10.4)

2007 FORMAT(1Hl,47H R AND ITS PARTIAL DERIVATIVE WITH RESPECT 7O,
¥31H THETA AT DESIRED OUTPUT PUINTS//
*20X5HPHI=0421X7THPHI=180,21X16HPHI AS TABULATED/

*10H THETA 3(8Xs1HRy 10X, THDR/DT ), 4X3HPHI, TXTHDPHI/DT)

2008 FORMAT(//52H SURFACE DATA IN INPUT AND TRANSFORMEU COORDINATES//
*7Xy LOHINPUT DATA,11Xs15HPHI= 0 DEGREES,10X,15HPHI=180 DEGREES,15X
#y 16HPHI AS TABULATED/

*4(8H THETA 38Xy 1HR 48X} 4H PHI)

2009 FORMAT(F10.59F12.533(F13.5,F1245),F11.5)

2010 FORMAT (41H INPUT DATA EXCEEDS DIMENSION STATEMENT/
*42H RELOAD DATA AND PUSH START TO TRY AGAIN)

END

SUBROUT INE QBURP{TyRyTTyRRsDRyNLAST,NMAX)
DIMENSION T(2),4R({2)
DIMENSION B(4y5)yA(4)

THIS SUBROUTINE NUMERICALLY INTERPOLATES AND DIFFERENTIATES THE
FUNCTION R(T) BY FITTING A CUBIC TO R(T) AT FOUR PUINTS

FIND NLAST SUCH THAT T(NLAST-1) AND T{(NLAST) STRADDLE THE
DESIRED VALUE TT. IT IS ASSUMED THAT THE TABULAR VALUES OF T
DECREASE WITH INCREASING N

9 IF(T(NLAST)-TT)10,104+20

10 IF(NLAST-2)20,20,15

15 NLAST=NLAST-1
GO0 10 9

20 CONTINUE

SOLVE THE SYSTEM OF FQUR EQUATIONS TO DETERMINE THE COEIFFICIENTS
ESTABLISH MATRIX

DO 30 I=1,4
NK=NLAST+[-2

B{I45)=R{NK)
DO 30 J=1,4
JJd=Jd=1

30 B(IyJ)=TINK)**JJ
DIAGONALIZE SYSTEM
DO 50 K=1,3
KK=K+1

DO 50 I=KKs4
D=B(I4K)/B(KyK)
DO 50 L=K,5

50 B{I,L)=B(I,L}-D*B(K,L)
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34

Printout C-1 (conid)

[N e Xel

OO0 e

o0 OO0

a0

60
70

20
100

200

SOLVE BY BACK SUBSTITUTION
Al4)=B(4,5)/Bl444)

DO 70 II=1,3

I=4~11

L=5~I1

DO 60 J=L14
BLI95)=B(1,5)=B(1,J)*A(J)
A{1)=B(1,5)/B(I,I)

EVALUATE CyBIC AND ITS DERIVATIVE AT INTERPOLATION POINT 7T

RR=A(L)+A(2)VRTTHA(S)RTTRTTHA(4)XTTHTT*TT
DR=A(2)4+2.0%A(3)*TT+3.,0%A(4) *TT*TT
RETURN

END

SUBROUTINE FKQSF(OyEyFNyPsAQsAL,A2)

THIS SUBROUTINg COMPUTES THE COEIFFICIENTS FOR THE TRUNCATED
FOURIER SERIES R{THETA)=AO+AL*COS(THETA)+A2%COS (2%THETA)

D0=R{ZERDO RADIANS)
E=R(PI RADIANS)
FN=R (P RADIANS) WHERE P SHOULD LIE BETWEEN 1.05 AND 2.09

IF(P-1.05)100,20,20
IF{2.09-P)100,2004200
A0=(0+E} /2.0

Al=(0-E)/2.0

Az2=0.

RETURN

C=COSF(P)

C2=COSF{2.0%P)
D=2.0%{(Cc2-1.0)}

AO= (C+C2) #0-2. 0%FN+(C2-C ) *E
A0=A0/D
Al=(C2-1.0)*0+(~C2+1,0)*E
Al=A1/D
A2=(=(C~1e0)*%0+2.0%FN+(C-1.0)*E
A2=A2/D

RETURN

END

SUBROUTINE TRANQ{RsTsRRyTTyPP4ySI+COySIB,COB,yXFyZFsNMAX)
THIS SUBROYTINE PERFQgRMS A COORDINATE TRANSLATION AND ROTATION
DIMENSION R(2),T(2)yRR(2),TT(2),PP(2}

CONVERT TO RECTANGULAR COORDINATES
DO 10 N=1,NMAX
X=R(N}*SINF(T(N))*CO

Y=R (N} *SINF{T(N)}I*SI
Z=R(N}*COSF(T(N))

PERFORM TRANSLATION
X=X-XF
1=2-1F

PERFORM ROTATION
D=X
X=X*COB+Z*S1IB
==~D*SIB+Z*C0B

CONVERT TO POLAR COORDINATES IN NEW SYSTEM
RRIN)=SQRTF (X#X+Y*Y+Z1%*7)

D=SQRTF{X*X+Y*Y)

CALL ATANXY{Z4yD,TTIN))
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Printout C-1 (contd)

10 CALL ATANXY(X,YsPP(N})
RETURN
END

SUBROUTINE ATANXY(XsYsPHI)
PI=3,1415927
IF(X}10,20,30
10 PHI=ATANF(Y/X)+PI
GO TO 40
20 IF(Y)21,22,23
21 PHI==P1/2.0
G0 TO 50
22 PHI=0.0
GO TO 50
23 PHI=PI/2.0
GO TO0 50
30 PHI=ATANF(Y/X)
GO TO 50
40 IF{PHI-PI)504+50,41
41 PHI=PHI-2.0%PI
50 RETURN
END
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Appendix D

Scattering and Spherical-Wave Expansion Programs

The scattering program consists of the following pro-
grams* (see Fig. D-1):

MAIN asymmetrical scattering program

FIELDS subroutine that provides H; on surface

(see Section IV)

The spherical-wave expansion program (linear equa-
tion method) consists of the following subprograms (see
Fig. D-2):

MAIN spherical-wave expansion program (linear

equation method)

SURF subroutine that provides p and its deriva-
tives (see Section III)

SETUP subroutine that establishes integration and
output grids, and tables of precomputed
trigonometric functions

PATHL subroutine that established the path length
term, Eq. (17)

FINT numerical integration subroutine (see Sec-
tion V)
LEGEND Legendre functions subroutine
SPHANK spherical Hankel function subroutine

EXPJX fast trigonometric subroutine (see Appen-
dix B)

VECTOR subroutine that converts from rectangular
to polar coordinates

ADJUST subroutine that normalizes angles to the
range — 180 to 180 deg

PRTIM subroutine that prints out execution times

The spherical-wave expansion program (orthogonality
method) consists of the following subprograms (see

Fig. D-2):
MAIN spherical-wave expansion program (or-
thogonality method)
MULT =2 general purpose matrix multiplication
subroutine
LEGEND Legendre function subroutine
VECTOR subroutine that converts from rectangular
to polar coordinates
PRTIM subroutine that prints out execution times

*All the programs presented in this section, except SOLVE and
PRTIM, were developed and programmed by the author. The
matrix inversion package SOLVE was developed by Richard
Hanson of the Computation and Analysis Section of JPI; PRTIM,
which prints out the actual computation time during program
execution, was developed by Charles Lawson, also of the Com-
putation and Analysis Section.
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SOLVE a package of subroutines to solve a set of
linear equations
LEGEND Legendre function subroutine
PRTIM subroutine that prints out execution times

The input data required by the main scattering pro-
gram are shown in Table D-1; the parameters are as

follows:
TITLE any alphanumeric statement
PC propagation constant, 2z/A
XT,YT,ZT translations to reference point for
phase pattern of output data (nor-
mally the expected phase center of the
scattered pattern)
SCALE a scale factor for the output fields; if
this is left blank or if input is zero,
program sets SCALE = 1.0
JMAX number of ® values desired, JMAX
<181
TT1 initial © value
DTT increment for ® values, DTT >0
TT(1), TT(2), -+~ explicit list of ® values
KMAX number of & values desired in output,
KMAX <8
PPl initial ® value
DPP increment for @ values, DPP >0
PP(1), PP(2), -+ explicit list of ® values
NG1 number of integration grids, NG1 <5
MM(I) number of 8 values in the Ith integra-
tion grid, MM < 15
T1 initial 4 value
DT increment for 8 values, DT > 0
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{ START )

READ IN CASE DATA; ESTABLISH
OUTPUT GRiD AND TRIG TABLES

ESTABLISH ITH INTEGRATION GRID
AND TRIG TABLES, AND SURFACE-
AND INCIDENT-FIELD DATA ON
ITH GRID

A

OUTPUT GRID LOOP; INCREMENT
OUTPUT POINT

]

EVALUATE PATH LENGTH; PERFORM
INTEGRATION AND OUTPUT
RESULTS

vEs MORE

INTEGRATION
GRIDS?

NO

ESTABLISH DIRECT RADIATION
FROM INCIDENT FIELDS ON
OUTPUT GRID; OUTPUT RESULTS

[

SUPERIMPOSE DIRECT RADIATION
AND FIELDS SCATTERED FROM
ALL INTEGRATION GRIDS; TRANS-
LATE PHASE CENTER, SCALE
AMPLITUDES, AND OUTPUT RESULTS

YES ANOTHER

1

CASE?

THIS IS A JMAX x KMAX LOOP

2 THIS STEP INTERNALLY CONTAINS

SEVERAL MMAX X NMAX LOOPS

Fig. D-1. Block diagram of scattering program
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(a) ORTHOGONALITY VERSION

( START )

\ 4

READ INPUT PATTERN

\

EVALUATE ORTHOGONALITY
INTEGRALS TO OBTAIN
WAVE COEFFICIENTS;
COMPUTE WAVE POWERS
AND OUTPUT RESULTS

EVALUATE WAVE EXPANSION
AT p = o0 AND OUTPUT AT
DESIRED 8 VALUES

(b) LINEAR EQUATION VERSION

{ START )

READ INPUT PATTERN

INVERT SYSTEM OF LINEAR
EQUATIONS TO OBTAIN WAVE
COEFFICIENTS; OUTPUT
RESULTS

Fig. D-2. Block diagram of spherical-wave

T,1), T(L,2), -
NN(I)

P1

Dp

P(L1), P(L,2), -+
(LAST)

expansion program

explicit list of  values for Ith grid

number of ¢ values in the Ith integra-

tion grid, NN < 91
initial ¢ value

increment for ¢ values

explicit list of ¢ values for Ith grid

a last case indicator; punched as

shown in columns 1 through 6

In all cases, a set of angle values may be specified by
an initial value and a positive increment, or by an ex-
plicit list of values (not necessarily equally spaced). All
angles are in degrees. If a positive increment is given, the
data cards containing explicit values must be omitted. 1f
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Table D-1. Input for MAIN scattering program

Table D-2. Input for spherical-wave FIELDS subroutine

the data cards containing explicit values are included,
the increment must be written in as identically zero.

