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A NEW CONCEPT IN STRAPDOWN

INERTIAL NAVIGATION

By John E. Bortz, Sr.
Electronics Research Center

SUMMARY

In a conventional strapdown inertial navigation system,

the matrix differential equation

_RB cRB
= [_RB x ]

• ,j is integrated numerically using the incremental outputs from

the system gyros. The major problem in this method is the

well-known phenomenon of non-commutativity of finite rotations.

Two ways of combatting errors due to this effect are (a) to

update the direction cosine matrix at or near the gyro re-

balance frequency using a simple update algorithm, or (b) to

update after many rebalance cycles using a more sophisticated

algorithm.

In the method presented here, a correction is generated

for the non-commutativity phenomenon using analog computing

elements. This correction is fed back through the system

gyros where it is summed with the torque produced by the

angular velocity of the vehicle. Then the gyros integrate

and quantize the sum of the angular velocity and the non-

commutativity correction torques. As a result, the incre-

mental data from the gyros can be accumulated over time in-

tervals that are from i0 to i000 times longer than permiss-

ible with conventional algorithms and the update accomplished

using a simple closed-form solution of the C = C[__x] equation.

This is accomplished without sacrificing either the accuracy

of the update or system bandwidth.

A similar hybrid computational technique is developed

for transforming the specific force measurement from the

instrument to the navigational coordinate frame.

Submitted to the Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology, on June 2, 1969 in partial

fulfillment of the requirements for the degree of Doctor of Science.
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CHAPTER 1

INTRODUCTION

i.i A Critique of •Strapdown Inertial Navigation

Inertial navigation systems can be classified according

to the way they perform the basic operations of inertial navi-

gation (ref. i). A navigation system is called a geometric

system if the orientations of both a reference coordinate

frame and a navigational coordinate frame are physically

maintained by system gimbals; a semi-geometric or a semi-

analytic system if only the orientation of a reference or

an intermediate coordinate frame respectively is physically

maintained by system gimbals; and an analytic system if the

orientation of neither a reference nor an intermediate coordin-

ate frame is physically maintained by system gimbals. An analy-

tic system is commonly termed a strapdown system. (Other names

are gimballess or no-gimbal systems.)

Until the present, whenever there is appreciable angular

velocity of the vehicle relative to an inertial coordinate

frame the best performance has been achieved with a gimballed

(geometric, semi-geometric or semi-analytic) system. The

performance of a strapdown system is limited primarily by two

factors not present in gimballed navigation systems. The
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cause of both limitations is the vehicle-fixed mounting of the

inertial sensors in strapdown systems. In gimbailed naviga-

tion systems, the inertial sensors are mounted on gimbals whose

orientations are nominally stationary relative to either the

intermediate or the reference coordinate frame. On the other

hand, the inertial sensors of a strapdown system partake fully

of the vehicle's angular motion. A rebalancing signal must be

applied to the gyro to keep its spin axis near its case-fixed

reference direction. Furthermore, the measurement of specific

force must be transformed from the frame of the measurement

into that reference coordinate frame in which the integrations

of acceleration are to take place.

The first factor limiting the performance of a strapdown

system is that the measurement of input axis angular velocity

provided by the gyro must be inferred from the rebalance tor-

que applied to the gyro. As a result, the integral of the

input axis angular velocity is known only in terms of the re-

balance torque. In gimballed inertial navigation systems,

since the gyros do not experience the vehicle's angular velo-

city, the torque applied to a gyro's torque generator is

always small and the calibration of this torque is not of

great concern. In a strapdown system, the calibration of the

rebalance torque is crucial and is one of its major problems.

Also, the error model for a single degree-of-freedom gyro

includes error terms which are functions of angular velocity

and therefore must be calibrated and compensated.

3
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The second limitation arises from the need to transform

the specific force measurement from the Measurement* Frame to

the Reference Frame. The coordinate transformation from the

Measurement Frame to the Reference Frame must therefore be

known. This coordinate transformation is usually computed

from the pulses (each pulse representing an increment of in-

tegrated angular velocity) obtained from pulse rebalanced

gyros. Each pulse represents a finite rotation. However,

finite rotations do not commute (ref. 2), since Rotation A

followed by Rotation B does not, in general, produce the same

result as Rotation B followed by Rotation A. Consequently,

coordinate transformations computed from these finite incre-

ments include, to some degree, errors resulting from the non-

commutativity of finite rotations. The size of these errors

depends upon the size of the increment and upon the sophistica-

tion of the algorithm used in updating the coordinate trans-

formation.

Thus, the two chief limitations of strapdown navigation

systems are the scale factor error and the coordinate trans-

formation computation error. No techniques for reducing the

scale factor error are presented in this thesis. It is to

the coordinate transformation computation error that attention

is addressed. Previously, each new proposal for reducing the

coordinate transformation error has been a new algorithm for

updating the coordinate transformation using the incremental

A coordinate frame whose name is capitalized refers to a

specific frame. When the name is not capitalized the refer-

ence is to a class of coordinate frames.

4
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data from the gyros. Of these algorithms, it may be said that

they require a great deal of computer capability and capacity.

In fact, this heavy computer loading prevented serious strap-

down system development until the early 1960's when a new

generation of aerospace computers enabled the coordinate trans-

formation computation to become a practical reality.

Strapdown navigation systems have certain advantages over

gimballed systems. They are more reliable and more easily

maintained than gimballed systems; they are smaller and more

flexible in shape; they consume less power since they draw no

gimbal torquing power. However, these advantages are irrevel-

ant if an application requires accuracy beyond the capability

of strapdown technology. There are inertial navigation system

applications for which strapdown systems are considered in-

adequate, such as the navigation system for manned fighter air-

craft, but there are also applications in which strapdown sys-

tems are currently being used, such as the back up guidance

and navigation system for the Apollo Lunar Module (ref. 3).

Further, in at least one application, a strapdown system gives

better performance than a gimballed system. When a spacecraft

must be stabilized in orientation as, for example, to point

a laser beam toward a receiving station on Earth, the entire

vehicle becomes the stable member, and the distinction between

a gimballed system and a strapdown system vanishes. Vehicle

angular motions can be nulled by signals from the gyros in

either class of system. If a gimballed system were used,

uncertainty in the measurement of gimbal angles would contri-

bute to uncertainty in orientation of the vehicle.



The techniques presented in this thesis will permit fur-

ther applications for strapdown systems since, when these tech-

niques are used, coordinate transformation computation is not

a major limitation in strapdown system technology.

1.2 Coordinate Frames and the Transformation Computation

An explanation is in order concerning the particular choice

and role of the various coordinate frames in this thesis. There

always exists an inertial coordinate frame (either explicit or

implied) in any inertial navigation process since all measure-

ments of specific force and angular velocity are made relative

to an inertial coordinate frame. An inertial coordinate frame

is a coordinate frame in which a particle in motion in any

arbitrary direction, but with no external forces acting upon it,

continues in motion with a constant velocity vector. Any

accelerometer, whether mounted directly on the vehicle or on a

stable platform, measures an inertial quantity whose instantan-

eous value is the same as it would be if that sensor were fixed

in orientation relative to an inertial coordinate frame. If

a specific inertial coordinate frame is chosen for an inertial

navigation problem, that frame is called the Inertial Frame.

Another coordinate frame that is always involved in the

navigation process is a coordinate frame fixed to the vehicle

structure. This coordinate frame is called the Body Frame.

Other coordinate frames may be introduced as convenient or

necessary. For example, in a terrestrial navigation system,

it is convenient to introduce a local coordinate frame known

as the Navigation Frame. The origin of this coordinate frame

6



is fixed in the vehicle with one axis along the vertical,

another axis orthogonal to the vertical axis and in the plane

defined by the vertical and the Earth's rotation axis, and

the third axis taken to complete a right handed orthogonal

triad. Other coordinate frames are treated in Broxmeyer

(ref. 4).

In a strapdown inertial navigation system, there is no

gimbal to be maintained in alignment with a reference coordin-

ate frame, so the orientation of a reference frame is main-

tained in the navigation computer as a mathematical coordinate

transformation. The coordinate transformation commonly takes

the form of a direction cosine matrix CRB which transforms a

vector from its representation in the Body Frame into its

equivalent representation in the Reference Frame. The direc-

tion cosine matrix is not the only form that the coordinate

transformation may take. There are other characterizations

of relative orientation such as Euler Angles and Quaternions.

For a discussion of these other representations, see refer-

ences (5) and (6). Except for the singularities in other

representations, the direction cosine matrix corresponding to

any other representation is unique although the converse is

not necessarily true. There may be computational advantages

to the use of other representations, but it is not the pur-

pose of this thesis to explore this possibility, but rather to

develop a hybrid computational technique that makes use of

both incremental gyro output pulses and analog information ex-

tracted from the gyros for use in supplementary analog com-

putations. This technique is then compared with representative



digital techniques.

The Body Frame may have arbitrary angular motion relative

to the Reference Frame, and the gyros in a strapdown naviga-

tion system must measure this motion. The direction cosine

matrix is "updated" from these measurements. The conventional

method for updating the direction cosine matrix is to inte-

grate numerically the matrix differential equation*

B
_RB = cRB [_RBX] (i.i)

subject to the initial condition

RB
cRB(to ) = CO (1.2)

B
where [_RBx] is the skew symmetric cross-product matrix formed

from the Body Frame components of _RB" It is assumed through-

out that the Reference Frame is an inertial coordinate frame

although it need only be related to an inertial coordinate

frame through another coordinate transformation which is a
IB

function of the vehicle's position. In that case, C is up-

dated using the gyro measurements and then premultiplied by

C RI as evaluated from the vehicle's position coordinates.

Then

C RB = cRIc IB

gives the desired coordinate transformation. Alternatively,

pulses representing incremental changes in C RI might be appro-

priately generated and summed with the gyro pulses representing

incremental changes in C IB. This summation of pulses then

Notation conventions appear in Appendix F.
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updates C RB using a suitable digital algorithm.

In order to integrate Eq. (i.i) on a digital computer,

the gyros are sampled periodically to get increments of inte-

grated angular velocity from which _RB can be inferred. As

already stated, the fundamental problem in integrating Eq.(l.l)

is the noncommutativity of finite rotations. The only case

in which the gyro increments, AGx, AGy, and ASz, give a true

picture during the interval AT is when the direction of _RB

is constant and the Ae's accurately reflect that direction.

For example, suppose ex _y _z If at the start of a gyro

sampling interval, the x- and the y-gyro floats are close to

their thresholds and the z-gyro float is not, the output at

the end of the sampling interval might well be a pulse from

each of the x- and the y,gyros and no pulse from the z-gyro.

i _ + 1 _
-x x -y y1 =

1/2

(2+2+2)
x y z

Then

IA 8 =

but

Obviously

+ I _
--z z

1 A8 + 1 A8
--x x --y y

(A82+AO2y) 1/2

and so the update of the coordinate transformation will be in

error. In any case other than

--_i = !AS = constant

over the sampling interval, information is irretrievably lost

J , k "_



of deriving analog angular velocity signals from pulse re-

balanced gyros.

12



CHAPTER2

THE HYBRID CONCEPT

2.1 Introduction

The universal practice of using pure digital computation

to update the coordinate transformation has led to an implicit

understanding of the strapdown gyro as an inherently digital

transducer. For the conventional sampled-data rate extraction

and digital processing techniques, it is only required that at

a sampling instant, the gyro yield a positive, negative, or

zero incremental output. This notion of the gyro and its cap-

abilities is, however, not complete. A better understanding and

use of the strapdown gyro can lead to substantial improvements

in strapdown system technology. It must be recognized that

the strapdown gyro is inherently an analog transducer. It is

only the employment of a digital (pulse) rebalance loop that

renders the gyro output in incremental form. From this realiza-

tion, there follows the possibility of extracting useful continu-

ous information from strapdown gyros.

To date, there has been no attempt to use any computational

technique except purely digital techniques to maintain the

strapdown coordinate transformation. Digital computation methods

have advantages, but they have disadvantages as well. The same

13
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can be said for analog computation methods. The purpose of

hybrid computation is to combine analog and digital computa-

tional methods so as to use the advantages of one method to

overcome the disadvantages of the other. This philosophy

will be applied to the strapdown coordinate transformation

problem.

The main advantage of digital computation is its arbi-

trarily high precision. Since only one computational opera-

tion can be performed at a time, each step in integrating the

direction cosine differential equation must be performed seri-

ally. Thus there is a definite limit to the repetition rate

at which any algorithm can be applied in a specific computer.

Since other computations must also be carried out in the strap-

down navigation system computer, the bandwidth of the angular

velocity environment that can be tracked must be weighed

against the computer size and speed requirements of the overall

computational load.

The principal advantage of analog computation is that any

number of operations can be performed simultaneously. There-

fore, the bandwidth of a computational algorithm is the band-

width of the system as modeled by the analog computer -- not

the bandwidth that would result from cascading each computing

element, as is done in effect on a digital computer. It is

practical to obtain a direction cosine computation whose band-

width exceeds that of the gyros by at least an order of magni-

tude using analog computation since the analog computer is an

electronic device while the gyros are electromechanical in

nature. On the other hand, the accuracy and precision of the

14
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analog computation is limited. An analog computing element

with an accuracy of 0.01 percent is quite good indeed.

To summarize, the precision of digital computation can

be made as high as desired, but the bandwidth of the computa-

tion is limited by the overall load. Analog computation band-

width, relative to gyro bandwidth, is no problem for an analog

computer, but the accuracy and precision of the overall computa-

tion is limited by the cascaded errors of the individual com-

puting elements to around 0.i percent (ref. 8). Obviously,

analog and digital computers have complementary strengths and

weaknesses.

Simulation and computation problems exist that are unsuited

for either digital computation or analog computation alone. An

aircraft research simulation is an example of such a problem.

Also, the strapdown coordinate transformation computation is

only marginally suited to all digital computation, and since it

has the characteristics listed below, it is natural to explore

the possibilities of hybrid computation for this application.

Problems suited for hybrid computation have some or all of the

following features (ref. 9):

(a)

(b)

(c)

accuracy.

(d)

bandwidth.

(e)

The problem is complex.

The problem must be solved in real time.

Certain parts of the problem require relatively high

Certain parts of the problem require relatively high

Both analog and digital information are available.

15



Analog information may be available naturally as a result of

a continuous physical measurement. Digital information re-

sults from sampling physical processes. Conversions from one

form to the other are possible although not always desirable.

For example, the numerical differentiation followed by a

digital to analog conversion of the Ae pulse train from a

gyro may be used to obtain an analog representation of angular

velocity, but this is inferior to deriving an analog signal

directly from the gyro itself, because unacceptable time lags

might be introduced in the process of smoothing the results

of the numerical differentiation.

(f) The problem is capable of convenient division into

parts structured for analog computation and parts for digital

computation. The search for prime numbers, say, could not

reasonably be structured for analog computation. The real

time integration of a complicated system of transcendental

differential equations might be difficult to do on a digital

computer. This problem is easily structured for hybrid com-

putation while the prime number problem is not.

Effective hybrid computation requires that there be re-

latively few analog to digital and digital to analog conversion

links. The portions of the problem set aside for digital com-

putation and those set aside for analog computation should be

relatively uncoupled. Otherwise, problem complexity is aggra-

vated rather than diminished by hybrid computation.

16



2.2 The Hybrid StrapdoWn System

The conventional method for maintaining the current value

of the coordinate transformation is to numerically integrate

the matrix differential equation

B
_RB(t ) = cRB(t) [_RB(t)x]

subject to the initial condition

cRB(to) = cRB'o

In the hybrid method, C RB is evaluated as a matrix func-

tionof the vector argument _RB where _RB(t) is defined as

that rotation required to take a coordinate frame from coin-

cidence with the Reference Frame into coincidence with the

Body Frame at time t. The differential equation for _RB(t)

is developed in the next chapter. Anticipating this develop-

ment, one form of the result is

• 1 x (_RB × __RB )_RB -- _--RB + 2 _RB x _RB + A(qDRB)_--RB
(2.1)

subject to the initial condition

where

_RB (to) = O

A(_R B) =

_RB
_RB sin _RB 1
2 (1-cos _RB )

(2.2)

(2.3)

In Chapter 3, it is also shown that

C RB = I + q(_RB ) [__RB x] +

2
q (_RB )

1 + cos _RB
[__RB x]

2
(2.4)

17



where

sin _RB

q(_RB ) - (2.5)
_RB

Eq. (2.1) is integrated subject to Eq. (2.3), yielding the

current value of _RB(t). Then cRB(t) is obtained by inserting

this value into the right-hand side of Eq. (2.4) which is a

matrix function of _RB(t) only.

A decision is made as to what parts of Eq. (2.1) and

Eq. (2.4) are to be solved using analog computing elements

and what parts are to be solved on a digital computer. The

criteria for the decision are:

(a) The accuracy of the overall coordinate transforma-

tion will not be less than if the computation were done entirely

on a digital computer using some specified algorithm.

(b) Any part of the computation that can be done using

simple analog circuitry will be done that way subject to

criterion (a).

The algorithm to which criterion (a) refers will not be

specified now, but in Chapter 6, where the hybrid method is

compared with purely digital methods, specific choices of

algorithms will be made.

In theory, by Shannon's sampling theorem (ref. i0), the

non-commutativity error can be overcome to any desired degree

using purely digital computation for any input angular motion

whose spectrum does not contain frequencies exceeding one-half

the gyro sampling frequency. The computational load, however,

to approach this theoretical bandwidth limit is entirely out

of the question.

18
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The treatment of Eq. (2.4) will be settled first. Assume

that a whole number digital representation is available for

each component of _RB' and that each component is accurate to,

say, five significant figures. Any error in transforming the

specific force measurement is as serious as an error in the

measurement, thus so if the specific force measurement is

accurate to five significant figures as is reasonable in a

good quality navigation system, then an analog computer accu-

racy of three significant figures in the evaluation of

cRB(_RB) would not suffice. Hence the evaluation of Eq. (2.4)

must be done by a digital computer in order to satisfy criter-

ion (a).

Next a sufficiently accurate whole number representation

of _RB must be obtained. If A_R B increments were available

with the same accuracy as the A8 increments delivered by the

gyro, these increments could be counted in the digital com-

puter to obtain [RB" To obtain A_RB, Eq. (2.1) must be

solved in the proper incremental form. Eq. (2.1) may be re-

written as

where

_RB = _RB ÷ q--RB

• 1

q--RB = _ _RB x _RB ÷ A(¢RB )_RB x (_RBX_RB) "

(2.6)

(2.7)

Each gyro in the orthogonal triad is made to integrate

and quantize that component of the right hand side of Eq. (2.6)

which is parallel to its input axis, thus solving Eq. (2.1)

in the desired form.

19



To see how this is done, consider the performance of a

strapdown single degree-of-freedom, electrically rebalanced,

integrating gyro (ref. i).

(is2+Cs)A = H(_iA-_fb+_ext ) + N(_,f,t) (2.8)

where

I = gyro float inertia about OA (output axis)

C = gyro damping constant about OA

s = time differentiation operator

A = gyro float angle about OA

H = gyro spin angular momentum

_IA = input axis angular velocity

H_fb = a feedback torque applied about OA tending to null A

N(_,f,t) = a torque function of angular velocity, specific force,

and time embodying all the non-ideal performance fea-

tures of the gyro

H_ex t = any other non-inertial torque applied about OA

Since H_fb is the rebalance torque tending to keep float angle

A near null, its time integral will be equal and opposite (ex-

cept for quantization error in a pulse rebalanced gyro) to the

time integral of the sum of all other torques acting on the

float.

t tf

O

H_
fb

tf

dt =/t [H (_IA+_ext) +N] dt

0

In a pulse rebalanced gyro, the quantized integral of H_fb is

available as the sum of the rebalance pulses multiplied by the

weight of each pulse.

20



.o s<.(._-- (n+-n_) = iA+mext + dt + e(q)

t
o

(2.9)

where AO is pulse weight (radians/pulse)

n+ is the total number of positive pulses on (to,tf)

n_ is the total number of negative pulses on (to,tf)

e(q) is quantization error (information stored in the

gyro)

If H_ex t is taken to be

H_ex t = H6 - Ncomp(_,f,t ) (2.10)

where a is a component of a defined by Eq. (2.6) N
-- comp

electrically applied compensation for N(_,[,t) then Eq.

becomes

(Is2+Cs)A = H(miA+6-efb) - 6N(m_,f,t)

is an

(2.8)

(2.11)

where

6N(__,f,t) = Ncomp(__,f,t ) - N(__,f,t)

Neglecting 6(!,_,t)

sult is

and using Eq. (2.10) in Eq.

t tf (_IA+6) dt- AO (n+-n_) + e(q)H

o

(2.9) , the re-

(2.12)

Since _IA + _ may be written as

_OIA + @ = IIA • (_+6_) (2.13)

Eqs. (2.10) - (2.13) show that by applying an electrical torque

proportion to !IA " [" the gyro triad can be made to integrate

21
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and quantize Eq. (2.6).

The generation of _RB can be accomplished using analog

circuitry. If _RB is a term, small in magnitude compared with

the maximum value of I_RB I , then the three significant figure

accuracy of analog computing elements will suffice. (A system

error analysis is found in Chapter 5.)

The hybrid system, which is shown symbolically in Fig-

ure 2.1, requires (a) a set of filters which extract as con-

tinuous signals the components of _RB (b) a set of multipliers

and summers to take the vector cross products required in

Eq. (2.7), (c) a set of integrators to integrate the components

of _RB (note that the only purpose of this vector integration

is to obtain the vector _RB for use in generating the cross

product terms of _RB ) , (d) other miscellaneous circuitry which

will be explained when introduced (Chapter 5).
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CHAPTER 3

THE DYNAMICS OF FINITE ROTATIONS

3.1 A Vector Concept of Rotations

In the field of mechanics, it has long been held that

finite rotations of one coordinate frame relative to another

are not true vectors. In support of this, it is said that

finite rotations do not commute; that is, the orientation

resulting from taking rotation A and then rotation B is not,

in general, the same as the orientation resulting from taking

rotation B and then rotation A. Here the matter has rested.

With the advent of strapdown navigation systems, which endure

the rotational as well as translational aspects of general

rigid body motion, new understanding is required of the dyna-

mics of finite rotations. A more sophisticated coordinate

transformation algorithm is not the answer to the computation

problems that arise. Greater insight into the dynamics of

finite rotations is necessary if any significant progress is

to be made in reducing the complexity of the coordinate trans-

formation computation.

What is a finite, rigid body rotation? In a physical

sense, it is a change in the orientation of one coordinate

frame relative to another. By Euler's theorem (ref. 7),
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there corresponds to any rotation, an axis of rotation and

a magnitude of rotation. Physically speaking, a quantity

which has direction and magnitude is a vector. Hence, the

following definition is made.

Definition: Let the Reference Frame and the Body Frame be

two coordinate frames whose origins coincide. The rotation

vector _--RB is defined to be that vector whose direction is

parallel to the axis of rotation of the Body Frame with res-

pect to the Reference Frame, and whose magnitude is equal to

the angle through which a coordinate frame coincident with

the Reference Frame must be rotated about the axis in order to

be brought into coincidence with the Body Frame.

Three questions will be answered in this chapter.

(a) Is the rotation vector unique?

(b) What is the relationship between the coordinate

transformation C RE and the rotation vector __RB ?

(c) What are the laws of addition for rotation vectors

and what is the relationship between angular velocity W_RB and

the time rate of change _--RB of the rotation vector?

The question regarding the uniqueness of the rotation

vector can be answered at once on an intuitive basis. (It will

be answered rigorously in the next section.) Assume that the

Body Frame is initially coincident with the Reference Frame.

If the Body Frame is rotated through any integer multiple of

27 radians about any fixed axis, it is again coincident with

the Reference Frame. In a more general sense, if the Body

Frame is displaced from coincidence with the Reference Frame by

some general rotation _--RB' then a rotation through _RB + 2nz
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radians about _ results in the same final displacement

[RB = [RB!% = (%RB+2n_)!% (3.1)

Two special cases are worthy of note. The first is the case

for which _RB = 2_. Then

_RB = (2_+2n_)_

Since n may be taken to be -i,

and the axis of rotation is indeterminate. The second special

case is the case for which _RB = _" Then

_--RB= _I_ (3.2)

Also

= = (3.3)

= (-!,1

By comparing Eqs. (3.2) and (3.3), it is seen that a rotation

of _ radians about some axis !_ may be taken in either direc-

tion about that axis with the same result.

Thus it is seen that the rotation vector is not unique.

To any orientation there corresponds infinitely many rotation

vectors (a one fold infinity for _RB _ 2nz and a threefold

infinity for _RB = 2n_ where n is any integer). The converse

is not true, however. In the next section, it will be seen

that C RB is a single valued matrix function of _RB"

3.2 The Relationship Between _RB and C RB

In this section C RB will be derived as a unique matrix

function of the rotation vector _RB where C RB is the coordin-

ate transformation matrix that transforms a vector from a
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Body Frame representation into an equivalent Reference Frame

representation.

One method for deriving CRB in terms of _RB is to note

that if

_RB = elk (3.4)

where _k is a unit vector whose orientation is fixed, then

B
cRB(t) = exp I(t-to)[_RBX]} (3.5)

satisfies the differential equation

_RB cRB B= [_RBx ] (3.6)

subject to the initial condition

cRB(to ) = I (3.7)

This can be verified by substituting Eq. (3.5) into (3.6).

Unfortunately, Eq. (3.6) has a solution in the form of Eq.

(3.5) only for the case where _RB is the zero vector or is

constant in direction. This results from the noncommutativity

of finite rotations. The right hand side of Eq. (3.5) may be

evaluated using the Cayley-Sylvester theorem for matrices

(ref. ii). The result is
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where

2 2 2

_x + (4-_x ) cos

%y%x (l-cOs 4) + %%z sin

%z%x (l-cOs 4) - %}y sin

I
I
I

%x%y( l-cOs 4) - _}z sin _ I

I
2 2 2

_y + (4 -_y) cos _ I
I
I

_z_y( l-cOs 4) + _x sin _ ii

_x_z (l-cOs 4) + %_y sin

%y_z (l-cOs 4) - %_x sin

2 2 2
_z + (4 -_z ) cos

(3.8)

Eq. (3.8) can be written more compactly as

92 _T(I- cos 4) + _2I cos _ + %2 sin_ } [_x]_

(3.9)

Note: When the vector _ is used as the argument of the coor-

dinate transformation C PQ, it is understood (unless otherwise

stated) to mean _pQ.

Equation (3.9) can also be derived from purely geometrical

arguments. This will afford better insight into the relation-

ship between _RB and C RB because angular velocity is not in-

troduced, and so there is no restriction that the direction of

_RB be fixed.

Let r B be an arbitrary vector fixed in the Body Frame.

C RB = I. Then
Suppose that at t = to,
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B R
r --- r
--o --o

Then let the Body Frame rotate with respect to the Reference

Frame through the angle _ about a Body Frame axis u. At time

t, a new vector is defined by

R cRB r Br (t) = (t) (t)

B B
or since r = r

-- --O
is fixed in the Body Frame,

R cRB Br (t) = (t) r
-- --O

These relationships are shown in Figure 3.1.

(3.10)

rB(t)

Figure 3.1.- Rotation vector geometry
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The relationships used in constructing the figures are

J

iii,

u • u = 1 a = (_ • u) u

B
u • b = 0 b = u x r
.... ---O

u • c = 0 c = b x u = u x (_ x u)

b • c=O

In the matrix notation, a, b, and c become

TB 1
a = uu r

b = [u x]_ _ (3.11)

B T B
c - r - uu r

--O ---- --O

From Figure 3.1 it is seen that

rR(t) = a + b sin ¢ + c cos

Eqs. (3.10) - (3.12) can be combined to get

cRBrB = _uuT(l - cos _)+ I cos _ + [u x] sin _r_
j--u

B
But since r

--O
is an arbitrary vector, it follows that

C RB = uu T(I- cos #) + I cos ¢ + [u x] sin

Now let

¢ = Cu

Then Eq. (3.1) becomes

¢¢T
C RB _ --

¢2
(I- cos ¢) + I cos _ +

sin ¢

¢ .[± x]

(3.12)

(3.13)

(3.14)

(3.15)

which is in agreement with Eq. (3.9).
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Other forms of Eq. (3.15) may be readily derived.

analogy with the vector identity

By

__ x(%xv) - %(_'V) - %2v

one may write the matrix identity

[£ x] [# x]v H [_ x] 2_ _ _ Z = (_T-_2I)z

and by direct expansion, it can be verified that

E±xl2
= + I (3.16)

Substitution of Eq. (3.16) into Eq. (3.15) gives

C RB I + sin _ [_ x] + 1 - cos _ [_ x]

= _ -- _2 --
(3.17)

or its equivalent

1
C RB = I + sin % [} x] + 1 + cos- x) (3.18)

Since _RB x _RB = [' either Eq.

be used to show that

(3.17) or Eq. (3.18) may

__RB _RB, B = B B: C qDRB I_--RB : _RB (3.19)

Eq. (3.19) demonstrates that a vector parallel to the axis of

rotation is not changed by the rotation.

