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A NEW CONCEPT IN STRAPDOWN
INERTIAL NAVIGATION

By John E. Bortz, Sr.
Electronics Research Center

SUMMARY

In a conventional strapdown inertial navigation system,
the matrix differential equation

+ RB RB

C = C [weypX]

(.URB

is integrated numerically using the incremental outputs from
the system gyros. The major problem in this method is the
well-known phenomenon of non-commutativity of finite rotations.
Two ways of combatting errors due to this effect are (a) to
update the direction cosine matrix at or near the gyro re-
balance frequency using a simple update algorithm, or (b) to
update after many rebalance cycles using a more sophisticated
algorithm.

In the method presented here, a correction is generated
for the non-commutativity phenomenon using analog computing
elements. This correction is fed back through the system

gyros where it is summed with the torque produced by the
angular velocity of the vehicle. Then the gyros integrate
and quantize the sum of the angular velocity and the non-
commutativity correction torques. As a result, the incre-
mental data from the gyros can be accumulated over time in-
tervals that are from 10 to 1000 times longer than permiss-
ible with conventional algorithms and the update accomplished
using a simple closed-form solution of the ¢ = Clwx] equation.
This is accomplished without sacrificing either the accuracy
of the update or system bandwidth.

A similar hybrid computational technique is developed
for transforming the specific force measurement from the
instrument to the navigational coordinate frame.

*

Submitted to the Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, on June 2, 1969 in partial
fulfillment of the requirements for the degree of Doctor of Science.



CHAPTER 1

INTRODUCTION

Inertial navigation systems can be classified according
to the way they perform the basic operations of inertial navi-
gation (ref. 1). A navigation system is called a geometric
system if the orientations of both a reference coordinate
frame and a navigational coordinate frame are physically

maintained by system gimbals; a semi-geometric or a semi-

analytic system if only the orientation of a reference or

an intermediate coordinate frame respectively is physically
maintained by system gimbals; and an analytic system if the
orientation of neither a reference nor an intermediate coordin-
ate frame is physically maintained by system gimbals. An analy-
tic system is commonly termed a strapdown system. (Other names
are gimballess or no-gimbal systems.)

Until the present, whenever there is appreciable angular
velocity of the vehicle relative to an inertial coordinate
frame the best performance has been achieved with a gimballed
(geometric, semi-geometric or semi-analytic) system. The
performance of a strapdown system is limited primarily by two

factors not present in gimballed navigation systems. The



cause of both limitations is the vehicle-fixed mounting of the
inertial sensors in strapdown systems. In gimbailed naviga-

tion systems, the inertial sensors are mounted on gimbals whose
orientations are nominally stationary relative to either the

intermediate or the reference coordinate frame. On the other
hand, the inertial sensors of a strapdown system partake fully
of the vehicle's angular motion. A rebalancing signal must be
applied to the gyro to keep its spin axis near its case-fixed
reference direction. Furtiiermore, the measurement of specific
force must be transformed from the frame of the measurement

into that reference coordinate frame in which the integrations

of acceleration are to take place.

The first factor limiting the performance of a strapdown
system is that the measurement of input axis angular velocity
provided by the gyro must be inferred from the rebalance tor-
que applied to the gyro. As a result, the integral of the
input axis angular velocity is known only in terms of the re-
balance torque. In gimballed inertial navigation systems,
since the gyros do not experience the vehicle's angular velo-
city, the torque applied to a gyro's torque generator is
always small and the calibration of this torque is not of
great concern. 1In a strapdown system, the calibration of the
rebalance torque is crucial and is one of its major problems.
Also, the error model for a single degree-of-freedom gyro
includes error terms which are functions of angular velocity

and therefore must be calibrated and compensated.



The second limitation arises from the need to transform
the specific force measurement from the Measurement* Frame to
the Reference Frame. The coordinate transformation from the
Measurement Frame to the Reference Frame must therefore be
known. This coordinate transformation is usually computed
from the pulses (each pulse representing an increment of in-
tegrated angular velocity) obtained from pulse rebalanced
gyros. Each pulse represents a finite rotation. However,
finite rotations do not commute (ref. 2), since Rotation A
followed by Rotation B does not, in general, produce the same
result as Rotation B followed by Rotation A. Consequently,
coordinate transformations computed from these finite incre-
ments include, to some degree, errors resulting from the non-
commutativity of finite rotations. The size of these errors
depends upon the size of the increment and upon the sophistica-
tion of the algorithm used in updating the coordinate trans-
formation.