The input data required by the spherical-wave version
FIELDS subroutine are shown in Table D-2; the param-
eters are as follows:

TITLE any alphanumeric statement
LMAX maximum mode order, < 60

MCOMP order of azimuthal variation

38

Card Parameters Format Card Parameters Format
1 TITLE 13A6 1 TITLE 13A6
PC XT YT ZT SCALE 5F10.0 2 TITLE 13A6
3 JMAX TT1 DTT 15,2F10.0 3 LMAX MCOMP 215
)y TTR) -o- - 8F10.0 4 1 A{Q1,1) A{(1,2) B{1,1) B(1,2) 15,2E17.8,
- TTIMAX) 8F10.0 : ' 2X,2E17.8
KMAX PP1  DPP 15,2F10.0
PP(I) PP(2) .+ - 8F10.0 LMAX + 2 LMAX A(LMAX,1} A(LMAX,2)
- PP(KMAX) 8F10.0 B(LMAX,1) BLMAX,2)
NG1 15
MM(1) T1 DT 15,2F10.0
T, T(1,2) - - - 8F10.0 A(N,1),A(N,2) real and imaginary parts of TEmcoms,~
- TLMM{Y) 8F10.0 wave coeflicient (see Appendix A and
NN(1) P1 DP 15,2F10.0 following program)
) P2 - F10. .
PR P)] NN :F:gg B(N,1), B(N,2) real and imaginary parts of TMucome,x
+ PILANGD ’ wave coefficient (see Appendix A and
following program)
MMINGT) T1 DT 15,2F10.0 The input data for the far-field version FIELDS sub-
TNGLY) TINGL.2) - - - 8rF10.0 routine are shown in Table D-3; the parameters are as
- TINGT,MM(NGT)) 8F10.0 follows:
NN(NG1} P1 DP 15,2F10.0
PINGIT)  PINGT2) - - - 8F10.0 TITLE any alphanumeric statement
- PING1,NN{NG1}) 8F10.0
[Input for FIELDS Subroutine] — JMAX not used
[Input for SURF Subroutine] —_
TITLE JO not used
PC XT YT 2T SCALE JIN number of input points, JIN < 181
IC1 < 0for input in dB; > 0 for inputin V
{Data for further cases, IC2 > 0 to set phase pattern zero everywhere
same as above)
MCOMP order of azimuthal variation
PSI polar angle 8 (see Fig. 1)
{Last) {LAST) 1346

E | Eo(6,90 deg) |, in V or dB
EP argument {E,(0,90 deg)}, in deg ) see

H |Eqg(60deg)], in Vor dB Eq. (14)
HP argument {E(6,0 deg)}, in deg

The input data for the SURF subroutine are shown in
Table D-4; the parameters are as follows:

TITLE any alphanumeric statement

TIN input ¢ value (see note below)
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Table D-3. Input for far-field FIELDS subroutine

Table D-4. Input for SURF subroutine

Card Parameters Format Card Parameters Format
TITLE 72H 1 TITLE 12A6
2 JMAX JO JIN ICT IC2 615 2 TIN{1) AO{1) A1{1) A2{1) DAO(1) 7F10.4
MCOMP DAT({1} DA2(1)
3 PSI(1) E(1) EP{1) H(1) HP(1) 5F10.6 TIN(2) AO{2) A1(2) A2(2) DAO(2)
. DA1{2) DA2{2)
N+ 2 PSI{JINY E{(JIN) EP(JIN) HUIN) 5F10.6 .
HP{JIN) TIN(MM) AO(MM) AT{MM}) A2(MM) 7F10.4
DAOIMM} DAT(MM) DA2(MM)
TIN(1) AO(T} AI{1) - - -
A0, A1, A2 a,, a,, a, (see Egs. 12 and 13, and )
Appendix C)
da, 9da, 04,
DAO, DA1, DA2 0> 29 30 (see Egs. 12 and 18,
and Appendix C) punches the results at a set of output values determined

The TIN values must agree-with the specified inte-
gration grid values. (If they disagree, an error message is
printed but the program continues to run.) The values
for each integration grid are stacked in order.

Computer time is nearly proportional to the quantity

P= Y  NMAX X MMAX

NG1lintegration
grids

For an IBM 7094, the time can vary by a factor of 2
depending on which model is being used; time for a
slower model is given by

t = P X [JMAX X KMAX] 8.4 X 10-5 min
plus
t = P X [LMAX]25 X 10- min

if the spherical-wave version FIELDS subroutine is used.

The input data required by the spherical-wave expansion
program (orthogonality version) are shown in Table D-5.
All of these parameters have been previously defined,
except for JMAXO = 180/A¢8 + 1, where A# is the
desired output increment, and JOUT is the number of
output values starting with 8 = 0. The program evaluates
the spherical-wave expansion at p = o« and prints and

JPL TECHNICAL REPORT 32-1430

by these parameters.

The input data required by the spherical-wave expan-
sion program (linear equation version) are identical except
that the first two cards and the last card are omitted.

Both of these programs use less than 1 min of computer
time to evaluate 60 TE and 60 TM wave coefficients.

Two computer printouts are included in this appendix:
the first (Printout D-1) is a computer printout of the asym-
metrical scattering program; the second (Printout D-2)
is a printout of the spherical-wave expansion program.

Table D-5. Input for spherical-wave expansion program

Card Parameters Format
1 TITLE 13A6
2 MCOMP LMAX 215
3 TITLE
4 JMAX JO JIN IC1 1C2 615
MCOMP
5 PSI(1) E(1) EP{1} H{1) HP(1) 5F10.0
JIN + 4 PSIJIN) EQJIN) EP{JIN) HUJINY 5F10.0
HPJIN)
JIN+ 5 JMAXO JOUT 215
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Printout D-1. Computer printout of asymmetrical scattering program

() Main program

$IBFTC MAIN

ASYMMETRICAL SCATTERING PROGRAM

PROGRAM COMPUTES SCATTERING FOR PERFECTLY CONDUCTING SMOOTH
SURFACE OF ARBITRARY SHAPE A. LUDWIG 1-15-69

OO O0

COMMON/GRID1/SIT(15)4C0OT(15),S1P{181),COP(181),T(15),P(181)
COMMON/GRID2/SITT(181),COTT(181),SIPP( 8),COPP( 8),TT(181),PP(8)
DIMENSION TITLE(13)
DIMENSION F{ 15y 91)2FT( 15, 91),FP({ 15, 91),GAM{ 15, 91)
INTEGER TITLE
COMPLEX HR{ 15y 91)},HT{ 15y 91}4HP{ 15, 91}
COMPLEX ETT(181, 8),EPP{181, 8)
COMPLEX ETTO,EPPO
COMPLEX A( 154 91,3)
COMPLEX STOT(3)
COMPLEX T1,T2,73
COMPLEX TET,TEP
EQUIVALENCE (A(19l91)sHR)9(A{L1y192)9HT)9(A(Ly1y3)4HP)
EQUIVALENCE (GAM,FT)
DATA LC/6H{LAST)/
c START TIMING ROUTINE

CALL PRTIM1
READ(5,1001)TITLE

1 WRITE(6,200L)TITLE
READ(541002)PC s XTsYTs2T9SCALE
IF(SCALE) 22,211,422

21 SCALE=1.0

22 CONTINUE
WRITE(6,2003)PC

C
c READ IN GRID DATA AND ESTABLISH OUTPUT GRID AND FIRST INTEGRATION
C GRID
CALL SETUP(NGL,yIsJIMAXsKMAXsMMAXNMAX)
CALL PRTIM2
WRITE(692002)TITLE
C
c READ IN EXCITATION FIELD DATA
CALL FIELDS
CALL PRTIM2
c
[ BEGIN LOOP FOR INTEGRATION GRID SEGMENTS

DO 90 J=1,JMAX

DO 90 K=1,KMAX

ETT(JysK)=(0.0,0.0)
90 EPP(J’K):(OOOQOOO)
100 WRITE(6,2002)}TITLE

O

ESTABLISH SURFACE PARAMETERS UN INTEGRATION GRID
CALL SURF(MMAX NMAXyFyFT,FP)
DD 410 M=1,MMAX
DO 410 N=1,NMAX
410 F(MyN)=PCHF(MyN)

C ESTABLISH EXCITATIQN FIELDS ON INTEGRATION GRID
CALL FIELDI{MMAX,NMAXsHRHT sHPsF)
C COMBINE SURFACE AND FIELD DATA TO DETERMINE COMPLEX VECTOR A

DO 400 M=1,MMAX
DO 400 N=1,NMAX
TI=FT{MyN}=SIT{MI*HP (MyN)—FP(MyN)*HT (M,N)
T2=FP{MyN)*HR(MyN) +F (M) N)*SIT(M)%HP (M,N)/PC
T3==FT{MyN)I*STTIM)¥HR (MyN)~F(MyNI*STT(M)*HT (M,N)/PC
A(MyNy L)=TLX¥SITIM)*COP(N)+T2%COT (M) *COP (N} =T3%SIP(N)
A(MyN,2)=TLIRSITIM)*SIP(N)+T2*COT(MI%*SIPIN)+T3%COP(N)
A{MyNy3)=TLHCOTIM)=T2%SIT(M)

400 CONTINUE
WRITE(6,2007)1
CALL PRTIMZ2

C BEGIN OUTPUT GRID LOOP
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Printout D-1 (contd)

[aN e}

oo

[aEuN el

500

OO0,

600

700

750

[aNeNel

WRITE(6,2006)1

DO 500 K=1,KMAX
TO=PP{K}/0.017453293
WRITE(6,2011)7T0
DO 500 J=1,JMAX

ESTABLISH PHASE/PATH LENGTH PARAMETER ON INTEGRATION GRID
CALL PATHL(FyJsKyMMAX ) NMAX 2 GAM)

PERFORM INTEGRATION
CALL FINT(T,PyA,GAMyMMAX—-1,NMAX~1,STOT)

CONVERT RESULT TO PQLAR COORDINATES AND SUPERINPOSE FIELDS

ETTO=COTT(J}*(STOT{L)*COPP(K)+STOT(2)*SIPP(K)})=STOT(3)*SITT(J)
EPPO=STOT(2)*%COPP(K}-STOT(1)*SIPP(K)
ETTO=={0.0,1.0)%PC/6.2831854%ETTO
EPPO=-{0.031.0)%PC/6.2831854%EPPO
T0=T7(J)/0.017453293

AL=REAL(ETTO)}

A2=AIMAG(ETTO)

A3=REAL (EPPO)

A4=AIMAGLEPPO)

CALL VECTOR{AL,A2,ETAMP,ETPHI)

CALL VECTOR(A3,A4,EPAMP,EPPHI)
WRITE(6,2012)TO2ETAMPyETPHIEPAMPEPPHI
ETT(JyK)I=ETT(J,K)+ETTO
EPP(JsK)I=EPP{JsK)+EPPO

CONTINUE

CALL PRTIM2

IF MORE INTEGRATION GRIDS REMAIN LOOP BACK

IF(I-NG1)600,700,700

CALL RESET(IyMMAX,NMAY)

GO TO 100

I=l+1

ESTABLISH DIRECT RADIATION ON OUTPUT GRID
WRITE(642009)

DO 750 K=1,KMAX
T0=PP(K)}/0.017453293
WRITE(6,2011)T0

DO 750 J=1,JMAX

CALL FIELD2(JsKsETTOLEPPOD)
TO=77(J)/0.017453293
AL1=REAL(ETTO)

A2=AIMAG{ETTO)