It follows immediately from Eq. (3.14) that

cRB [%RB!% ] = CRB [ (_RB +2nz )!_ ] (3.20)

Eq. (3.20) demonstrates the non-uniqueness of _RB in describing

relative orientation.
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Finally, it will be shown that

(cRB) T = (cRB) -I (3.21)

in order to demonstrate that the direction cosine matrix as

derived geometrically is indeed an orthogonal matrix. Note

that if the rotation _RB generates the coordinate transforma-

tion CRB, then the rotation -_RB' which would return the Body

Frame to coincidence with the Reference Frame, must generate

the inverse transformation. That is

cRB (___RB) = [cRB (__RB)]-i (3.22)

Direct substitution in Eq. (3.17) shows that

cRB(,__RB) = [cRB (__RB)]T (3.23)

Combining Eqs. (3.22) and (3.23) establishes Eq.

orthogonality of C RB. It is natural to define

cBR(__RB) _ [cRB(__RB)]-i = cRB(___.RB)

(3.21) and the

(3.24)

3.3 The Theory of Rotation Vectors

It is well known (ref. 7) that rotation vectors do not

obey the normal rules for vector addition. If the rotation C
m

is desired such that it is equivalent to the combined effect

of taking rotation A followed by rotation B, then it is un-

fortunately not true in general that

C=A+B

because of the coupling that exists between the rotations A
m
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and B. A new operation is defined by Laning* which he calls

"rotation sum" and denotes by the symbol "#" such that

C = A # B

This is read as "C is equal to A rotation summed with B"

A simple example serves to indicate the several aspects

of the problem. Let the Body Frame and the Reference Frame

be two coordinate frames that are coincident at the time

t = 0. Let the Body Frame experience an angular velocity

_RB(t) with respect to the Reference Frame as follows:

and

0 < t_<l

_--RB(t) = 2 1 < t_<2

The relative orientations of the Body Frame and the Reference

Frame at times t = 0, t = i, and t = 2 are shown in Figure 3.2.

Let A = _--RB(1)' B = _--B(1)B(2)' and C = _RB(2)"

ure 3.2,

A

u

Then from Fig-

and

This operation and notation was introduced by Laning (ref.12).

The parts of Laning's theory that pertain to this thesis are

developed in Appendix A. There the rotation sum operation is

derived in terms of elementary vector operations.
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Figure 3.2.- An example of composite rotation

1
c_ = 3- (2_) z/ l

So evidently

Obviously

C#A+B

_--RB(t) = _--RB(t) 0 < t_<l

but just as obviously

(_RB(t) 7_ _--RB(t)
1 < t_<2

since
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_RB(2) _ __RB(1) +/

1

This would appear to contradict the notion that _RB(t)

is the rate of change in the orientation of the Body Frame re-

lative to the Reference Frame. The resolution to this apparent

conflict is that the infinitesimal rotation _RB(t)dt must be

"rotation summed" with __RB(t) in order to get __RB(t+dt). Mathe-

matically

_--RB(t+dt) = _--RB(t) # !RB (t) dt

A more convenient formulation is to find that infinitesimal

rotation d__RB which when added to __RB(t) by the normal laws

of vector addition yields __RB(t+dt). That is, an infinite-

simal vector d__RB is sought such that

__RB(t+dt) = __RB(t) + d__RB (3.25)

It is anticipated that d__RB will be a function of _--RB and

__RBdt. An elegant and rigorous derivation of the differential

equation

iRB : ) (3.26)

due to Laning is presented in Appendix A. Eq. (3.26) will be

derived in this section by a more intuitive approach.

The starting point for this derivation is Eq. (3.19)

:

Taking the time derivative of each side of Eq. (3.19) with

respect to the Body Frame gives
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(t -q c B) RB ÷ c _ (3.27)

where the notation d/dt B indicates that the derivative is taken

with respect to the Body Frame. Since Eq. (3.6) is a differen-

tial relationship taken with respect to the Body Frame, it can

be used in Eq. (3.27) to get, after a slight rearrangement

C RB =[_RB X] _RB (I-cRB) d_RB
dt B

(3.28)

The notation d/dt B will be dropped with the understanding that

all time derivatives are taken with respect to the Body Frame

unless otherwise stated. Premultiplication of each side of

Eq. (3.28) by C BR gives

[_--RB x]_--RB = (cBR-I)iRB (3.29)

If the factor cBR-I is expanded by means of Eqs. (3.24) and

(3.17) to get

(i- cos _RB ) 2 sin _RB

C BR - I = 2 [_RB x] [_RB x]

_RB _RB --

i- cos _RB )
=_ 2

_RB

sin _RB_

[_--RB x] - _RB _[_--RB x ]

(3.30)

then it can be seen that C RB - I is singular since it can be

written as the product of two matrices, one of which, [_--RB x],

is singular. Therefore, Eq. (3.29) cannot be solved for

_RB by premultiplying each side by the inverse of C BR - I.
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The physical implication is that the factor CBR - I projects

_RB onto a two dimensional space. (The crossproducts indicate

that this space is orthogonal to _RB. )

As in the case of vectors, it is true that

[_--RB x]--_RB = -[_--RB x]_--RB

Using this identity and Eq. (3.30) in Eq. (3.29), premultiply-

ing each term by [_RB x]/_B' and transferring all non-zero

terms to the right hand side gives

1 2 (i- cos _RB)

= -.-"_--- [_--RB x] _RB + 2 [_--RB X]iRB

_RB _RB

1 sin }RB 2

+ T [_RB x] £RB
_RB _RB --

(3.31)

where the second term on the right has been reduced by the

identity

[! x]3 Z z __2[£ x] Z

Note that when _--RB is constant in direction,

as was the case in the derivation leading to Eq. (3.9).

over, it is true in any case (refer to Appendix A) that

More-

_--RB _--PB= ±RB iRB (3.32)

that is, _--RB and _--RB always have the same component in the

direction of _--RB" In matrix form Eq. (3.32) is
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Premultiply each side by _RB/_B and add the resulting equa-

tion to Eq. (3.31) to get

2 2 [-_RB x]
_RB _RB

(i- cos _RB )
+ 2 [_RB X]iRB + 1 sin _RB 2 •-- 2 [_RB x ] _RB

_RB _RB _RB --

2' 2
Finally subtract [_--RBx] __RB/_RB from each side and invoke

Eq. (3.16) once again. The result in vector notation is

i = _ + B(qS)_ x i- C(_)__ x(_x$) (3.33)

where

1

B(_) 92 (i- cos _) (3.34)

= 1 ( sing)
C(¢) 7 1 ¢

(3.35)

Two other forms of the rotation vector differential equa-

tion are derived in Appendix A. All forms are mutually equi-

valent in the sense that any form can be derived from any

other form. These equations are listed here for convenience.

1
$ = a + _ ¢ x a + A(¢)_ x(¢ x a) (3.36)

where

= 1 ( _sin_ )
A(9) V 1 - 2(i- cos 9)

(3.37)
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Also

$)i = + ! xb-77Y + 2A( ) (3.38)

To obtain yet another form, when the substitution

¢ = !_ 4 arctan __ _ (3.39)

is made in Eq. (3.36), then a lengthy reduction yields

2) 1 1& = 1 + i-_ _ + _ _ x _ + _ _ x (_x_) (3.40)

The coordinate transformation can also be expressed as a

function of _. The result is

2

1 -
16 1 2

C RB = I + 2 [s_x] + _
2 2 [_x] (3.41)

+16 1 2 1 + _-_

The last pair of equations is worthy of note in that no trigono-

metric functions are involved in either the rotation vector

solution _ or in the coordinate transformation. Eq. (3.39)

shows, however, that e is unbounded for _ = 2_.

3.4 The Goodman Robinson Theorem

The 1950's were a decade in which great advancements were

made in the design, manufacture, and testing of gyroscopic ins-

truments. As is often the case, unexpected results were ob-

served in the testing process, and so a theory was developed

to explain these results. One such unexpected result was the

now famous "coning" phenomenon in which a gyro, when subjected

to out of phase sinusoidal oscillations about its spin and out-

put axes, indicates a constant input axis angular velocity when,
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in reality, no net change in orientation is occurring about

its input axis. In 1957, Goodman and Robinson presented a

paper (ref. 13) in which they explained the cause of the coning

phenomenon.

The Goodman-Robinson theorem will be presented here be-

cause of its historical significance and also because it

affords an interesting and independent derivation of Eq. (3.35).

The Goodman-Robinson Theorem

If a rigid body undergoes an arbitrary angular motion

with respect to the Reference Frame, but at some time tf one

Body axis, say the i th axis 1! returns to the orientation it
--i

had at to, then the net effect of the angular motion was to

displace the Body Frame relative to the Reference Frame by a

rotation _i taken about --11!where _i is given by

_t tf_i = _i(t) dt + A i

O

+ 2m_ (3.42)

where n is an integer

A i is the solid angle described by 1! and is equal to the
--1

surface area traced out by 1! on the unit sphere
1

Goodman and Robinson proved the theorem first for the case

where the curve traced out on the unit sphere by 1B is a simple
--i

closed curve. Their argument is somewhat hard to visualize geo-

metrically. Broxmeyer (ref. 4) offers a proof that affords

considerably more insight. Refer to reference (4) or (12) for a

proof.

Goodman and Robinson then extended the theorem to curves

which are not closed. They did this simply by postulating a
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convenient closure for the curve. The argument is as follows:

Suppose the Body Frame and the Reference Frame are coincident

at t = t o • An arbitrary angular velocity _RB on the interval

(to,t f) takes the Body Frame from coincidence with the Refer-

ence Frame into some orientation at t = tf that can be uniquely

described by the principal value of the rotation vector _RB(tf).

The curve traced out on the interval (to,t f) can be conceptually

closed by conceptually rotating the Body Frame from its relative

orientation at t = tf through the vector rotation -_RB" Then

since this conceptually rotated Body Frame again coincides with

the Reference Frame, _i

done,

[St to
If

t

t f __(t) at

o

in Eq. (3.42) is zero. When this is

wi(t) dt + AI + 2mz] - _i = 0 (3.43)

< 27 (3.44)

then it is true that m = 0. Solving Eq. (3.43) for %i gives

t tf¢i = wi(t) dt + A i

o

(3.45)

whenever Eq. (3.44) holds.

To find the area A i, Goodman and Robinson used the so-

called Green's Theorem in the plane (ref. 14). The result to

be employed here is
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Ai= / xdyydx, (3.46)

where

A is the plane area within a closed curve C,

is the line integral taken in the positive sense around

C,

f(x,y) = 0 is the equation of C

The use of Eq. (3.46) will yield an approximate expression

for the area within the contour traced out by i_ as closed by
--1

the conceptual rotation -_RB" This is shown as the shaded area

in Figure 3.3. In order to adapt Eq. (3.46), a change in coor-

dinate system must be introduced. Let the local area around

1B (say) be approximated by a plane, and define a _x,_y coor-
--Z

dinate system, in that plane as shown in Figure 3.4. In terms

of this coordinate system, Eq. (3.46) becomes (in parametric

form)

1 d_y dT (3.47)
A z (t) = 7 x _ - _y dT /

t
O

which when used in Eq. (3.45) gives

t[ (
Jt 1 d_y_ _Y dT (3.48)

_z (t) _ _z + 7 #x d--_

O

The equations for _x and _y are obtained by cyclic permutation

of the indices. Equation (3.49) and the equations for #y and

_x can be differentiated with respect to time to get the differ-

ential equations

42



'_'_••,i•I•/¸_•!

•., <

Figure 3.3,_ Area traced on uni't sphere

B
_X Y

Figure 3.4._ @x' @y coordinate system
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= 60
X X

z z

1

+ _ (_ySz - }zSy ) "

1
+ y (*zSx - ,xSz)

1

+ _ (_xSy- _y_i)

(3.49)

By defining the vector %J = [%x _y %z ]' Eq.

in vector form.

1

(3.49) can be written

This is a reasonably good approximation to Eq.

is written here in expanded form.

i = _ + i - cos _ i ( sin _) _ x(_x$ ),2 ±xi+ V , - -

By comparing Eq. (3.33) with Eq. (3.50), it is seen that there

are two areas of disagreement. They are (a) the coefficient

on the __xi term and (b) Eq. (3.50) omits the final term in

Eq. (3.33). Intuitively, these discrepancies can be explained

as follows:

(a) Let A be the area of a plane circle of radius _.
P

Then from plane geometry,

A = 7¢ 2
P

Let A S be the spherical area enclosed within the spherical

small circle in Figure 3.5 where the central angle from the

(3.50)

(3.33) which

(3.33)

pole to the small circle is _.
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Figure 3.5.- Spherical area enclosed by small cycle
,\

\

If the sphere is a unit sphere, then from solid geometry,

A S = 2_(i - cos _)

The ratio

1
(i - cos @)

AS = _2

A 1/2
p

is exactly the ratio of the coefficient of the @x$ term in

Eq. (3.33) to that in Eq. (3.50).

(b) Referring to Figure 3.3, the area given by Eq.(3.47)

approximates the sum of the shaded area and the crosshatched

area whereas the desired area is only the shaded area. This

happens because the closure for this greater area is a great

circle which appears as a straight line in Figure 3.4. The

actual closure generated by -_RB is, in general, a small

circle which would appear as a curved line in Figure 3.4, but

the parametric form of Green's Theorem given by Eq. (3.47)
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takes the area enclosed by (a) the curve generated by the

parameter t and (b) a straight line from the origin to the

location of the point (_x,_y) at time t. The area discrepancy

(shown as the cross hatched area in Figure 3.3) is equal to

i (i sin _)92 _ x (_x$)
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CHAPTER 4

THE MEASUREMENT OF ANGULAR VELOCITY

4.1 Problem Statement

In Chapter 2 the analog computation of the _RB correc-

tion term required a triad of continuous signals representing

B B

_RB" The gyros measure the components of !RB' and from a

combination of signals, observable in the gyros, the desired

signals must be derived.

If a gyro with a linear rebalance loop followed by an

integrator and quantizer is used, the generation of the de-

sired analog signals is straightforward. The performance of

a single degree-of-freedom integrating gyro* as given by

Eq. (2.8) becomes

(Is2+Cs) A = H(eiA-_fb) (4.1)

if the non-ideal performance term is neglected and H_ex t is

taken to be zero. H_ex t = H_ in a pulse rebalanced gvro, for

in that configuration, the summation and integration of

H(_IA+_) takes place in the gyro and the quantization operation

An integrating gyro is so named because of the absence of a

mechanical restraint torque proportional to float angle. An

integrating gyro may be used in a rate gyro mode by using a

linear rebalance loop.
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is performed by the rebalance loop. In a gyro with a linear

rebalance loop followed by an integrator and quantizer, _ is

neither integrated nor quantized by the gyro and so it is

added to _IA at the input to the integrator-quantizer. In

linear rebalance loops, the rebalance torque H_fb is propor-

tional to float angle A.

H_fb = KA

With this substitution Eq.

(Is2+Cs+K) A = H_

An electrical signal e
sg'

(4.1) becomes

IA

proportional to float angle A

(4.2)

e = K A
sg sg (4.3)

is taken to be the output of the gyro. The gyro transfer

function is found by using Eq. (4.3) in Eq. (4.2) and taking

the Laplace Transform (assuming zero initial conditions)

esg(S) _ KsgH/K

_IA (s) (I/K)s 2 + (C/K)s + 1
(4.4)

In the case of the linear rebalance loop, at low frequencies

the signal esg is proportional to _IA with a scale factor of

KsgH/K volts per radian per second. The high frequency charac-

teristics are modified by the presence of the second order

dynamics of the gyro.

For the pulse rebalanced gyro, it is not so obvious how

to proceed. One possibility for obtaining a voltage propor-

tional to _IA is to fit an (n-l) th or lower order polynomial

through the last n data points, i.e., the last n AS's from
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the gyro. This is done in the digital computer. The value

of the polynomial (over the interval from the previous

sampling instant until the time of the next fitting process)

is made available to the analog circuitry by digital to analog

converters. With three components of _--_B to extract, this

computation could not be performed often enough to have signi-

ficant bandwidth without imposing a rather large load on the

computer. The phase lags of low computation rates or the in-

accuracies of fast rates have detrimental effects (when _RB

has a broad band power spectral density) on the coordinate

transformation (computed by any technique) and on the compensa-

tion of the gyro dynamic errors N(_,f,t). For an analog rate

extraction scheme, the pulse rebalancing feature makes it im-

possible to obtain the desired signals from signal generator

observations alone. As will be seen, the torque generator

signal supplies the needed additional information for the rate

extraction process.

4.2 Filter Analysis

The starting point for this analysis is again Eq. (2.8)

(Is2+Cs) A = H_IA - H_fb + H_ + N(_,f,t) (4.5)

where H_ has been substituted for H_ex t. The block diagram

of the gyro modeled by this equation is shown in Figure 4.1.

A three level relay is shown in the rebalance loop, but this

is not essential; the filter design for a gyro whose rebalance

loop utilizes any nonlinear element would be identical to that

for the gyro with the three level relay. An intuitive approach
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is taken in the design process, and the results are then

analyzed to justify the design. Two questions lead to the

filter configuration.

(a) Suppose the gyro were operating open loop (no re-

balance signal). How should the output of the signal genera-

tor be treated in order to obtain the desired signal?

(b) Although the rebalance loop is in fact closed, can

the torquing signal be processed and introduced into the fil-

ter in such a way as to allow the filter to operate on the

signal generator signal of an equivalent open loop gyro?

With the gyro operating open loop, the H_fb - H_ term

in Eq. (4.5) is zero. Also neglecting the non-ideal perform-

ance term, Eq. (4.5) becomes

(Is2+Cs) A = HeIA

Using Eq. (4.3), the gyro transfer function is

esg(S) - KsgH/C (4.6)

_IA(S)(IQ s _ s+

The output e is proportional (exclusive of gyro dynamics)
sg

to the integral of _IA as expected, and so the filter must

therefore differentiate the signal generator signal. At fre-

quencies above those in the desired range, attenuation at the

differentiator output is desirable. This is especially true

when the signal generator output is an amplitude modulated

signal since a ripple at twice the carrier frequency is the

by-product of any demodulation process. This ripple is re-

moved by filtering. The filter function is chosen as
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HOdfb= Ktg efb
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u1
Figure 4.1.- Gyro and rebalance loop



* Kfs(s)

esg(S) <_ff)2 +%/_ wTs + 1

(4.7)

where

w* is the measured value of WiA

Kf is the filter gain constant

wf is the filter natural frequency

Notice that the denominator is an underdamped second order

term. The particular choice of damping constant, %/_/2, gives

the filter a maximally flat response (ref. 14). This filter

function is called the signal generator section of the w-

Filter.

With the w-Filter given by Eq. (4.7), the overall trans-

fer of the angular velocity measurement is

* HKfKsg/Cw (s)

WiA (s)
2 2

(TgS+l) (s /_f+%/_S/wf+l

(4.8)

where T is the gyro time constant I/C.
g

The gyro is, of course, not operated open loop in a

strapdown system. But with the torque generator signal passed

through the exact electrical analog of the gyro and entered

into the filter of Eq. (4.7) with the opposite sense as the

torque generator signal (which has passed through the real

gyro), then as far as the w-Filter is concerned, the gyro is

operating open loop. Such a filter concept is shown in Fig-

ure 4.2(a). In this filter section, the torque generator
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section, the differentiation cancels* the integration per-

formed in the gyro. The result is shown in Figure 4.2(b).

With the e-Filter implemented in this way, Eq. (4.8) is

still valid as the basic transference of the measurement pro-

cess. There are three main sources of error in this system.

They are (a) the uncompensated portion of the non-ideal per-

formance term 6N(_,f,t), (b) an error 6etg due to imperfect

cancellation of the torque generator signal, and (c) an error

n d which arises in the demodulation process. The way these

error sources effect the system is shown in Figure 4.3.

The non-ideal performance term N(_,f,t) is, in reality,

a sum of terms. This sum includes a constant term, a series

of terms which are functions of angular velocity _, and a

series of terms which are functions of specific force f. Each

term is characterized by a coefficient which may or may not be

capable of unique determination in a calibration process.

These coefficients may change with time and there is an un-

certainty in the determination of each coefficient. It is the

practice, in mechanizing a high quality inertial navigation

system, to compensate for the non-ideal performance as much as

possible. Assume this has been done through application of a

compensation torque Nc(_,f,t) to the gyro float. The ability

It is acceptable to cancel an integration with a differen-

tiation, but the attempt to cancel a differentiation with an

integration results in the situation known as non-observability

because the bias component on the input to the differentiator

is not known (observable) and hence cannot be restored after

the integration.

55



%uama_ns_am _'-'_u_saoJa3 ''E'_ aanS_

_m Jm
i+ -_-z_._+ _- = (s)o

Z

N01103S UO.LV_I3N39 3nouo.L

(s)b(l+ s6j.) (l+ s 6j.)_O/#H sH D_H
5_9

/_ _I01V"I NOOIN30

r

+ 5Se

+

I:138IN31N

9NIMMFIS 3 FIbI:IOI

_T
(_'I'_)N_

I.?)

_i_,_ii; _i__!....

_ii. "i I__,i_,i_-



to apply this compensation implies the ability to measure

angular velocity and specific force and to compute the correc-

tion. When this is done, the error dN in applying the compen-

sation is given by

_N(_,f,t) = Nc(_,f,t) - N(_,f,t) (4.9)

In Figure 4.3 this error is shown as an error torque acting

on the torque summing member. The statistics of this error

torque are rather complicated and no attempt will be made

to discuss them here. Since 6N is a function of angular velo-

city and specific force, it is expected that this noise will

be correlated with the input.

The error due to imperfect cancellation of the electric-

ally applied torques is the result of inexact voltage trans-

mission from the torquer input to the filter torque generator

section. (The difference between the real gyro dynamics and

the simulated gyro path dynamics might be considered at this

point but this additional level of attention is not justified

since the # correction signal to be generated from filter output

is itself small in magnitude compared to I_RB I . This error is

shown entering the torque generator section of the filter in

Figure 4.3.

Observe that detg can assume (neglecting dynamics) one of

three levels depending on whether a positive, negative, or

zero pulse of rebalance torque is being generated. Again, this

error is correlated with the input. In fact, the statistical

properties of detg are identical with those of the rebalance

torque itself. These statistics will not be developed here.
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The final error source, the demodulation error voltage

nd, is given by the expression [see Eq. (4.15)]

nd = Ks(COS 4_ft)A (4.10)

where f is the modulation carrier frequency. This error is a

consequence of the demodulation process. It also is a func-

tion of float angle A. Since its power is concentrated at

the frequency 2f, it is easy to attenuate this error by fil-

tering. Since n d is a function of float angle A, it is corre-

lated with the input.

Filtering which attempts to discriminate against the im-

perfect compensation error 6N(_,f,t) and the imperfect torque

cancellation error _etg on the basis of different power spectra

of noise and input signal will not be too effective since/

these errors are themselves functions of the input signal. The

best way to suppress these noises is to suppress their sources.

The demodulator noise n d on the other hand is not a result of

gyro and rebalance loop imperfections, but arises as a con-

sequence of the demodulation technique. Since most of its

power (except for sideband power generated by the variations

in float angle A) is concentrated at twice the modulation

carrier frequency f, this noise can be conveniently attenuated

by filtering. The filter function for the signal generator

is

Fsg(S) = Kfs/Q(s)
(4.11)
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and is chosen to have the desired bandpass for the angular

velocity _IA and the desired attenuation to the demodulator

noise n d .



4.3 Filter Design

The filter is conveniently divided into 4 sections, a

demodulator, a signal generator section, a torque generator

section, and a final section. The relationship of these sec-

tions is shown in block diagram form in Figure 4.4. The gyro

characteristics and the design of each of the filter sections

will be discussed now. A transfer function will be developed

for each filter section. The actual circuit for each filter

section is found in Appendix B. Section 4.3 may be omitted

by those whose interest is in e-Filter performance and not

its detailed design. Performance and test results are pre-

sented in Section 4.4.

4.3.1 Gyro Characteristics

The mechanical and dynamic characteristics of the Honey-

well GG 334A gyro necessary for the design of the e-Filter

are shown in Table 4.1

4.3.2 Demodulator

The signal generator excitation voltage is used in the

demodulator and is given by

e = 5 sin 2_ft volts (4.12)
P

The signal genera£or secondary signal is given by

e = K A sin 2_ft volts (4.13)
s sg

In order to obtain a voltage proportional to the float angle,

this secondary signal must be demodulated. The demodulator

consists of a multiplier whose transference is given by
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TABLE 4.1

GG 334A CHARACTERISTICS

!

Name

H

C

I

K
sg

A t

AT

A0

"rtg
f

D

K*
tg

e
P

IA, MAX

Parameter

Angular Momentum

Output Axis Damping

OutputAxis Inertia

Signal Generator Sen-

sitivity

Value

2x105

5x105

250

25-30

-5
Threshold Float Angle 6x10

Sampling Interval 1/3600
-14

Quantization Level 2

-5
Torquer Time Constant 5x10

Signal Generator Carrier

Frequency

Relay Output Voltage

Torque Generator Sen-
sitivity 8x104

Signal Generator Excita-
tion 5

Maximum Input Angular

Velocity

Units

2
gm-cm /sec

dyne-cm-sec
2

gm-cm

volts(peak)/
radian

radians

seconds

radians

seconds

28.8xi03 hertz

5 volts

2

dyne-cm/volt

volts (peak)

radians/second
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These are parameters which are given for the simulated gyro

path only. In the real gyro, the output of the three level

relay is • a current. A 5 volt signal is generated for readout

purposes only.

**

eD actually has a peak value of 7.35 volts but it is attenua-
ted-to 5 volts peak for use in the demodulator.
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z = xy/ m

where z is the output voltage, x and y are input voltages,

and K m is equal to the maximum permissible voltage level of

either input. For the demodulation process, it is necessary

to amplify e s and then multiply it by ep.
If the amplified

e s is Kae s, then the demodulator output is

e d = Kaepes/Km (4.14)

The multiplier chosen for this filter (see Appendix B) has a

maximum permissible input of 5 volts. Therefore K = 5 volts
m

and using Eqs. (4.12) - (4.14),

2

e d = Ka5KtgA sin 2wft/5

1

= KsgKaA _ (i- cos 47 ft)

= K (i- cos 4_ ft)A (4.15)
s

where

1 (4.16)
K s = _ KsgKa

K may be regarded as the equivalent signal generator sensitiv-
s

ity for the signal flow path through the u-Filter. Since K a

is dimensionless, the dimensions of K s are the same as those

of Ksg, viz., volts per radian.
Substituting Eq. (4.10) into

Eq. (4.15) gives

e d = KsA - n d
(4.17)

Suppose it is desired when A = A T , that KsA t = 1.8 volts.

From Eq. (4.15), the maximum value of e d = 2KsA. Thus at
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k

/

t

<: •

= 3.6 volts. The difference between this
threshold, ed, max

and the 5 volt maximum allows for the possibility of exceeding

the threshold without saturating the multiplier. Then

K
s = 1.8/AT

= 1.8/6xi0 -5

= 3x104 volts/radian (4.18)

From Eqs. (4.16) and (4.18) and Table 4.1, the required value

for preamplifier gain is

K a = 2 Ks/Ksg

= 2x3x104/30

= 2000 (4.19)

4.3.3 Signal Generator Section

This section implements the transfer function

s

Kf_f _f (4.20)

Fsg (s) = 2

s _s+ i
--_ + _f
_f

where K is chosen so that an overall scale factor which re-
f

lates _IA' MAX to _MAX has some desired value and _f is chosen

so as to achieve the desired bandpass on one hand and adequate

filtering of n d on the other.

The actual chain of elements in the transference path

from _IA to _* is shown in Figure 4.5(a).

transference is shown in Figure 4.5(b).

for the maximum value of _ . Then since

The equivalent

i0 volts was chosen

= 2 radians/
_IA, MAX

second, it is necessary that
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Figure 4.5(a).- Actual arrangement of elements

I H KsKf/C +')
-------_(,0

Figure 4.5(b).- Equivalent transference

Therefore

H KsKf/C = _*/eIA, MAX

= 5 volt-sec/radian

Kf = 5C/HK s

5x5x105

= sec

2x105x3x104

= 4.17xi0 -4 sec

The gyro float time constant T
g

4.1 is

T = 5xlO
g

-4
sec

(4.21)

is I/C, which from Table

(4.22)

or equivalently, the gyro break frequency _ is
g
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g

g

= I/T
g

= 2x103 rad/sec (4.23)

The noise n d has a characteristic frequency en given by

= 4_f
n

= 4nx2.88x104

= 3.62xi05 rad/sec

Therefore, choose

_f = 104 rad/sec (4.24)

This is sufficiently above the gyro float break frequency so

that the input signal bandpass is still primarily limited by

the float lag. It is also sufficiently below the demodulator

noise frequency so that the demodulator noise is heavily atten-

uated by the filter.