Thus, the two chief limitations of strapdown navigation
systems are the scale factor error and the coordinate trans-
formation computation error. NoO techniques for reducing the
scale factor error are presented in this thesis. It is to
the coordinate transformation computation error that attention
is addressed. Previously, each new proposal for reducing the
coordinate transformation error has been a new algorithm for

updating the coordinate transformation using the incremental

*

A coordinate frame whose name is capitalized refers to a
specific frame. When the name is not capitalized the refer-
ence is to a class of coordinate frames.



data from the gyros. Of these algorithms, it may be said that
they require a great deal of computer capability and capacity.
In fact, this heavy computer loading prevented serious strap-
down system development until the early 1960's when a new
generation of aerospace computers enabled the coordinate trans-
formation computation to become a practical reality.

Strapdown navigation systems have certain advantages over
gimballed systems. They are more reliable and more easily
maintained than gimballed systems; they are smaller and more
flexible in shape; they consume less power since they draw no
gimbal torquing power. However, these advantages are irrevel-
ant if an application requires accuracy beyond the capability
of strapdown technology. There are inertial navigation system
applications for which strapdown systems are considered in-
adequate, such as the navigation system for manned fighter air-
craft, but there are also applications in which strapdown sys-
tems are currently being used, such as the back up guidance
and navigation system for the Apollo Lunar Module (ref. 3).
Further, in at least one application, a strapdown system gives
better performance than a gimballed system. When a spacecraft
must be stabilized in orientation as, for example, to point
a laser beam toward a receiving station on Earth, the entire
vehicle becomes the stable member, and the distinction between
a gimballed system and a strapdown system vanishes. Vehicle
angular motions can be nulled by signals from the gyros in
either class of system. If a gimballed system were used,
uncertainty in the measurement of gimbal angles would contri-

bute to uncertainty in orientation of the vehicle.



The techniques presented in this thesis will permit fur-
ther applications for strapdown systems since, when these tech-
nigques are used, coordinate transformation computation is not

a major limitation in strapdown system technology.

1.2 Coordinate Frames and the Transformation Computation

An explanation is in order concerning the particular choice
and role of the various coordinate frames in this thesis. There
always exists an inertial coordinate frame (either explicit or
implied) in any inertial navigation process since all measure-
ments of specific force and angular velocity are made relative
to an inertial coordinate frame. An inertial coordinate frame
is a coordinate frame in which a particle in motion in any
arbitrary direction, but with no external forces acting upon it,
continues in motion with a constant velocity vector. Any
accelerometer, whether mounted directly on the vehicle or on a
stable platform, measures an inertial quantity whose instantan-
eous value is the same as it would be if that sensor were fixed
in orientation relative to an inertial coordinate frame. If
a specific inertial coordinate frame is chosen for an inertial
navigation problem, that frame is called the Inertial Frame.

Another coordinate frame that is always involved in the
navigation process is a coordinate frame fixed to the vehicle
structure. This coordinate frame is called the Body Frame.
Other coordinate frames may be introduced as convenient or
necessary. For example, in a terrestrial navigation system,
it is convenient to introduce a local coordinate frame known

as the Navigation Frame. The origin of this coordinate frame



is fixed in the vehicle with one axis along the vertical,
another axis orthogonal to the vertical axis and in the plane
defined by the vertical and the Earth's rotation axis, and
the third axis taken to complete a right handed orthogonal
triad. Other coordinate frames are treated in Broxmeyer
(ref. 4).

In a strapdown inertial navigation system, there is no
gimbal to be maintained in alignment with a reference coordin-
ate frame, so the orientation of a reference frame is main-
tained in the navigation computer as a mathematical coordinate
transformation. The coordinate transformation commonly takes
the form of a direction cosine matrix c®® which transforms a
vector from its representation in the Body Frame into its
equivalent represenﬁation in the Reference Frame. The direc-
tion cosine matrix is not the only form that the coordinate
transformation may take. There are other characterizations
of relative orientation such as Euler Angles and Quaternions.
For a discussion of these other representations, see refer-
ences (5) and (6). Except for the singularities in other
representations, the direction cosine matrix corresponding to
any other representation is unique although the converse is
not necessarily true. There may be computational advantages
to the use of other representations, but it is not the pur-
pose of this thesis to explore this possibility, but rather to
develop a hybrid computational technique that makes use of
both incremental gyro output pulses and analog information ex-
tracted from the gyros for use in supplementary analog com-

putations. This technique is then compared with representative



digital techniques.