A3=REAL (EPPO)}

A4=AIMAG{EPPO)

CALL VECTOR(ALl,A2,ETAMP,ETPHI)
CALL VECTOR(A3,A4,EPAMPyEPPHT)
WRITE(642012)TO+ETAMP,ETPHI +EPAMP4EPPHI
ETT(J+KI=ETT(J,K)+ETTO
EPP(JyK)=EPP{JsK)+EPPO
CONTINUE

CALL PRTIMZ

TRANSLATE PHASE CENTER, SCALE AMPLITUDES, AND OUTPUT TOTAL FIELDS

PUNCH 1001,TITLE
WRITE(6,2002)TITLE
WRITE(642010)XT9YT+ZTySCALE
DO 760 K=1,KMAX
TO=PP(K)}/0.017453293
WRITE(6,2011)T0

DO 760 J=1,JMAX
T0=TT(J)/0.017453293
AL=REAL{(ETT{JyK))}
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Printout D-1 (contd)

A2=ATMAG(ETT(JsK))

A3=REALIEPP(J,K))

A4=AIMAG(EPP (JsK))

CALL VECTOR(ALl,A2,ETAMP,ETPHI)

CALL VECTOR(A39A4,EPAMPEPPHI)

DP=XT*SITT{JI*COPPIK)+YTHSITT(J)*SIPP (K} +LZTx(COTT(Y)+1.0)

DP=DP*PC*57,29578

ETPHI=ETPHI-DP

EPPHI=EPPHI-DP

CALL ADJUSTU{ETPHI)

CALL ADJUSTI(EPPHI)

ETAMP=ETAMP*SCALE

EPAMP=EPAMP*SCALE

WRITE(642012) TOZETAMP,ETPHI yEPAMP,EPPHI

PUNCH 2013, TO,ETAMP,ETPHIEPAMPEPPHI
760 CONTINUE

CALL PRTIM2

C TEST FOR ANOTHER DATA BLOCK
READ(5,1001)TITLE
IF(TITLE(1)-LC)1,800,1

800 CONTINUE
WRITE(642004)
STOP

1001 FORMAT(13A6)

1002 FORMAT(10F10.0)

2001 FORMAT(32H1 LUDWIG SCATTERING PROGRAM//5X,13A6//)
2002 FORMAT(5H1 113A67/)
2003 FORMAT(26H PROPAGATION CONSTANT=4E14,8//)

2004 FORMAT(18H1 END OF LAST CASE)

2006 FORMAT(29HO SCATTERED FIELDS FROM GRID,12)

2007 FORMAT(30H1l BEGIN INTEGRATION OVER GRID,I2)

2009 FORMAT(40H1 DIRECT RADIATION FROM INCIDENT FIELDS)

2010 FORMAT (63H  SUPERPOSITION OF ALL GRID SCATTERED FIELDS AND DIRECT
1 FIELDS/32H  PHASE CENTER TRANSLATED BY X=,Fl0.4,5H  Y=,F10.4,
25H  1=,F10.4/
339H  AMPLITUDE VALUES SCALED BY FACTUR OFE15.8)

2011 FORMAT(THO PHI=,F7.2/
117X37HE THETA, 15X, 5HE PHI/
29H THETA,2(20H VOLTS PHASE )}

2012 FORMAT (F9.21F1llep1F8e2,F12.6,F842)

2013 FORMAT(F10424F1046+F10429F10.65F10+2)

END

(b} Subroutine FIELDS (spherical-wave expansion)

$IBFTC FIELD
SUBROUTINE FIELDS

THIS SUBROUTINE EVALUATES A SPHERICAL WAVE EXPANSION TO OBTAIN
THE MAGNETIC FIELDS ON A SURFACE S. WAVE COEIFFICIENTS ARE INPUT
ON CARDS. A. LUDWIG 1-14~69

OO0 O0

COMMON/GRID1/SIT(15),C0T(15),S1P(181),C0OP(181),T(15),P{181)
COMMUN/GRIpD2/SITT(181),C0TT(181),SIPP(8),COPP(8),TT(181),PP(8)
DIMENSION F(101),G(100)

DIMENSION NAME(13)

DIMENSION A(1004,21),8(100,2)

READ IN WAVE COEIFFICIENTS

[ NeNel

READ(5, 1001 )NAME

WRITE(642001)NAME

READ (541001 )}NAME

READ(5,1002) LMAX yMCUOMP

READ(541003) (JyA(Js1) s A(J92)3BlJs1)9B(J,y2),L=1,LMAX)
FMC=MCOMP

WRITE(6,2003)MCOMP

WRITE(6,2002) NAME
WRITE(642004)(JyA(Js1)3A0I92)9B(Js1)9B{J,2),d=1,LMAX)
RETURN
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Printout D-1 (contd)

ENTRY POINT FOR MAGNETIC FIELDS AT FINITE R

oOE

ENTRY FIELDI{MMAX;NMAXHRHTHP;R)
DIMENSION R( 15, 91)
COMPLEX HRU 15, 91),HT( 15, 91),HPL 15, 91)
IENT=1
M=0
1 M=M+1
SN=SIT(M)
Z=COT (M)
TOUT=T(M)
GO 7O 99

ENTRY POINT FOR ELECTRIC FIELDS AT INFINITE R

[« Xz e]

ENTRY FIELD2(JO,KO,ETTO,EPPO)
COMPLEX ETTO,EPPO

IENT=2

SN=SITT{JO)

2=COTT{(J0)

TOUT=TT7(J0)

ESTABLISH LEGENDRE FUNCTION TABLES FOR M—-TH THETA ValLUE

[aNekel

99 IF(ABS(SN)-.00001)200,100,100
100 DO 105 N=1,mMCOMP
105 F(N}=0
NC=LMAX+1
CALL LEGEND(NC,MCOMP,Z,4F)
DO 110 N=1,LMAX
T1=N-MCOMP+1
T2=N+1
GIN)=TL*F(N+1)-T2*Z*F(N)
110 GIN)=G(N}/SN
DO 115 N=1,LMAX
115 F(N)=F({(N)/SN

C F(L)} IS MULTIPLIED BY FMC LATER
GO TO (300435001}, 1ENT
C SPECIAL EQUATIONS FOR TH=0 AND TH=180 DEG

200 IF{(MCOMP-1}210,220,210
210 DO 215 N=1,LMAX
F(N)=0
215 G{N)=0
GO TO (300,500),IENT
220 DO 225 N=1,LMAX
FN=N%{N+1)
FIN)I=FN/2.0
225 GIN)=FN/2.0
IF(TOUT-145732504250,230
230 DO 235 N=1,LMAX,2
FIN+1)==~F (N+1)
235 G(N)=-G(N)
250 GO TO (3004500) s IENT

FOR EACH PHI VALUE THE HANKEL FUNCTIONS ARE EVALUATED AT THE
CORRESPONDING VALUE FOR R AND THE WAVE EXPANSION IS SUMMED

leNeoNaNe!

300 DD 450 N=1,NMAX
HRR=0
HRI=0
HTR=0
HTI=0
HPR=0
HPI=0
CALL SPHANK{L1,R(MyN),SOR,SOI)
DO 400 L=1,LMAX
FL=L
FN=(FL+1.0)/R(MyN)
NC=L+1
CALL SPHANK(NCsR{MsN},SIR,S11)
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Printout D-1 (contd)

FIR==A{Ls 1)%S1R+A(L,2)%S11
F1I==A(Ly1)%S1I-A{L,2)%*S1R
F2R=FN*(A(Ly1)*SOI+A(Ly2)%SOR)
F2I=FN*{A(L,2)%SOI-A(Ly1)%*SOR)
F3R=-B(L,1})*SOR+B(L,2)%S0I
F3I=~B{(L,1)*S0I-B(L,2)%SOR
HRR=HRR+F2R*F (L) *FL
HRI=HRI+F2I*F(L)*FL
F{L)=F (L)*FMC
HTR=HTR+FIR*G(L)+F2R*G(L)+F3R*F (L}
HTI=HTI+FLI*G(L)+F2I%G(L)+F3I%F(L)
HPR=HPR=F1IR*F{L)-F2R*F(L)-F3R*G(L)
HPI=HPI-FLIXF(L}-F2I%F(L)-F3I%G(L)
SOR=§1R
S0I=S11I

400 CONTINUE
HRR=HRR*SN*COS{FMC*P(N))
HRI=HRI*SN*COS{FMC*P (N} )
HR{MyN)=CMPLX (HRRyHRI)
HTR=HTR*COS{FMC*P(N)}
HTI=HTI%COS(FMC*P{N))
HT(MyN}=CMPLX(HTR+HTI)
HPR=HPR*SINIFMC*P(N))
HPI=HPI*SIN(FMC*P(N})
HP (MyN)=CMPLX (HPRsyHPI)

450 CONTINUE
IF(M~MMAX)19460,460

460 RETURN

500 CONTINUE
ETR=0.0
ETI=0
EPR=0
EPI=0
DG 550 L=1,LMAX
F(L)=F(L)*FMC
ETR=ETR+A(Ls1)%F(L)+B(Ly1)%G(L)
ETI=ETI+A(L,2)%F{L)+B(Ly2)%G(L)
EPR=EPR+A(L,y 1) *G{L)+B(L,1)%*F (L)
EPI=EPT+A{L2)%G{L)+B(Ly2)%F(L)

550 CONTINUE
ETR=ETR*SIN(FMC*PP(KO))
ETI=ETI*SIN(FMC*PP(KO})
ETTO=CMPLX{ETR,ETI)
EPR=EPR*COS{FMCxPP(KO))
EPI=EPI®*COS(FMC*pp(KO))
EPPO=CMPLX(EPR,EPI)
RETURN

1001 FORMAT(13A6)

1002 FORMAT(515)

1003 FORMAT(I542E17.8,2Xy2E17.8)

2001 FORMAT(1H s62H FIELD DATA INPUT IN THE FORM OF SPHERICAL WAVE CO

LEFFICIENTS/5X,13A6)
2002 FORMAT(5X+13A6///20X94HA(N) 432X ,4HB(N)/

15H Ny 7TX4HREAL» 13X 9 4HIMAG» 15X4HREAL y 13X,4HIMAG)
2003 FORMAT (25H AZMUITHAL ORDER MCOMP=,12)
2004 FORMAT(I592E17.8,2X4y2E17.8)

END
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Printout D-1 (contd)
{¢) Subroutine FELDS (fur-field approximation)

C
C
c
C
C
2001
C
C
C
C
10
15
20
C
C
30
35
40
C
C
C
C
45
C
C
50
55
60
c
C
70
71

$IBFTC FIELD

SUBROUTINE FIELDS

THIS SUBROUTINE ASSUMES FAR-FIELD BEHAVIOR FOR THE INCIDENT FIELDS
TO OBTAIN THE MAGNETIC FIELDS ON A SURFACE S
A+ LUDWIG MARCH 1969

DIMENSION TITLE(13),PSI(181),E(181),EP{181),H(181),HP{181)
DIMENSION puM(2)

COMPLEX EESEXPJX

EQUIVALENCE (gg,0UM(1),C0),(DUM(2),SI)

COMMUN/GRID1/SIT( 15),C0T( 15),51P(181),COP(181),T( 15),P(181)
COMMON/GRIP2/SITT(181),COTT(181),SIPP( 8),CO0PP( 8),TT(181),PP{8)
DTR=0.017453293