Note from Figures 4.2a and 4.3 that _IA is attenuated by

a second order characteristic in the filter since the float

integration and filter differentiation cancel. In contrast

with this n d experiences only a first order attenuation since

in its path there is no integration to cancel the filter dif-

ferentiation.

By substituting Eqs. (4.21) and (4.24) into Eq. (4.20),

the signal generator section transfer function becomes

(4.25)

Fsg (s) = 2
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4...3.4 Torque Generator Section

This section must simply duplicate the path that must be

taken by the torquing signal. From Figure 4.2b, it can be

seen that the transfer function of the torque generator section

is

t

J

Ftg(S) = KtgKsKf/C (4.26)
2 s1

Using values from Table (4.1) and Eqs. (4.18) , (4.21) , and

(4.24), this becomes

4.3.5

Ftg (s) -

2

s-z-+ 5 s + +_ s
105 104 104 +

•Final Section

(4.27)

The final section is responsible for combining the out-

puts of the signal generator and the torque generator sections.

It is merely a summing amplifier.

4.4 Test Results

The e-Filter was built (Appendix B) and tested. The re-

sults were generally as expected although a perfect cancella-

tion of the torque generator signal was not achieved. At the

filter output, there were small residual pulses of opposite

sign occurring before and after the generation of a torque

pulse in the gyro. These residual pulses had a one volt

magnitude. In order to suppress these pulses, a lag was in-

troduced at the output stage having a 10 -2 second time
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constant. The residual pulse were attenuated by a factor of

i0, but the first break frequency was reduced to i00 rad/sec.

The filter gain and phase vs. frequency plot is shown in Fig-

ure 4.6.

The filter was adjusted to have zero output when the

float angle A was constant and to have a 1.000 volt (i/i0 of

full scale voltage) when the gyro pulse rate was 3600 pulses

in i0 seconds (i/i0 of maximum pulse rate). Thus the filter

was adjusted for zero error at two points. The output voltage

error at any intermediate point was less than 1 percent of

full scale voltage. A suggested design goal is an output

voltage error of less than 1 percent of the nominal output

voltage at any intermediate point.

Conditions adversely affecting the filter performance

were:

(a) The gyros were not temperature controlled. This

rendered an exact electrical analog of the gyros difficult to

achieve.

(b) The signal generator signal used by the filter was

taken from the output of the rebalance loop preamplifier. The

gain of this preamplifier tends to have a different value

above the threshold for generating a torque pulse than below.

It is recommended that the signal generator signal itself be

used rather than the rebalance loop preamplifier output.

(c) The multiplier used in the demodulator has a nomi-

nal bandwidth of 25 KHz. The multiplier output signal is a

57.6 KHz signal. A better multiplier is recommended.

(d) The gyro wheels were not on. The result of this

factor is difficult to assess. 67
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CHAPTER 5

SYSTEM MECHANIZATION

5.1 The Choice of an Equation

The system to be mechanized is that system which inte-

grates iR B and evaluates the coordinate transformation C RB

given by Eq. (3.17). In Section 3.3, four forms of the rona-

tion vector differential equation were given as Eqs. (3.36),

(3.33), (3.38), and (3.40). They are rewritten here for con-

venience.

1
= _o + : q5 x _o + A(_)) q5 X(¢XO3) (5.:)

! = __ + B(¢)¢_x_ - C(¢) (b x(¢x$) (5.2)

$ = _ + c(_)
- - B(¢) _ x __ + 2A(¢)¢x$ (5.3)

and

0') 1 1
& = + _-_ _ + _ ex_ + g e x(_x_) (5 4)

where

= _i¢ 4 tan _---- 4 (5.5)

When expanded as infinite series, A, B, and C are [from

Eqs. (3.37), (3.34) and (3.35)]

69



1 _2 _4 96

A - 12 + 72--O + 30,240 + 1,209,600 +''" (5.6)

B = 1 _2 %4 96
2 24 + 72---O 40,320 +''" (5.7)

C = 1 %2 94 96
- i2-O + 504-----O- 362,880 +''" (5.8)

A desirable property of the equation to be used is that when

1 is constant, _ = w. In other words, it is desirable to be

able to cast the system equation in the form

$ = _ + _ (5.9)

In this form, _ can be regarded as the correction rate for

the noncommutativity phenomenon, and in the absence of a non-

commutativity effect (i constant), $ is just the same as it

would be if the o loop in Figure 2.1 were opened. This loop

could actually be opened when the direction of _ is essen-

tially constant over the update interval. Equation (5.5)

introduces a scaling applying to Eq. (5.4). As a result,

this form of the rotation vector differential equation is

subject to additional sources of analog computation error

over the other three forms and will not be considered further.

If only the first term of the series expansions for A,

B, and C is used in Eqs. (5.1), (5.2) and (5.3), then the

approximate relations

1 1
i = _- + _ _x_ + _-_ __ x(¢_x__) (5.10)

1 9x$ - 1= _ + _ _ _ x(gxg) (5.11)

1 1
$_--± + __x( _ __+ _ _ ) (5.12)
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• _ii!il_ <

• < i ,_ ' ,

are obtained.

is

The most significant neglected term in Eq. (5.10)

4 4

720 14 x(14x_--)

In Eq. (5.11), the most significant neglectedwhere 4 = I_l-

term is

4 3 .

and in Eq. (5.12) it is

3 3

4 !4 + 4 !490 - 720 -

Obviously, for any value of lil, Eq. (5.10) gives a

superior result to that of Eq. (5.11). Hence, Eq. (5.11) is

excused from further consideration. While the approximation

errors in Eq. (5.12) are two orders of magnitude larger than

those in Eq. (5.10), Eq. (5.12) enjoys a distinct computational

advantage over Eq. (5.10). In Eq. (5.10), two cross products

are required, while in Eq. (5.12) only one is required. Re-

cognizing the fact that analog computational elements do con-

tribute errors, the impact of the errors generated by the addi-

tional cross product requirement of Eq. (5.10) would have to

be assessed before a choice could be made between Eqs. (5.10)

and (5.12) strictly on the basis of relative accuracy.

Relative accuracy, however, need not be the basis for

the choice. The choice of a particular equation need only be

substantiated on the basis of the absolute accuracy of its

solution. The scale factor uncertainty of the gyros used in
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the experiment (Honeywell GG 334A gyros) has an rms value of

about 200 ppm. Therefore an error of 20 ppm can be tolerated

in the equation without significant effect on the solution.

This justifies the choice of Eq. (5.12) subject to a restric-

tion on _MAX that will hold the error in _ to less than 20 ppm.

Using Eq. (5.9) , Eq. (5.12) becomes

1 1 _ ) (5.13)Cx(

The accuracy and the stability of Eq. (5.3) for large

¢(_<_ radians) and of Eq. (5.13) for small _ have been verified

by a highly accurate digital computer integration. This veri-

fication is given in Appendix C.

5.2 Analog System Configuration

The analog system mechanizing Eq. (5.13) is shown symboli-

cally in Figure 5.1. The considerations of voltage scaling

are also indicated. Since each signal in an analog computer

is a voltage, each real variable being modelled is a product

of its corresponding analog voltage and a scale factor. In

particular,

= k e (5.14)
-- _-<0

(5.15)

__ = k_e@ (5.16)

__ = kce@ (5.17)

can be chosen at once Since theOne scale factor, k W,

maximum voltage on the analog computer is i00 volts and since

the maximum angular velocity for the gyros is 2 radians per
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second (Table 4.1) ,

I_MAXI
2 rad/sec

k -

II'_,MAX' i00 volts

-2
k = 2x10 rad/sec/volt (5.18)

does not appear as an electrical signal in Figure 5.1,

so the choice of k S is immaterial.
e and e. are summed to-
-40 -u

gether to obtain e$ and so k_ is chosen to be the same as

k

k@ = 2x10 -2 rad/sec/vol t (5.19)

Before choosing k¢, an expression will be derived for the

first neglected term in Eq. (5.13). Since

__ _ +

it is seen from Eq. (5.13) that

1 Cx_o + i Cx_

21 Cx_o + _- ¢x(l :i CX_O + 6-i¢X8 )

i Cx_ + i i2 _ ¢ x(¢x_) + _-_ __ x(¢x@)

Note from Eq. (5.13) that

_ __ : 0

so the last term of the preceeding equation becomes

1 ¢2
3--6¢ x(¢x:) = - 3-6 :

and therefore
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1 1 92
__= _ 9x_ + _ __x(¢x_) - 3--6_--

i 92) 1 1+ _ _ = [ _x_ + i7 ix(_x_)

:- = + 36/ [.2 9xoo + i: _- x(gx_

__ - - 36/L 2 9x_ + _ __ x(gx_

1 1 92 92

g_ " _ 9x_ + _ ¢_ x(gx_) - 72 9x_ - 43---2_- x(gx_)

By comparing this result with Eq. (5.1) and using Eq. (5.6)

and (5.9) it can be seen that the first neglected term in

Eq. (5.13) is

3
FNT- 9

72 l¢x__ (5.20)

Eq. (5.20) shows that the maximum error magnitude in Eq. (5.13)

is of the order of 93/72 times that component of _ which is

perpendicular to 4- If 9MA X is taken to be 0.i radian, then

the maximum error is 14 ppm times the component of _ perpendi-

cular to ¢. Since % will range anywhere from 0 to _MAX and

since the average of l_x_ will be somewhat less than _MAX'

the choice of

9MAX = 0.i radian (5.21)

results in a probable error not more than 5x10 -6 _I and a

guaranteed error of not more than 14xi0-61_I. With CMAX as

given by Eq. (5.21), k s is then

0.i rad
k =

i00 volts

-3
= i0 rad/volt (5.22)
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5.3 The Frequency of the Update

The hybrid computational technique obviates the need

for high frequency updating for the purpose of maintaining an

accurate direction cosine matrix. Accuracy is maintained by

generating an analog correction signal o which accounts for

the noncommutativity phenomenon encountered in finite rota-

tions. This allows the accumulation of the A_ pulses from

the gyros over arbitrarily long intervals of time, subject,

of course, to the restriction that an update must occur when

exceeds _MAX"

Since the direction cosine matrix is not an end in it-

self, but exists (a) in order to transform vectors from the

Body Frame into the Reference Frame and (b) to describe the

attitude of the vehicle; it should be these considerations

which specify the frequency at which it must be updated.

It is important to obtain a good transformation of the

accelerometer measurement from the Body to the Reference Frame.

As in the case of the conventional direction cosine matrix

update process, this transformation can be done by a simple

application of the direction cosine matrix to each AV (incre-

ment of integrated specific force) by accumulating the AV's

over a longer time interval and then applying a more sophisti-

cated transformation algorithm. In the former approach, a

sufficiently accurate direction cosine matrix must be avail-

able as often as the accelerometers are sampled. In the latter

approach, the overall computational burden of the transforma-

tion process is reduced somewhat by using a more sophisticated
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algorithm at a slower rate. Typical transformation rates range

from i00 to 3000 transformations per second (ref. 15).

The navigation equations are integrated less frequently,

with typical rates on the order of 1 integration step every

i0 seconds (ref. 16). This means that from the point of view of

navigation requirements, the transformation of velocity incre-

ments can take place at a slower rate than that given in the

previous paragraph. Even the implementation of a guidance

law (such as the nulling of the velocity-to-be-gained vector)

does not require a high transformation rate since only very

low vehicle angular rates (except perhaps for vehicle angular

vibrations) would occur in such a guidance process.

The foregoing paragraph provides the rationale for the

hybrid velocity transformation method presented in Chapter 7.

There it is seen that a direction cosine matrix update fre-

quency of

f = l0 updates/second
U

(5.23)

is quite adequate for most velocity transformation purposes.

The important point is that in the hybrid method, it is

the use of the coordinate transformation matrix that governs

the frequency of the update, and not as in conventional methods

where the accuracy of the updating process governs the fre-

quency of the update. This is because in the hybrid method,

the same accuracy is available at lower update frequencies.

5.4 System Error Analysis

There are three error sources in the hybrid computa-

tional process in addition to the gyro errors. These are:
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(a) Equation mechanization error

(b) Analog computation error

(c) Gyro storage error

The coupling between the error sources is weak.

these sources are regarded as uncoupled.

will now be examined in detail.

Therefore,

Each error source

5.4.1 Equation Mechanization Error

This error was derived in Section 5.1 and was approxi-

mated by Eq. (5.20) which may be rewritten as

~ 93
6k e = i a - k- 72 I_ X __ (5.24)

where

_-e is the equation mechanization error

_--a is the approximation to k as given by Eq. (5.13)

An approximation to the rms angular velocity drift due to equa-

tion mechanization error is found as follows:

86
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2 2]
- _ [_ -(l_._)72-72

l} x±

Now suppose that % grows linearily with time; i.e., that

= kt

until

kt = 0.i radian

(at which time _ is reset to zero). Suppose further that
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This is equivalent to an assumption that the component of

parallel to _ is the same as that perpendicular to _. Also

suppose that I_l is a constant. Then

k6t6e 2
(t) =

(72)2x2

This is averaged over one cycle from t = 0 to t = 0.1/k to

get the mean square value of _.

0. i/k k6t 6 262_ _ 1 _ dt
0.17 72.72.2

0

i0k72 " =

72- 72- 2 0 (72) 2x2x7x106

-6 2 2
= (3.71x10)

or

6_ = 3.71xi0 -6 _ rad/sec
e,rms

(5.25)

Let _SF be the error in _ caused by gyro scale factor

uncertainty. In even the best strapdown gyro available today,

6_SF = 10 -5

The value of 6_e,rms given by Eq. (5.25) compares favorably

with this.
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5.4.2 Analog Computation Error

In order to analyze the effects of the analog computing

elements, it is necessary to assume an error model for each

analog computing element. These models are:

Integrator

(a) Initial condition error 6__°

(b) Input voltage offset

(c) Dynamics Di(s)

(d) Transfer function

D I (s)

_out (s) - s [Vin (s)+_-(s) ] + _--o

Summing Amplifier

(a)

(b)

(c)

Input voltage offset

Dynamics DE(s)

Transfer function

Vout(S) = D (s) [v l(s)+v 2(s)+B_]

Multiplier

(a)

(b)

(c)

(d)

Multiplication error

Output noise

Dynamics DM(S)

Transfer function

E

Notes

v
--out (s) = DM(S) [ (l+e)VlV 2(s)] + __

80

(a) It is not strictly proper to use Laplace transform

notion for the multiplier error model since a multiplier is



a nonlinear computing element. It will be seen, however,

that this error analysis is equivalent to a perturbation

analysis and the nominal product may be cancelled by sub-

tracting it from the unperturbed product. This will become

clearer as the linearization proceeds. The result, after

the nominal product is cancelled, is linear and the Laplace

transformation notation is then appropriate.

(b) No error model is assigned to the coefficient

potentiometers. Instead, the summing amplifier noise 3 will

be made large enough to account for this omission.

(c) Only one summing amplifier is shown in Figure 5.1

although the actual system mechanization (see Appendix D)

contains several. Here again, 8 will be taken large enough

to account for the noise contributed by the neglected summing

amplifiers.

The analog computation system (except for the e-Filter)

is shown in Figure 5.2 with its error sources. Notice that

the complementary integrators shown in Figure 5.1 have not

been included in Figure 5.2. Since only one integrator is in

the circuit at any one time, only one has been shown in Fig-

ure 5.2.

The object of this error analysis will be to evaluate

the relationship between the error sources, symbolically de-

noted d(s), and the analog computational drift rate 6o.

Mathematically

6_(s) = F(s)d(s) (5.26)
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where

dT [sT _T T e T 6 T= _ e _ 6__ _o ]

From Figure 5.2

_. + 6e. - 1 k% (b+_)
2k

m

(5.27)

(5.28)

b = (e_+@__o) x a(l+e) KMDM(S) (5.29)

e l +_)]a = DE(s) +@e +B_+ _ (_

D I (s)

e_ + _ - s (e+6e+_+_9%+__)+ 6__o

(5.30)

(5.31)

Combining Eqs. (5.28) - (5.31) and neglecting 2nd and higher

order terms gives

k% D 1 (s)
e. + (S__--0 =" ' --_/" S

+ 2 S e x B_- _ _ _ x _ ag__- 7 __

- 2 D2(S) e-_0+ _ _ x d_-o + 1 k_
2 k m --

where

D 1 (s) = D E (s) DM(S) D I(s)

D 2(s) = D E (s) DM(S)

Now subtract out the nominal value of e. (set all error
--q

sources to zero to get nominal) and collect terms containing

the factor 6_ on the left hand side. This gives
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2

(

T

6e. +
k_ D 1 (s)

e x 6e.
3 s --_ --_

k_ e
3 Dl(S) e_ x --_e --s

k_ [_ 8-e+ -_ D 1 (s) x s 1 ]
i+g

-- +e. x
-_ s

-- _ (5.32)
2 D2(s) --_+ 3 _ x 6_--o + 2 km --

The integration indicated by the 1/s factor refers always to

the error sources. Thus the error 6_ tends to grow with time

for non-zero error sources. In order to further simplify

Eq. (5.32) assume that

k¢ _
_ >> -_ Dl(S)e x s

-3

Since k_ = i0 rad/volt, this is a good approximation for

most run times. Note that if le__i is large, the run time will

be small and vice versa. The effect of the analog circuit

dynamics can also be ignored since the response of all analog

computing elements used in this experiment is flat to 20 KHz

whereas the gyro response rolls off at 2 KHz. Further, since

l_l _.i, Eqs. (5.9) and (5.10) reveal that

and consequently [_e::_ I << i_i •

Eq, (5.32) can be simplified to

In view of these assumptions

84



6e_ - 3 --oe"x --_se-- + --_ e x--_ s

k_ 6e k
+ --_ e. x -_ _ e x _-o-_ s 2 --e

1 kqb
+ 2 k _-- (5.33)

m

The auto correlation function for 6e. is given by (ref 17)-o

_6e.6e. (T) = E[6_9(t) • @e. (t+T)] (5 34)_<_
O O

where E is the expectation operator. In order to evaluate the

auto correlation function it is necessary to transform Eq. (5.33)

to the time domain. This operation gives

t

6_(t) - _ _ x _w h(t-x) e(x) dx

o

/t+ --_ ew x

o

h(t-x) [B(x)-_(x)] dx

t

h (t-x) 6e__ (x) dx

o

_ k_
e x 6__o(t) + 1 k%2 -_ 2 k D(t) (5.35)

m

where h(t) is the unit step function u(t), the impulse response

of an integrator. Now use Eq. (5.35) in Eq. (5.34) and reduce

using the following assumptions:

(a)

(b)

equal (_
x

The noise sources are unbiased and uncorrelated

The three components of _, _, 6_, @_-o' and _ are

= _ , etc.).
= my z 85
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(c Assume

L,

(d)

such that

_[e __]= o

E[e w B_] = 0

E[e • _e] = 0

E [e • 6__o] = 0

All error sources are Gaussian white noise processes

_ss (t) : Qe6 (t)

_e(t) = 30 6 (t)

q_B6 (t) = 3QB6 (t)

¢6e 6e (t) = 3Q6e (t)
60 W W

¢6_o6%o(t) = Q6_o6 (t)

¢_ (t) = Qq6 (t)

where 6(t) is the unit impulse and Qi is the variance para-

.th
meter of the 1 process. The factor 3 arises because of

assumption (b).

Using these assumptions, a lengthy reduction gives

5

¢6e.6e. (t) = E el(t)

o o i=l

(5.36)

where
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3 2e2
92(t) = _ k_ _(Q +QB) ktt (5.38)

1 _ 2 2 kt t_3 (t) = _ k e e_Q_e (5.39)

3 2 2
_4(t) = _ k_e Q_9° (5.40)

2
3 kqb

95(t) - 4 k 2 Qn (5.41)
m

k t = 1 second

(5.42)

It is clear from Eqs. (5.37) - (5.41) that 96e@6e (t) is not a

stationary time function even if each noise source is a sta-

tionary random process. This is because of the integration of

some of the noise signals. The rms value of a Gaussian white

noise process passed through an integration grows as the square

root of time. (See Appendix C for a plot of the results of

integrating an input angular velocity corrupted by Gaussian

white noise.)

These results can be put in a more practical form. Let

66 = k.6e.
rms u u,rms

[9 ] 1/2= k 6 $e6_e6 (t)

1/2
• = Qinl,rms

where n. is the rms value of the ith noise source.
l,rms

considering only one noise source at a time and using

Then

w = k e
W

e 9 = (k /k%)e t
w 87



the following results are obtained

k 3
_ ¢ _ (ktt3) 1/26@rms (s) k -_ erms (5.43)

w

6@rms(_) _ (ktt)I/2- 2 k¢_erms (5.44)

6#rms(B) _ kcw (ktt)i/2= 2 Brms (5.45)

66rms(6e ) - 1 % 26 (ktt3)1/22 k e ,rm s (5.46)

3 (5.47)6_rms(6¢o) - 2 kcm6¢o,rms

6_rms(_) _ 3 k¢2 k k_rms (5.48)
m

Typical values are given in Table 5.1 for the noise sources

considered in this section. Table 5.2 was constructed using

the value t = 0.5 sec and the values for k and k_ given in

Eqs. (5.18) and (5.22).

Source

RMS Value

less.

TABLE 5.1

TYPICAL NOISE SOURCE VALUES

e _ _ 6ew 6¢0

0.01 2.5xi0 -3 2.5xi0-3 1 5x10 -3 7.5xi0 -3

RMS value is in volts except for e which is dimension-
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TABLE 5.2

RMS DRIFT IN ANALOG COMPUTATION

_ (A)
Argument rms

A e=0 _=i _=2

e 0 3x10 -5 2.4x10 -4

0 1.5x10 -6 3.0x10 -6

8 0 i. 5x10 -6 3.0x10 -6

6e 0 3.5x10 -4 i. 4x10 -3

640 0 4.5x10 -6 9.0xl0 -6

D i. 4x10 -5 i. 4x10 -5 i. 4x10 -5

Units of 66 are radians/second
rms

From Table 5.2 it is clear that the multiplier noise

sources e and _ are the most serious sources. This is because

all other noise sources must pass through a multiplication by

and as a result are scaled by k_.

5.4.3 Gyro Storage Error

At each evaluation of C RB, there is an error in C RB due

to the quantization of 4- This error doesn't become permanent

until % is reset to zero. The digital computer computes

C NB(t) = cNRc RB(t) (5.47)

where C NR is the initial condition matrix which premultiplies

C RB. This initial condition matrix relates the Reference

Frame to some specific Navigation Frame and is given by

C NR = cNB(tr ) (5.48)

where t r is the time at which _RB was last reset to zero. Thus

the quantization error in ¢ doesn't become incorporated into

C NR until _RB is reset to zero. 89
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Furthermore, the only recoverable part of the quantiza-

tion error is the error in 6. Since

A_=/t+AT

t

(oJ(T)+@ (T)) dT

it can be seen that the only part of A_ that is a function of

__ is

t+AT t+AT

A6_ =/ _(T)dT =/

t t

__x i _+ _ dT

The rms magnitude of the quantization error e(q)

1/2 1/2

erms(q) = (_) IAO2+A°2)2

This is a result of the assumption that the quantization error

is uniformly distributed over the interval (0,A%). The part

of the quantization error due to the quantization of _ is

approximately

erms (qAo) - A0

This can be approximated by

erms(qAo) = __ (A_T) I/2 (5.49)

90

To evaluate Eq. (5.49) as a function of quantization level

A#, an expression for the relative magnitudes of _ and _ must

be obtained. From Eqs. (5.9) and (5.13) it is seen that

z 1
_ _ _x_



and so as an approximate relationship

• 2 _2m2 (_ . _)2
-

4 2

As an extreme case _ • _ = 0. Then

.2 _2 m2
o -

4

and

__ ¢
m 2

so Eq. (5.49) may be written

erms(qA _) = _ 0_) 1/2

The quantization error is incorporated in the initial condition

matrix when % is reset to zero. In the experimental system,

= .i when reset, so as a final result

0.05
- A¢ (5.50)

erms(qA_)

5.5 Test Results

An experiment was conducted to verify the theoretical re-

sults of Chapter 3. The experimental system consisted of:

(a) An inertial sensing unit consisting of three Honey-

well DDG 334A gyros.

A set of m-Filters of the design described in Appen-(b)

dix B.

(c) An analog computer patched as described in Appendix

D to generate 6; to transmit the A_ pulses and the basic clock

frequency (fc = 3600 pulses/sec. This was scaled in the analog
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computer logic section by a factor of 36) to the digital com-

puter; and to synchronize the _ resetting process in both the

digital and analog computers.

(d) A digital computer to accumulate the A_ pulses and

to periodically evaluate cNB(t).

The results of the actual experiment were compared with

the results of the numerical integration of the _ equation

given in Appendix C. Two situations were tested. They were

i. An initial value of _ on one axis and an angular

velocity about another axis.

2. Out of phase sinusoids about mutually orthogonal

axis.

The test results are shown in Table 5.3 and Table 5.4.

In these tables, the error in the noncommutativity correction

generation is indicated at the right hand side of the page by

÷nc. In Table 5.3, one error component in each run is labelled

"_" at the right hand side. This error is due to the inexact

application of the input along that axis and is not an error

in the hybrid computation since the computation responds to

the input. In all cases the noncommutativity correction error

-4
was less than a one pulse error (A_ = 5.555xi0 ). In a pulse

rebalanced gyro, a one pulse error is to be anticipated be-

cause of gyro storage and quantization. The storage error is a

function of the threshold of the relay in the rebalance loop

and the quantization error is a function of the pulse weight.
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_D

Coning

Amplitude Ang. Freq.

TABLE 5.4

TEST RESULTS-CONING MOTION

Run Time

seconds

e _ t

Drift Angle

Experimental Theoretical

1/282_t

Error

_exp-_th

.02 l0 1 0.002222 0.002000 0.000222 ÷nc

.02 i0 1 0.001666 0.002000 -0.000333 ÷nc

.02 i0 i0 0.024444 0.020000 0.004444 ÷nc

.002 100 l0 0.001666 0.002000 -0.000333 ÷nc

A_ = 0.00055555

Note: Drift Angle _ refers to the drift in orientation (about an axis which

experiences no angular velocity) induced by the coning process. The theoretical

value is the predicted value. The experimental value is the coning drift

correction generated by the system.



Test Note

The test was performed with the gyro wheels off. Elec-

trical torques were applied to the torque summing member to

simulate the torques due to physical inputs. A test table was

not available to generate an accurate coning motion profile.

The sine wave oscillator used to generate the out-of-phase

sinusoids to simulate coning motion was not entirely free of

bias, so the mean value of _ generated by the ¢ integrators

tended to increase rather rapidly, thus preventing low fre-

quency coning experiments or long time duration experiments.

Also, there were no accelerometers on the inertial sensing

unit. The gyros were operated at their normal operating

temperature, but were afforded only coarse temperature con-

trol. Without the wheel and accelerometer heat sources, the

inertial measurement unit block temperature distribution was

too abnormal to allow fine temperature control by the gyro

temperature controllers acting alone.
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CHAPTER 6

EVALUATION OF THE HYBRID CONCEPT

6.1 Preliminary Considerations

In this chapter, the hybrid computation will be compared

with conventional schemes. It is necessary to define those

performance features to be compared, since when any compari-

sons are made, it is important to correctly choose the basis

upon which those comparisons are made.

It sometimes happens that error analyses treat those

errors that admit readily of mathematical formulation and the

physical significance, the sources, or the meaning of an

error is often not adequately understood. An example of this

practice occurs in the evaluation of strapdown coordinate

transformation computation algorithms. The example is the

evaluation of the extent to which the computed direction co-

sine matrix loses its orthogonality property. That is, the

direction cosine matrix should be an orthogonal matrix.

Accordingly, it should have a unity determinant, and the rows

(columns) should be mutually orthogonal. It is easy to analyze

mathematically, the growth of the determinant and the loss of

perpendicularity of the row (column) vectors, and such an

analysis is commonly performed. A better way, however, would
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be to impose orthogonality as a constraint and to periodically

perform a computation that reorthogonalizes the direction co-

sine matrix. Then (as makes good physical sense) the overall

drift of the computed Navigation Frame relative to the true

Navigation Frame is the only criterion for algorithm performance.

There are two ways in which a computed direction cosine

matrix can become nonorthogonal.

CNB = cNRcRB

I,et

(6.1)

where the N-Frame is the Navigation Frame in which the naviga-

tion problem is to be solved, the R-Frame is the Reference

Frame which is taken to be the initial coordinate frame from

which the change in orientation of the Body Frame ms reckoned

over the current updating cycle, the B-Frame is the Body Frame.

The nonorthogonality modes are:

(I) If CNR and CRB are orthogonal matrices to within the

limits of computer precision, then CNB tends to become non-

orthogonal in the round-off process that occurs when CNR and

CRB are multiplied together.

(2) The algorithm that generates CRB does not generate

an orthogonal matrix.