The Body Frame may have arbitrary angular motion relative
to the Reference Frame, and the gyros in a strapdown naviga-
tion system must measure this motion. The direction cosine
matrix is "updated" from these measurements. The conventional
method for updating the direction cosine matrix is to inte-
grate numerically the matrix differential equation*

+RB RB B

cC™ =C [wgpX] (1.1)
subject to the initial condition

RB _ _RB

C(t,) = ¢, (1.2)

where [Qng] is the skew symmetric cross-product matrix formed

from the Body Frame components of w

Wppe It is assumed through-

out that the Reference Frame is an inertial coordinate frame
although it need only be related to an inertial coordinate
frame through another coordinate transformation which is a
function of the vehicle's position. In that case, cIB is up-
dated using the gyro measurements and then premultiplied by
CRI as evaluated from the vehicle's position coordinates.

Then

CRB - CRICIB

gives the desired coordinate transformation. Alternatively,
pulses representing incremental changes in CRI might be appro-
priately generated and summed with the gyro pulses representing

incremental changes in cIB. This summation of pulses then

* . .
Notation conventions appear in Appendix F.



updates cRB using a suitable digital algorithm.

In order to integrate Eg. (1.1) on a digital computer,
the gyros are sampled periodically to get increments of inte-
grated angular velocity from which Wpp can be inferred. As
already stated, the fundamental problem in integrating Eqg. (1.1)
is the noncommutativity of finite rotations. The only case
in which the gyro increments, Aex, Aey, and Aez, give a true
picture during the interval AT is when the direction of WpE
is constant and the A8's accurately reflect that direction.
For example, suppose w, = wy = w,. If at the start of a gyro
sampling interval, the x- and the y-gyro floats are close to
their thresholds and the z-gyro float is not, the output at

the end of the sampling interval might well be a pulse from

each of the x- and the y-gyros and no pulse from the z-gyro.

Then
1w + 1w + 1w
1 = XX Yy ~zZ z
R} 5 o 1/2
(W™ +w +0)
Xy z
but
1 A6 + 1 _AS
- X e A 4
iAe 2 2,1/2
(ABZ+ABT)
X Y
Obviously
lw 7 lﬂe

and so the update of the coordinate transformation will be in

error. In any case other than

lw = iAe = constant

over the sampling interval, information is irretrievably lost
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of deriving analog angular velocity signals from pulse re-

balanced gyros.



CHAPTER 2

THE HYBRID CONCEPT

2.1 Introduction

The universal practice of using pure digital computation
to update the coordinate transformation has led to an implicit
understanding of the strapdown gyro as an inherently digital
transducer. For the conventional sampled-data rate extraction
and digital processing techniques, it is only required that at
a sampling instant, the gyro yield a positive, negative, or
zero incremental output. This notion of the gyro and its cap-
abilities is, however, not complete. A better understanding and
use of the strapdown gyro can lead to substantial improvements
in strapdown system technology. It must be recognized that
the strapdown gyro is inherently an analog transducer. It is
only the employment of a digital (pulse) rebalance loop that
renders the gyro output in incremental form. From this realiza-
tion, there follows the possibility of extracting useful continu-
ous information from strapdown gyros.

To date, there has been no attempt to use any computational
technique except purely digital techniques to maintain the
strapdown coordinate transformation. Digital computation methods

have advantages, but they have disadvantages as well. The same
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can be said for analog computation methods. The purpose of
hybrid computation is to combine analog and digital computa-
tional methods so as to use the advantages of one method to
overcome the disadvantages of the other. This philosophy
will be applied to the strapdown coordinate transformation
problem.