WRITE(64,2001)

FORMAT{52H ILLUMATION FIELD FROM CIRCULARILY SYMMETRIC FEED//)

READ IN INPYT FIELDS

READ(5,1001)TITLE

READ(5,1002)JINMyJO3 JINyIC1,1C24MCOMP

FMC=MCOMP

READ (5, 1003} (PST(J)yE{J)+EPLJ) s HIJIsHP{J) =1, JIN)

FOR 1Cl LESS THAN OR EQUAL TO O CONVERT FROM DB TO VULTS
IF{IC1)10,10,420

DO 15 J=1,JIN

E(J)=10.0%*%(E(J)/20.0)

H{J)=10.0%%(H(J)/20.0)

CONT INUE

FOR IC2 GREATER THAN ZERO NEGLECT FEED PHASE PATTERN
IF({1C21404+40430

DO 35 J=1,JIN

EP(J)=0

HP(J)}=0

CONTINUE

PRINT OyT FIELD ILLUMINATION
WRITE(6,2002)TITLE
WRITE{692003) (PSI(J)4E(J)H,EP(J),H{J),HP (J)sd=1,JIN)

CONVERT POLAR ANGLES TO RADIANS
DO 45 J=1,JIN
PSI(J)=DTR*PSI(J)

CONVERT TO REAL AND IMAGINARY
1IF(1IC2150450,60
DO 55 J=1,JIN
TH=DTR*EP(J)
EE=EXPJX({TH)
EP(J)=E(J)*SI
E(J)=E{(J)*CO
TH=DTR*HP(J)
EE=EXPJUX(TH)
HP(J)=H({J)*S1
H{J)=H{J}*CO
CONTINUE

SET FIELDS OUTSIDE OF INPUT RANGE EQUAL TO ZERO
IF(JINM~JIN=-1)T72,71,70
PSI(JIN+2)=3,142
E(JIN+2)=0

EP(JIN+2)=0

H{JIN+2)=0

HP{JIN+2)=0
PSI(JIN+1)=PSI(JIN)+.01
E(JIN+11}=0

EPLJIN+1)=0

H{JIN+1)=0

HP{JIN+1)=0

-
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Printout D-1 (contd)

72

[aXelel

109
110

120

100

200

509
510

520

500

1001
1002
1003
2002

2003

CONT INUE
RETURN

ENTER HERE FOR GRIDL FIELDS

ENTRY FIELDL(MMAXyNMAXHR yHTyHFsR)

DIMENSION R{15,91)

COMPLEX HR(15,91),HT(15,91) yHF(15,91)

LINEARILY INTERPOLATE FIELDS TO INTEGRATION GRID POLAR ANGLES
J=1

DO 200 M=1,MMAX

IF(PSI{J}-T{M)}}110,110,4120

J=J+1

GO TGO 109
F={T(M)-PSI(J-1))/(PSL(J}=PSI{J-1)})}
0F=1.0-F

ETR =FRE(J)+OFX*E(J~1)

ETI =FXEP(J)+0F*EP (J=-1)

EPR =F*H(J)+0F%H(J-1)

EPI =FEHP (J) +OF*HP (J-1)

DO 200 N=1,NMAX

T1=ETR *SIN(FMC*P(N))
T2=ETI #SINCFMC®P(N))
T3=EPR #COS(FMC*PIN))
T4=EPI *COS(FMC*#P(N))
ASSUME FAR FIELD BEHAVIOR HR=0,HP=ET HT =~LP
HR(MyNI=(0.0,0.0)

HT (My N} =CMPLX(-T3,-T4)
HE(MyN)=CMPLX(T1,T2)
CONTINUE

RETURN

ENTER HERE FOR GRIDZ2 FIELDS
ENTRY FIELD2(JOsKO,ETTO,EPPO)
COMPLEX ETTO,EPPO

LINEARLY INTERPOLATE FIELDS TO OUTPUT GRID POLAR ANGLES
J=1

JJ=J0

IF(PSI(J)=TT{JJ})510,5104520
IF{J.EQ.181)G0O TO 520

J=d+1

GO TO 509
Fe(TT(JJ)=PST(J=1))/(PSI(J}=PST(J-1)}
OF=1.0-F

ETR =SFXE(J)+OFX*E(J~1)

ETI =F%EP{J}+OF*EP (U-1)

EPR =F*H(J) +0F*H(J=1)

EPI =FEHP(J) +0FXHP (J-1}

K=K0

TI=ETR #*SIN(FMC*PP(K))
T2=ETI H*SIN(FMC*PP(K))
T3=EPR #*COS{FMC*PP{K))
T4=EP1 #COS{FMC*PP (K))
ETTO=CMPLX(T1,T2)
EPPO=CHMPLXI(T3,T4)

RETURN

FORMAT{13A6)

FORMAT (1015)
FORMAT{(5F10.6)
FORMAT(13A6/47H POLAR E=PLANE H-PLANE/

150H ANGLE vOLTS DEG VOLTS DEG)

FORMAT(F1042yF12.64F8.23F13.6,F8.2)
END
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Printout D-1 (conid)
(d) Subroutine SURF

$

OO0 [eFekel OO0

[aReNel

IBETC SURFDK
SURRUUTINE SURF{MMAXyNMAX,F,FT,FP)

THIS SUBROUTINE PROVIDES THE MAIN PROGRAM WITH RHO AnD ITS
PARTIAL DERIVATIVES WITH RESPECT TU THETA AND PHI
RHO IS DENOTED BY g IN THIS PROGRAM FOR SUME OBSCURE REASON

DIMENSION TIN(15),A0(15),A1(15),A2(15),DA0(15),BA1(15),DA2(15)
DIMENSION TITLE(12)
COMMON/GRID1/SIT(15),C0OT(15),S1P(181),COP(181),T(15),P {181}
DIMENSION F{15,91),FT(15,91),FP(15,91)

READ IN FOURIER COEIFFICIENTS

4 READ(5,1001)TITLE

WRITE(6,2001)TITLE

READ (5, 1002) (TIN(M) 3 AO(M) AL (M), A2(M)},DAO(M),DALIM),DA2(M),
#M=19MMAX)

WRITE(642003) (TIN(M),AO(M), AL{M)A2(M),DAO(M) DAL(M),DAZ(M),
#M=1,MMAX)

CHECK THAT INPUT DATA AND INTEGRATION GRID AGREE

DO 10 M=1,MMAX
TCHE=T(M)/0.017453293
IF(ABS(TCHE-TIN(M)}~.000001}10,99,99
99 WRITE(6,2002) TIN(M),TCHE
10 CONTINUVE

FILL OUT SURFACE TABLE

DO 50 N=1,NMAX
DO 50 M=1,MMAX
COP2P=140-2.0%SIP(N}*SIP(N)
F(MyNI=AO(M)+AL(M)RCOP(N}+AZ2(M)*COP2P
FT(MyN)=DAO(M)+DAL{M)*COP(N)+DA2(M)*COP2P
SIP2P=2.0%SIP{N)*CQP(N)
FP{MyN)= —AL(M)*SIPIN)}~2.0%A2(M}*SIP2P
50 CONTINUE
RETURN
1001 FORMAT(12A6)
1002 FORMAT{7F10.4)
2001 FORMAT (44HO SURFACE DATA INPUT IN THE FORM OF FOURIER/
*3TH COEFFICIENTS AND THEIR DERIVATIVES//12A6//
*44H THETA AO(THETA) AL{THETA) A2 (THETA),
*37H DAO/DTHETA DA1/DTHETA DA2/DTHETA)
2002 FORMAT{55H SURFACE INPUT DATA INCONSISTANT WITH INTEGRATION GRID/
*14H INPUT ANGLE,F7.2,18H DEG GRID ANGLE,F7.244H DEG)
2003 FORMAT(FB8.236F12.4)

END
(e) Subroutine SETUP

$IBFTC SETD

SUBROUTINE SETUP(NGLsIsJMAX,KMAX,MMAX, NMAX)
C
C THIS PROGRAM ESTABLISHES THE OQUTPUT GRILD AND UP 70 5 INTEGRATION
C GRIDSs AND PRECOMPUTES TRIG FUNCTIONS ON ALL OF THE GRID POINTS
Cc

DIMENSION MM{ 5)3NN{(5})y T( 15y 5),P{181, 5)

COMMON/GRID1/SIT( 15),C0T( 15),S1P(181),C0P{181),TGL( 15),PG1(181)
COMMON/GRID2/SITT{181),COTT(181),SIPP( 8),COPP( 8),TT{181),PP(8)
DIMENSION pUM(2)

COMPLEX EyEXPJX

EQUIVALENCE (gsDUM{1),C0),(DUM(2),ST)

DATA L1/0606060606374/4L2/0606060604774/41L3/0606060636374/

DATA L4/0606060474774/41L.5/0341300000000/
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Printout D-1 (contd)

OO OD

10
15

20
30

40
45

50
60

110

120

130

140
145

150
100

155

210

GRID VALUES MAY BE READ IN BY INPUTING ONLY -MAX VALUES, OR IF
EQUALLY SPACED VALUES ARE DESIRED, PROGRAM WILL COMPUTE VALUES
GIVEN A STARTING PQINT AND AN [NCREMENT

READ IN OUTPUT GRID
READ(551001) JMAX,TT1,DTT
IF(DTT)10,20,10

DO 15 J=1,JMAX

FJ=J-1
TT(J)=TTL+FJ*DTT
60 TO 30

READ(5,1002)(TT(J) s J=15IMAX)
READ(551001)KMAX,PP1,DPP
IF(DPP)40450,40

DO 45 K=1,KMAX

FK=K-1

PP (K)=PP1+FK%DPP

GO TO 60
READ(551002) (PP (K)yK=1,KMAX)
CONTINUE

READ IN INTEGRATION GRIDS
READ(551001)NG1

DO 100 I=1,4NG1
READ(5,1001)MM(1),T1,0T
MMM=MM (1)
IF(DT)110,120,110

DO 115 M=1,MMM

FM=M-1
T(M,I)=T1+FM%DT
60 TO 130

READ(551002) (T(MyI)yM=1yMMM)
READ(551001)NN(I),P1,Dp
NNN=NN(T)

IF(DP) 140,150,140

DD 145 N=1,NNN

FN=N=-1

P(NsI)=P1+FN*DP

GO TO 100

READ(5,1002) (P(N4sI)sN=15NNN)
CONTINUE

PRINT OUT GRID DATA

WRITE(6,2001)
WRITE(652006)(L33JyL5,TT(J)yJ=1yIMAX)
WRITE(6,2002)

WRITE(652006) (L43KsL5,PP(K)yK=14KMAX)
WRITE(6,2004)NG1

DO 155 I=14NG1

WRITE(6,2005)1

MMM=MM (1)

NNN=NN(T)
WRITE(692006)(L1yMyL5,T(MyI)y4M=1,MMM)
WRITE(6,2002)

WRITE(6,2006) (L2yNsL53P(NyI)yN=14NNN)