Mode (1)

In the hybrid algorithm, a new Reference Frame is estab-

lished when only _RB is reset to zero. Therefore the average

frequency at which nonorthogonality mode (i) generates an error

that becomes permanently incorporated in C NR is

fhyb (i) = mavg/$max
97
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where _ is the average angular velocity magnitude.avg

For the scaling used in the thesis experiment, _max =

0.i rad and _ = i rad/sec and so
avg

fhyb(1) =< 20/sec

In purely digital algorithms, a new Reference Frame is estab-

lished at each update cycle. Therefore

fdig (I) = fupdate

Mode (2)

The hybrid digital algorithm generates an orthogonal

matrix. In the hybrid system, Eq. (3.18) is mechanized; its

orthogonality is established by Eqs. (3.23) and (3.24). There-

fore nonorthogonality mode (2) does not occur in the hybrid

evaluation of C RB. In the case of the digital algorithm, non-

orthogonality mode (2) is a direct function of the specific

algorithm used. Thus

fhyb(2) = 0

fdig (2) = fupdate

6.2 Round-Off Error

Round-off error in the direction cosine matrix computa-

tion occurs because of the finite word length in the digital

computer. In addition to causing nonorthogonality, round-off

error also causes drift in the orientation of the computed

Navigation Frame with respect to the actual Navigation Frame.

Round-off error is not discussed further here except to note



that as for other arithmetic (as opposed to kinematic) errors

in the direction cosine matrix, the round-off error in the

hybrid algorithm accumulates at the rate at which _RB is reset

to zero. In purely digital algorithms, the round-off error

accumulates at the rate at which the updating process occurs.

For a good discussion of round-off error, see Reference 17.

6.3 Kinematic Response

From Eq. (5.9) ,

_RB = _RB ÷ _RB

it is seen that the angular velocity experienced by the strap-

down inertial measurement unit gives rise to either a zero or

D

a non-zero noncommutativity rate ORB. When ORB = O, there

is no kinematic coupling of the angular velocity component

along one axis into an orientation rate about another axis.

In this case, the direction of _RB is fixed. If the direction

of _RB changes with time, then _RB _ _" For example, if

_--RB =
_c sin ¢ sin _ct 1
_c sin _ cos _c t

(i- cos _) _c J (6.2)

where
c

is called the coning frequency, then for

o) = !]

it can be shown by direct substitution into Eq. (5.2)
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 --RB=  -RB+

that

i

2

CRB

i((i- COS (_RB) __RBX__RB + .-7- 1

_RB
_RB / _--RBX (_RBX_--RB)

(5.2)

_--RB(t) =
i cos _c t

sin mc t

0

(6.3)

is a solution for the orientation resulting from the _RB given

by Eq. (6.2). This is the classical coning motion. It is

readily seen from Eqs. (6.1) - (6.3) that

6 = -(i- cos ¢)w
z c

(6.4)

since _z = 0. The case where [ • _ = 0 (as in the classical

coning situation) results in a maximum kinematic coupling of

angular velocity with orientation and I_RB I is a maximum for

a given I_RB ]. Thus, coning motion provides an excellent set

of circumstances for testing the accuracy of direction cosine

algorithms since there is a known closed form solution for the

coning motion direction cosine matrix. C RB is evaluated by

means of Eq. (3.18) using _RB as given by Eq. (6.3).

In summary, an algorithm may be completely evaluated by

two test cases: (a) no kinematic coupling; I_RB(_RB) I = 0

(the direction of _RB is fixed) and (b) maximum kinematic

coupling; [_RB(_RB) I is a maximum for a given I!RB I (classical

coning motion).
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6.4 Performance Comparison

Four algorithms have been selected for performance compari-

son. They are:

where

I. First order Taylor series

C NB = cNR(I+[0_x]) (6.5)

2. Second order Taylor series

1 2
CNB = cNR(I+[0_x] + _ [0_x] ) (6.6)

3. Second order Runge-Kutta

C NB = cNR(I+[8_x] + 518_ix] [G_2x]

4. Hybrid

3 [0x]2 3 [02x ]2- [ _ - _ _ ) (6.7)

cNB = cNR(I+P[__x] + Q[__x] 2) (6.8)

and _ are the sum of the A0's and A¢'s respectively

over the update interval T.

_i and _2 are the sum of A_'s over the first and second

half respectively of the update interval T

_2 ¢4 ¢6 sin
P = 1 - -- +

6 120 5040

%2 %4 _6 )-iQ = p2 2 - -_ + 2-4 - 72---0

2
sin

_2 (i- cos _)

The relative computer loading factor (RLF) per update

for each algorithm is shown in column 2 of Table 6.1. The

rectangular integration algorithm (First order Taylor series)

i01



o
_o

1

Algorithm

1st Order

Taylor Series

2nd Order

Taylor Series

TABLE 6.1

ALGORITHM COMPLEXITY AND PERFORMANCE

2 3 4

Relative Load Drift Rate Drift Rate

Factor _=0 1 = const.
-- --60

1 0 1 2
y _o /fu

1.5 0 1 2
_ /fu

Drift Rate

Coning f >2f
U C

_2 2
[ c°c

8 f
u

16 f
U

6

Drift Rate

<2fConing fu c

J

2nd Order

Runge-Kutta

Hybrid

f = update frequency
U

f = coning frequency
c

= angular velocity

2 3 0 l___3/f[ 2
• i0 U

-5
1.9 1.4x10

40 f2
U

i. 4x10 -5 2 2

3 i. 4xi0-5+ T@_c 1 22 2 2 _ _c
+3.5xI0-7_ I+T

g c

= coning amplitude

Drift Rates units are

_c = 2Zfc (rad/sec) radian/second

T = gyro float time constant
g



is the simplest of all the direction cosine algorithms and so

it has been assigned an RLF per update of unity.

The drift rate for !RB = _ is given in Column 3 of

Table 6.1. In each of the all digital algorithms, Eqs. (6.5)-

(6.7), all terms but the matrix I are zero for _RB = _ (since

this results in 8RB = _)" Table 5.2 shows that for _RB =

the hybrid algorithm analog section has a drift rate (for the

set of system parameters chosen in Chapter 5) given by

I_(_)I = 1.4x10 -5 red/sac

Since d_ _ O, _RB is therefore not zero. This shows that when

_RB is small, hybrid system performance is inferior to pure

digital system performance. There are two ways to reduce this

hybrid error. Since it is directly proportional to k_, the

noncommutativity correction scale factor, reducing the scaling

of e. would reduce this error proportionately. The second
--o

way is to create an open circuit in the _ signal path when l_I

is smaller than some predetermined value. These suggestions

were not implemented in the experiment.

The algorithm drift rate given in columns 3-6 refers to

drift generated by the dominant source of error in each

algorithm, exclusive of round-off error, where drift is defined

as the magnitude of the orientation vector relating the actual

Navigation Frame to the computed Navigation Frame. Column 4

shows the algorithm drift rate in radians per second as a

function of angular velocity and update frequency for the case

of fixed angular velocity, exclusive of quantization effects.

Column 5 gives the algorithm drift rate for coning motion at
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coning frequencies that can be discerned by the rate approxima-

tion process performed by the algorithm. Column 6 is the

algorithm drift rate for coning frequencies above those that

can be discerned. This is the full kinematic rate _z (Eq. (6.4)

for small _) generated by the coning process.

The drift rate for the hybrid method is the sum of the

-5
drift rate (l.4x10 rad/sec) generated by the multiplier

noise (Table 5.2) and a function of angular velocity. When

1 = constant, the dominant error function of angular velocity

is k_66rms (6e) as given by Ea. (5.46). (The choice of

parameters was k 6e = 0.01_ and t = _.) In the case of

coning, the dominant error is caused by the roll off in

the frequency response of the gyro. This is described by

the amplitude resnonse function

104
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T
g

t0
C

00
1

is the measured value of _IA

is the time constant of the gyro

is the coning angular frequency.

At low coning angular frequencies,

correction is accurately generated.

= _IA and the coning

At high coning angular

frequencies, the coning drift rate is the coning rate minus

the coning correction. This is given by

i_2 ( I)i_2Wc = 2 _c - I+T2 2 2 _c
g c

Ii T 22

=
2

C



In Figure 6.1, relative computer loading is plotted

against I_RB I for four algorithms. Drift rate is held con-

stant at the drift rate of the hybrid algorithm which was

arbitrarily assigned a relative computer loading of unity.

(In all figures, only the drift rate attributable to the

dominant kinematic algorithm deficiency is plotted.) The

Curves above I!RB I = _max are immaterial, since _max is the

maximum angular velocity to which the system may be subjected.

They are drawn to show that the hybrid algorithm is superior

to the 2nd order Runge-Kutta algorithm over a very wide dynamic

range. For a given vehicle and its dynamic motion specifica-

tion, the hybrid system is scaled to favorably locate the

range of I_RB I in which it offers better performance than the

all digital algorithms. The scale factor to change to re-

locate the region of superior performance is k. where
o

_=k.e.

Figure 6.2 is a plot of algorithm drift rate vs I_RB I

for equal computer loading. The computer loading of the hybrid

algorithm was taken as the standard. For a certain range of

I_RB I , the superiority of the hybrid method is quite clear.

In Figure 6.3, the coning performance of the hybrid com-

putation is compared with that of the 2nd order Runge-Kutta

algorithm (the most efficient of the digital algorithms). The

solid diagonal lines show relative loading for constant coning

amplitude. These lines show that the hybrid algorithm is more

efficient at higher coning frequencies than the digital algorithm.

This is misleading however, since the power required to generate
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coning motion increases as the square of the coning frequency.

It is more reasonable to assume that for a given vehicle, the

coning power will not change very much since the vehicle power

plant has a fixed upper limit on the power that it can generate.

The more efficient the engine and vehicle, the less the power

that goes into generating coning motion. The dashed lines in

Figure 6.3 show relative computer load for equal accuracy at

2
constant coning power where _ is taken to be a measure of

coning power. This graph shows that for constant coning power,

the hybrid algorithm is more efficient at low frequencies and

the digital algorithm is more efficient at high frequencies.

This is because at high frequencies, there is less coning

drift than at low frequencies, given constant coning power.

Figure 6.4 is a plot of algorithm drift rate vs coning

angular frequency at the same computer loading for the hybrid

algorithm and the 2nd order Runge-Kutta algorithm. As in the

case of the constant angular velocity, there is a region in

which the hybrid algorithm exhibits the lower drift rate. This

region is bounded on either side by regions in which the

digital algorithm gives the better performance.
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CHAPTER7

THE TREATMENT OF SPECIFIC FORCE

7.1 VectOr Integration in a Rotating •Space

In Chapter 3, a differential equation was derived for the

rotation vector __RB(t) relating the orientation of the Body

Frame to the orientation of the Reference Frame at time t. One

of the many forms that this equation may take is given by

Eq. (3.38)

d__ 1 _x_ + 1 (i _ sin _ ) _x(_x_) (7 i)
-_ _-gdt B _ + 2 - 2(i- cos 9) "

where the symbol d/dt B indicates that the derivative was taken

with respect to the Body Frame.

A similar problem, that of finding an equation for

dB_rb(t)/dtB is considered in this chapter, where the vector

Vrb(t) is the velocity of the origin b of the Body Frame at

time t relative to the origin r of that Reference Frame with

which the Body Frame was coincident at time t o . It is necessary

for a physically meaningful integration that the coordinate

frame with respect to which the derivative (integrand) is taken,

be the same as the coordinate frame in which the derivative

(integrand) is coordinatized. For example, strapdown accelero-

meters sense (in a zero gravitation environment)
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fB _ dBV--rb
-- dt R

where f, the specific force vector, is defined (ref. i) as the

reaction force per unit mass exerted by the accelerometer on

its mounting structure. (The Reference Frame is always an

inertial frame in this thesis even though it is redefined when-

ever _RB is reset to zero.)

It is true that

t /t dRV_rb (T)f--R(T) dT = dT
o o R

- _V R
-rb (t)

but the integral

/ /th(t) = fB(T)d7 =

t t
o o

dBV_rb (T )

aT
R

aT

is a physically meaningless quantity if the B and R Frames

have relative angular motion. Since strapdown accelerometers

integrate f_B, the conventional approach has been to approxi-

mate [_b(to+nAT) by

n-i to+ (i+l) AT

R (to+nAT) =_ E cRB(to +iAT+_) /Vrb

i=0 t +iAT
o

fB(t) dt (7.2)
m

< <
0 = e = AT

n = l, 2, 3,...

where AT is the accelerometer sampling interval (A more com-

plex, but more efficient, algorithm could be used.)
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There are two problems with Eq. (7.2). The first is that
B

the integrals in the summation are only approximations to Vr b.

The second is that CRB must be computed and applied once during

each integration cycle. Depending on the characteristics of

the accelerometers and the transformation algorithm, the fre-

quency of the transformation process may be greater than 103

cycles per second.

The Law of Coriolis provides a way to avoid the problems

described in the preceding paragraph.

ship

dB_-- _ fB = G B _ dB_rb

dt R -- _ dt R

Define _ by the relation-

(7.3)

where G is the gravitation vector.

[refs. (i) and (18)]

Then by the Law of Coriolis

dB_ dB_ B B (7.4)

dt B - dt R _RB x

Since the coordinate frame with respect to which the derivative

is taken is the same as that in which the components of the

derivative on the left hand side of Eq. (7.4) are expressed,

the left hand side may be integrated to get

t dB_

_B / --B--= _ dT

t
0

(7.5)

It will be shown in the next paragraph that

t
o

(7.6)
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The advantage of the formulation given by Eq. (7.4) is that

Eq. (7.4) can be integrated entirely in Body Frame cQordinates

using a hybrid technique similar to that used to integrate

Eq. (7.1). Then at a comparatively slow rate, the transforma-

tion

R cRBv_B= (7.7)

is performed and velocity is obtained by integrating gravita-

tion G in a nonrotating coordinate frame and then using the

relation (whose validity is a consequence of Eq. (7.6))

t

-rb - RdT - _-

t
o

(7.8)

To verify Eq. (7.6), it is sufficient to show that the

derivatives of both sides are always equal and that at some

time, both sides have the same value. It is clear that

t

d /t fR
o

(7.9)

To eveluate the derivative on the right hand side of Eq. (7.6)

use Eq. (7.7) and the Law of Coriolis

d R d cRB_B [_R x] cRB Bdt R _-- - dt B - B _--

d cRB) B cRB d_--B= _ -- + dt B
(7.10)

Since
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Eq.

d-J-- cRB = cRB[__B x]
dt B RB

(7.10) becomes

d R R cRB [_R x] B cRB d Bdt R _-- = B -- + dt B _--

R x] cRB_ BL _RB

By premultiplying the last term on the right hand side of

Eq. (7.11) by

I = cRBc BR

and recognizing the similarity transform

B = cBR[_R x] RB_--RB B C

Eq. (7.11 becomes

d R

dt R _-
o

_--RB -- + dt B _--

- cRB [_RB x] B

(7.11)

but by Eq. (7.3),

= cRB d B

dt m __ (7.12)

d R = cRBfB

dt R -

and so

d __R = fR
dt R _ (7.13)

By comparing Eqs. (7.9) and (7.13), it is seen that the deriva-

tives of both sides of Eq. (7.6) are identical. If the initial
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conditions

B
(t o ) , O (7.14)

are arbitrarily assigned, then Eq. (7.6) is established since

both sides are equal at t = t o

By the laws of vector addition

N N vN
Vnb (t) = --nrV(t) + --rb(t) (7.15)

where n is the origin of the Navigation Frame in which the

navigation equations are solved. Since

N = cNRv R
[rb --rb

Eq. (7.15) can be written as

N N
Vnb (t) = v--nr

(t) + CNR RVrb

or using Eqs. (7.7) and (7.8), this becomes

t

N N cNR f G R cNB BVnb (t) = --nrV(t) + (t) _ (T)dT - (t) __ (t)

t o

(7.16)

From Eqs. (7.14) and (7.16), it can be seen that

Vnr(t o ) = Vnb(t o )

If the Navigation Frame is an inertial frame, then

_n (t) = v (t o)r --nr

and

t t t

cNRct)/ G:C )d f cNRCto) G:C )d 
t t t

o o o

/ GJ (T)dT
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These relationships are substituted into Eq. (7.16) to get

t

N N +S G_N cNB BVnb(t) = Vnb(t o) (T)dm - (t) _ (t)

t
O

(7.17)

7.2 System Mechanization

The system functional diagram is shown in Figure 7.1. The

computer must solve either Eq. (7.16) or (7.17) given Av B as

generated by the accelerometers and the analog Coriolis correc-

tion circuitry. The equation solved by this circuitry is found

by combining Eqs. (7.3) and (7.4) to get

dBv

.B _ -- = f_B - B B
_-- - dt B _--RB x __ (7.18)

The pulse output from the accelerometer triad is

o nAT dB_
A___B(to+nAT) = dt B dt

t +(n-I)AT
O

n = l, 2, 3,...

The A__B's are accumulated in the digital computer to obtain

B

(to+nAT). As in the case of the hybrid coordinate trans-

formation computation, a filter is used to extract a continuous

triad of signals representing fB from accelerometer observ-
i

ables. An analog Coriolis correction, W_RB x __ is generated

and fed back through the accelerometers so that they then

integrate and quantize __B instead of f_B as they normally

would. A reset __ signal is generated by the digital computer

whenever _i exceeds a predetermined value. Since the Coriolis

B

correction _RB x _ is generated using analog circuitry, it
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must not be permitted to become significant compared with

fB the maximum specific force magnitude that can be mea-
MAX'

sured by the accelerometers. Thus, the criterion is imposed

that when

I_RBX_BI > 0 1 fB.... " MAX

B B
that _ will be reset to zero. So is reset when

fB

0 I _RBIMAX

Since the frequency at which C RB is updated is predicated

upon the uses which C RB serves, an estimate of the frequency

at which B is reset is required. This is because __B is trans-

formed by Eq. (7.7) just prior to being reset. The maximum

B
rate of resetting or the minimum time tR,mi n

between resets

occurs when

ifB B- = fMAX

Then at the time of reset,

I_BI = f_axtR,min

This is used in Eq. (7.19) and the resulting equation is solved

for tR,mi n to get

1

tR'min I0.1__RB IMA x

or the maximum frequency fR,MAX

B
of resetting _ to zero is

ll9
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fR ,MAX = f01 _RBIMAX

It was shown in Chapter 5 that there is significant

analog computer error growth with time and with increasing

magnitude of the integrated vector, in this case B. For

this reason, the frequency of resetting fR would always be

taken to be

(7.20)

In the experimental system I_RBIMA x = 2 rad/sec. If the

specific force transformation were mechanized for this sys-

B
tem, it would require a resetting frequency of

fR = 20 resets/sec

7.3 Two Sample Problems

Example 1

For this example assume a vehicle in an environment with

no gravitation and a specific force, angular velocity profile

given by

fB (t) = -a 1B
-- --X

B
_--RB(t) = O

t < t<t + T
o o

and

fB(t) = 0

B 2_ 1 B
_--RB(t) - T --z

t + T < t<t + 2To o
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B
From physical considerations, it is apparent that Vrb is as

shown in Figure 7.2a and that --rVRbis as shown in Figure 7.2b.

The navigation system would solve the problem by inte-
N

grating Eq. (7.18) and solving Eq. (7.17). Assuming Vnb(to)=O,

Eq. (7.17) becomes

N R cRB BVnb(t) = Vrb(t) = - (t) _ (t) (7.21)

On the time interval

t < t < t + T (7.22)
o o

then

B 1B (7 23)(t) =-at
-- --X

and

C RB(t) = I (7.24)

B

_iy
_ = 2--_ t, t >to-l- T

to+ T tr'Bb (t),t>to+T

B
Figure 7.2(a) _-rb
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_u'R(t) = a t 1 R
-X

to < t __<to +T

A

W

R R

LI" =aT I X

to+T< t <_t0+2T

since
Figure 7.2(b)

R
_r b

_--RB = O

when the inequality (7.22) is satisfied. So during this time

interval, the combination of Eqs. (7.21), (7.23), and (7.24)

give

R 1 Rv = at
-- --X

On the time interval

+ 2T (7 25)t o + T < t<t °

Eq. (7.18) becomes

9Bx = _ --TDY2_ B DxB(to+T) = -aT

9By _ 2_T DxB DyB(t°+T) = 0

9B=z 0 DB(to+T)z = 0

The solution to this equation set is

B 2_

Dx(t) = -aT cos --_ (t-t ° )
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B 2_
_y(t) = aT sin -_ (t-t ° )

B
(t) = 0z

and the direction cosine matrix is

CRB =

2_ 2_
cos --_ (t-t ° ) -sin -_ (t-t o ) 0

2_ 2_
sin --_ (t-t O) cos --_ (t-t ° ) 0

0 0 1

Therefore

R _cRB Bv (t) = (t) (t)

= aT i R
--x

when the inequality (7.25) is satisfied. This is in agreement

with the physically deduced result shown in Figure 7.2b.

Example 2

Although it is not a practical situation, imagine a strap-

down inertial sensing unit whose center of mass is stationary

on the (non-rotating) Earth. Assume that at time t = 0, the

z accelerometer's sensitive axis is down and that the inertial

sensing unit is rotating at _ rad/sec about its y-axis. Under

these conditions Eq. (7.3) shows that

[ sint]f_B = 0

cos _t

(7.26)

where G is the magnitude of the gravitational force. Also
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(7.27)

Assuming the Reference Frame z-axis is down, then

GR dT = Gtl R
-- _Z

(7.28)

The inertial sensing unit is stationary, so

Vrb (t) = O

With the use of Eq. (7.28) Eq. (7.17) becomes

Gtl R = C RB(t) B(t)
--Z

(7.29)

Since

cos _t 0 sin _t I

cRB(t) = 0 1 0

[-sin _t 0 cos _t

B
it is possible to solve Eq. (7.29) for _ (t).

B CB R(t) = (t) Gtl R
-- --Z

Itsntl__ (t) = 0

Gt cos _t

(7.30)

The analog mechanization of Figure 7.1 must yield Eq. (7.30)

as a solution of Eq. (7.18). If it can be shown that the

derivative of Eq. (7.30) is always equal to the form Eq. (7.18)

takes for this problem then the solution to Eq. (7.18) is

indeed Eq. (7.30) if it can be shown also, that for one
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instant of time, the solution to Eq. (7.18) is equal to

Eq. (7.30). Note from Eq. (7.30) that

B
(0) = 0

and from Eq. (7.18)

0 .B

J0 __ (T)dT = O

Thus/o_Bdt and __B are equal for t = 0.

(7.27) in Eq. (7.18) gives

Using Eqs. (7.26) and

.B fB B B
-- - _RB x

-G sin _t 0 _

0 - _ x _

G cos _t

Or using Eq. (7.30), this becomes

[int]t.B
__ = 0 -

cos _0 OJ
I-Gt sin 1

_t

x 0

Gt cos _t

cos _t 1
sin _t (7.31)

B[isin__ = 0

cos _t - _Gt

B
This is Eq. (7.18) evaluated using the given fB and _--RB and a

B
guess, Eq. (7.30) , for _ . Taking the derivative of Eq. (7.30)

gives

B[ sin__ =

cos

_t - _Gt cos _t]

0

_t _Gt sin _t
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Since this is identical to Eq. (7.31), it is concluded that

the integration of Eq. (7.18) by the system mechanization

shown in Figure 7.1 must give the same result, viz., Eq. (7.30),

as was deduced from physical considerations.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 General Discussion

In this thesis, a new concept for accomplishing the strap-

down coordinate transformation computation was developed and

tested. A vector differential equation for !RB' the argument

of the coordinate transformation C RB, is integrated by the

gyros. Then the coordinate transformation cRB(}_RB ) is evaluated

as a matrix function of the argument !RB"

Analog computing elements generate a correction _RB for

the noncommutativity effect. The time rate of change of _RB

¢--RB:  -RB+

is

(5.9)

Thus it is convenient to apply the analog signal _RB to the

gyro torque summing member and let the gyros themselves integrate

and quantize _RB _RB is maintained in the digital computer by

counting the incremental outputs from the gyros. The only

digital computation is the evaluation C RB from _RB"

In the conventional strapdown techniques, the matrix dif-

ferential equation

(8.1)
_RB = cRB [__RBX ]
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is integrated numerically in the digital computer. Noncom-

mutativity precludes a closed form solution to Eq. (8.1)

except in the certain special cases (ref. 23). Consequently,

the algorithm for integrating Eq. (8.1) must either approxi-

A

mate _RB from the accumulated gyro pulses by a vector _RB

that admits a closed form solution or it must employ some

other approximation technique for solving Eq. (8.1).

The performance of three conventional algorithms was

compared with that of the hybrid algorithm on the basis of

accuracy, complexity and bandwidth (Chapter 6). The hybrid

method was shown to offer a significant saving in digital

computer loading. The point of diminishing returns for im-

proving the accuracy of the coordinate transformation com-

putation is generally taken to occur when the errors con-

tributed by the computation process are smaller than the

errors contributed by the gyros themselves. Computation

errors and instrument errors are both frequency dependent.

Conventional computation and hybrid computation alike serve

well at low frequencies and each type can be made to do so

at high frequencies. The state-of-the-art in analog com-

puting elements is such that hybrid computational bandwidth

can easily be made to exceed gyro bandwidth by an order of

magnitude. In Chapter 6, it was seen that the bandwidth

of efficient conventional algorithms for a given computational

W

load was of the order of i0 rad/sec. The bandwidth of

W

Rectangular integration rules mechanized by DDA computation

have much higher bandwidths, but the computational accuracy

is comparatively poor as seen in Chapter 6. Also, a special

purpose computer is required in addition to the navigation
computer.
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currently available strapdown gyros and therefore of the

hybrid computation process for the same load is of the order

of i000 rad/sec. The bandwidth of the conventional algorithm

is directly proportional to the computational load imposed

by the algorithm. To double the computational bandwidth,

the computational load must be doubled.

8.2 Gyro Quantization Level

A major consideration in the design of a pulse rebalanced

strapdown gyro is output pulse quantization level. From a

gyro designer's point of view, long sampling intervals are more

attractive than short sampling intervals since the gyro opera-

ting frequencies can be made lower. This allows one cause of

scale factor error (due to the uncertainty in the switching

times of the torque pulses) to be more easily controlled. From

the point of view of gyro dynamic errors, the gyro error model

contains terms which are a function of float angle. These error

terms increase as quantization level and hence the rms float

angle increases. Conventional algorithms require fine quantiza-

tion in order to achieve accuracy in both the coordinate trans-

formation computation and the transformation of specific force.

It can be seen from Section 5.3.3 that when using hybrid com-

putation, quantization effects do not produce errors in the

coordinate transformation with significant growth rate. Still

the resolution of the coordinate transformation is limited by

the quantization level. That is, the hybrid coordinate trans-

formation is not degraded significantly in accuracy by coarse

quantization, but its precision is a direct function of quantiza-

tion level. 129



8.3 Computer Round-Off Error

The round-off error in the direction cosine matrix com-

putation increases as the frequency of the update in conven-

tional computation. In hybrid computation, it is not the fre-

quency of the update that determines the growth of the round-

off error, but the frequency with which _RB is reset to zero.

This is because the round-off error becomes permanenn only

when the initial condition matrix is multiplied by the computed

matrix to form a new initial condition matrix (Chapter 6).

This occurs at each update in conventional computation, but

only when !RB is reset in the hybrid technique.

The tendency of the computed coordinate transformation

to become non-orthogonal is a problem that, like the round-

off problem, grows more severe as the frequency of generating

a new initial condition matrix increases. As in the case of

round-off error, this tendency is much less pronounced in the

hybrid computation.

8.4 Inertial Sensor Design Considerations

In the hybrid computation scheme, a continuous voltage

representing the primary input must be generated from signals

which can be measured at the sensor. That is, the sensor

must be inherently, an analog device. (The Geiger counter,

for example, is an inherently digital measurement device.)

Many inertial sensors have a modulated output. The signal

generator signal from the DDG 334A gyro used in the experi-

ment is an amplitude modulated signal. The output signal

from a vibrating string accelerometer is a frequency
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modulated signal. Modulation itself does not effect the

analog measurement as long as the modulation frequency is

well above the sensor's first roll-off frequency, as is

usually the case.

It is not necessary to be able to sum an externally

generated correction signal with the input in the sensor it-

self, but if the sensor is pulse rebalanced, it is very con-

venient to do so. When the physical input signal and the

externally generated correction signal are integrated and

quantized separately, then there is a separate quantization

error for each signal and this is to be avoided when con-

venient.

8.5 Recommendations

8.5.1 Filter Design

One of the most important links in the analog computation

chain is the w-Filter. In Section 5.4, it was seen that the

magnitude of the noncommutativity correction _ relative to the

magnitude of w is

---- W

For _max = 0.i rad and _avg = 0.05 tad,

= 0. 025 w
avg

Care must therefore be taken to insure that the analog measure-

ment of _ is at least 1/40 as accurate as the basic measure-

ment made by the gyro. The quality of the u-Filter used in the

experiment was marginal. The linearity, the quality of the
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demodulation, and the quality of the torque signal cancella-

tion could all be improved. Additional effort in e-Filter

design would be rewarding.