The main advantage of digital computation is its arbi-
trarily high precision. Since only one computational opera-
tion can be performed at a time, each step in integrating the
direction cosine differential equation must be performed seri-
ally. Thus there is a definite limit to the repetition rate
at which any algorithm can be applied in a specific computer.
Since other computations must also be carried out in the strap-
down navigation system computer, the bandwidth of the angular
velocity environment that can be tracked must be weighed
against the computer size and speed requirements of the overall
computational load.

The principal advantage of analog computation is that any
number of operations can be performed simultaneously. There-
fore, the bandwidth of a computational algorithm is the band-
width of the system as modeled by the analog computer — not
the bandwidth that would result from cascading each computing
element, as is done in effect on a digital computer. It is
practical to obtain a direction cosine computation whose band-
width exceeds that of the gyros by at least an order of magni-
tude using analog computation since the analog computer is an
electronic device while the gyros are electromechanical in

nature. On the other hand, the accuracy and precision of the

14



analog computation is limited. An analog computing element
with an accuracy of 0.01 percent is quite good indeed.

To summarize, the precision of digital computation can
be made as high as desired, but the bandwidth of the computa-
tion is limited by the overall load. Analog computation band-
width, relative to gyro bandwidth, is no problem for an analog
computer, but the accuracy and precision of the overall computa-
tion is limited by the cascaded errors of the individual com-
puting elements to around 0.1 percent (ref. 8). Obviously,
analog and digital computers have complementary strengths and
weaknesses.

Simulation and computation problems exist that are unsuited
for either digital computation or analog computation alone. An
aircraft research simulation is an example of such a problem.
Also, the strapdown coordinate transformation computation is
only marginally suited to all digital computation, and since it
has the characteristics listed below, it is natural to explore
the possibilities of hybrid computation for this application.
Problems suited for hybrid computation have some or all of the
following features (ref. 9):

(a) The problem is complex.

(b) The problem must be solved in real time.

(c) Certain parts of the problem require relatively high
accuracy.

(d) Certain parts of the problem require relatively high
bandwidth.

(e) Both analog and digital information are available.

15



Analog information may be available naturally as a result of
a continuous physical measurement. Digital information re-
sults from sampling physical processes. Conversions from one
form to the other are possible although not always desirable.
For example, the numerical differentiation followed by a
digital to analog conversion of the A6 pulse train from a
gyro may be used to obtain an analog representation of angular
velocity, but this is inferior to deriving an analog signal
directly from the gyro itself, because unacceptable time lags
might be introduced in the process of smoothing the results
of the numerical differentiation.

(f) The problem is capable of convenient division into
parts structured for analog computation and parts for digital
computation. The search for prime numbers, say, could not
reasonably be structured for analog computation. The real
time integration of a complicated system of transcendental
differential equations might be difficult to do on a digital
computer. This problem is easily structured for hybrid com-
putation while the prime number problem is not.

Effective hybrid computation requires that there be re-
latively few analog to digital and digital to analog conversion
links. The portions of the problem set aside for digital com-
putation and those set aside for analog computation should be
relatively uncoupled. Otherwise, problem complexity is aggra-

vated rather than diminished by hybrid computation.

le



2,2 The Hybrid Strapdown System

The conventional method for maintaining the current value
of the coordinate transformation is to numerically integrate
the matrix differential equation

cRB(t) = cBB(e) [wng (£)x]

subject to the initial condition

CRB(t ) = CRB.
o o]

In the hybrid method, CRB is evaluated as a matrix func-
tion of the vector argument ¢,. where QRB(t) is defined as
that rotation required to take a coordinate frame from coin-
cidence with the Reference Frame into coincidence with the
Body Frame at time t. The differential equation for QRB(t)
is developed in the next chapter. Anticipating this develop-

ment, one form of the result is

= wo. + % + A( ) (2.1)

9pp = YrB 9% * “rB ore’ %re ¥ (Yrp*YrB

subject to the initial condition

opg(ty) = O (2.2)

where

o) sin ¢
Aldgg) = 5 (1 - — B (2.3)
¢RB 2(l-cos ¢RB)

In Chapter 3, it is also shown that

2
RB q (¢RB) 2

c®® = 1 + alopp) legpX] + TF o5 5 |rB™] (2.4)

17



where

sin ¢RB

q(d>RB) (2.5)

cbRB

Eq. (2.1) is integrated subject to Eq. (2.3), yielding the
current value of QRB(t). Then CRB(t) is obtained by inserting
this value into the right-hand side of Eg. (2.4) which is a
matrix function of QRB(t) only.