ESTABLISH GRID2 TABLE
DTR=0,017453293
DO 200 J=1,JMAX
TT(J)=DTR*TT(J)
E=EXPIX(TT(J))
SITT(J)=SI
COTT(J)=cO

DO 210 K=1,KMAX
PP (K)=DTR*PP (K)
E=EXPJX(PP(K))
SIPP(K)=SI
COPP(K)=COD
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Printout D-1 (contd)

c
c ESTABLISH GRID1 TABLES
1=0
C
c
C FOR NGl GREATER THAN 1, RE-ENTER SUBROUTINE HERE FOR NEW GRIDL
C
ENTRY RESET(IsMMAX,NMAX)
I=1+1
MMAX=MM(I)

DO 400 M=1,MMAX
TGL{M)=DTRX*T(M,1)
E=EXPJX(TGL(M))
SIT(M)=SI

400 COT(M)=CO
NMAX=NN{1)
DO 410 N=1,NMAX
PGL{N)=DTRXP(N,1)
E=EXPJX (PGL(N))
SIP{N)=SI

410 COPIN)=CO
RETURN

1001 FORMAT(I5,2F10.0)

1002 FORMAT(8F10.0)

2001 FORMAT (50H THE FULLOWING OUTPUT GRID HAS BEEN ESTABLISHED/
125H ALL ANGLES IN DEGREES//)

2002 FDRMAT(//)

2004 FORMAT(17HO THE FOLLOWING,I3,40H INTEGRATION GRIDS HAVE BEEN EST

1ABLISHED/)
2005 FORMAT{(18HO SEGMENT NUMBER,13/)
2006 FORMAT{(5(A6+13,A24FF4))
END

(f) Subroutine PATHL

$IBFTC PATHLD
SUBROUTINE PATHL{RHQsJ»KyMMAX,NMAX,GAM)

C TH1s SUBROYTINE EVALUATES THE PATH LENGTH FUNCTION GAMMA
DIMENSION RHO( 15, 91),GAM{ 15, 91)
COMMON/GRID1/SIT( 15),CO0T( 15),S8S1P(181),C0P(181)

COMMON/GRIp2/SITT{18L),COTT(181),SIPP( 8),COPP{ 8),TT(181),PP(8)

DO 10 M=1,MMAX
T1=SIT{MI*SITT(J}*CQPP(K}
T2=SIT(MYRSITTIJIIXSIPP(K)
T3=COT{M}*COTT(J)-1.0
DO 10 N=1,NMAX

10 GAM(MyN)=RHO(M N}*(TL*COP{N)+T2%4SIP(N)+T3)
RETURN
END

{g) Subroutine FINT

$IBFTC FINTD
SUBROUTINE FINT(XsYspFsRyMMAXsNMAXsSTOT)

THIS SUBROUTINE NUMERICALLY INTEGRATES
THE RADIATION INTEGRAL
As LUDWIG JUNE 1948

[s¥eEsNelel

DIMENSION X{ 15)},Y(181),R{ 15, 91)
DIMENSION pUM{2)

COMPLEX F( 15y 9143},STOT(3)3E+T1yT729T3,A,B8,C,EXPJX, F124F23,

1F14,SUM, TOT
EQUIVALENCE (E,DUM(1),C0B)s(DUM(2),ST)
DO 10 L=1,3
10 STOT(L)=(0.0,0.0)
DO 200 N=1,NMAX
DY=0.5%(Y(N+1)-Y(N))
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Printout D-1 (contd)

100

110

140
150

160

170

200

DO 200 M=1,MMAX

DS=DY#{X {M+1)}~-X{M))
R1=R(M+1yN+1)~R{M,sN)
R2=R{MyN+1)~R{M+14N)
R3=R(MyN)+R(M+1,N)
BE=(R1+R2)*0.5
CE=(R1-R2)*0.5
AL=(R3-CE}*0D.5
IF{ABS(BE}-0.01)100,100,110
F31=BE*0.33333333
F1I=BE*0.5

F1R=1.0~-F11%F31
F3R=0.,5-BE*BE/8.0

GO TO 140

E=EXPJX(BE)

F1R=SI/BE

F1I=(1.0-C0O)/BE
F3R=F1R~-F1I1/BE
F31=(F1R~-CO)/BE
IF(ABS(CE}-0.01)150,150,160
F41=CE*0.33333333
F21=CE*0.5

F2R=1.0-F21%Fal
F4R=0.5~CE*CE/B8.0

GG T0 170

E=EXPJX(CE)

F2R=SI/CE

F21=(1.0-C0})/C¢
F4R=F2R~-F21/CE
F4I={F2R-CO}/Cg

E=EXPJIX{AL)
F12=CMPLX(FIR%F2R-F1IXF2T,FII*F2R+F1IR*F21)
F23=CMPLX(F2R%F3R=F2I%F31,F2I%F3R+F2R*F31)
Fla=CHMPLX{FIR¥*F4R-FLI%*F41,F]l I%F4R+FIR*F4])
DO 200 L=1,3
Tl=F{M+LyN+1,y L) —F(MyNsL)
To=F(MgN+LyL)-F{M+L,N,L)
T3=F(MaNsL}+F(M+1yN,L)
B=T1+T2

C=T1-T2

A=T3-0.5%C
SUM=A*F12+B%*F23+C*Fl4
TOT=ExSUM=DS
STOT(L)=STOT(L)+TOT

RETURN

END

(h) Subroutine PRTIM

$IBFTC PRTML3

OO

10

PRINT TIMERS
SUBROUTINE PRTIMl

VERSION 2, FEBRUARY 1, 1967

VERSION 3, APRIL 1968.

TOTAL=0.

PART=0Q

CALL GETTIM (NTIME)

GO 7O 10

ENTRY PRTIM2
CALL GETTIMUITIME)
TOTAL=FLOAT{ITIME-NTIME) /3600,
PART=F| GAT(ITIME=-IPART}/3600.

TOTSEC = TOTAL*60,

PARSEC = PART#60.
WRITE(641000)PART,PARSEC, TOTAL» TOTSEC
CALL GETTIM({IPART}

RETURN

PRTM
PRTM

PRTM
PRTHM
PRTM
PRTM
PRTM
PRTM
PRTM
PRTM
PRTM
PRTM
PRTM

PRTM
PRTM

1000 FORMAT(1S5HOPARTIAL TIME =F10.4,5H MINS,3X,1H=,F12¢495H SECS,

% 10X912HTOTAL TIME =F104495H MINS93Xy1H=4F12.4,5H SECS)

END

PRTM

20
30

40
50
60
70
80

100
110
120
130
140

160
170

200
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Printout D-1 (contd)

$IBMAP

W3 3 40 3¢

SETTIM

GETTIM

FSTIME
FSTIME

ENTRY
ENTRY
CLAX*
STO
TRA
CLA
STO*
TRA
END

FETCH AND STORE LODC 5
FETCH AND STORE LOC 5

CALL SETTIM(ITIME)
CALL GETTIM{ITIME)

SETTIM
GETTIM
3+4

5

1:4

5

344
1v4

FSTI
FSTI
FSTI
FSTI
FSTI
FSTI
FSTI
ESTI
FSTI
FSTI
FSTI
FSTI
FSTI
FSTI
FSTI

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
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Printout D-2, Computer printout of spherical-wave expansion program

() Main program (orthogonality technique)

$IBFTC MAINDK

SPHERICAL WAVE EXPANSION PROGRAM =~ ORTHOGUNALITY TECHNIQUE

THIS PROGRAM DETERMINES THE SPHERICAL WAVE COEIFFICIENTS FOR THE
M~TH FOURIER COMPONENT OF A RADIATION PATTERN.{(SEE STRATTON P 416}
COEIFFICIENTS ARE OBTAINED FROM ORTHOGONALITY INTEGRALS

THE EXPANSION MATCHES THE FAR-FIELD INPUT PATTERN WITH THE FAR-
FIELD FORM OF SPHERICAL WAVES. ART LUDWIG 12/23/68

aXnksizializEe]

DIMENSION NAME(13),NAMEJ(13),NDUM(13)
DIMENSION PA(60},PB(60)

DIMENSION T(181),E(181),EP(181),H(181),HP{181)
DIMENSION F(60,181),G6(60,181),PM(61)

DIMENSION A(181,2),B8(18142)

DIMENSION ACOE(60,2),BCOE(60,2)

DIMENSION AQUT(1,2),B0UT(1,2)

DATA NDUM/13*0606060606060/

DTR=0.017453293

READ IN M-TH COMPONENT OF INPUT PATTERN

oO0Om

1 READ(5,1001)NAMEJ
CALL PRTIM1
READ(5,1002)MCOMP, NMAX
READ (541001 )NAME
READ(5,1002) JMAX,JO»JIN,ICL,IC2
READ(5,1003) (T{M) yE(M)yEP(M)yH{M) yHP{M)} yM=1,JIN}

c FOR IC1 LESS THAN OR EQUAL TO O CONVERT FROM DB TO VOLTS
IF(1C1)10,10,20
10 DO 15 J=1,JIN
E(J)=10.0%%(E(J)/20.0)
15 H(J4)=10.0%%(H(J)/20.0)
20 CONTINUE
c FOR IC2 GREATER THAN O NEGLECT PHASE
IF(1C2)40,40,30
30 DO 35 J=1,JIN
EP{J1=0.
35 HP(J)=0.
40 CONTINUE
c PRINT OUT INPUT PATTERN
WRITE{6,2001)NAMEJ
WRITE(6,2006)MCOMP
WRITE (642002 ) NAME
WRITE(692003) (T{M) g E(M} 3 EP{M) yH(M) yHP (M) 4M=1,JIN)
C CONVERT TO RADIANS AND REAL AND IMAGINARY
DO 45 J=14JIN
45 T(JI=DTR*T(J)
IF(1C2)50,50,60
50 DO 55 J=1,JIN
TH=DTR¥EP (J)
EP(J)=E(J)*SIN(TH)
E(JY=E(J}*#COS(TH)
TH=DTREHP (J)
HP (J)=H{JI*SIN(TH)
55 H{J)=H(J)*COS(TH)
60 CONTINUE

ESTABLISH A{THETA)DTHETA AND B(THETA)DTHETA VECTORS

[sReNel

ALy L)=E(L1)%T(L)
Al1,2)=EP(L1)*T(1)
B{1, 1}=H(1)*T(1)
B(1,2)=HP{1)*T(1)
DO 65 J=2,JIN
DTH=T{(J)-T(J-1)
AlJy1)=E{(J)*DTH
Al{Jy2)}=EP(J})*DTH
B(Jy1)=H{J)*DTH

65 BlJy2)=HP(J}*DTH
CALL PRTIM2
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Printout D-2 {contd)

C OBYTAIN F AND G MATRICES

FMC=MCOMP
DO 80 J=1,JIN
2=COS(T(}
DO 85 N=1,MCOMP
85 PM(N)=0.
NC=NMAX+1
CALL LEGEND (NCsMCOMP,Z,PM)
DD 80 I=1yNMAX
FLI3J)=PM(T)%FMC
T1=1-MCOMP+1
T2=1+1
GUI yJ)=TL*PM {1+ )=T2%7%pM (1)
80 CONTINUE

PERFUORM NUMERICAL INTEGRATION BY MATRIX MULTIPLICATION

[eXelal

CALL MULT(JIN,NMAX,2,F+A,ACOE,0,+60,181,181,2,60,2)
CALL MULT(JIN,NMAX,2+GsB4AC0OE,1960,181,181,24+6042)
CALL MULT(JINyNMAXy2,FsBsBCOE0960,181,181,2,60,2)
CALL MULT(JIN)NMAX92yGsAsBCOES1460,1814918142,60,2)