The frequency at which the response of the gyro filter

ensemble begins to roll off is I/T where T is the gyro floatg g

time constant. This frequency determined the theoretical band-

width of the hybrid computation. Perhaps lead-lag compensa-

tion could be introduced at the filter to extend the gyro-

filter ensemble bandwidth, thus extending the dynamic range

of the hybrid computation.

8.5.2 Cross Product Term Generation

The cross product term generation involves the subtrac-

tion of two relatively large numbers to obtain a relatively

In Section 5.4, it was seen that, as an approxima-small one.

tion

1

Suppose _xe = O but that _ and _ both have rather large magni-

tudes. Now

1 1

°i = 2 _i+l_i-i - 2 _i-lWi+l (8.2)

Each term on the right hand side is rather large for at

least one component of o, but since _i = 0, the two terms on

the right hand side of Eq. (8.2) must be equal. Perhaps a

better mechanization of the cross product term could be found

that would not have this undesirable feature in generating

6. = 0.
1
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8.5.3 The Treatment of Specific Force

Chapter 7 describes the hybrid computation scheme for

integrating and transforming the strapdown specific force mea-

surement. Only a theoretical development is presented. An

error analysis and an experimental verification of the method

are recommended as the next steps in the process of demonstra-

ting its operational feasibility.

8.5.4 Analog Computation Scaling

It was seen in Chapter 6, that there is a definite part

of the input angular motion dynamic range in which the hybrid

computation is superior to all digital computation, and there

is a region in which it is not.

For any assumed mission and vehicle, the analog computer

scaling could be chosen to most effectively place that portion

of the dynamic range where the hybrid computation is the best.

Perhaps, a systematic procedure for scaling the analog computa-

tion could be devised.

8.5.5 _nalog Inertial Sensor Compensation

An error analysis of an analog compensation scheme for

gyro and accelerometer dynamic errors and a performance com-

parison between analog and digital dynamic errors compensation

schemes might reveal that analog compensation is a significantly

superior method of gyro and accelerometer compensation. It is

recommended that such a study be performed.
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Appendix A

LANING'S THEORY

In the late 1940's the M.I.T. Instrumentation Laboratory

was engaged in pioneering work in the area of fire-control.

The paper, "The Vector Analysis of Finite Rotations and

Angles" by J. Halcombe Laning, Jr. (ref. 12) was a consequence

of his participation in that work. Because of its unique

approach, it offers fresh insight into the dominant mathema-

tical problem of strapdown inertial navigation. In this

paper, Laning noted that, "The geometric problems of principal

interest in the fire-control field are characterized more by

complexity than by a high intrinsic level of mathematical diffi-

culty ... The chief geometric difficulties are those which

involve relating angles and space rotations, together with

their time rates of change, to such kinematic quantities as

angular velocities. Since angles and rotations possess direc-

tion and magnitude, and are not dependent for their definition

upon a particular system of coordinates, a vector representa-

tion of these quantities seems natural. The principal obstacle

in the path of such a representation is the fact that the

natural laws of combination are not those of ordinary vector

addition."
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The main features of Laning's report will be presented

here although this appendix will by no means be a complete

exposition of that report. That which is presented will suit

the present purpose. In order to develop an algebra for rota-

tion vectors, it is useful to develop first an algebra in

which the angles defined by two intersecting lines are con-

sidered as vectors. The mathematical relations which can be

developed, then serve as the foundation upon which the algebra

of rotation vectors can be built and understood.

Let _BC denote the vector representing the angle between

the directed line segments B and C

ABc = iB x _ q(ABC) (A. i)

where

B = BI_B

c = Cl_c

ABC

q (ABc) = sin ABC

B C

ABC

(A. 2)

Figure A.I.- Geometry at angle vector
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C

2

D ACD

Figure A,2.- The angle sum - coincident sides

The vector _BC (Figure A.I) has a magnitude equal to the

radian measure of the angle from B to C and a direction per-

pendicular to the plane of B and C in a sense chosen by the

right-hand rule. Without the factor q(ABc) , the magnitude of

ABC would be equal to sin ABC and not to ABC.

The angle vector is defined in terms of the vectors which

form its sides. Thus when two angle vectors are added, the

addition operation can be developed in terms of component

sides of the two angle vectors. Before defining angle vector

addition, note that there are many derived quantities defined

as combinations of vectors and scalars, e.g., the product ma

of a scalar m and a vector a; the vector product a x b, the

difference a - b, etc. involving the vectors a and b. It is

important to note "that these definitions are made purely as

a matter of convenience, because these combinations occur so
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often in applications, and are in no way • intrinsic to the

concept of a vector."

A.I The Angle Sum of Two Vectors

A definition will now be given for the "angle sum" opera-

tion. First consider the case where the terminal side of one

angle vector is the initial side of the other as shown in Fig-

ure A.2. Let _BC and _D be the angle vectors defined by the

intersecting vectors B and C and the intersecting vectors C

and D respectively. The angle vector _BD' whose initial side

is B and whose terminal side is D, is defined to be

_BD = _BC (+) _CD (A.3)

where the symbol (+) denotes the angle sum operation. Employ-

ing Eq. (A.I) gives

ABD = 1 B X IDq(ABD) (A.4)

To express this in terms of _BC and _D" the vector identity

(A.5)

is needed. Since

!B l_c = cos ABC

and

A_BC

!B x : q(ABc)

Eq. (A.5) becomes
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A_BC
!B - _ cos ABc + _ x q(ABC)

(A.6)

Similarly, it is found that

1 D = I_C cos ACD - I_C x

ACD

q (AcD)
(A. 7)

The combination of Eqs. (A.6) and (A.7) with Eq. (A.5) yields

A_BD

q (ABD)
= !B x !m =

cos ABC

q(ACD)!C x (_X_cD)

+
cos ACD (IcXA_B c) x (I_cx_A_cD)

(_xA_Bc) x _ -
q (ABc) q (ABc) q (AcD)

(A.8)

The vector triple products can be reduced by means of Eq. (A05)

to get

(!cXA_Bc)x _ --A_Bc - _ (_ __BC) --A_Bc (A. i0)

Note from Figure A.2 that I_C is perpendicular to both _BC and

_CD" The vector quadruple product can be treated as follows

- (I_cXA_Bc) x (I_cXAc D)

= -_ (_.A_Bcx_cD)

The last step follows from the identities

(A. ii)
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Now it is true that

-I_c (I_c ABC x _A_cD) =-ABc x -_D

since the vector _BC x _CD has the same direction as I_C in as

much as _BC and _CD both lie in a plane perpendicular to I_C.

Hence

- (I_cXABc) x (I_.cX__D) = -ABc x -_CD (A. 12)

Now substitute Eqs. (A.9), (A.10) and (A.12) into Eq. (A.8)

to get

A--BD ABC -A-cD A--BC A-_CD

q(ABD) - q(ABc) cos ACD + cos xq (AcD) ABC q (ABc) q (AcD)

But according to Eq. (A.3)

(A. 13)

A--BD = _BC (+) -A-cD

so with this substitution, Eq. (A.13) becomes

ABC (+) -_D ABC -_D A--BC -_D

q (AcD) ABC q (ABc) q (AcD)qJABc(+)_DJ - q(ABc) cos ACD + cos x

(i. 14)

Eq. (A.14) is taken to be the basic algebraic definition of

the angle sum (+) operation.

Now consider the case where the terminal side of the first

angle vector is not coincident with the initial side of the

second angle vector. This is shown in Figure A.3. Note that

any simultaneous rotation of both vectors P and Q through the

same angle in the plane of P and Q leaves the vector ApQ un-

changed. So if B and C are
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AB, E,

Oil

A

B A DE

0

Figure A.3.- The angle sum - non-coincident sides

rotated together until C' coincides with the line of intersec-

tion of the B-C plane with the D-E plane and if D and E are

rotated together until D' coincides with this same line, the

vectors _BC and _DE are unchanged, but the terminal side C'

of _BC coincides with the initial side D' of _DE and Eq. (A.14)

applies.

Clearly Eq. (A.14) which defines the angle sum operation,

does not rely on the initial side-terminal side visualization

of a vector, but it may be used to define the angle sum opera-

tion for any two dimensionless vectors. Therefore

A(+)B A B A B

q(B) q(A) q(B)qtA_(+)BI q_ COS B + COS A x

(A. 15)
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for any two dimensionless vectors A and B. Let

P

P q(p) (A. 16)

then Eq. (A.15) may be written as

A(+)B = A cos B + B cos A - A x B (A.17)

Eq. (A.15) taken by itself is not entirely free of

ambiguity since in this equation and in Eqs. (A.14) and (A.17),

the magnitude of the vector A(+)B has been replaced by the

sine of the magnitude by division by qIA(+)BI. In cases of

doubt, the formula

cos IA(+)B_I = cos A cos B - A • B (A.18)

may be used to resolve the ambiguity. Eq. (A.18) is derived

from Figure A.2 from which it can be seen that

cosIA_Bc(+) CDI= I_B• I_D

When Eqs. (A.6) and (A.7) are used, this becomes

cos la_Bc(+>_D 1 - cos abe cos aCD -(_X_Bc) • (_x_CD)

= cos ABC cos ACD - NBC ACD

Eq. (A.18) is this result in terms of the two dimensionless

vectors A and B.

A.2 Algebraic Properties of the Angle Sum Operation

corm_utativity

The presence of the cross product term, which is non-

commutative with respect to its constituent vectors, makes

it obvious that the angle sum operation is non-commutative,

i.e., 141



A(+)B _ B(+)A

Associativity

To show that

[A(+)B] (+) C = A(+) [B(+)C] (A.19)

Eq. (A.17) is used on the left hand side of Eq. (A.19) to get

[A(+)B] (+) C = A(+)B cos C + C cos IA(+)BI - A(+)B x C

Upon using Eqs. (A.17) and Eq. (A.18), this becomes

[A(+)B]_ (+) C = A cos B cos C + B cos A cos C + C cos A cos B

N

- A x C cos B - B x C cos A - A x B cos C

(A.20)

Applying Eq. (A.17) to the right hand side of Eq. (A.19) gives

A(+)[B(+)C] = _ cos IB(+)c + B(+)C cos _ - A x B(+)C

= _ cos B cos C + _ cos A cos C + C cos A cos B

,%2 _2

-A X B COS C - _ x _ cos B - B x C cos A

+ I -Z(i • (A. 21)

Eq. (A.21) is identical, term by term, with Eq. (A.20) except

for the final bracketed quantity whose equality can be estab-

lished by noting that

and

Thus it is proved that

[A(+)B] (+)C = A(+) [B(+)C]
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However, this equality would hold even if I [A_(+)B] (+) CI,

say, were in the first quadrant and IA(+)[B(+)C] I were in the

second. To resolve this ambiguity, again resort to Eq. (A.18)

to prove that

cosl [AC+)B] (+) c..C_l= cos IA(+) LB(+)c]I

Making this substitution gives

IAC+)B_I cos C - A(+)B • C = cos A cos IB__+_Clcos

- % B(+)C

and again gives

cos A cos B cos C - A - B cos C - A _ *%2cos B - B • C cos A

+_ x B • C

= cos A COS B cos C - cos A(B • _)

- _ B cos C - A _ cos B + A B x C

which is an identity since

[x_ _=X _x[.

Thus Eq. (A.19) and the associativity of the angle sum opera-

tion are established.

Further Algebraic Properties

For any vector A, it is known that there exists a vector

B = (-A) such that A + _B = _0" To show that

A(+) (-A) = 0 (A. 22)

use Eq. (3.15 to get

A (+) (-A)

q A(+) (-A) I

A

= _ cos C-A) +
qL_)

(-A) h (-A)

q_--_ cos A _ x q(-A)

Since 143
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cos(-A) = cos A

q(-A) - sin (-A) = -sin A
-A -A = q(A)

A x (-A) = -A x A = 0

this reduced to

A(+) (-A) A A

qlA(+) (-A) I q_ cos A q_ cos A : O

In this equation, there is no ambiguity, so Eq. (A.22) is estab-

lished.

Eq. (A.15) can be used to show that if A and B are parallel

vectors, then

A(+) B = A + B

To show this, write

(A. 23)

A(+)B

qlA_(+)B_I

A B A B

- A sin A cos B + _ sin B cos A x
q (A) q (B)

Since A and B are parallel

A x B = 0

so

A(+)B

qlA_(+)ZI
- iA(sin A cos B + sin B cos A) = 1 A sin (A+B)

A + B

establishing Eq. (A.23).

Finally, to show that
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let

-[A(+)B] = (-B) (+) (-A) (A.24)

/

x = -[A(+)B]

Then by Eq. (A.22)

(A. 25)

i i _'_ i __ _ • A(+) B(+) x = 0

(-A) (+) A(+) B(+) x = -A

0(+) B(+) x =-A

The fact that

0(+) B = B(+) 0 = B

can be readily verified using Eq. (A. 15) . Therefore

(A. 26)

B (+) x = -A

Further manipulations give

(-B) (+) B(+)x = (-B) (+) (-A)

0 (+)x = (-B) (+) (-A)

x = (-B) (+) (-A)

or in view of Eq. (A.24)

-[A(+)B] = (-B) (+) (-A)

which was to be proved.

A.3 The Rotation Sum of Two Vectors

What rotation vector C produces the same net effect as

taking rotation A first and then rotation B? In other words,

an expression is sought for 145
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C = A # B (A.27)

where the symbol # denotes the rotation sum operation. Eq.

(A.27) is to be read as "C equals A rotation summed with B".

Consider the special case of a 180 ° rotation about one

axis followed by a second rotation of 180 ° about a different

and intersecting axis. Since the orientation of a rigid body

is completely determined by the orientations of any two non-

parallel lines within the body, it is sufficient to examine

the motion of two lines only. A natural choice of these two

lines is the set of axes about which the two 180 ° rotations

are taken. In Figure A.4, these lines are shown as M and N.

AMN is the angle from M to N. First rotate the body through

180 ° about the M axis. The lines M and N are thus rotated

into orientations denoted by M' and N' Next assume a rota-

tion of the body through 180 ° about the fixed N axis. M' and

N' are transformed into M" and N" by this rotation. The com-

bined effect of the two rotations is to transform M and N into

M" and N" respectively. Note that

A 1 = A 2 = A 3 = AMN

It is evident that this transformation is equivalent to a

single rotation of magnitude 2AMN about an axis in the direc-

tion of M x N. This rotation may be represented by the vector

2_M N, since the orientation of the body is completely defined

by the orientation of the lines M and N.

In the general case, the two successive rotations are of

arbitrary magnitude, but this same technique may be applied.
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/
N_' N_"_ _"_ _"

Figure A.4.- The rotation sum special case

P
N

-- Q

Figure A.5.- The rotation sum - general case
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Let A and B be two vectors representing arbitrary rotations

as shown in Figure A.5. Draw line L perpendicular to the

vectors A and B as indicated in the figure.

There exists a unique line P which is carried into the

orientation L by rotation A. Likewise, there exists a unique

line Q into which L is carried by rotation B. A plane is con-

structed containing P and L. The line M lies in the plane and

bisects the angle ApL. Similarly, the line N lies in the plane

of L and Q and bisects the angle ALQ. Thus

A : A_pL : (A.28)

= _LQ = 2A--LN (A.29)

By the preceding discussion, the rotation A is equivalent to

two successive 180 ° rotations about M and L. Similarly, B

is equivalent to two successive rotations about L and N. If

these four rotations are performed consecutively, the result

is equivalent to the combined effect of performing the rota-

tions A and B in succession. The two intermediate rotations

about L cancel, so the net result is equivalent to the first

rotation of 180 ° about M followed by another rotation of 180 °

about N. But these two rotations are equivalent to the single

rotation represented by 2AM N. So far it has been shown that

A_ # B = 2AM N (A.30)

From Figure A.5, it is seen that

: ALN

but from Eqs. (A.28) and (A.29)
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A
_L - 2

B
A--LN- 2

Using these last three equations in Eq. (3.30) gives

_ _ (A. 31)A # B = 2 _ (+) _2

This equation is the definition of the rotation sum operation

in terms of the angle sum operation. From Eq. (A.15) it can

be seen that the factor 2 can not be cancelled in Eq. (A.31).

A.4 Algebraic Properties of the Rotation Sum Operation

Since the angle sum operation is non-commutative, and

since the rotation sum operation is defined in terms of the

angle sum operation by Eq. (A.31), it follows that the rota-

tion sum operation is also non-commutative.

The associativity of the rotation sum is readily estab-

lished. It is desired to show that

[A#B] # C = A # [B#C] (A.32)

Applying Eq. (A.31) twice to the left hand side of Eq.

gives

[A#B] # C = 2(2 (+) 2) # C

(A. 32)

(A. 33)

Similarly the right hand side of Eq. (A.32) becomes

IA # [B#C] = 2 (+)
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but by the associativity of the angle SUm, this is equivalent

to Eq. (A.33) and so the associativity of the rotation sum is

proved.

The following algebraic properties of the rotation sum

operation follow from Eqs. (A.31) and (A.32) and the similar

properties of the angle sum operation.

There exists a rotation vector -A such that

A # (-A) = 0

If A and B are parallel, then

(A. 34)

A # B = A(+) B = A + B (A.35)

Also,

-[A#B] = (-B) # (-A) (A.36)

A.5 The Rotation Vector Differential Equation

The differential equation for the rotation vector will be

derived next. Let }(t) be the value of a rotation vector at

time t. Let %(t+At) be the value of this vector at time t+At.

Define

d% lim [9(t+At) - _(t)]
-- = - (A. 37)
dt At÷0 At

as the rate of change of the rotation vector 6(t) with respect

to time. This leads to the expression

__(t+dt) = __(t) + de_ (A.38)

From the disembodied vector point of view, there are two

ways in which an infinitesimal rotation vector, which will be

symbolized as d#_, may be rotation summed with the rotation
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vector __. It may be rotation summed from the left or from the

right. These operations are

_--RB(t+dt) = dL#__RB # _--RB(t) (A. 39)

where the symbol d#L__RB is that infinitesimal rotation vector

that must be rotation summed from the left with _--RB(t) to yield

_--RB(t+dt) , and

__RB(t+dt) = __RB(t) # d#__R B (A.40)

d#R__RB is the right hand differential rotation vector.where

By the definition of angular velocity, the incremental

change in the rotation vector _--RB as seen by an observer, fixed

with respect to the Reference Frame is R dt Thus
' _RB "

_RRB (t+dt) = __RRB(t) # _--_B dt (A. 41)

A comparison of Eqs. (A.40) and (A.41) shows that

(d#_R B) R R-- = _--RB dt (A.42)

In the next section, it will be shown that for an arbitrary

vector v,

v : ( v

and therefore from Eq. (A.34),

B v R
v = _--RB # -- # (-__RB) (A.43)

Eq. (A.41) can now be manipulated as follows:
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R

B R
= _--RBdt # __RB(t) (A.44)

Now it is true that

R B'
_--RB(t+dt) = _--RB(t+dt)

B
___RB (t) = _--RB(t)

where the B' frame is the B frame at time t + dt, so Eq. (A.44)

can be written

S !

_--_RB(t+dt) = _--RBB Bdt # =_B(t) (A. 45)

Comparison of Eqs. (A.39) and (A.45) shows that

(dL#_RB) B B- :  -RBdt

Eq. (A.39) defines that variable __B'B(t+dt) that resultssince

when the vectors d#__R B and __RB(t) are coordinatized in the

Body Frame. By combining Eq. (A.38) with Eq. (A.45), there re-

sults

B B B B

_--RB dt # _--RB = _--RB + (d_--RB)

Now, rotation sum -_RB on the right on both sides (and suppress

the superscript B under the understanding that it is implied

unless otherwise stated) to get

B

--_RB dt = (__RB+d__RB) # (-__RB)

It is convenient to introduce the scale change
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_--RB= 2__ (A.46)

This gives

B
_--RBdt = [2 (_+d4) ] # (-2__)

Apply Eq. (A.31) to get

1 B
_--RBdt = (4+d4) (+) (-__)

and expand using Eq. (A. 15).

_+d41 B -- --

Y _--RB dt - cos _ - cos I__+d__

4+d4 __
x

q l_+d41 q (4)

(A.47)

If terms of order [d_l 2 are neglected, the following relation-

ships can be obtained.

d_
l_+d21= [(_+d_) (4+d4) ]1/2 = _ +

__ • d4
cos14_+d_l cos

q (4)

and

When these last two expressions are inserted into Eq. (A.47),
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it is found, after a slight manipulation, that

1 B
_RB dt - cos _ d_ + 1 (q (_ _ _i

__ d__
q (_) x q (_)

or, on dividing each side by dt,

1 B _ cos _ d_ 1 (
_RB q(_) dt + V 1

i d!
- -F--- _ x

q (_)- dt

co_ _ d_
_71( _- " d--_)_-

(A. 48)

Two intermediate results can be easily derived.

and

ORB
cos

2 i
(A. 49)

1 2 (i- cos _RB )

q _RB

(A. 50)

Using Eqs. (A.46) , (A.49) , and (A.50) in Eq. (A.48) gives

_--RB - q (qbRB) d_ + 2 1 -
CRB q (_RB)/k_-RB dt / _RB

i - cos _RB d_RB

2 _RB x dt

_RB

and since
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B dt ! _--RB= CRB dt + _RB x _--RBx dt !

this becomes

_RB = _RB -

1 - cos ¢RB

2

CRB

_--RBx _--RB

+ i(i i)2 q (_RB)
_RB

_--RBx (!RBx_RB)

(A. 51)

where __ = d__/dt. With q(_RB ) as defined in Eq. (A.2), it is

apparent that Eq. (A.51) is exactly the same as Eq. (3.33)

using the definitions of Eqs. (3.34) and (3.35).

From Eq. (A.51) it is clear that

This fact was used in the derivation of Eq. (3.33).

A.6 The Coordinate Transformation

Eq. (A.43) is the rotation sum form of the coordinate

transformation. To show that, write

V R = cRBv B

Using Eq. (3.17) in the above equation and writing the result

in vector format gives

= vB + 1 - cos _RB- _ - 2 :RBx (___BxVB)
CRB

It will be shown that

(A. 53)

v__ --(-_) _vf__ (A. 54)
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can be manipulated into the same form as Eq. (A.53).

this, make the substitutions

To do

in Eq.

becomes

2U = V B

(A.54) and expand using Eq. (A. 31) .

(A.56)

Then Eq. (A.54)

1 V R
= (-__) (+) U(+)__ (A.57)

According to Eqs. (A.16) and (A.20), this can be written as

1/2 Z R U 2 U_

q(i/2V) q(U) cos _ - 2 q-]-_ x q(_)
cos

+ - x x _ + q (_)

If the bracketed term is manipulated into the form

- q ) x q (U) x +q(_) q(_) q(U)

q(U) sin2_ 2 q(_) x x q(_)

and if this is used in Eq. (A.58), then

1/2 vR _ ± Z

q(i/2v) = q--_ + 2 cos _ _ x _ + 2 q(_)

(A.59)
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Taking the dot product of each side of Eq.

vields

i/2 V R

q (I/2V)

(A.59) with itself

(A.60)



After two applications of Eq. (A.18) to Eq. (A.57), the re-

sult reduces to

cos _ = cos U

From Eqs. (A.60) and (A.61) it is inferred that

and as a result

(A.61)

(A. 62)

q(i/2V) = q(U) (A.63)

Eq. (A.63) allows the cancellation of the factor q(i/2V) on

the left hand side of Eq. (A.59) with the factor q(U) on the

right hand side. The result is

V_R = 2U + 2 cos _ q(_----_x 2U

+ 2 q--_ x q[_) x 2U (A.64)

Now make the inverse substitutions for _ and U as given by

Eqs. (A.55) and (A.56)

VR = VB + cos ¢RB _--RB x V B
-- 2 --

+ 1 1
2 _--RB x (__RBXV_ B) (A. 65)

Finally, the use of Eqs. (A.49) and (A.50) in Eq. (A.65) gives
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_--RB x V B
v_-v_÷q( Ri

1- cos _RB

+ 2 _--RB x

_RB

(A.66)

But Eq. (A.66) is identical to Eq.

is established.

A.7 Other Forms of the _ Equation

(A.53) and so Eq. (A. 54)

Eq. (A.51) may be written as

: _ + B_X$ - C_X($X$) (A.67)

where

B - 1 (i- cos _) (A.68)

_2

1 sin £)

C- _2 (i
(A.69)

This equation may be manipulated into several different forms,

two of which are stated in Chapter 3 as Eq. (3.36), rewritten

here for convenience

1
$ : __ + [ __ x __ + A%x(%x_) (A.70)

where

_ 1 I %sin@ ))2 (I- cosA @2 1 - (A. 71)
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and as Eq. (3.38) also rewritten here for convenience.

(A. 72)

L



• /

z

Eq. (A.70) may be found by taking the cross product of

into both sides of Eq. (A.67) to get

! x,.$_= i x ccx(¢x(¢xi))

or simplifying slightly

(I-_2C) _)x_ = #x_ + B¢_x(__x$_)

NOW take the cross product of _ into both sides of Eq.

(I-_2C) _x(¢x$) = __x(¢x_) - B_ 2 _x$

(A.73)

(A. 73) .

(A.74)

If Eqs. (A.73) and (A.74) are solved simultaneously for ¢x$

and Cx(¢x$), the results are

I-¢2C 1 _x(_x_) (A.75)

_x(_x$) = ¢2 i-_2C Cx(¢x_) (A.76)
2 Cx_ + 2B

When Eqs. (A.75) and (A.76) are substituted into Eq. (A.67)

and the result simplified then Eq. (A.70) is obtained.

To obtain Eq. (A.72), multiply Eq. (A.70) by C/A and add

the result to Eq° (A.67) to get

c¢x (_x ($+_))

(A. 77)

The last term in Eq. (A.77) can be reduced to C¢2($-_) by

noting from Eq. (A.67) that __ • (C-m) = 0. Using this result

in Eq. (A.77) and rearranging gives
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1 + _- 42 (S-e) = __x __+B_ (A.78)

It can be verified from Eqs. (A.68), (A.69) and (A.71) that

C 2C Bi +K- ¢ - _

Use this identity in Eq. (A.78) to get

(A.79)

which when\_ is transferred to the right hand side is identi-

cal with Eq. (A.72).
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Appendix B

_-Fil•ter Design Details

The u-Filter is designed using operational amplifier RC

active filter networks. The Fairchild Semiconductor _A 709

was the operational amplifier selected. It is described in

Reference 19. The multiplier chosen was the GPS Instrument

Company Mu40.

Demodulator

The demodulator consists of a gain of 25 preamplifier

and a gain of 1/5 multiplier. The preamplifier is shown in

Figure B.I. The multiplier connection is shown in Figure B.2.

Signal Generator SeCtion

This section must implement the transfer function

4.17(I--_)

Fsg(S) = s 2 (I--_)

The circuit for accomplishing this was designed by a procedure

given in the Burr-Brown "Handbook of Operational Amplifier

Active RC Networks" (Reference 20, p. 78).

For practical reasons (reasonable resistance and capaci-

tance values) implement the function
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, r

, r

• r •¸

U _ ,

q

F (s)
sg

2

= s 2

The resulting circuit is shown in Figure B.2

Torque Generator Section

The data pulses (Ae pulses) from the

ing wave shape (GG 334A Gyro):

VOLTS

 200o I -! I-,o-_ !

gyros

(B.I)

have the follow-

TIME

VOLTS

-A_ 5I- I
0 Ii I T,.E

TIME UNITS = SECONDS

The wave shape and duration of the +A_ pulse is the same as

that of the positive torque pulse. The same comment applies

to the -A_ pulse except that the corresponding torque pulse

is applied in a negative sense. The transfer function to be

implemented by the torque generator section is

Ftg (s) =

1

10 4 +

(B. 2)

The resulting circuit is shown in Figure B.2.
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Final •Section

By comparing Eqs. (4.25) and (B.I) it is seen that the

gain of Fsg as given in Eq. (B.I) is down by a factor of 5.90

over the gain that is called out in Eq. (4.25). Hence the

final section must restore this gain. That is

e

-5.9
e

sgs

Likewise, the gain of Eq. (B.2) differs from that of Eq. (4.27)

by a factor of 2. Therefore

e
w

- 2

etgs

The circuit diagram for the final section is shown in

Figure B.2.
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APPENDIX C

Numerical Integration of the _ Equation

Three experiments are described in this appendix for

verifying the accuracy, stability, and performance of the

equation selected in Chapter 5. The equation chosen for sys-

tem mechanization was

(l i ) (5.13)

which is an approximation to

_ : _ + } k(_ (_)
_ _ _ (_)

__ + 2A(_)i) (5.3)

where

A(¢) -
_ sin ¢ )

2 (i- cos %)

B(}) - 12 (i- cos _)

A 4th order Runge-Kutta (ref. 21) integration scheme was

chosen to perform the numerical integration of Eq. (5.3). The

digital computer program for accomplishing this task is in-

cluded at the end of this appendix. The three experiments are
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described in the following sections.