A decision is made as to what parts of Egq. (2.1) and
Eq. (2.4) are to be solved using analog computing elements
and what parts are to be solved on a digital computer. The
criteria for the decision are:

(a) The accuracy of the overall coordinate transforma-—
tion will not be less than if the computation were done entirely
on a digital computer using some specified algorithm.

(b) Any part of the computation that can be done using
simple analog circuitry will be done that way subject to
criterion (a).

The algorithm to which criterion (a) refers will not be
specified now, but in Chapter 6, where the hybrid method is
compared with purely digital methods, specific choices of
algorithms will be made.

In theory, by Shannon's sampling theorem (ref. 10), the
non-commutativity error can be overcome to any desired degree
using purely digital computation for any input angular motion
whose spectrum does not contain frequencies exceeding one-half
the gyro sampling frequency. The computational load, however,
to approach this theoretical bandwidth limit is entirely out

of the question.
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The treatment of Eg. (2.4) will be settled first. Assume
that a whole number digital representation is available for
each component of QRB' and that each component is accurate to,
say, five significant figures. Any error in transforming the
specific force measurement is as serious as an error in the
measurement, thus so if the specific force measurement is
accurate to five significant figures as is reasonable in a
good quality navigation system, then an analog computer accu-
racy of three significant figures in the evaluation of
CRB(QRB) would not suffice. Hence the evaluation of Eq. (2.4)
must be done by a digital computer in order to satisfy criter-
ion (a).

Next a sufficiently accurate whole number representation
of QRB must be obtained. If AQRB increments were available
with the same accuracy as the A6 increments delivered by the
gyro, these increments could be counted in the digital com-

puter to obtain QRB' To obtain A¢.

rp’ Ed- (2.1) must be

solved in the proper incremental form. Eg. (2.1) may be re-

written as

%8 = “gp * %rB (2.6)

where

). (2.7)

N =

OrB $pp x Ygp T Alépp) bpp X ($pp*Ypp
Each gyro in the orthogonal triad is made to integrate
and quantize that component of the right hand side of Eq. (2.6)

which is parallel to its input axis, thus solving Eq. (2.1)

in the desired form.

19



To see how this is done, consider the performance of a
strapdown single degree-of-freedom, electrically rebalanced,

integrating gyro (ref. 1).

(1s2+Cs)a = H(w L) N(, £, (2.8)

1a"%ep e
where

I = gyro float inertia about OA (output axis)
C = gyro damping constant about OA

s = time differentiation operator

A = gyro float angle about OA

H = gyro spin angular momentum

Wip = input axis angular velocity
Hog = a feedback torque applied about OA tending to null A
N(w,f,t) = a torque function of angular velocity, specific force,

and time embodying all the non-ideal performance fea-
tures of the gyro

Hwext = any other non-inertial torque applied about OA

Since Ho £y is the rebalance torgue tending to keep float angle
A near null, its time integral will be equal and opposite (ex-
cept for quantization error in a pulse rebalanced gyro) to the
time integral of the sum of all other torques acting on the

float.

J/If u/ﬂtf
£ wab dt = to [H(wIA+weXt)+N] dt

O

In a pulse rebalanced gyro, the guantized integral of H® o) is
available as the sum of the rebalance pulses multiplied by the

weight of each pulse.

20



A® e N

T (n+—n_) = (?IA+wext + T dt + e(q) (2.9)
t
o

where A6 is pulse weight (radians/pulse)

n, is the total number of positive pulses on (to,tf)

n_ is the total number of negative pulses on (to,t

£)

e(qg) is quantization error (information stored in the

gyro)
If Hw is taken to be
ext
Hogyee = HO = Ny (0, £, t) (2.10)
where ¢ is a component of o defined by Eg. (2.6) Ncomp is an

electrically applied compensation for N(w,f,t) then Eq. (2.8)
becomes

(Isz+Cs)A = H(w,, +0~w

[ato=We) = SN(w,£,t) (2.11)

where

6N(9_I£lt) = NCOmpy(gj-’E't) - N(Q,Ert)

Neglecting §(w,f,t) and using Eq. (2.10) in Eq. (2.9), the re-

sult is

.//if (w. +&) at = 28 (n -n ) + e(q) (2.12)
. IA 7 PeTRo d .