NORMALIZE COEIFFICIENTS AND COMPUTE POWERS

aoo

PI022=(3.1415927/2.0)%0.,002655
PTOT=0.
DO 95 N=1,NMAX
PA(N)=0.
PBI(N)=0.
FACT=1.
IF (MCOMP)92,92,90
90 DO 91 M=1,MCOMP
FF= (N-M+1)% (N+H4)
91 FACT=FACT*FF
92 FF=p%N+1
FACT=FACT/FF
FFE=2%n% (N+1)
FACT=FACT*FF
k=0
93 K=K+l
BT=BCUE (NsK)
AT=ACUE (NsK)
BCOE (N, K)=BCOE(NyK) /FACT
ACOE(N,K)=ACOE (NsK) /FACT
PAIN)=PALNY +AT*ACOE (N, K)*p1027
PB(N)=PB(N)+BT#BCOE (N,K)*P1027
IF{K~1)93,93,94
94 CONTINUE
PTOT=PTOT+PAIN)+PB(N)
95 CONTINUE

c OUTPUT COEIFFICIENTS

WRITE{6,2001)NAMEJ

PUNCH 100) 4NAMEJ

PUNCH 1001 sNAME

PUNCH 2010 ,NMAX,MCOMP

WRITE(6,2004)MCOMP

PSUM=0

DO 100 J=1,NMAX

PALJ)=PALJ)/PTOT

PBIJ)=PB(J)/PTOT

PSUM=PSUM+PA(J)+PB(J)

PUNCH 2005, JyACOE(Jy1)yACOE(J,2)4BCOE(Jy1)4BCOE(J,2)
100 WRITE(6,2005)J5AC0E{J,1)ACOELJ2)4BCOE(J,1),BCOE(J,2)yPALJ},PB(J)

*y PSUM
WRITE(6452007)PTOT
CALL PRTIMZ2
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[a¥ele!

170
175

180

190

200

205

210
215

280
285
370
375

380

290

300

1001
1002
1003
2001
2002

QUTPUT SUMMATION OF SPHERICAL MODES

READ(5,1002)JIMAXy JIN
JO=0

IC1=1

1c2=-1

PUNCH 1001 ,NAMEJ

PUNCH 1002y JMAX,JO,JIN,1C1,1C2
WRITE(6492008)MNAMEJ
WRITE(6,2002)NDUM
DT=JMAX=1

DT=180.0/0T7

J=1

TH=0
IF(MCUMP-1)170,180,170
DO 175 N=1,NMAX
F1,N)=0

G(1,N)=0

GO TO 215

DO 190 N=1,NMAX
FN=N*(N+1)
F(1,N)=FN/2.0
G(1sN)=FN/2.0

G0 TU 215

Fu=J-1

TH=FJ*DT

Z=COS{TH*DTR)}
S=SIN(TH#DTR)

DU 205 N=1,MCOMP
PM{NI=0

CALL LEGEND({NC yMCOMP,Z,PM)
DO 210 N=1,NMAX
Fl1sN)=FMC®PMIN]}/S
T1=N-MCOMP+1

T2=N+1
G(LIN)=TLHPM(N+1) =T2%Z%PM(N)
G(LlyNI=G(1,N)/S

CALL MULT(NMAX,1,2,FsACOEyAOUT 0, 60,181, 60,2,1,2)
CALL MULT(NMAXs1,2,G4BCOE,ACUT,1, 60,181, 60,2414+2)
CALL MULT{NMAX,1429G,ACOE4BOUT,0, 60,181, 60,2,1,2)
CALL MULT(NMAXs1,2,FsBCOE,BOUT,1, 60,181y 60,2,12)

CALL VECTOR(AOUT(191)yA0UT(1,2)4EAMPEPHI)
CALL VECTOR({BOUT(1,1),B0UT(1,2)4HAMP,HPHI)
PUNCH 2009y TH,EAMP,EPHI HAMPyHPHI
WRITE(652003) THyEAMPEPHI yHAMP,HPHI

J=J+1

IF{J-JIN)200,280,300

IF{J-JMAX) 200,285,300

ISIGN=1

TH=180.

IF(MCOMP-1)370,380,370

DO 375 N=1,NMAX
F(1sN)=0
G(l,N)=O
GO TU 215

DO 290 N=1,NMAX
ISIGN=~ISIGN
FN=N#&{N+1)*ISIGN
F(lyN})==FN/2.0
G(1yN)=FN/2.0

GO TO 215
CONTINUE

CALL PRTIM2

GO TO 1

FORMAT (13A6)
FORMAT(1015)
FORMAT (5F10.,0)
FORMAT(1H1,13A6)
FORMAT (1HO,13A6/46H

POLAR E-~PLANE

H-PLANE/

54
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Printout D-2 (contd)

2003
2004

2005
2006
2007
2008
2009
2010

150H ANGLE VOLTS DEG VOLTS DEG)

FORMATI{F1042:F12¢69F8429F13.69F842)
FORMAT (51HO SPHERICAL WAVE COEFFICIENTS FOR AZMUITHAL ORDER,12//

120X 4HA(N) 932Xy 4HBIN) 5 27X 28HFRACTION OF TOTAL MODE POWER/
25H Ny TXs 4HREAL y 13X+ 4HIMAG s 15X, 4HREAL s 13X 4HIMAG,
313X, 7THA MODES,6X,7HB MODESs5Xs 16HCUMULATIVE TOTAL)

FORMAT(I592E17.892X92E174842Xy2E14.5,F14.8)

FORMAT(49HO INPUT PATTERN FOR AZMUITHAL COMPONENT OF ORDER,I2)
FORMAT (1HOy 19H TOTAL MODE POWER,E15,896H WATTS)
FORMAT(1H1,+13A6/41H FAR FIELD SUMMATION OF SPHERICAL MODES)
FORMAT(F10.2yF10.6,F10.2,F10.6,F10.,2)

FORMAT(215)

END

{b} Main program (linear equation fechnique}

C
C
c
C
C
c
C
c
C
C
C
C
c

1
c
C

10

15

20
C

30

35

40
C
C

45

50

55
60

$IBFTC MAINDK

SPHERICA| WAVE gXPANSIpN pROGRAM = LINEAR EQUATION TECHNIQUE

THIS PROGRAM DETERMINES THE SPHERICAL WAVE COEIFFICIENTS FOR THE
M-TH FOURIER COMPONENT OF A RADIATION PATTERN.(SEE STRATTON P 416)
THE COEIFFICIENTS ARE OBTAINED BY INVERTING A SYSTEM OF LINEAR
EQUATIONS. WARNING- THE INPUT DATA POINTS SHOULD BE NEARLY EQUALLY
SPACED BETWEEN O AND 180 DEGREES. OTHERWISE THE PROBLEM BECOMES
VERY ILL CONDITIONED

THE EXPANSION MATCHES THE FAR-FIELD INPUT PATTERN WITH THE FAR~
FIELD FORM OF SPHERICAL WAVES. ART LUDWIG 12/23/68

DIMENSIDON NAME(13)

DIMENSION T(181),E(181)+EP(181),H(181),HP(181)

DIMENSION A(100,100),XR{100),XI(100)sBR{100),BI(100)},PM(50)
DIMENSION C(100,100},S{500)

DTR=0.017453293

READ IN M-TH COMPONENT OF INPUT PATTERN

READ(5, 1001 )NAME

CALL PRTIMl
READ(5,1002)JMAX,J0OyJIN,IC1,IC2,MCOMP
READ(551003 ) (T(M)yE(M),EP(M) 4H(M) ,HP (M) 4M=1, JIN)

FOR IC1 LESS THAN OR EQUAL TO O CONVERT FROM DB TO VULTS
IF(IC1)10,10,20

DO 15 J=1,JIN

E(4)=10.0%%(E(J)/20.0)

H{J)Y=10.,0%%(H(J)/20.0)

CONTINUE

FOR IC2 GREATER THAN O NEGLECT PHASE

IF{IC2)404+40,30

DO 35 J=1,JIN

EP(J)=0.
HP(J1}=0.
CONTINUE

PRINT OUT INPUT PATTERN

WRITE(692002)NAME
WRITE{6492003)(T(M)E(M)4EPIM)sHIM) JHP (M) ,M=1,JIN)
CONVERT TO RADIANS AND REAL AND IMAGINARY
DO 45 J=1,JIN

T(JI)=DTR*T(J)

IF(1C2)50,450,60

DO 55 J=1,JIN

TH=DTR*EP(J)

EP{JI=E(JI*SINITH)

E(J)=E(J)*COS(TH)

TH=DTR*HP (J)

HP{J)=H (J)*SIN(TH)

H{J)=H(J)*COS(TH)

CONTINUE
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Printout D-2 (contd)

OO0

OO0

[aEeRel

o0

70

85

80

90

95

100

1001
1002
1003
2002

THE COEIFFICIENT VECTOR X IS OBTAINED FROM THE MATRIX EQUATION
AX=B, WHERE THE B VECTOR IS DEFINED IN THE FOLLOWING SECTION
BR AND BI ARE REAL AND IMAGINARY PARTS OF B

DO 70 J=1,JIN
BR{2%J~1)=E(J)
BR(2%J)=H(J)
BI(2%J-1)=EP(J)
BI(2%J)=HP (J)

THE ELEMENTS OF THE MATRIX A ARE OUBTAINED FROM ASSOCIATED
LEGENDRE POLYNOMIALS AND THEIR DERIVATIVES AS FOLLOWS

CALL PRTIM2

FMC=MCOMP

DO 80 K=1,JIN
Z=COS{T(K)})

S=SIN(T(K))

DO 85 N=1,MCOMP
PM(N)=0.