Experiment 1

The purpose of this experiment is to verify the integra-

tion of Eq. (5.3) yields the correct answer in a familiar situa-

tion. The situation chosen to demonstrate the accuracy of

Eq. (5.3) is taken from Section 3.3. It can be seen in Figure

3.2 that the initial condition

and an angular velocity

_RB = 2 rad/sec

applied for 1 second should yield

_RB(2) _ 1 2_ 1 = 1.209200

The results of the run are shown in printout labelled Exper±-

ment 1. It is seen that for dt = 0.01 the numerical integra-

tion is accurate to 1 part per million in each component of

!_B (2) •

Experiment 2

Experiment 2 serves two purposes. The first is an accurate

numerical integration of Eq. (5.3) under circumstances that can

be matched by the experimental system. The results of this in-

tegration establish a performance bench mark against which the
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EXPERIMENT 1 - PRINTOUT

APPENDIX C Nj_ERICAL INTEGRATIeN OF THE P_IDOT EQUATIBN

-" I'_7079632T'" .O0000OOOC "OOUOCO00_ ...............................

• O000CO000 1.570796327 .O000COCO0

........,O000CO000 " .O0000CO00 ,O000000CO .................
•O000CO000 ,000000000 ,000000000

.... • OOOOOOCO0""-O00000000"-,O00000000 .................................
,0001

........... 1-0000 ....................................................................
1

" -_OOO ............................................................................

.................... TIME ........ PHI ...... OMEGA -

...................... 1.5707963 ........ .0000000

•00 .0000300 1.5707963

• CO00000 ........ .0000000 -

1,556697_ ,0000000

............... • 20 .2465556 1.5707963

• 2,65577 .CO00000

• 1.51422_5 .0000000

• 40 ._920000 1.5707963
,4920017 .OCCO000

I._28298 .CO00000
• 60 ..... .7351583 ...... 1.5707963

• 7351593 .OOCO000

,80
1.3415979 ,0000000

,9747285 1.5707963

•9747286 ,0000000

1.2091987 .0000000

........ 1.00 " " 1,2092003. " 1,5707963 "

1,2091990 ,0000000

*END'OF'FILE*
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results of the experimental system can be judged.

tions are as follows:

The condi-

I'0.0 ]
__RB(t) = 0.1/tf rad/sec,

-0.0

< t<tft o

The result of the integration is

[00i0__(tf) = .0999171 rad

0 O05000J

This result is used in Table 5.3.

The second purpose is to demonstrate the stability of

Eq. (5.3) when _RB consists of a nominal value plus additive

noise. The noise is taken to be an unbiased Gaussian white

noise applied independently to each axis. The predicted

error growth rate from passing Gaussian white noise through

an integrator is proportional to the square root of time.

A 1000 second integration run was made using a 0.i

second integration step and the following nominal conditions:

_(t o) = .0 rad

0

0.0 5]
_RB(t) = 0,00

0.0

0<t<20

20+40i<t<60+40i

rad/sec

i=1,3,5...
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and

!RB(t) = - 00 rad/sec
0

20+40i<tS60+40i i=0,2,4...

Every i0 seconds, the result of the nominal integration was

compared with the result of a similar integration in which

each component of angular velocity was independently corrupted

by additive Gaussian noise with a standard deviation of

0.0005 rad/sec. The results of this experiment are plotted

in Figure C.I. The horizontal axis is the time axis. The

vertical axis is

16_(t) I ={[__n(t)-_(t)]" [_n(t)-_(t)]} 1/2

where

__n(t) is the resulting vector when _RB is corrupted by

noise

_(t) is the uncorrupted vector

Also plotted in Figure C.l is

_ =

where 2 is the variance parameter of I__I.

2

_6_ = 3o2At • t

from

This is found

2
where is the variance parameter of the noise process _ ,

--n

At is the integration time step, and t is the running time
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parameter. The factor 3 arises because _ is a three dimensional

vector. In Experiment 2, a time step of 0.i second was used.
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So

At= 0.i

and from the given noise statistics

Therefore

= 0.0005 rad/sec

= (3_2At. t)
1/2

= 0.0005 x_ x t I/2

= 2.7 x l0 -4 t 1/2

It can be seen that the results l@_(t) I of the sample run do

not differ markedly from the plot of the standard deviation

parameter o@%(t) . This parameter represents the expectation

of the standard deviation over an infinite set of such numeri-

cal integrations.

Experiment 3

This experiment integrates the _ equation for the case of

the classical coning motion where

_(t)
I%e cos tl

_t

: 8_ sin

0

The theoretically predicted value for _z(t) (ref. 22) is

= 1
_z (t) _ 82_t
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The results of Experiment 3 for the conditions

-3
e = i0 radians

= 207 rad/sec



are shown in the printout labelled Experiment 3. The pre-

dicted value of _z(10) is

1 -3 2
%z(10) - 2 (i0 ) x 27 x i0

-4
= _ x i0 radians

It is seen that the numerical integrations of the

equation give results in excellent agreement with the pre-

dicted results.
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L

.A'PPE\DI.X C --

EXPER IMEkF 3

T I_E

._000

t,9000

2.0000

3,C000

4,C000

5,C000

6.0000

7,C000

8°0000

9._OCO

IC.CCO0

*END-OF-FILE_

_UUERICAL INTE3RATI_

P41 X

,OOlSCO0

.O010OO0

.3CtCCO0

oOOtO000

.OCIOOCC

,O_lCOOO
.O01COOO

,OClOOOO

.OCIGCOO

.OOlOOO0

.00103C0

OF TME PhIO{gf EGL.ATION

PHI Y

,COGO000

.COOO000

.COOO000

.COOOOCO

.C000001

.CO00OOI

.CO0000I

.COOOCCI

,0000001

.COOOOCl

,_,vvOuL,2

P_i Z

,COOGOCO

,C000314
.0000628

,000094£

.C001257

.0001571

.COOlSx5

.00C2199

,0_02513

.0002_27

,0003142

174



APPENDI X C L. NUMERICAL INTESRATION _F THE P_IDeT EQU_ATION

AFBRTRAN S_aLS ................................
......... IF'C "--'.A-IN_PReO RxM ................................

2: CB_ON IREAD, J_RITE, DT_._HDT ........................................
........ 3"! ...... IREAD=5

_! IARITE=6 ...................
........ 5l ......... 25_EA_(IREADJlOOO)""NEYPER ...........................

6: GO Te ("0,60,80) NEXPER ..........................

......... 7I ...... 40=CACC EXPERI ................................
81C EXPERI OMEGA IS PIECE_ISE CONSTANT -- NO NOISE

..... _: ......... GO-T_ 20 ..................................................................

I0: 60 CALL EXPER2

.... 11: C ......EXPER_ ...... 8KEGA IS PIECEW:SE cCNSTANI "-- ADDITIVE NOISE

121 GO TO 20 ........

.... I3:- 80 CAL_ EXPER3

14: C EXPER3 OMEGA PRgDUCES CONING MQT!_ON ..........................

...... 15_ ...... G_ T_-20 ..........................................

161 1000 CgR_AT (If) .......................................

---- 17_ ........ END
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APPENDIX-C -- _JMERICAL INTEGRATIeN OF THE PNIDgT ECUATION
1: SUBROUTINE EXPER!

...... 2g ........DIHE_SI9_ PHI(3), A_GVEL(3). COLD(3) ....
3: DIMENSISN 9MEGA(3._}

..... _: .... C_M_N IREAD, IWRITE, DTs HDT "
5: READ(IREADsIO00) (PHI(I}, I=1,3)

......6! ............READ(IRFAD,.IOOO} (eYEGA(I,I)a I=I.3) .............
7: READ(IREAC, IO00) (OYEGA(I.2)s IFI,3)

.......8: ............READ(IREAD, IOOC) (8YFSA(I,3), I=I.:D ........
9: READ(IREADpIO00} (OPEGA(I_4)_ I=1,3)

......... 10: .......... READ(IREACslO5G) DT ........................
11: READ(IREAD, I050) TIME

...... I2! ............ READ(IREADs1100} HINT .........................
13: READ(IREAD, 1100) t_PRINT

°" _1-_I ............_RITE( I_RI TE_ 120_} ................................

15: wRITE(IWRITE, IC20) (PHI(1), I=Is3)
.....16: ........._RITE(IWRITE, IO00) (OYESA(1)I), I=[s3) ..........

17: _RITE(I_'JRITE, IO00) (O_E@A(I.2), I=I,3)

---18: ..... _RIT[(IWR!TE_IO00) (DKESA(I,3), I=la3) '
19: _RITE(I_RITE. IO00} (OMESA{I,4). I=ls3)

-"20: - kRITE(I_RITE, I050) DT
21: WRITE(I_RITE, I050) TIME
22: ............kRITE(IXRITEs!IO0) _INT .............................

23: _RITE(IWRITEs1150) _PRINT
24:- HDT:DT/2.0 .................
25/ LINT =0
26: .... P_I_T=I ....................................
27: NgT=O
28: ........RUNTI_T,T ....................
29: SUBTI_IE=O.O

30: t_RITE( I_,_RITE, 1250)

31: _RITE( IWRITE, 1350) PHI (I )._EGA(1, I)
32: " " _RITE(I_RITE, 1400) RU_TIYE, PNI(2)_QXEGA(2,1)
33: _',RITE ( lwRI TE, I_50) PHI (3)_O_EGA(3, 1)
3_: 20 J=1 .............
35: G9 Te 100
36: 40 J=2 .............
37: G_ TO 100
38: 60 J=3 ........
39: G9 Te 100

....._0: 80 _=_ ..........................................
_1: KINT=O

--'_2: 100 D_ 120 I-I,3 .....................

_3: A_GVEL(1)=QMESA{I.J)
4_: ....120 COLD(1)=_HEGA(I,J} ................................

_5: 200 CALL RKSTEP (PHI,ANGVEL,ANGVEL,ANGVEL.CQLD)
---_: ......... RUNTIME-RUNTIME÷DT ..............................................

_7: SUBTIME:SUBTIHE+DT
-- @8: ......... NDT:NDT+% ........................................... :

#9: IF(NDT-NPRINT) _00,220_220
-'.--50I .... 220 NDT-O ................................................

51: WRITE(IWRITE_1350) PHI(!},ANGVEL(%)
....52: ....... _RITE(IWRITE, I_O0) RUNTI_E_PHI(2),ANGVEL{2) ........

53: WRITE(IWRITE, I_50) PHI(3).ANGVEL(3)
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APPENDIX C .= _U_ZRICAL I_TESRATI_-gF THE P_IDQTEQOATISN ......
5 . IF(SUBTIME-TI_E+O.COCC01) 200,24Cs2J÷O

....... 55: - E40LI_T:LI_T+_ .........................
56: _INT:NINT+I

" 57: SUBTIKE=O.O ............................................................
58: IF(LINT-NINT) 260n2_C,280
59: ..... 260Ge TO (20_40_60s80} MINT

.60: 280 RETURN ..................
.....61: 1000 FORMAT (3F12',9) ................................

62: 1020 FORMAT (IHI/3FI2,9}
......63:-1050 FORPXT-(F.O ,4)"

64: 1100 FgR_AT (I_}
65: 1150 FORVAT(14///)
66: 1200 FORMAT (I_%/1X_ IEaEXPERI rENT 1///)
67: 1250 FORMAT {1;_Xa 4HTI'.'Es 14Xs 3HPHIs 16Xs 5NOHEGA///) .....
68: 1350 FgR_AT (26Xs FtO,7s ._Xs FIC,7)

: 69: 1400 F_RuAT-{1CX, F6.2s 2(tOX_FlO.7)') .............................
70: 1_50 F_RHAT (26XJ Flo.7s IOX, F1C.7//) .......................
71: END
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" 2! .......
3!
4! "
5:

...... 6: -" READ
7t READ

..... 8: ..... READ
9: READ

- 'I0: READ
II: REA_
12! READ

13: READ(
14":" READ
15: READ

" 16:'"
17:
18:
19:
20:
21:
22:
23:
24!
25:
26:
27:
28l
29:
3C:
31:
32:
33t
34:
35;.
36:
37:
38: kRI
39: wRI
_0: _.:RI
41: D9
_2: I0 PHI
43: aO J=l
4#: G9 TO
45: 40 J=2

-'- 46: .... G_-T8
47: 60 J:3
48: G8 T_
49: 80 g:#
50:---
51: 100

APPENDIX'C NUMERICAL INTEGRATI_N _F T_EPHIDeT EQOATIeN ....................
SUBRDUTINE EXPER2

DIMENSIDN PHI(3)_ A_GVEL(3)sCSLD(3) .................................

DIMENSION PHIN(3), A_SVELN(3)s COLD_(3)* DELPHI(3}
DIME_,SI6N OVEGA(3,4) ................................................
COMMON !READ_ IWRITE# DTs NDT

IREAD, IO00
IREADIIO00
IREACslO00
IREAC_IO00
IREA_IOOO
IREA_,I050
IREAD_1050
READ, IICO

!RFAD, IlO0

WRITE(I_RITE, 12OO
XRITE(I_RITE_IC2C
kRITE(I_RITE, IO00
_RITE(IKRITE, IOCO
WR!TE(I_:RITE, IOCO
ZRITE(IWRITEslO00
._ITE(I/RITE,I05O
_RITE(IWRITE_IC5O
_#ITE{IWRITE_IIO0
^RITE(I_.RITE_I070

(PHI(1)_ I=i,3} .........................................

(OYESA(I_I)_ I=1.3)
(OVEGA(I_2), I:i,3) ...............................
(O_EGA(I_3), I:I,3)
(O_EGA(I,_)_ I,I_3} ............................
DT
TIWE ...........................
_INT
•_PEINT .................................

IREAD, I070) sDN_ISE

{PHI(1), I:I_3)
"(O_!EGA(I_I)_ I=I_3) ..................
(_ESA(I,2), I=I,3)
{_ESA(I_3)s I:I,3} ...................

_T .............................

TIME
_INT ......................
SDNgISE

xRITE(IWRITE, IISO) NFRI'_T ...............
HDT=DT/2.0
IX:32109 ....
LINT=O
H!NT=I -
NDT=O
_MS_ISE:C,O
RJNTI_IE=O.O
SUBTIF:E=O,O
_RITE(I_RITE, 1220
WRITE(I_RITE_I23C
XRITE(I_:RITE_1250

TE{IWRITE_1353
TE(I_!RITE_I403
TE(IWRITE,!450
I0 I:i,3
_:(1)=PHI(1)

SDNOISE

PHI{I},PHI(I}_eMEGA(I_I}

RUNTIME, PHI(2),PHI(2),OMEGA(2,1),RMSNeISE
PHI(3)_PHI(3)_OMEGA{3,1}

I00 .........................................

I00 .........................................................

lO0 ............................................

MINT:O ..............................................................
09 120 I:1_3

52: ..... ANGVE_(I}:OMEGA{I_J) .................................
53: C_LDN(1):OMEGA[I_j)
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APPENDIX C

54: 120

55: 160

56:

57: 180

58: 200

" 59:

.60!

--If 61l:

62:

63: ....

641 220
65:

66: 230

67: .....

68:

69:

70:

71:

72: 240

73:

74:

75:

76:

77:

78:
79:

80:

81:

82:

86:

87:

88:

89:

90:

91:

92:

93:

260

2%0

ICCO

!020

1050

1070

1100

1!50

1200

1220

1230

i
1250

1

1350

1400

i_50

-- ..NU_E.c.ICAL INTEGRATION _F THE P_IDOT EgL_ATION

COLD( I }=OYEGA( I,J}

DO 180" I:I+3 ........

CALL GAUSS( IXsV}

AWGVELN ( I ) : ANGVEL { I ) +SDNO ISE*V

CALL RKSTEP (PNI,_NGVELsANGVELsANGVEL,C8LD)

CALL RKSTE-IP (PHIN, AhGVELN, ANGVELN,ANGVELN,COLDN)

RUNT I_'E =RUNT IHE+Dr

SU_T !_'E=SIJBT IHE+DT ...........

NDI':NDT+I

I F (N'OT-_JPFZ INT) C6G_ 220s 220 ......................
_',;DT : 0

D9 230 1:!,3

DELPHI ( I ):PHIN[ I )-P_I (I)

r* _c,m RRWS'_O ISc.-o,. T(DELPHI (I) w*2+J, ELP_I (2)*_2+DELPHI (3}*-2)

.'_RI TE ( IWR i TE_ 1350) PHI ( i ),Pr IN{ I ), A_',GVEL ( I )

•'.RITE( IWRITE, 1400) RbXT IWEs PHI (2)_ PHIN(2), AXGVEL (2)_RMSNOISE

...RITE( IWRITE_ 1_+501 PHI (3).,PHIN(3), A\GVEL ( 31

IF[SUETIME-TI'_E+O,O00C01} 160,240,240

LINT=LINT+I

YI_T='_IKT-I

SUBTIYE=O,O

I F'(.-IX'T-NINT ) 260, 2_C,2_0 ............

G_ T_(20s40,6C,80) ._INT

RETJRN .....

F_R'_A T (3F12,9)

FOR'MAT (IHII3FI2,9) .......

FOR_'A T (FIO,4)

F _.x..AT (FIO,7)

FgR'AT (I4)

F_R"AT (14///)

FC_R"AT (INI/IX, IENEXPE_IHENT 2///)

FORMAT ($ PHI XAS .GE_.ERATED FRO." O_ESA X'IT_OUT NOISES)

F_R'4AT (84H PHIN .,AS GENERATED _ITN OMEGA C_RRUPTED BY _.HITE NOl
•'iITH A STA'<DARD _EVIATI_N PF, FIO,7/)

F_R'IAT ( 6X, 4HTIYE_ 8X, 3HPHI, 1IX, 4HPHIN_ 9X, 5HOMEGA_ 8X, 9Hi

S N9 ISE///)

F_R'_AT (IOX., 3(_X,, F10,7))

FOR'_AT ( 3X, F7,2, 3(4X, F1C,7),, 4X,, E12°5)

FORV.AT (ICX_ 3(4X, FlO,7)//)

END -
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APPENDIX-C
I:

2: ..........

3:

-4:

5:

.......6: - "

7:

.... 8: ....

9:

I0_ ......

11:

12: -

13:

15:

- 16:

17:

18:

19:

20:

2%:

-22:

23:

24:

25:

26:

27:

29:

30: - "

31: 20

32: 40

33: 60

34:

35=

36:

37:

38:

39:

- _0:

42:

43: 80

_5:

.... _6: 100

_7: 1000

_8: .... 1050

_9: II00

.... 50: _200

51: 1250

_-- 52:- 1350

53;

-- NUNERICAL INTEGR&TION OF TNE PHIDOT EQOATION
SUBROUTINE EXPER3

DIHENSIeN pHI(3}sCOLD(3)aANGVELA(3)_ANGVELB(3)sANGVELC(3}

C_RON IR_ADs IWRITEs DT_ HDT

READ{IREAD_IO00) OMEGA

READ{IREADsIO00) cONINSAMP .............

READIIREADsIO00) DT

READ(IREAD_IO00) RUNTIME

READ(IREAi)a1100} NPRINT

_RITE(Iv;RCTE_!050) 8_EGA

_RITEIIWR:TE, IOO0) CONINGAHP ................ -

WRITE(IWRITEsIO00) DT

_RITE(I_..RITE, IOCO) RUNTI_E

kRITE( I#:RITE, 1100) NPRINT

..... A:CgN i NGAHp._,_EGA

HDT=DT/2,0

NOT=O

PHI(1):CONINGA_P ._

PHI(2]=O.O

PNI(3)=O.O

TI_E=O.O

wRITE(I^RITEJ12001

XRITE(I..:RITE_1250) ........

_RITE(I_RITEs1350} TI_Ep (PHI(1)s I=1_3) .......

AN3VELA(t)=O.O

AN3VELA(2]=A

ANSVELA(3}:C.O -

C9_D(1)=0.0

COLD(2):A ....

COL9(2)=O.O

G9 T_ 60

b_ _0 [:I,3

ANGVELA{I]:ANSVELC(I)

ANSVEL_ 1)=-A*SIN(8_ESA*(TI_E+HDT))

&NSVEL5 2]: A*COS(OYEGA'ITIYE÷HUT )}

AN$VEL_ 3)=0.0

A_GVELC I)=-A*SI_IOYE GA*(TI_E+DT))

AN3VELC £)= A*COS(5_ESA*(TIPE+DT))

ANGVELC 3):0.0

CALL RKSTEP (PHI_ASGVELA_ANGVELB_ ANGVELC_COLD)

TIHE=TI_E+DT

NOT:_DT+I

IF(_DT-_PRINT} 20_80,80

NDT=O

wRITE(I_RITE_1350) TI_Es (PHI(I)_ I=&_3)

IF(TIXE'RUNTI_E+£tpO_O0£1) 2£'}.00t100 ................................
RETURN .....

FORHAT (F13,8)

F_R_AT (1H1/F13,8) ............

FgRMAT (I_)

FgR_AT(IHI/IX_ I_NEXPERIMENT 3///) '" "
F_RPAT {8X_ _HTI_E_ l_Xs 5HPHI X, IOX_ 5HPHI Y, IOX_ 5HPHI

F_R_AT (5Xs F8.4_ 5X} 3{5X_ FIO.7)) .............

END ...................... ..

Z///)
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APPENDX)
1:

....... 2: ....
3:
4:-
5:

...... 6' ......
7:
8: C
9'

I0'
11:

13'

14: "
15:
16"
17:
18:

19:

21:
22: "
23:
24:
25:
26:
27:

10

20

40

"- _ERICAL INTEGRATION 9F THE PNIDBT EQUATIQN DA _
SUBROUTINE RKSTEP (FEEsgAsBS_C_CD)
DI_E_SISN FEE(3I,OA(3)s_BI3)sOCI3I_CAI3)sCB(3}sCC(3IsCD(3)sSIGHA
l)sFeE(3)

COMH_ IREADJ IWRITEs DTs NDT .....
CALL XPReD(_A_FEEsCDsSIG_A}

DO 10 I:ls3 .........................
CA(I)=SA(I)+SIG_A(1)
OBTAIN AN INITIAL CA, .........................
CALL XP_OD(OA_FEE,CA,SIG_A)
DO 20 I=1,3 .......................
CA(I)=_A(I)+SIGMA(I)
93TAI_ A FINAL CA, " ......
FOE(1)=FEE(1)+HDT.CA(1)

CALL XPROD(_BsFOEsCAsSIGMA) ....
D9 40 I=1,3

C3(1)=O_(1)+SIG'_A{I) .............................
FOE(1)=FEE(I}+HDT.C_(1)
CALL XPR_D(OB,FgE,CEsSISMA) ......
D_ 60 I=I,3

CC{I)=_5(1)+SIG_A(1)
FgE(1)=FEE(1)+ DT,CC(1)
CALL XP_OD(OC_F_EsCCsSIGHA) ..............
'J9 80 I=1,3

CD(I)=SC(1)+SISKA(1)
FEE(1)=FEE(1)+DT*{CA(!)+2*(CB(1)÷CC(1))+CD(1))/6,0
RETURN - "
END

6O

8O
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-- INTE,JRATIeN5FTHEPHIDQTEQUATIBNAPPENDI.X"C NUMERICAL' _ "
i: SUBROUTINEXPR_D{eSAjPHIE_PHID_TsSIGA).....................

.... 2I" DI'_E_SION3SA(3)_pHIE(3)sPHIDQT{3)sSIGA(3)
3: FIES:R=PHIE(1)*p_IE(1)+pHIE(2)*PHIE.!2)CPH!EI3)'PHIE!3)......

-4=.... I_(FIESCR-O.O001)20_20s40-
5: 20 CA=(I.C+FIESQRI30,O+FIESCR*FIES_R/8_O.O}/3,0
61...... C_=(I.C+FIESQRI60.O+FIES_R*FIESGR/2520°O)76_O.....................
7: G_T86O

.... 8:- 40 FIE=S_RT(FIES_R} ................................................
9: A=t,O-C_S(FIE)

.....I0:-- _=I.O-SIN(FIE)/FIE ............................... : ........................
111 CA=_/A
121 " C=FIEwSIN(FIEI .....................................................
13: C_=_.Gw(I.0"C/(2.0*A))/FIESCR

" 1#: 80 SIGA(1)=PHIEC2),(CA*_GA(3)+CB*PHIOBT(3)) ..............
15: SISA(t)=SIGA(I}-PkIE(3I'(CA*_GA(2 )÷C_*P_IDOT{2))

" 16: SISA(2)=P_IE(3)*(CA*eSA(1)+CB*P_IDgT{I)} ...................
17: SIGA(E)=SIGA(2)-p_IE(1)*(CA,gGA(3}+CB*PHIDBT(3)}
18: SI3A(3)=PHIE{I)*(CA*gSA(2}+CB*PhI DBT(2})-
191 SISA{3)=SIGA(3)-Pr'IE{2)w(CA*SGA(1)+CB*PHIDOT(%))

201 .... RETURN
21: END
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APPENDIXC -- NUMERICALINTEGRATiBN_F THEPHIDBTEGUATI_N...................
1: SUBROUTINEGAUSS(IXsV)

.........2:..............A=O,O ......................................................................
3: DO 50 I=Is12

-4I ..... CALL RAKDU(IX}IYsyY ..........................................................
5: IX=IY

.... 6! ..... 50 A=A+y ...........................................................................................
7: V=A-5,O

" 8: C v IS _ORM,_LLY DISTRIBUTED WITH ZER) MEAN AND UNITY STAN, DEV,
9: RETURN

10_ ..... END ........................................................................................
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'ENDIXC -- NUHERICAL INTESRATI_N'gF THE PH!DgT EQUATISN
i: SUBReUTINE RANDu {IX_IY, YFL)

2: C '" YFi IS A UNIFgR_LY DISTRIBUTED RANDOM VARIABLE ON {0, I),
3: IY=IX*1953125
4_ _ IF {IY} 5s 5, 6 " " "
5: 5 IY=IY+8388607+i
"6: " "I6 "YFL=IY ........

7: YFL:YFL*.l19209289551E-5
8: ........ RETURN .....
9: END
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APPENDIX D

HYBRID COMPUTER ANALOG PROGRAM

The amalog computer used in the thesis experiment was a

Beckman 2200 analog computer. The operation and patching of

the Beckman 2200 are described in Reference 23.

The analog computer symbols used in Appendix D are shown

in Figure D.I. Tables D.2 and D.3 are computer set-up check

lists. Figure D.2 is self explanatory.

The complementary _ integrators discussed in Chapter 5

are shown in Figures D.3 and D.4. In normal operation, in-

tegrators 72, 73, and 74 are in the integrate mode, switches

24, 25, and 26 are closed; integrators 76, 77, and 78 are in

initial condition mode, and switches 36, 37, and 38 are open.

When _ is reset, the roles integrate and initial condition,

open and closed are interchanged.

The cross product term generation discussed in Chapter 5

is shown in Figure D.5. Figure D.6 is self explanatory.

Figures D.7, D.8, and D.9 are discussed in Appendix E

for the most part. The function of the circuitry in Figure D.7

not discussed in Appendix E is to generate the timing se-

quences shown in Figure D.8.
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e o

INTEGRATOR eo

e 2

eo

SUMINING AMPLIFIER

B

e o

POTENTIOMETER

=-/t O ('l.e,+lO.e2) dt +TC

e o =-(l'e,+lO-e 2)

eo= .8 el

ex eo

-ey

MULTIPLIER e =exey
o

IOO

A

G TRUNK LINE
A=T TRUNK =_ ANALOG BD-OUTSIDE

A= PTRUNK Ju ANALOG BD-CONTROLBD

A= E TRUNK Ju CONTROL BD-LOGIC BD

ANALOG ,,.,..J"#_'l_ D I G I TA L

OUTPUT _ INPUT

Figure D,I.- Analog computer symbols
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=---.--- SIGNAL ORIGINATING ON SAME PATCHBOARD

---" SIGNAL

FS u N

-'-oo

FUNCTION SWITCH

TERMINATING ON SAME PATCHBOARD

U= UP R"_C = C ENTE

D = DOWN |
/

A= ARM J

POSITION

INVERTING LOGIC AMPLIFIER

SIG

®

INT

®

SIGNAL FROM DIGITAL COMPUTER GENERATED

BY "S EOM O3OOON" INSTRUCTION

INTERRUPT LINE- A PULSE ON THIS LINE

CAUSES EXECUTION OF INTERRUPT N

INPUT

OUT PUT

INVERTED OUTPUT

ONE SHOT MULTIVIBRATOR

S E T ---"_"_'__
TOGGLE _

RESET_

FLIP FLOP

B D

C

NOR GATE

OUTPUT

INVERTED OUTPUT

D=A+ B'I-C

B

C

OR GATE

D

D=A+B÷C

Fi"gure D.l{cont),_ Analog computer symbols
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• ' 7

• i i_

H

i. ISU Cable

2. Console Switch

3. 9300 Console

Sense Switches 2 & 4

Others

4. Logic Board FF00, SR00

5. Function Switches 6,7,8

6. Perform Anacheck 3,4,5,9,10,11

12,13,14

7. ISU Cable

8. Function Switches 6,7,8

9. Adjust R32 (See Figure B2) on

each e-filter for stationary

Butterfly Pattern

i0. Adjust R412, R414, R416 to

null e reading (observe out-

put of A015, A019, A023 res-

pectively)

Disconnect

IA

Set

Reset

Set

Down

Up

Center

Connect

Center

Table D.I Anacheck and Circuit Set Up
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.

2.

3.

.

IA

36

Console Switch

Preset Counter 2

One Shot Multivibrators

a. Con Bd 1 i0 Sec

b. Log Bd 0 i00 "

1 i0 "

2 i0 "

3 i0 "

4 10 "

5 10 "

i0 i0 "

12 i0 "

13 i0 "

Interrupt Switches 0,1,2,3,10,11

Others

Function Switches 12,13,14

3,4,5,6,7,8,9,10,ii

-5ccw

-4 "

B 5 l!

m 5 l!

m 5 !!

mS I!

-- 5 I!

Up

Down

Center

Down

Table D.2 Analgo Computer Set Up
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190

+ FIC -':

-FIC

-I- IOOV

-I- IOOV

-I- IOOV

.05

®
T

.05 A_

®

®_ '[_> P+ A+y @T

F _ I

_0_

.95 @ T

FS04 J @

A T

.05

@
.05 N_

.95 @

FS05 P_

T
Oc

@,

_ pI

i_1_ A74,1

A78, I

All8

AIII,I

®LOCK PU LSE P

I

Figure D.2.- ISU input buffers

Note: Letter to left of T-Trunk symbol indicates connector

pin designation



+FIC

.45 ^ (

-Wx I
AI5

-&x I
A 109 _-

,45

+FIC
IC SP

AI5

AI09 = O'x I L
.25 - ( -

+FIC -_-i_ 0 L7 DJSp

A,,_ =-o-y '_ I1 v

+FIC

AI9

.25

!o9_ @x(°)
io9 1l__9_lsp

-_x:: SJL,/,/I = M39.-Y
_ - M40,Y

I_X M 39, Y
M40,-Y

REC O0

-oJ z
A23 -'-

All7 -'7°'z
.I

+ FIC

_-(_Z
A23 --

,[I

L

I I IC SP

- or z
All7

SJ_ M41,-Y

- M36,Y

i_ M41,Y
M36,-Y

REC 03

SJ I 561,/__. M 37, -Y

w l_
• _ - M38, Y

_ M57,Y
M38,-Y

REC 06

Figure D.3.- __ Integrators (excluding mode control)
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I-,
k.o
bo

SR FF I 72 I 76 CS 24 CS 36

O0 O0 I 73 I 77 CS 2',5 CS 37

I 74 I 77 CS 26 CS 38

RESET RESET COMP

RESET SET I.C.

SET RESET COMP

SET SET I.C.

I

/
HG

MODE
XFER

CAP
XFER

0 0

0 0

® ®

® ®

_1 o E 0

oI E

l.C. CLOSED OPEN

COMP OPEN CLOSED

COMP OPEN OPEN

l,C, CLOSED CLOSED

I 76
=®

IO
I

IO
I

®

i®

0

0

®

®
E I E

MODE

CONTROL

J

E E

E E

= _ v v

E E

??

CONTROL BOARD LOGIC BOARD

Figure D.4.- Integrator mode, configuration and switch control



A52 l_

_y
A53 4P-

-_X
Am5

,3333

A72, I

A76,1

FS6,D

AI5,1

-Wy I
AI9

.3333

-I0 _z Wy

I0 _X Wy

A73, I

A77, I

FS 7, D

A48 _
AIg, I

A49

A53 4P.

A25
.3333

Figure D.5.- Cross-product term generator

A74, I

A78,1

FS8,D

A23,1
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FS 06
Ou

. OC

A109 "_x_ " I_ _oTorqx T

Fs,2_,I->/

-co cmdx
+ lOOV =_

FS 07
OU
OC

PIN D

• oC
--cry _ I_

A,,3_ -- -]_°T°'q,_
FSI3 ,_J" PIN L

+ lOOV

FS 08
OU

&z ocp._

- oTorq z

FSI4 ml_ PIN S

+ IOOV

Figure D.6.- Gyro lo torquer signal synthesis
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E

SIG

SIG

PLACE ALL INTS IN IC

RESET &
COUNTER_.J

SIG

RESET _ INTEGRATORS

E

PRESET OI, OVERFLOW

109_'

I00 #SEC

E +A(_ x®

_O/_SEC

COUNT ENABLED

WHEN SET

IO/-L SEC

_00_ INV" OO

T

INV. OI

MODE

CONTROL

MODE

CONFIGURATION

SEE FIGURE D.4

E

I OFLSEC

SIG

ADVANCE PRESET COUNTER

1
INT.

INT

INT

INT

INT

INT

INT

SYNCHRONIZATION AND Z_ _ TRANSM SSION CIRCUITRY

I--'

U1

Figure D.7.- Synchronization and A¢ transmission ci rcui try



I-'-'

k,O

O_

INV. 08, CLOCK

os oo, +A_x

OS 0_,-Z_@x

os oz, +A@y

os _,-Z_y

os o4,+ L_z

os E_,-A_z

E

OS I0, COUNT INPUT

PRESET OI OVERFLOW

FF02 ENABLE INT 12

0

ol

0

ol

0

ol
ol
ol

- ISR 29 GENERATE INT 2. 0

- ]FFOI,TOGGLE MODE CON 0

OS 13, INT, 12 0 I

--_! 2777_,SEC t'-- I_, I

,oo I-- I I I#-]

II -_II_'o Ir

II ---II_,o I[--

II --..II..--,o II

II _I_,o ir---

ii -_I_,o IF--- &

II -_II_,o I,I---35 0

I _,

I It

!1 II t

11 II t

II II t

II II t

II 1[ t

II I[ t
0 I

I t

I I # I !

i W

_v

¢v El ,tn

Figure D.8.- Interrupt signal timing diagram



P E

@ +"',',, @
P E

®, -"_, @
P E

@ +,,4,, @
P E

® -"_, @
P E

@GYRO CLOCKPULS_)

P E

® +,,,,z @
P E

® -,,,,z @

I SET 36

R_ PRESET -I- C

I IO/.L SEC

Figure D.9.- Clock pulse counter and trunks

197



APPENDIX E

HYBRID COMPUTER DIGITAL PROGRAM

An SDS 9300 digital computer was used to perform the

digital part of the hybrid computation. The programming

language is a combination of BECKTRAN (a Fortran II variant

with hybrid computation statements) described in Reference 24

and machine language Symbol instructions described in Refer-

ence 25. The Symbol instructions are prefaced by the letter

S in column i.

Main Program

The Main Program accepts typewritten inputs for the print-

out title block. It then types "Ready to Run" and then "Pause".

When the pause is cleared (by toggling Sense Switch 6), the

Main Program calls a series of three subroutines to initialize

the Hybrid computer. In the final subroutine in this series,

Subroutine Run Start, the computer idles until a command is

received to begin the run.

The runtime part of the Main Program is an idle loop in

which the computer awaits either a command to end the run or

to update the direction cosine matrix. In a navigation com-

puter, this idle time would be used for the other required

computations of the navigation system.

The flags ISS2OLD and ISS3OLD are used in Subroutine

Data In. The flags IUPAA, IUPBB, and IEND are set in Subroutine
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Increment Phi.

The Main Program flow chart is shown in Figure E.I.

Subroutine Data In

The functions of Sense Switches 2 and 3 and their assoc-

iated programming is to call for new Run Parameters (total

time, time between printouts, and _MAX ) and for new Initial

Conditions respectively whenever their settings are changed.

The heading is printed on the printout page. FEESQMAX, NPERPR,

and NOUT are used in Subroutine Increment Phi.

Subroutine Computer Set Up

The Symbol instruction EOM 030003 (Sig 03)* sets the flip-

flop SR30 (Figure D.7). This action resets flip-flop SR31 dis-

abling gates 58, 30-35, and 59. This in turn blocks both the

interrupt signals and the clock pulse which advances Preset

Counter 02 (.Figure D.9). Preset Counter 02 divides the gyro

clock pulse by 36. The Symbol instruction EOM 030004 (Sig 04)

pulses the one shot multivibrator 0SI2 (Figure D.7) which

then resets Preset Counter 02 (Figure D.9).

The various flags, registers, and the direction cosine

matrix are initialized.

The initial value of _ (from Subroutine Data In) is trans-

mitted to the integrators (Figure D.3) by the CALL DAL instruc-

tion. This initial value is then incorporated into the CZERO

Sig 03 refers to the analog computer designation for the

Logic Board patch point on which the pulse generated by

EOM 030003 arrives.
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ACCEPT TITLE PAGE DATA )

,I0

TYPE " READY TO RUN "

C

PAUSE

CALL DATA IN

)

(SUBR.))

CALL COMPUTER SET UP (SUBR)

CALL RUN START (SUBR.))

20

IF I UPPA

_,40
IF SENSE SWITCH 1

__ _ 60
( IF IUPBB

80 ½

(CALL UPDATE (MATRIX (SUBR})

-- (k IF IEND

> TRUE

I00 I}

CALL END OF RUN

__ G 0 TO 10

I

(SUBR.))

)

Figure E.I.- Main program synoptic flow chart
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matrix which serves as CNR in the equation

C NB = cNRc RB (6.1)

Each of the next six sets of four Symbol instructions

sets up a "Single Instruction Interrupt". A typical set of

four instructions is

$70 LDA 80S

S STA 043

S BRU 90S

$80 MPO NYNEG

Instruction $70 loads the instruction MPO NYNEG to be executed

by Interrupt 03 into the accumulator. The instruction MPO

means "memory plus one". Therefore NYNEG, the number of -A_y

pulses that have occurred, is incremented by one. The next

instruction stores the MPO NYNEG instruction in memory loca-

tion 43. (When Single Instruction Interrupt n occurs it

causes the execution of the instruction stored in memory loca-

tion 40+n.) The instruction

S BRU 90S

then causes the program to branch unconditionally to instruc-

tion $90. The Symbol instruction NOP (no operation) is the

Symbol equivalent of the Fortran CONTINUE statement.

Symbol instruction EOM 030001 (Sig 01) causes a pulse

which passes OR Gate 71 (Figure D.7) and advances the Preset

Counter 02 (Figure D.9) to an initial count of i. The need

for this is seen in Figure D.8 which shows that Interrupt 12

(which calls Subroutine Increment Phi) does not occur until

Preset Counter 02 has been advanced to i.

201



m

IF SENSE SWITCH 5

_5

IF ( IUPAA+ IUPBB-1 )

TRUE

C IUPAA =0GO

_10

I PRINT= O)TO 120

IF (IUPAA)

202

180

Figure

(

IF

20

I UPAA: 0

(I PRINT)

)

40

KPRINT = I IPRINT= 0

YGO TO 70

I

t60

KPRINT=O )(

F COMPUTEOR AA UPDATE

7o

ASUB )BSUB

[
180

=< IF (KPRINT)

8O

SET UP T AND PHIPRINT_GO TO 180

I

t a2o t

_F COMPUTE A S U B ]OR B B UPDATE B S U B

E.2.- Subroutine update C matrix synoptic flow chart



IF SENSE SWITCH 5

,140

._.SET UP T AND PHI PRINT

TRUE

>

COMPUTE CRB

IF KUPBB

FALSE

< E_240
IF SENS SWITCH 5 >

TRUE

260

IF KPRINT

t_ 280
i

(MARK=O NO ASTERISK ,BY PRINTOUT)
1

MARK = I

i_300

ASTERISK BY PRINTOUT)

CPRINT = C R B .,)

IF KUPBB

CZERO = CRB _._

460

RETURN

Figure E.2(cont.).- Subroutine update C matrix synoptic flow chart
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Symbol instruction EOM 030002 (Sig 02) sets both the

Mode Control flip-flop FF00 and the Mode Configuration flip-

flop SR00 (Figure D.7). This places both sets of integrators

in the initial condition mode thus preventing any integrator

from overloading before the run begins.

Subroutine Run Start

The instructions involving Sense Switch 4 form an i_le

loop that awaits a change in the condition of Sense Switch 4.

Symbol instruction EOM 030005 (Sig 05) resets the flip-flop

SR30 (Figure D.7). This opens gate 58 which sets flip-flops

SR31 and resets the Mode Configuration flip-flop SR00. When

SR31 is set, gates 30-35 and 59 allow generation of Interrupts

00-03, I0, and ii, the generation of the pulse which incre-

ments Preset Counter 02 (Figure D.9). When SR00 is reset,

the integrators are in normal complementary operation.

Subroutine Update C Matrix

A synoptic flow chart for the Update CMatrix Subroutine

This subroutine evaluatesis shown in Figure E.2.

C NB = cNRc RB

where

(6 .i)

C RB is generated as CMAT

C NR is remembered as CZERO

C NB is formed by the operation symbolized as CRB =

CZERO * CMAT (CNB is called CRB in this sub-

routine.)

If a printout is requested either because % was reset

to zero or because the time till the next printout has elapsed,
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then CRB and the time at which CRB was generated are stored

as CPRINT and T until the run is over. Then Subroutine End

of Run causes the stored matrices to be printed out. Setting

Sense Switch 5 causes the printing of CRB when ¢ is reset to

zero to be suppressed.

The flags IUPAA, IUPBB, IPRINT, and IEND are set in Sub-

routine Increment Phi.

Subroutine Increment Phi

The first set of instructions increments the _ vector

and zeros the registers which are incremented by the A_ in-

terrupts. Then l_i is tested to see if it exceeds the magni-

tude which calls for _ to be reset to zero. If this is the

case, the timing logic on the Logic Patch Board (Figure D.7)

is set up so that % is reset to zero just prior to the next

time that the Increment Phi interrupt is energized. The flag

MUPBB is set so that at the next Increment Phi interrupt,

will be reset to zero in the digital computer as well as in

the analog computer. Then the flag IUPBB is set so that

Subroutine Update CMatrix updates the CMatrix and establishes

a new CZERO matrix.

The TESTFEE cycle occurs every 0.01 second. Statement

140 counts I0 of these cycles before calling for a normal

CMatrix update by setting flag IUPAA. Statement 220 counts

the number, NUPAA, of normal update cycles and calls for a

printout, IPRINT = i, when NUPAA = NPERPR. The value NPERPR,

the number of updates per printout, was set in Subroutine

Data In. When the number of printouts, NPRINT, equals the
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i!̧!_ ii_

• i

i•i• • •• •_• i

total number, NOUT, allotted in Subroutine Data In for the

run, IEND is set to 1 and this calls for Subroutine End of

Run in the Main Program.

Subroutine End of Run

The printout of the stored CMatrices and the stored vec-

tors occurs in this subroutine.

•i ¸
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ISU SYSTEM - PRINTOUT

-c ...... UA(K -BoRfz ........................................................
C MAY 2, 1969

-C..... THESIS EISTIkG#-ISUSYSTF'R ....................................................
C
C ................ " ........................................ " .... =" ........

C SENSE SWITCH 1 SET TO END RUN

C SENSE SWITCH 2 ......... TOGGLE TO CHANGE RuNPARAMETERS- "

C SENSE SWITCH 3 TOGGLE TB CHANGE PHI(O}

-C ................. SENSE SWITCH-_ .... TOGGLE TO START'RuN .........

C SENSE SWITCH 5 SET TO DELETE FEE RESET PRINTOUT
C .............................................................................

C

C "-MAIN-PROGRAM .............................................................

.... DIMENSION CZERO(3,3)I CRB(313), CMAT(3,3)I ASuB(3,3)I BSUB(313)

DIMENSION PHI(3)s"PHIAA(3), PHIBB(3)s T(200), TEND{200) .....

DIWENSION CPRINT(6OOs3)s _ARK(2OO)s PHIPRINT(600), PHIO(3}

........ CO_MON ISS29LD3 ISS2NE_/ _SS38LD, ISS3NEN, CPRNT TIMEs PhIOs NXPOS

COMMON NXNEG _ NYPOS, _ZYNEG, NZPOS_ NZNEG# NRUNs FEEMAX # TOTAL TIME
.... COMPON CR3, CZERe, CPRINT, DPNI, IENDs INDEX_ MARK, FEES3MAXs NOUT

C_MMON FEESAA, FEES_B, PI4IAA, PHIBB s TUPAAs TUPBBs NTESTFEEs KUPBB
...... COMMON IUPAA, IUPeB, NTIKEs IDAY, NXRITE, PHIPRINTs PHI, IPRINTm T

CsMMON N_PAAs ICALLENDs NFRINT, NPERPR, _ONTH, MUPBB
....... ISSEOLD=2 ........................................................

ISS3BLD=2

" - TYPE 1000 ...............................................................

ACCEPT 1050, IDAY

' TYPE 1070 .........................................................

ACCEPT 1080, _ONTH

........ TYPE 1100 ................................

ACCEPT 1150, NRUN

10 TYPE 1200 ..................................... . - - -

PAUSE

- CALL DATA IN .............................

CALL COMPUTER SET UP

..... CALL RUN START .................................

20 IFIIUPAAI 40,40,80

C AN UPDATE INTERVAL HAS ELAPSED, UPDATE THE CMATRIX,

40 IF(SENSE S_ITCH 1) I00_60

C SET SENSE ST:ITCH 1 TO END RUN ............

60 IF(IUPBO) 20,20,80

C ...... FEE H_S EEEN _ESET, UPDATE CMATRI_-AND CZERO, ......................
80 CAL_ UPDATE CMATRIX

IF(IEND} 20,20,100 ................................................

C IEND-I IMPLIES TOTAL RUN TIME HAS ELAPSED,

lO0 CALL END OF RUN ..............................................

GO TO 10

......... _ALL REQUEST ..................................................................

C THE REQUEST PACKAGE IS L_ADED INTO MEMORY FOR POSSIBLE LATER USE,
I000 FORMAT ($ TY_E IN DAY OF P.ONTHii ...........................

1050 FORMAT (12)

IOIOFORMAT {$ TYPE IN MONTHi} ............................................

1080 FORMAT (A4I

1100 ?ORMAT-($ TYPE INNRUN$-) ....................................................

1150 FORMAT (14)

_00 FORMAT (S-READY TO RUNST ............................................. _ .....
END

SUBROUTINES REQUIRED

"-- \TYPE---- \READKB----NPAUSE ......DATAIN---"-COMPUT _- RUNSTART"'\IFSNSW .....UPDATE
ENDOFRUN REQJEST \STOP
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SUBROUTINE DATA IN
DIMENSION CZEROI3sG)s CRBI3s3)s CMATI3s3)a ASUB(3,3)s BSUBI3a3) .... .....

DIMENSION PHIl3), PHIAA[3)s PHIBBI3)s Tl2OO)s TEND(200)

DIMENSION CPRINT(6OOs3), _ARK(8OO)s PHIPRINT(6OO)s PHIO(3)

COMMON ISSGeLD, ISSONE_sISS3OLDs ISS3NEk, CPRNT TIMEs PHIOs NXPOS

CO_*ON NXNEG, HYPOS, NYNEGs NZPOSp NZNEG, _RUNs FEEMAXs TOTAL TIME_ _

.... C_MMBN CRB, CZERe, CPRINT;- DPHI, _IE_DJINDEXs- MARKs FEESQMAXa NBUT

coMmON FEESAAs FEESBBs PHIAAs PHIBBp TUPAAj TUPBBs NTESTFEEo KUPBB

.... C_M_ON IUPAA, IUPEB, NTIME_ IDAYj NWRITEj PHIPRINT_PHI, IPRINTa T

coMmON NUPAA, ICALLENDs NPRINTs NPERPRs MONTHs HUPBB ....

......... DPHI:O,O005555555555 ..................................................

INDEX=800
C ...... INDEX IS THE NUMBER OFCHATRICES THAT CAN-BESTOREDFBR pRINTING,

uPDATE TIME = 0,1

..... Ir-(SENSE SWITCH 2) 53[0 ......................................................

C TOGGLE SENSE SWITCH 2 T_ cHANGE RUN pARAMETERS,

..... 5 ISSGNEW=I

G9 TO 15 _ _ .

..... 10 ISS2NEW_O ...............................................................

15 I_(ISSZNE_'ISSZOLD!_.ZO'2_,80 .......................................
20 ISSZOLD=ISSeNE_

TYPE 1000

........ ACCEPT I050s TOTAL TIME .........................................................

TYPE 1100

- ACCEPT-1CSO, CPRNT TIME ........................................ "......

TYPE 1150 ......................
.... ACCEPT 1050J-FEEMAX ........................

25 IF (SENSE sNITCH 3) 30s35

C TOGGLE SENSE SNITCN3 T9 ENTERNEW PHILO) .....

]0 ISS3NEW=t .....................................
"GO TO 40 ...............................

35 ISS3NEW=O .....
40 IFIISSGNES-ISS3OLD) 45s50s 45 ...............................

45 ISS39LD=ISS3NEW ...........................
.......................

.... TYPE 1800 ....

ACCEPT 1050, PHIO(i)

TYPE 1880 ..........

ACCEPT 1050, PNIO(2)
TYPE 1850 ..........................

ACCEPT 1050, PHI8(3) .................................................
..... 50 PRINT 1300 ............................

PRINT 1350s MONTHpIDAY

..... PRINT 1#DOs NRUN

_RINT 1550s TOTAL TIME .....

-- - PRINT 1600s CPRNT TIME ...........................................

PRINT 1650s FEEMAX

.......... FEESDMAX=FEEMAX*_2

NPERPR=CPRNT TIME/UPDATE TI_E +0,001

........ N9UT-T_TA_ TI_E/CPRNT TIME

C NOUT IS THE NUMBER 8F PRI_TObTS CALLED FOR BY THE LENGTH OF THE UPDATE

C_ INTERV_-ALONE; THERE MAY BE OTHER PRINTOUTS DUE-TO FEE BEING RESET,

RETURN ..............
-%CO0-FeRffAT($ TYPEINT_TA_"TI MES)"

1050 F_RHAT (F9,3) ......
''00 F_RMAT($-TYPE IN CPRNT TIMES) ..................

30 FORMAT ($ TYPE IN FEEMAXS)

- 1200 FORMAT( $ TYPE IN PHI(ll$) ................................................

1880 FORMAT ( $ TYPE IN PHI(2}S)

--1_50 feRMAT-_-_TYI_E_-I N PH_3}_I

1300 FORMAT ($1JACK BeRTZ --- THESIS PROBLEM $///)
1350 F_RMAT £22X_ A_L,_ 12, AH, 19691) ..........................
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--1400 FORHAT722X,-THRUN Ng;, 2X_-I_-/-) ................................

1550 FORMAT (22Xs 14HTOTAL RUN Tl_Es33Xs F9,3, 8H SECONDS)

....1600F_R_AT-{22X,-_31HTIME INTERVAL BETWEEN PRINTOUTSJIOXs"F7,3s-OH SEC8 ........

INDS)

O-FORHAT"I22×/5ONFEE ISRESET-WHENITS M_GNITUDEEQUALS OR-EXCEEDS ........

Is F6,_, 8H RADIAXSIIII)

SUBROUTINES"REQUIRE_ ..................................................................

DATAIN XIFSNSw \TYPE \READKB \PRINT \FPBWER \STOP

CO_M9N STORAGE

77705 CZER8 ..... 77727 CRB ........ 66025Phi ......... 7033_-PNIAA - 70326P_IBB

65204 T 70665 CPRIkT 70351 HARK 66033 PNIPRINT 77764 PNI8

77777 ISS29LD 77776 ISS2_E_ 77775 ISS38LD 77774 ISS3_E_ 77778 CPRNTT

77763 NXPOS 77762 NXNE3 77761NYPOS 77760 NYNEG 77757 NZPOS

" 77756 NZNEG 77755KRUN -- 77753 FEEMAX .... 77751TOTALTIM 70663 DPHI

79662 IEND 70661 INDEX 70347 FEESQVAX 79346 NOUT 70344 FEESAA

70342 FEESBB 7032_ TUpAA 70322 TUPBB -- 70321 NTESTFEE 70320 KUPBB

70317 IUPAA 70316 IUPBB 70315 NTIHE 70314 IDAY 70313 NwRITE

66324 IPRINT 65203 N_PAA 652G2 ICALEEkD- 6520%NPRINT- 65200 NmERPR

65177 _OXTH 65176 _UPBB

k?_-RECLRSI_'E STORAGE

CO000 CYAT- 00022 ASU3 " " C0044 BSUB-- 00066 TEND .................

E_D 8F C8_PILATI8_ " -
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SUBROUTINE COFIPUTER SET UP
DIME_SIgN CZER_(3,3Is CR_{3,3), CMAT(3s3), ASUB(3,3)s BSUB(3s3)

DIMENSION PNI(3)J pHIAA(3), pHIBB(3)s T(2OO)s TEND(200)

DIMENSION CPRINT(600,3), ;_ARK(2Oo)s PHIPRINT(&O0), PHIO(3)

COMMON ISS£OLD, ISS2NEV_ ISS38L9, ISS3NEKa CPRNT TIMEs PNIes NXPOS

CoMNON _XNEG, KYPeSs NYNEG, NZPOS, NZNEG, NRUNs FEE#_AXa TOTAL TIME

C_, ._N CRBs CZERes CPRINT, DPHI, IE_JD,IN-DEXs MARK_ FEESQMAXs NOUT

C_H_ON FEESAA_ FEES_, PHIAAs PHIBBs TUPAA, TuPBB, NTESTFEEs KUPBB

COMHeN IUPAA, IUPEB, NTIME_ IDAYs NKRITE, F'_41PRINTs PHI, IPRINTs T

COMMON _UPAA_ ICALLEND, NPRINTs _PERPRs YeNTHp MUPBB

....... CALL COhDITIeN

C INITIALIZE THE HY£RID I_TERFACE. __ __

..... CAL_ KUX TRACK

C PUT DVM INTO TRACK MODE,

.... C_K_ECT INCREYENT PHIs 12 ......................................................

C THE GYR8 TI_E BASE TRIGGERS THESE TWO INTERRUPTS.

..... CALL CONSOLE (l)

C SELECT CONSOLE NU_OER 1. ...

S .... EO_ 030003

C DISAELE THE CLOCK PULSE.

PRINT 1000

S EO M 030004

C ..... RESET THE DT COUNTER, ...........

CALL SYSTEM ARM

C ENAOLE A_ALeG COMPUTER T9 SEKD INTERRUPTS. ..............

CALL STANDBY

ICALLEN_=O " -

IEN_-O . .

-- IPRINT=I ..........................

IuPAA=i

IUPB_=O ---

KuPSB=O

MUPBB= 0 ..............

NPRINT=O

NRU_-KRUN+I

NTESTFEE=O

NTIYE= 0 .......

NuPAA_O

N'._RITE=O

NXPOS_O
...... NXNEG=O ...............................................

NYPOS=O

NYNEG_ 0 ............

NZPOS=O

NZNEG= 0 ............. =.....................

TuPAA=O.O
CZER_{I,1)=I,0 .....................................................................

CZER_(I,2)'O,O

CZERO(I_3)=O.O ...........................................................
CZERO(2,%)'O,O

-- CZER_(2,2}-I.0 .................................................................

CZERO(£,3)-C,O

-'- CZERO(3_I)=O.O .....................................................................

CZERO(3,2)=O.O

" CZERO(3_3)-I.0 ................................

DO 10 I=I_3

10 PHIII)=P_I8{I}

CALL DAL (0, -PHI(1)_ 1000,0_ -PHI(2), _OOO,O_ "PHI(3)_ 1000.0)

...... P_IAA(1),PHI(1T .........................

PHIAA(2)=PHI(2)

PNIAA(3)=PNI(3)
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......... FEESAA=PHI{-1)**2 * PNI(2)**2_+ PHI(3)**2 ..............................
CALL _P_ATE C_!ATRIX

"C .... -THE NEXT _-INS'_UCTI�NS-CAUSEINTERRUPT 0 T8 ADD 1 TO- NXPOS, ........
S LDA 20S

S --ETA 040 ...................................................................................

S BRU 30S

S2O ..... MPB _XPOS ......................................................................

C THE NEXT 4 INSTRUCTI�NS CAUSE INTERRUPT 1 TO ADD 1 TO NXNE3,
$30 " EDA 40S ...................................................................

S STA 041

-S- ...... 3RU 50S .......................................................................

$40 HPO NXNEG

C ...... THE _;EXT _ INSTRUCTIONS CAUSE INTERRUPT -2 T8 ADD 1 TO NYPOS,
S5D LDA 60S

S ..... ETA 042 ........................................................

S BRU 70S

--S6O ..... _O N_POS ........................................................................

C THE NExT 4 INSTRUCTIONS CAUSE INTERRUPT 3 TO ADD I TO NYNEG,
$70 LDA 80S .......................

S ETA 043

S ........ BRU _S°_ .................................................

$80 Y_8 NYNEG

C - THE NEXT 4 INSTRUCTIONS CAUSE INTERRUPT 10-T8 ADD 1-T8 NZPOS,
S�O LDA I00S

S - STA C52 .........................................................

S SRU 110S

$I00 HP9 NZPOS ............................