NMAX=JIN+1

CALL LEGEND(NMAX,MCOMP,Z,PM)
DO 80 J=1,JIN
F=FMC*PM(J)/S
Ti=J-MgOMP+1

To=J+1
G=T1*PM{J+1)=T2%Z*PM(J)
6=6G/S

A(2%K=1y2%J~1)=F
Al2%Ky2%J)=F
A(2%K=1y2%J)=06
Al2%K2%d-1)=6

CONT INUE

THE SYSTEM IS INVERTED TO YIELD X

EPS=.00000001

NSOLVE=2*JIN

CALL PRTIMZ

CALL SOLVE(1003A;NSOLVEyBRyXRy14,EPSy2,1T1,4C,S)
CALL SOLVE(LOOsA NSQLVEsBIsX1+2,EPS,2,1724C,S)
CALL PRTIMZ

IF{1711)99,99,90

IF(172)99,99,495

WRITE(6,2010) IT1,IT72

CONTINUE

QUTPUT RESULTS

PUNCH 1001 ,NAME

WRITE(6,2004)

DO 100 J=1,JIN

PUNCH 2005, JaXR{2%J=1)sXT(2%J=1) 4 XR(2%J) X1 (2%J)
WRITE({ 692005} JsXR{2%J=1)yXT(2%J~1) 4 XR(2%J),XI(2%])
GO T0 1

FORMAT (13A6)

FORMAT(1015)

FORMAT (5F10.0)

FORMAT(1H1,13A6/46H POLAR E-PLANE H-P | ANE/
150H ANGLE VOLTS DEG VOLTS DEG)

2003
2004

2005
2010

FORMAT(F104+2,F12.61F8+.29F13.64F8.2)
FORMAT (1H1,29H SPHERICAL WAVE COEIFFIENTS//
120X y4HA(N) 26Xy 4HBIN) /

25H Ny TXy4HREAL 13X, 4HIMAG, 15X, 4HREAL y 13Xy 4HIMAG/ )

FORMAT{15,2E17.892X92E17+8)

FORMAT (47H CAUTION-FULL ACCURACY NOT ACHIEVED IN MATRIX/
120H INVERSION. IT1=41247H 1T2=,12)

END
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Printout D-2 (contd)

(¢} Subroutine LEGEND

$IBFTC LEGUK FULIST,DECK
SUBROUTINE | EGEND(NMAXyMsZsVAL)

THIS SUBROUTINE RETURNS VALUES OF THE ASSUCIATED LEGENDRE FUNCTION
WITH INTEGER INDICES FROM N=M TO N=NMAX.
D0 NUT USE NMAX LESS THAN M+1
VALUES ARE OBTAINED USING UPWARD RECURSION, AND HAVE CHECKED WITH
TABULATED VALUES TO 5 PLACES THRU N=56 FUR M=1,AND N=10 FOR M=5
HIGHER INDICES WERE NOT CHECKED.
ART LUDWIG 6/6/64
DIMENSION VAL(100)
DOURLE PRECISION TERMLsTERM2,TERM3,ZD
D=1
Fi=HM
TERM1=0.
IF(M)848,49
8 TERM2=1.0
GO TO 11
9 KMAX=2%M~1
TERM2=(1.0-2D%ZD)*%(FM/2.0)
DO 10 K=1,KMAX,2
FK=K
10 TERMZ2=TERMZ2%{2.0%FM=~FK)
VAL (M)}=TERM2
11 NN=NmAX-1
DO 20 N=M,NN
FN=N
TERMB={ {2, 0%FN+1e0)}*ZD%*TERM2—-(FN+FM)} *TERML) /{ FN=FM+1.0)
VAL (N+1}=TERM3
TERM1=TERM2
20 TERM2=TERM3
RETURN
END

[sXsEsEsieRsXelnl

{d) Subroutine SPHANK

$IBFTC SPHAND
SUBROUTIME SPHANK(NsRsXY)

THE VALUE OF THE SPHERICAL HANKEL FUNCTION IS RETURWED,; MULTIPLIED
BY THE FACTOR ({=J}x%{N+1) * RHO * EXP(J*RHO)

[aEaEaigl

DOUBLE PRECISION TERM,yAR:Al

AR=0

Al=0

PI1=3.1415927

K=0

TERM=1

60 TO 100

20 K=K+1

T1=N+K

T2=N-K+1

T3=2%K

TERM=TERM*TL%#T2/T3

TERM=TERM/R

GO TD{(200,100),16GU
100 AR=AR+TERM

160=1

IF(K-N)20,1000,1000
200 Al=Al-TERM

160=2

TERM=-TERM

IF(K-N)}20,100041000
1000 X=AR

Y=A1l

RETURN

END
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Printout D-2 (contd)

(e} Subroutine VECTOR

$IBFTC VDECK
SUBROUTINE VECTORI(XsY, Appyppl)
C THIS SUBROUTIng CQONVERTS COMPLEX DATA TO POLAR FORM

C=0.
IF{X) 100,200,300
100 IF(Y)110,120,120
110 €=360.
120 PHI=ATAN(Y/X)%57.29577951+180.~C
G0 TO 400
200 IF(Y)210,220,230
210 PHI==90.
6O TO 400
220 PHI=0.
G0 TO 400
230 PHI=90.
GO TO 400
300 PHI=ATAN(Y/X)%57.29577951
400 AMP=SURT ( X¥X+Y%Y)
RETURN
END

(f) Subroutine ADJUST

$IBFTC ADJUD
SUBROUTINE ApJUSTI(PHI)
C THIS SUBROUTINg SHIFTS pHI UNTiL 1T LIES IN THE RpNGE ~180,180
1 IF(PHI-180.0)20,20,10
10 PHI=PHI-360.
GO 70 1
20 IF(PHI+180.0)30,40,40
30 PHI=PHI+360.
GO TU 20
40 RETURN
END

{g) Subroutine MULT

$IBFTC MULTD FULIST
SUBRUUTINE MULT(M,N,K,A,B:CyICyNAyMA,NB,MB,NC,MC)
C THIS IS A GENgRAL PURPUSE MATRIX MULTIPLICATION SUBRUUTINE
C
DIMENSION A{NA,MA)sB(NByMB),C(NCyMC)
IF(IC)10,20430
10 DO 15 I=1,N
DO 15 J=1,K
DO 15 L=14M
15 ClI4J)=CHI s J)=A{I4L)%B(L,yJ)
RETURN
20 DO 25 I=1,4N
DO 25 Jd=1.K
C{I,J)=0.
DO 25 L=1yM
25 C{I4J1=ClIyJ)+A({T4LI*B(L,yJ)
RETURN
30 DO 35 I=1,N
DO 35 J=1,K
DO 35 L=1,M
35 ClIsd)=C{I+J)+A(I,L)*B(L,J)
RETURN
END
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Printout D-2 (contd)

$1B8MAP DOTSLYV DOT,SDOT,0AD, ABD I1LDOG2 FUR USE WITH SOLVE{SLVIT) DOTS 10
* 17 FEB. 1968 DOTS 20
*® Re Jo HANSON, JPL., DOTS 30
% DOT AND FRIENDS ROUTINES FOR USE WITH SULVE (SLVIT} DOTS 40
ENTRY DOT (nNsA(L1),MA,B{1),MB,C) DOUBLE INNER PRODUCT DOTS 50

ENTRY SDOT (NyA(1)sMA,B(1)yMB,C) INNER PRODUCT DOTS 60

ENTRY ILOGZ2 (A) FLOATING POINT EXPONENT DDTS 7O

ENTRY DAp (A,B) ADD WITH ROUND DOTS 80

% DBTS 90
SNAD MACRO M STDy COMPLEMENTING IF NECESSARY pOTS 100
CHS DOTS 110

ADD =182 DOTS 120

ALS i8 DOTS 130

STD M DOTS 140

ENDM SNAD DOTS 150

SAV MACRO A DOTS 160
SXA Ayl DOTS 170

SXA A+l,y2 DOTS 180

SXA A+2y4 DOTS 190

ENDM SAV,yNOCRS DOTS 200

RETUR MACRO A DOTS 210
AXT sy 1 DOTS 220

AXT sk, 2 boTS 230

AXT Ry 4 DOTS 240

TRA 1,4 DOTS 250

ENDM RETUR yNOCRS DOTS 260

poT SAV RET DOTS 270
STZ S DOTS 280

STZ S+1 baTS 290

CLA* 814 DOTS 300

LDO C+1 pOTS 310

ST0 c DUTS 320

CLA% 394 DOTS 330

TZE NONE SKIP LOOP IF N = 0 DOTS 340

sTO N DOTS 350

CLA 4y 4 DOTS 360

PaC y 1 X1=—(BASE OF A) pOTS 370

CLA% Se4 MA DOTS 380

SNAD MA DOTS 390

CLA 644 DOTS 400

PAC 22 X2=-(BASE OF B) DOTS 410

CLAX T94 DOTS 420

SNAD MB DOTS 430

LXA Ny 4 DOTS 440

LOoP LDOQ 0s1 AllD) DOTS 450
FMP 0y2 B(I) DOTS 460

DFAD S DOTS 470

DST S DOTS 480

MA TXI 41y ly¥k (X1)={X1) +MA DOTS 490
MB TXI Hetly 2 %% (X2)=(X2)+MB poOTS 500
TIX LOOP 4,1 END UF MAIN LOOP DUTS 510

NONE DFAD C DOTS 520
FRN DOTS 530

RET RETUR DOTS 540
% poOTS 550
SDOT SAV SRET DOTS 560
577 S DOTS 570

CLA% 844 DOTS 580

STO [ DOTS 590

CLA 394 DOTS 600

TZE SNONE DOTS 610

STO N DOTS 620

CLA b4 4 DOTS 630

PAC v 1 DOTS 640

CLA% 544 DOTS 650

SNAD SMA DOTS 660

CLA 644 pDOTS 670

PAC 32 DQOTS 680

CLA® Ty4 DOTS 690

SNAD SmMB DOTS 700
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LXA Ny DOTS 710
SLOOP LDQ 01 pO1s 720
FMP 0,2 DOTS 730
FAD S DOTS 740
sTO S DOTS 750
SMA TXI RS TR PR pDOTS 760
SMB TX1 Wby 2N DOTS 770
TIiX SLOOPs 4,1 pOTS 780
SNONE  FAD C DOTS 790
FRN DOTS 800
SRET RETUR DOTS 810
% DOTS 820
ILOG2 CAL* 344 DOTS 830
ANA =0377000000000 DOTS 840
sUB =0200000000000 DOTS 850
ARS 27 DOTS 860
TRA 4 DOTS 870
* DOTS 880
DAD CLAX 344 DOTS 890
FAD A DOTS 900
FRN DOTS 910
TRA 14 DOTS 920
= DOTS 930
EVEN DOTS 940
C PZE DOTS 950
PZE DOTS 960
S PZE DOTS 970
PZE DOTS 980
N PZE DOTS 990
T PZE DOTS1000
END DOTS1020

th) Subroutine SOLVE
$IBFTC SLVEIT FULIST,DECK SLVEOO10
SUBRUUTINE SOLVE(LyAsNyByXyINyEPS,ITMAXyITyAA,S) SLVEDO20
CSOLVE LINEAR EQUATION SOLVER WITH ITERATIVE IMPROVEMENT VERSION II SLVEQO030
C SOLVES AX=B WHERE A IS NXN MATRIX AND B IS NX1 VECTUR SLVEOO40
C SLVEOQO50
C IN= SLYEDOKD
C 1 FOR FIRST ENTRY SLVEOO70
C 2 FOR SUBSEQUENT ENTRIES WITH NEW B SLVEOO080
c 3 TO RESTORE A AND B SLVEO090
C 4 IF FIRST ENTRY BUT AN INITIAL APPROXIMATION IS ALREADY SLVEO0100
c AVAILABLE IN X SLVEOL1O
c 5 CONTINUE CALCULATING ITERATIVE IMPRUVEMENT FOR THIS SYSTEM SLVEO120
C SLVEO130
C EPS AND ITMAX ARE PARAMETERS IN THE ITERATION SLVEO140
C 1T= SLVEO150
o -1 IF A IS SINGULAR SLVEOL160
C 0 IF NOT CONVERGENT SLVEO170
C NUMBER OF ITERATIONS IF CONVERGENT SLVEQO180
C CALLS MAP SUBROUTINES 1LOG2, DOT, SDOT AND DAD SLVEO190
C SLVEQ200
DIMENSTION A(L,L)yB{L)X{L),AAIN,N),»S(1) SLVEO210
MA=L SLVE0220
C MA MUST = DECLARED DIMENSION UF SYSTEM SLVEO230
J1=N SLVEO240
J2=J1+N SLVED250
J3=J2+N SLVEQ260
GO TO(10492305390,10,9290),IN SLVED270
10 NMi=N-1 SLVE0280
NP1=N+1 SLVEO290
C SLVEO300
C EQUILIBRATION SLVEO310
¢ SLVEO0320
DO 40 I=1,N SLVEO330
KTOP=1L0G2(A{1,1}) SLVEO340
DG 20 J=2,N SLVEO350
20 KTOP=MAXO(KTOP,,ILOG2(A{1,J))) SLVEO360
N2=J2+1 SLVEO370
S{N2)=2.0%%{~KTOP) SLVEO380
DO 30 J=1,N SLVEO390
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30
40