C THE NEXT 4 Ir.;STRUCTIONS CAUSE INTERRUPT 11 TO ADD 1 T8 NZNEG,
S LDA 120S ................................

S STA 053

S - _RU 130S .......................

$120 HP9 NZNEG

$130 HOP ........................................................

S Ee _ 030001

C--- INITIALIZE PRESET COUNTER Te A COUNTOF I',....................

C

S- E8 M 030002 ...........................................................

C PLACE ALL I_TEGRATORS IN THE INITIAL CONDITION MODE,

• RETURN .............................

1090 FeRVAT (26Xs #HTI_E_ 4OXs 8_C MATRIXs 32Xs 3HPHI//)

" END ................................

SJBROUTINES REQUIRED .....................................................

CBHPUTER C_NDITI_ MUxTRACK INCREHE N \CONNECT CONSOLE \PRINT

STANDSY DAE ...... \FPOWER UPDATECM \STBp ...................
SYSTEP

COMMONST�RAGE ..................................................................................

77705 CZER8 77727 CRB
652CW-T ...... 70665 CPRINT

77?77 ISS29LD 77776 ISS2_'E_
_'- 77763 NXPOS- 77762 NXNEG

77756 NZNEG 77755 NRUN

70662-IEND " - 70661 INDEX -

70342 FEESB5 70324 TUPAA

- 0317 IUPAA - 70316 IUP_B

e6024 IPRINT 65203 NUPAA

" 65177 MONTH

66025 PHl 70334 PHIAA -

70351 HARK - 66033 PHIPRINT

77775 ISS38LD 7777_ ISS3NEW

77761 NYPBS" 77760 NYNEG

77753 FEEHAx 77751 TOTALTIM

70347 FEESQMAX 70346 NOUT

70322 TUPBB 70321 NTESTFEE

70315 NTIME 70314 IDAY

65232 ICALLEND 65201 NPRINT

65176 MUPBB ...........

70326 PHIBB
77764 PHIO-

77772 CPRNTT

77757 NZPOS-

70663 DPHI

70344 FEESAA

70320 KUPBB
70313 N.RITE

65200 NPERPR

NON-RECURSIVE STORAGE " "

00000 CHAT 00022 ASUB C004_ BSUB 00066 TEND

211



SUERgJTINE RjN START
DIME_SIS_. CZERO(3s3), CRB(3a3}, CMAT(3,3), ASUB(3_3), BSUB.[3C3.! ..........

......... DIVENSION P_I(3)_ PHIAA(3), PHISB{3)s T{200), TEND(200}

DIMENSION CPRINT(500,3], KARK(2OO)s PHIPRINT(6CO), PNIO(3)

...... C_H_ON ISS29LD, ISS2NE_, ISS39LDp ISS3NEW, CPRNI-TIME, PHIB_ _XPOS

COH_ON XXNES, NYPOS, NYNES, NZPOSs NZNEG, NRUN, FEEMAX_ TOTAL TIME

COW'ON CRO,CZE_O, CPRINTs DPHI, IEND, INDEX_MARK, FEESGMAXs NOUT ......

C_9N FEESAAs FEESBB, P_IAAt PHIBB, TUPAA_ TUPBB, NTESTFEEs KUPBB

....... CeMent" IUPAA, IUPBB, _TINE, IDAY, NBRITEs F'HIPRINTj'-PHI_ IPRINT, T

CO_ON NU_AA, ICALLEND, NFRINT, NPERPR, _ONTH, MUPBB

..... IF(SENSE S_I'C_ 4) 20,40 ....................................................

20 IF(SENSE S_ITCH _) 20_60

" N_- S_ 4_40 IFISE _ ITCH 60,40 ............

C T_GSLE SENSE S;_ITCH w TO bEGIN RUN

60 CAL_ CO"IPdTE

CALl_ AR _ (0, I, 2, 3, IC, li, 12}

-C ...... SE T DIGITAL C_YPUTER T8 ACCEPT SPECIFIC-INTERRUPTS_ ..................................

S EO_ 030005
C " ENABLE T_4E CLOCK PULSE, RESET PNI MODE "CONTROL FLIP.FLOP_ ....... '

RETURN

' END .......

SU_RBUTINES RECUIRED

RjNSTART NIFSNSW COMPUTE ARM \STOP

C_YMON STORAGE

77705 CZER_

65204 T

77777 ISS29LD

"7763 NXPeS

1756 NZNEG

70662 IEND

70342 FEESBS

70317 IUPAA

66024 IPRINT

65177 _ONTN

77727 CRB " 66025 PHI 70334 PHIAA - 70326 P_IBB

70655 CPRINT 70351 _ARK 66033 PHIPRINT 77764 PHI8

77776 ISS2NE_ 77775 ISS38LD 77774 ISS3NE_ 77772 CPRNTT

77762 NXNEG 77761NYPeS 77760 NYNEG 77757 NZPOS

77755 NRUN 77753 FEEMAx 77751T_TALTI M 70663 DPHI

70651 INDEX 70347 FEESQ_AX 70346 NOuT 70344 FEESAA

70324 TUPAA 70322 TUPBB -70321NTESTFEE 70320 KdPBB

70316 IUPOB 70315 NTIME 7031w IDAY 70313 N^RITE

65203 NjPAA 65202 ICALLEND'65201NPRINT ..... 65200 NPERPR

65176 MUPBB ........................................................

N9N-RECURSIVE STORAGE

00000 CMAT CC022 ASUB C0044 BSUB .... 00066 TEND ........

END 8F CeMPILATIO_ .................................................................
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SUB_gUTI_;E UPDATE C_ATRIX

DI_E_SIO_ CZER_(3,3)s CRB[3s3), CHAT(3,3), ASUB(3,3), BSUB(3,3}

DI_ENSIOK PHI(3), pHIAA(3}, PHISB(3), T(200)_ TE_D{200)

DI_ENSIgN CPRI_T(6OOs3)._ kARK(2OO)s PHIPRINT(6OO), PHIO(3)

C_M'_N ISS29LDs ISS2NE_ ISS30LDs ISS3NEW, CPRNT TI_E, PHIOt NXPOS

coM_IgN NXNEGs NYP_S, _YNEG, _ZP_S, NZNEGs NRUN, FEE_AX_ TQTAL TIME

Ce_N CRSs CZER8, CPRI_T, DPHIs IEED, INDEX, MARKn FEESQMAX_ NOUT

CBM_ON FEESAA, FEESBB, "PHIAAs PHIBBa TUPAA, T_PBB, NTESTFEE, KUPBB

CBMHBN IUPAA, IUPEB_ _TIPEp IDAY_ NWRITEs _HIPRI_T, PHI_ IPRINT, T

COMMON S_UPAA_ ICALLEND, NPRINT, NPERPR# YO_TH_ M_PBB

...... IF (SENSE S_ITCR 5) 15,5 ..................

5 IF{IUPAA+Ij_BB-I) 1B,15_I0

C I_ _9TN IUPAA A_D IJPBB ARE SET, ONLY DO A TYPE BB UPDATE. ....

iO IuPAA=O

IPRINT=3 ........................................

GO TO 120

!5 IF(IUPAA) 120,120,20 ......................................................

C IuPAA=I INDICATES A C MATRIX UPDATE INTERVAL HAS ELAPSED

20 IuPAA=O ....................

IP(IPRINT) 60_6C,40

40 KPRINT=i ....

C K-FLAGS ARE SET UP SIKCE THE I-FLAGS ARE SUBJECT TB CHANGE IN THE

C I_:CREXE\T PHI Ih_TERRUPT S_B_eUTI_E. " .......... •

IPRI_T=O

GO TO 70 ..................

60 K2RINT=G

70 FEE4AA=FEESAA*FEESAA ...................................

FEE_AA=FEE4AA,FEESAA

P=!,C-FEESAA/E,C+FEE_AA/I_C,C-FEE6AA/5C4C,O
PS_=P*P

Q=I.0/(_.O'_EESAA/2.C+FEE4AA/24.C'FEE6AA/72D.O)

P_IRAAX=PHIAA(1)*P_IAA(1)

PNI2AAY=FNIAA(_)*PHIAA{2) ..............

PNI2AAZ=PNIAA(3)*PHIAA(3)

ASU_(lsl}= 1.0 ...........................

ASU_(Is2)=-P*PHIAA(3)

ASU_(I_3)= P*PHIAA(2} ..........

ASU_(2sl)= P_PHIAA(3)

ASU_{2,_)= I.0 ..........................

ASU_(2,3)=-P*PHIAA(1)

.... ASUB(3,1):-_*PHIAA(2) ................................

ASU_(3_2 = P*PHIAA(%}

ASUE(3,3 = 1,0 .................

BSUB(I,I =-3*PS3*(PHI2AAZ+PNI2AAy)

BSU_(I_2 = _PS3*PHIAA(i}*PHIAAI21 ............................

BSU_(I,3 = O*PS2*PHIAA(i}*PHIAA(3)

..... BSUB(2,1 = _.PSO*PHIAA{2)WPHIAA{%'T .............................................

BSU_(2_2 =-Q*PSQ*(PHI2AAX÷PH|2AAZ}

BSUB(2_3 = 3_PS_*PHIAA(2).PHIAA{3_ ........................

BSU_(3,1 = Q*PSG*PHIAA(3).PHIAA(%)

..... BSU2(3_2)= D*PS_*PHIAAI3).PHIAA{2| ...................................

BSUB(3, B}=-Q*PSQ*(PHI2AAX÷PHI2AAY)

...... IF(KPRINT} 180,180s80 ...............................................................

80 IRO_=3*NPRINT

NPRINT=NPRI_T+I .......................................................

C NPRINT IS THE TOTAL NUMBER OF PRINTBUT MATRICES CALLED FOR SO FAR,

T(NPRINT)=T_PAA/3&OO_O ......

DO _00 M=1,3

...... L=M+IRBW ........................................................................

$00 PHIPRINT(L)=PHIAAIM)

" _O T_ 180 .....................................
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......................... _ _ .._ ...................................

120 KuPBB=_

IUPBB=O

...... FEE4BB=FEES_B*FEESBB-

FEE6B5=FEE_£B*FEESBS

--p=I,C-FEESBBI6.0+FEE4BBII£O.O-FEE6BB/5O4"O_O ..................................

pSg=P*P
...... _=loO/{2,0-FEESSB/2,C+FEE,BB/24,0-FEE6BS/72C,O} ..........................

PHIEBBX=PHIDB(1)*PNIBB(1)

.... PMIEBBY=P_IEB(Z)*FNIBB(2) .............................................................

PHIEBSZ=PNIBB(3)*PHIBB(3)

...... ASU_(Isl)= 1.0 ............"..........................

ASUS(Is2)=-P*PN]BB(3)

........ ASU_(1,3}= P,PNI55(2]
ASU_(2s[)= p*PHI.SB(3) .......................................

........ ASU_(2,2)= 1,0

ASU_(2_3)=-P*PFIBB(1)
........ ASUE[3sl)=-P*PhI_£(ET .........................................................

ASU_(3s2)= P*PhISE(1)

" - ASUB(3_3 = 1.0

BSU9(Isl " _ _'*(PHI2BEZ+PNI2BBy )

" BSU_(I_2 = _.PS_*P_IBB(t).PHIBB(2)

BSUB{ls3 = C*PS_*P_IeB(1)*P_,IBB(3)

BSUB(2sl = _*PS_*PHIBB(2j*PHIBB(1)

5SU_(2,2 :-S*PS_*(PHI2B_X+P_I2BBZ} ........................

BSU£{2_S : _.,_*PNIBB(2).PNIBB(3)

BSU_(3,1 = C*vS_*PHIBB(3}_PHIBB {1)

BSUE(3,2 = C*PS_*PHIB_I3)*PNIBB(2) ...........................

BSUS(3_3)=-Q*PS2*(PHI2BBX+PNI£BBY)

IF (SENSE S&ITCN 5) 180;I,0 .........................

C SE T SENSE S;_ITCH 5 TO SUPRESS FEE RESET pRINTOUT.

140 KPRINT=I

IRD_,=3*NPRINT .......................
NPRINT=XPRINT+I ...........................................

T(NPRINT)=TUPBB/3600"O

.... DO !60 M=ls3 ............................................................

L=_+IRO_ ..............................
160 PHIPRINTIL)=PHIBB{M} ...................

180 DO _OO _=1_3

DO 200 N=1,3 .............. •.................................................

_00 CHAT(_N}:ASUB(P_N)+BSUB[H_N)

........ D9 220 _:1,3

DO 220 N-_,3

.......... CRB(M,N)=CMAT(M,i).CZERD{I,N)+CMAT(_,2).CZEROI2,N)+CHAT{M,3)*CZERO

1(3sN)

....2_0 CONTINUE .................................................................

IF{KUPBB) 260_60,240

....240IF {SENSE SWITCH 51 420,3b0 -

_60 IF(KPRINT) _60_460_280

2BO MARK{NPRINTI=O ............

C THIS CAUSES PRINTOUT NOT T8 .pR!NTAN ASTER! SK., BY EHI s" HATR!_ x .....

.... G9 TB 320 .....................

300 HARK(NPRINT)=I

-C " 'PRINT AN ASTERISK'BY'THE MATRIX PRINTED OUT AT THIS TIME.- -

C THIS INDICATES ON PRINTBUT THAT FEE WAS RESET

_0 D_ 340 _=1,3 ..................................................

D_ 3_0 N:ls3

--- L:_+IR_W ................................................
340 CPRINT(L_N]:CRB{M_N)

IF(NPRINT'INDEX) 400_360s360 ...................................................

360 IF(IEN9) 380s380_00
380 ICALLENO=t ..................................
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C " ALL-THE CPRINT STORAGE HAS EEEN USED,

CALL END OF RUN

400 KPRINT'0

IF(KUPB_) 460,_60'_29 ...............................

:0 De -I440 H=I#3

De 440 N=Is3 ........

"'4W0 CZERO(MpN}=CRB(_sN)

C THE UPDATE WAS CALLED BY RESETTING FEE T8 ZERO,

C L:- CZER8 MUST BE BROJGHT UP T8 DATE,

KuPBB=O .....................................................

'4&O RETURN ...............

END

SUBRSUTINES REQUIRED .....................

_PDATECH \IFSNS_ ENDgFRUN - _STOP

COM'_ON STORAGE ........

77705 CZER9

6520_ T

77777 ISS20LD

77763 NXPOS

77756 NZNEG

70662 IEND

70342 FEESB5

77727 CRB

70665 cPRINT

77776 [SS2\E_

77762 NXNEG
77755 NRUN

70661 I'_DEX

7032_ TupAA

66025 PHI

70351 MARK

77775 ISS38LD

77761NYPOS

77753 FEEMAx

70347 FEESQF'AX

7032£ TUP3B

70334 PHiAA 70326 PNIBB

66033 PHIPRINT 77764 PHIO

77774 ISS3NEW 77772 CPRNTT

77760 NYNEG 77757 NZPOS

77751TOTALTIM. 70663 DPHI

703_6 NOuT - 7034_ FEESAA

70321NTESTFEE 70320 KOPBB

70317 IuPAA 7C316 IUPBB 70315 NTIME 7C314-1DAY

66024 IPRINT 65203 NuPAA 65232 ICALLEND 652.01_.NPRINT

65177 MgNTH 65176 HUPBB

N_N-RECURSIVE STSRAGE
3000 CHAT 00022 ASUB 0C044 BSVB ....... 00066 TEND

END OF COMPILATION
. . ._

70313 N^RITE

65200 NPERPR
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So_guTI_E I_.CRZXENT _HI ................................................

DI_E_SIO_ CZERD(3n3),-CRB(3s3)s CMAT(3_3), ASUB(3s3)s BSUB(3s3)

'-DI_ENSIg_ PHI(3)sPHIAA(3)n P_ISB(3)s-T(2OO)s TEND(200) ........................

DIMENSIgN CPRINT(6OO,3), YARK(200)_ PHIPRINT(600), PHIO(3)

- CSM_9_-ISS2DLDa IS$2NE_sISS3eLD_ISS3_EW, CPRNT-TI_E, PHIe,_XPDS ......

C_M_gN _X_ES, NYPOS, NYNEG, NZPeSs NZNEGs NRUNs FEEgAX_ TeTAL TIME

-'COMMO_CRB, CZE_On-C.PRI_Ts-DPHIJ"IE_D, 'INDEXs-MARKs FEESQMAX, N_OT ....

C_YeN FEESAA, FEES_B, PHIAA, PHIBB, TUPAA, TUPBB, NTESTFEE, KUPBB

• Ce_ IUPA_, IUP_9, NYIME' IDAY, NkRITE, P_IPRINT_'P_I_ IPRINT,T ....

C....:ON _,_PAA s ICALLEND, NPRINT_ NPERPR_ YO!_TH, HUPBB

.... DX:_XPgS-NX_EG .........................................................................

DY=NYPBS-NYNEG

..... DZ=NZpgS.NZ_EG .........................................................................
NXP_S=O

...... NXNEG=O ................................................................

NYPgS=O

...... -NYNE3= 0 .........................................................................................

NZP_S=O

" " " NZNEG=O ...............................................................................

PNI(1)=PHI(t)+DX,DPHI

.... p_i(_)=_i(_)+Dy,;pHI ..................................................................

P_I(3)=P_I(3)+DZ*_PHI

- NTI'_E=_TI_E÷3& ..................................................................

NTESTFEE=_TESTFEE÷%

..... FEESOR=P_I(1),P_I{I}+P_I(_)*PHI{_}+FHI(3),PHI(3} .....................
IF (_UP_E) I0C,100,130

100 IF{mFESQR-F_ES_VAX) %40,_0,1_0 ..................................
I_0 _UP3B=I

S E9 _ 030000 ...............................

C HgOE CONTRgL FLIP-FLOP IS RESET JUST PRIER TO NEXT INTERRUPT,
30 T9 1_0 ..................

30 IUP3_=I

C FEE _AS jJST RESET. UPDATE C_ATRIX# .......................................

MUPBB=O

--- TUP_9=NTI_E .......................................................................

FEESAA=FEES_R
FEES_S=FEES3R ..........................................................

PHIAA(1)=PHI(1)

Pl_IAA(_)=PHI(_) ........................................

P_IAA(3)=PHI(3)

.... P_IEB(II=PHI(I} .........................................................

PHI_B(_}=PHI(_}

PHI_(3)='PHI(3) ...........................................................
PHI(1)=O,O

........ PHI(_),O.O .................................................................

PHI(3)-O.O

1_0 IF(NTESTFEE-lO}--[60_180_80 ....................................................
160 RETURN

180 NTESTFEE=O ...........................................................................

C UPDATE TI_E HAS ELAPSED. uPDATE CMATRIX_

........... NUPAA,NUPAA+ I...............................................................................

IUPAA-_

...... TUPAA=NTI_E ...................................................................................

IF (]UPSB} 200,£00,2_0

- _00 PHIAA(1)-PHI{1) ...............................................................

PHIAA(2)=PHI(_)

PHIAA(3}=PHI{3} ....................................................... ............

FEESAA=FEES_R

_20IF (NUPAA-NPERPR)-_0_26D#260 ............................................

_#0 RETURN

_60 NUPAA=O ...............................................................................
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C PRINTTI&ENABELAPSED.P_INTBUTCMATRIX.
NWRITE=N_JRITE+I ...................................
IPRINT-I 3
IF (X_RITE-'_UT}280s300_300...........................

?RO RETURN '

O IEND=I ......... ............... .

C TOTAL TI_E _AS ELAPSED, ExD THE RUN,

RETURN .......................... .-..

" END ....

SUBRSUTINES RECUIRED

INCREXE_ \ST_P

CSMMBN STORAGE ......
77705 CZER9 77727 CR@ " 66025 PHI

65204 T 70665 CPRINT 70351 MARK

77777 ISS25LD 77776 ISS_NEW 77775 ISS3BLD

77763 NXPOS 77762 NXNEG 77761NYPBS

77756 NZNEG- 77755 NRUN 77753 FEEMAX

70662 IE_JD 70661 INDEX 703w7 FEESOMAX

70342 FEESB5 7032_ TUPAA 70322 TUPBB

70317 IUPAA 70316 IJPBB 70315 NTIME

•66024 I?RINT 65203 NUPAA 65202 ICALLEND

65177 M_NTH 65176 MJPBB

NB_-RECURSIVE STORAGE
O000C CVAT 00022 ASU_ C00_ BSUB-

END 8F CeYPILATISN ............ : ............

70334 PHIAA 70326 PHIBB-

66033 PHIPRINT 77764 PHIO ,

77774 ISSSNEW 77772 CPRNTT'

77760 NYNEG 77757 NZPS$

77751TOTALTIM 70663 DPHI

703_6 NBUT 70344 FEESAA

70321NTESTFEE 70320 KUPBB "

7031_ IDAY 70313 NxRITE

65201NPRINT • 65200 NPERP_

O0066-TEND
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- " SuBR_JTI'4E F',D OF RUN ..........................

DI_ENSIDN CZER_(3,3), C_8(3,3), CMAT(3,3), ASUB(3,3), 8SU8(3,3)
........ DIV£NSI_ PHI(3), PHIAA(3), PHIBB(3), T(BCO), TEND(200) .......................

DICE%SIgN C_RINT(600,3), MARK(200), PHIPRINT(600), PHIg(3)

..... C9_9N ISS29LO_ ISS2NEW, ISS39LD, ISS3NE_j CPRNTTIME_ PHIO, _XPSS ......

C9 M'19_ _X_ES, r<YPgS, NYNEs, NZPgSs NZNEG, NRUN, FEEPAX, TeTAL TIME

C_ '._N .R=, CZE_O, CRRI_T; DPHIZ--IEED} IKDE×,-HARK',-FEESQMAX,-NgUT ......

C_Hv_,, FEESAA, FEES£8, PHIAA, PNIBBs TUPAA, TUPBB, NTESTFEE, KUPBB
vh,_W

...... Cg_vgN IUPAA} IUFEB, KTI_E, IDAY, _RITE, PHIPRI_T, PHI, IPRINT} T

CeM_N KUPAAs ICALLEND_ NFRINT, SPERPRs _84TH, MUPBB
'S ........ E8_ 030003 ......................................................................................

C DISABLE TUE CLgCK PULSE.

.......... CAEL DISAR_ (0al,2,3,10,11_12) ..............................
CALL SYSTE_ DISARM

....... CALL STA_,DSY ..............................................................

ICSU_T=O

........... ISKIP,% ............................................................................
H=O

-S ..... E_M 030002 ................................................................

C PLACE ALL It_TEGRAT8RS IN THE INITIAL CONDITISN HSDE,
" 20'_=3-H .................................................................

M-_÷I .......................................................................................

C M NJMEERS TH E PRint OUT MATRICES SERIALLY

PRINT 1000_ CPRINT(K,I), cPRINT(K,2), CPEINT(K,3), PHIPRINT(K)
............ K=K+I .......................................

IF(YARK(_)) 60_60_0

_O-PRI_T 1950, _, T(_)_ CRRIKT(K,I)_ CPRINT{K,2), CPRINT{K_3), PHIPRI "
INT(K)

-C -pRI_TgUT RE3UIRED BECAUSE FEE WASRESET, PRINT AN ASTERISK, .....
G_ T8 80

..... 60 PRINT 1100, E#- T(M)) CPRINT(K_I) , CPRINT{K,2;,-CPRINT{K,3) _ PHIPRI -
1NT(K}

.... 80-KIN+ _ ........................................................................

PRINT 1150, CPRINT(K,I), CPRINT(K,2}, CPRINT(K,3), PHIPRINT(K)
........ IF(_-NPRIHT) 85,110,110 ........................................................

C WHEN M=NpRINT_ ALL ST_RED YATRICES HAVE BEEN PRINTED,
..... 85 ICOU_T=ICgUNT+I ............................................

IF(ICOU:_T-6) 20,90s90

"-; -90 ICS_NT-O ...............................................................................

PRINT 1170

ISKIP=ISKIP+I ..................................................................

IF(ISKIP-.2) 9E,.tOO, tO0

..... 95 G_ T 8 20 ...........................................................................

100 ISKIP-O

......... G_ T_ 20 .................................................................................

110 IF(SENSE S4ITCH 5) 1_0,_20
- 120-PRINT 1200 '-c ....................................................................................

1_0 IF(ICALLEND) 180,180_160
.... 160 PRINT 1250 ..................................................................................

150 IF(ISKIP) 220,220,200
" 200-PRINT 1170 ...........................................................................

220 RETURN

'1000 FSRHAT-(52X, 2(Fl1_,8, 5X}_ Fl1,8, iCX, F_l,8) ........................... .-

'_50 F_RHAT (12X, 1H*, 2X, 13, 5X, ;9.5, _H SEC, 16X, 2(Fll.8, 5X)_ FI1
.... 1,8, fOX* F11,8} ................................

1100 FgR_AT (15X, 13, 5X, F9,5, WH SEC, 16X, 2(F11.8, 5X), F11
........ 1,8,'-IOX_ F11°8_ ..................................................................

1150 F_RMAT (_2X, 2(Fl1.8, 5X)_ Fll,8, lOX, Fll.8//I)
1t70 F_RMAT-I$1$) ..................................................................
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1200 FOR'cAT (s A;', _STLRI_< (-) MEANS THIS PRINTBVT WAS CALLED BY FEE BE
lING RESET T_ ZErO s///)

1250 F_R_AT ($ THERE ;_AS N_T ENOUGH STORAGE ALLOTTED IN CPRINT$///)
END

S"-:8UTINES RECUIRED

_4DgFRUN DISARm SYSTE_DI

C94MBN STORAGE

77705 CZER9

6520_ T

77777 ISS29LD

77?63 _XPgS

77756 NZ4EG

70662 IEN_

70342 FEESBD

70317 I_PAA

66024 IPRINT

65177 _O_TH

77727 CRB

70665 CPRINT

77776 ISS2NEW

77762 KXNEG

77755 NRUN

70661 I_DEX

70324 TUPAA

7S316 IUP_B

65_03 NUPAA

65176 MJPBB - "

NO_-RECjRSIVE $T3RAGE

00000 C_AT 00022 ASUB

EN] OF COmPILAtION

"'-i

STANDBY \PRINT \IFSNSW \STOP -'" ....

............. . . , . .

66025 PHI 70334 PHIAA 70326 PHIBB
70351 MARK " 66033 PHIPRINT 77764 PHI8

77775 ISS38LD 77774 ISs3NEw

77761NYPOS 777_9 NYNEG

77753 FEEMAx 77751TOTALTIM

70347 FEESO_AX 70346 NOUT

70322 TUP_B 70321NTESTFEE

70315 NTIHE 70314 IDAY

65202 ICALLEKD 65201NPRINT

77772 CPRNTT

77757 NZPQS

70663 DPHI

70344 FEESAA

70320 KUPBB

70313 N_RITE

65200 NPERPR

00044 BSUB 0C066 TEND
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APPENDIX F

L ¸

L

NOTATION CONVENTIONS

F.I Matrices

Matrices are represented by a capital Greek or Roman

letters. In particular

C = direction cosine matrix

Coordinate transformation matrices bear a pair of capital

letter superscripts: the first indicating the coordinate

frame of the transformed vector, the second indicating the

coordinate frame of the vector to be transformed. For

example

CMN = the direction cosine transformation from the

N frame to the M frame

(The coordinate frame indices always occur in pairs on coor-

dinate transformation operators.) Other matrix conventions

are

A T = the transpose of A

(TPQ) -I = the inverse of T PQ

F.2 Vectors

Vectors are designated by a subwritten bar.

a]a = a X

a

For example :
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As in the case of matrices,

T
a = the transpose of a

The coordinate frame in which the components of a vector are

expressed is indicated by a capital letter superscript. For

example:

r S = the vector r coordinatized in the S frame

A component of a vector is indicated by a lower case subscript.

For example :

V I = the y component in the I frame coordinate sys-
Y

tem of V

The special symbol 1 is used for denoting a unit vector in

the direction of a coordinate frame coordinate axis. For

example:

1 R = a unit vector in the direction of the R frame
--X

x axis.

F.3 The Cross Product Operator

The notation

A = [a x]

is used to denote the matrix equivalent of taking the cross

product of the vector a into another vector. For example:

A b = [a x] b _ a x b

If the components of a (necessarily in the same coordinate

frame as the components of b) are a
x' ay,

A = [a x] = 0

az 0x

-ay a x

and a then
Z'
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F.4 Coordinate Frames and the Time Derivative

From time to time it is necessary to indicate both the

coordinate frame with respect to which the time derivative

of a vector is taken and the coordinate frame in which the

The nota-
components of the time derivative are expressed.

tion

dv

indicates that the derivative of the vector _ is taken with

respect to the Q coordinate frame. The notation

dPv

dt

indicates that the components of the derivative are given

with respect to the P coordinate frame. For example

dPv dPv

dto dtp

P P
- O_p x v-- Q

is the Law of Coriolis applied to the vector _ where all vec-

tors are coordinatized in the P frame, the derivative on the

left-hand side is taken with respect to the Q frame, and the

derivative on the right-hand side is taken with respect to

the P frame.
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