[a¥elel

50

aNeleal

60
70
80
90

100
110

120
130

140

C 150
150
160
170

180

190

OO

200

210
220

OO0

230

240

A(T9J)=A(T5J)*S(N2)
CONTINUE

SAVE EQUILIBRATED DATA

DO 50 I=14N

DO 50 J=14N

AA(T s d)=A(T,+J)

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

DO 170 M=1,NM1

N3=J3+M
TOP=ABS(A{M,M))
IMAX=M

D0 70 I=M,N
IF{TOP-ABS(A(I,;M)))60:70,70
TOP=ABS{A{IyM))

IMAX=1

CONTINyYE

IF(TOP)90,80,90

IT=-1

*SINGULAR®

RETURN
S{N3}=1IMAX

IF{IMAX-M)130,130,110

DD 120 J=1,nN

TEMP=A(M,J)
A(MyJ)I=A(IMAX,J)
A(IMAX,J)=TEMP

MP1=M+1

DO 160 I=MP1.N

EM=A{I,M) /A[MsM)
A(T4M)=EM

IF(EM) 140,160,140
DO 150 J=MP1,N

IF(ILOG2(A(MyJ)) + ILQG2(EM) +LT. -54) GO TO 150

AlT»J)=A(T9J)=A(M,yJ)*EM
A(I9J)=A(TI,J)-A(MyJI*REM

CONTINUE

CONTINUE

CONTINUE

N4=N*4

S{N4)=N

IF {A(N,N))190,180,190

1T=~1

RETURN

CONTINUE

STORAGE FOR A NOW CONTAINS TRIANGULAR L AND U SO THAT (L+I)%*U=A

DUPLICATE INTERCHANGES 1IN DATA

DO 220 I=14N
N3=J3+1
IP=S(N3)
IF(I~1P)200,220,200
DO 210 J=14N
TEMP=AA(I+J)
AALT 2J)=AALIP,J)
AA(IPyJ)=TEMP
CONTINUE

PROCESS RIGHT HAND SIDE

DO 240 I=1,N
N2=J2+1
B(I)=B(1}*S(N2)
DO 250 I=1,NM1
N3=g3+1
IP=S(N3)

SLVEO400
Styve0410
SLVEO420
SLVEO430
SLVEQ440
SLVEO0450
SLVEO460
SLVEO470
SLVE0480
SLVE0490
SLVEO500
SLVEOS510
SLVEOD520
SLVEO530
SLVE(D540
SLVEO550
SLVEQS560
SLVEO570
SLVEO580
SLVEO0590
SLVEO60O
SLVEO610
SLVEO620
SLVEOD630
SLVEO0640
SLVEO0650
SLVEQO660
SLVEO6T0
SLVEO680
SLVE0690
SLVEQ700
SLVEO710
SLVEO720
SLVEOT30
SLVEQ740
SLVEO750
SLVEO760
SLVEO770
SLVEO780
SLVEO790
SLVEO800
SLVEO810
SLVE0820
SLVEO830
SLVEO840
SLVEO850
SLVEO0860
SLVEO870
SLVEO0880
SLVEO890
SLVED900
SLVEOS10
SLVED920
SLVEO930
SLVEO0940
SLVEOS50
SLVE0960
SLVEO970
SLVEO980
SLVEO0990
SLVE1000
SLVE1O010
SLVE1020

SLVE1030 |

SLVE1040
SLVE1050
SLVEL1060
SLVE1070
SLVELO80
SLVE1090
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Printout D-2 (contd)

OO0

[eXaN e

(e NeNel

250

260

270

280

290
300

310

320

330

340

350

360
370
380

390

400

410
420

TEMP=B{1)
g(I1)=p(IP)
B(IP)=TEMP
CONTINUE
IF{IN=4) 260,290,290

BYPASS INITIAL APPROXIMATION CALCULATION
IN GREATER THAN 4 CANMOT DCCUR AT THIS POINT

SOLVE FOR FIRST APPROXIMATION TO X

DO 270 I=14N

Ni=J1l+1

SIN1)==SDOT(I-1,A(1,1),MA,S(J1+1),1,=-B(I))

DO 280 K=1,N

I=NP1-K

Ni=Jgi+]
X{I)=—SDOT(N-T4A{TsI+1)sMA,X(TI+L)s1y=S{NL)}/A(I,4I)

ITERATIVE IMPROVEMENT

IF (ITMAX) 370,370,300
TOP=0.0
D0 310 I=1,N
TOP=AMAX1(TOP,ABS(X(1)))
EPSX=EPS*TOP
DO 360 IT=1,I1TMAX
FIND RESIDUALS
DO 320 I=1,N
S{I)=—DOT{NyAA(TIs1)s NyX(1)y1,-B(I))
FIND INCREMENT
DO 330 I=1,N
N1=J1+1
SIN1)==SDOT(I~1sA(1+1)yMAyS(J1+1)41,=S(1))
DO 340 K=1,N
I=NP1-K
N1=Jl+1
S(T1)==SDOTIN-1,A(L1+1)sMA,S(I+1)+1y=S(NL))/A(I,1)
INCREMENT AND TEST CONVERGENCE

1UP=0.,0
DO 350 I=1,N
TEMP=X(I)

X{I)=DAD(X(I)},S(I})

DELX=ABS (X(1)-TEMP)

TOP=AMAX1(TOP,DELX)
CONTINUE
IF{TOP-EPSX)380,+380,360

CONTINUE

I17=0

RETURN

RESTORE A AND B

CONTINUE
DO 420 K=1,N
I=NP1-K
N3=J3+1
IP=S(N3)
IF(I-1IP)400,420,400
TEMP=B (1)
B{I)=B(IP)
BLIP)I=TEMP
DO 410 J=1N
TEMP=AA(I,J)
AALTJ)=AALIP,d)
AA(IP,J)=TEMP
CONTINUE
DO 430 1=1,N
N2=J2+1

SLVE1100
SLyglllo
SLVE1120
SLVE1130
SLVELL40
SLVEL150
SLVEL160
SLVE1170
SLVELL80
SLVE1190
SLVEL200
SLVE1210
SLVE1220
SLVE1230
SLVE1240
SLVE1250
SLVE1L260
SLVE1270
SLVEL280
SLVE1290
SLVE1300
SLVE1310
SLVE1320
SLVE1330
SLVEL340
SLVE1350
SLVEL360
SLVE1370
SLVE1380
SLVE1390
SLVE1400
SLVE1410
SLVE1420
SLVE1430
SLVE1440
SLVEL1450
SLVE1460
SLVE1470
SLVEL1480
SLVE1490
SLVE1500
SLVE1510
SLVE1520
SLVE1530
SLVE1540
SLVE1L550
SLVE1560
SLVE1570
SLVEL580
SLVE1590
SLVE1600
SLVEl610
SLVE1620
SLVEL630
SLVE1640
SLVE1650
SLVE1660
SLVEL670
SLVE1680
SLVE1690
SLVE1700
SLVE1710
SLVE1720
SLVE1730
SLVEL740
SLVE1750
SLVE1760
SLVE1770
SLVE1780
SLVE1790
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B(I)=B(1)/S(N2) SLVE1800

DO 430 J=1,N SLVEL810
ACT9J)=AA(T4J)/SIN2) SLVE1820

430 CONTINUE SLVE1830
RETURN SLVE1840

END SLVE1850
$IBFTC SLVIN. DECK SLVIO0O10
SUBROUTINE SLVINV (NDIMyNsAsBsIT4S) SLVI0N020

C SLVIO0030
C THE DIMENSION OF S MUST BE AT LEAST N*#2+5%N SLVI0040
C SLVIO050
DIMENSION B(NDIMyNDIM) sSIN)} SLVIN060

ITMAX = 10 SLVIO0070

IN = 1 SLVI0080

JJ = 4%N SLVI0090

DO 20 J = 1,N SLVIO100

DO 10 I = 14N SLVIO110

K= JJ + I SLVION120

10 S{K) = 0.0 SLVIO130
K=Jd +J SLVIO140

S(K) = 1.0 SLVIO150

CALL SOLVE (NDIMyAgNyS{4%N+1)9B(1yd) s INy7oOE~9yITMAX, 1Ty S(5%N+1)4S)ISLVIOL60

IF (IT.EQ.{(~1)) GO TO 30 SLVIO170

IF (IT.EQeO) CALL SOLVE (NDIMyAyNyS{4%N+1)4B(1yJ)y5,7.06~9,ITMAX, SLVIO180

1 ITyS(5%N+1),8) SLVIO190

20 IN = 2 SLVI0200
CONTINUE SLVIO0210

C SLVI0220
o RESTURE THE MATRIX A SLVI0230
C SLV10240
30 CALL SOLVE(NDIMyAsNyS(4%N+1)3B(Llyd)y 337.0E=9, ITMAX, IT,S(5%N+1),5)SLVI0250
RETURN SLVIOZ260

END SLVIO270
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Nomenclature

Coordinates and Related Quantities

XY,z

B
\%4

Cartesian coordinates (basic coordinate
system with the origin located at the
source of the incident electromagnetic

field)

field point (the point at which the scat-
tered or resultant field is evaluated)

the vector from the origin to P
spherical coordinates of P
the scattering surface

the vector from the origin to a point
onS

spherical coordinates of a point on S
a function describing S

an incremental area on S

the distance from P to a point on §

a unit vector normal to S

a unit vector in the direction indicated
by a coordinate subscript

feed offset angle

a region of space

Electromagnetic Quantities

E

H

E,H;
E,H,

E,
Hp,Ho,Hy

Ee, E¢

Eo, Es

AK

k=w(epn)*=2n/A

64

electric field
magnetic field
incident field
scattered field
total resultant field

components of H; with radial variation
factored out

components of E; with radial variation
factored out

components of E; with radial varjation
factored out

surface currents

difference between true currents and
physical optics currents

the propagation constant

electric permittivity
wavelength
magnetic permeability

angular frequency

Functions and Constants Used in Derivations

I

To, I

AL,

an(6), bu(6)

’ ’
e €
Amns bomn

Un=0%np,
bﬂr - bgmn %
n‘n :ngm’l

my, =My %
y
F

2, b, Coun

anm; B mns> émn

A,e(8)=A(6)
B,.:(6)=B(6)

a vector function related to E,
components of I

incremental contribution to 1 from AS,,,,,
Fourier components of surface data

coeflicients related to the spherical-
wave coeflicients

spherical-wave coefficients

spherical-wave functions

the path-length function
a vector function related to H, and p

interpolation coefficients for the func-
tion F

interpolation coefficients for the func-
tion y

mth even or odd Fourier component of
incident electric field

Miscellaneous Symbols

i

\Y

ha(kp)
P (cos )
f

D

F2 (6), G2 (0)

(-1
Laplacian operator
spherical Bessel function

associated Legendre function
focal length of a paraboloid

physical diameter of source (also used
as diameter of a scattering surface)

functions related to the associated
Legendre function
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