(¢}

Since wp, + 0 may be written as

Wrp + § = lIA . (£+g) (2.13)

Egs. (2.10) - (2.13) show that by applying an electrical torque

proportion to LI é, the gyro triad can be made to integrate

A .

21



and quantize Eq. (2.6).

The generation of &. can be accomplished using analog

RB
circuitry. If & is a term, small in magnitude compared with

—RB
the maximum value of lﬂRB" then the three significant figure
accuracy of analog computing elements will suffice. (A system
error analysis is found in Chapter 5.)

The hybrid system, which is shown symbolically in Fig-
ure 2.1, requires (a) a set of filters which extract as con-
tinuous signals the components of Wep (b) a set of multipliers
and summers to take the vector cross products required in
Eq. (2.7), (c) a set of integrators to integrate the components
of éRB (note that the only purpose of this vector integration
is to obtain the vector QRB for use in generating the cross

product terms of & (d) other miscellaneous circuitry which

RB)’
will be explained when introduced (Chapter 5).

22
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CHAPTER 3

THE DYNAMICS OF FINITE ROTATIONS

3.1 A Vector Concept of Rotations

In the field of mechanics, it has long been held that
finite rotations of one coordinate frame relative to another
are not true vectors. In support of this, it is said that
finite rotations do not commute; that is, the orientation
resulting from taking rotation A and then rotation B is not,
in general, the same as the orientation resulting from taking
rotation B and then rotation A. Here the matter has rested.
With the advent of strapdown navigation systems, which endure
the rotational as well as translational aspects of general
rigid body motion, new understanding is required of the dyna-
mics of finite rotations. A more sophisticated coordinate
transformation algorithm is not the answer to the computation
problems that arise. Greater insight into the dynamics of
finite rotations is necessary if any significant progress is
to be made in reducing the complexity of the coordinate trans-
formation computation. |

What is a finite, rigid body rotation? In a physical
sense, it is a change in the orientation of one coordinate

frame relative to another. By Euler's theorem (ref. 7),
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there corresponds to any rotation, an axis of rotation and
a magnitude of rotation. Physically speaking, a quantity

which has direction and magnitude is a vector. Hence, the
following definition is made.

Definition: Let the Reference Frame and the Body Frame be

two coordinate frames whose origins coincide. The rotation
vector QRB is defined to be that vector whose direction is
parailel to the axis of rotation of the Body Frame with res-
pect to the PReference Frame, and whose magnitude is equal to
the angle through which a coordinate frame coincident with

the Reference Frame must be rotated about the axis in order to
be brought into coincidence with the Body Frame.

Three questions will be answered in this chapter.

(a) Is the rotation vector unique?

(b) What is the relationship between the coordinate
transformation CRB and the rotation vector QRB?

(c) What are the laws of addition for rotation vectors
and what is the relationship between angular velocity Yrg and
the time rate of change QRB of the rotation vector?

The question regarding the uniqueness of the rotation
vector can be answered at once on an intuitive basis. (It will
be answered rigorously in the next section.) Assume that the
Body Frame is initially coincident with the Reference Frame.
If the Body Frame is rotated through any integer multiple of
271 radians about any fixed axis, it is again coincident with
the Reference Frame. In a more general sense, if the Body
Frame is displaced from coincidence with the Reference Frame by

some general rotation QRB’ then a rotation through ¢RB + 2nm



radians about l¢ results in the same final displacement
QRB = QRB£¢ = (¢RB+2nﬂ)£¢ (3.1)

Two special cases are worthy of note. The first is the case
for which ¢RB = 2m. Then

QRB = (27+2nm)

L

Since n may be taken to be -1,

= (21~-27) ;¢ = 0 l¢ = 0

and the axis of rotation is indeterminate. The second special

9RB

case is the case for which ¢RB = m. Then

¢rp = L, (3.2)
Also
¢pp = (m-2mly = (=ML, (3.3)
= m(-1,)

By comparing Egs. (3.2) and (3.3), it is seen that a rotation
of m radians about some axis l¢ may be taken in either direc-
tion about that axis with the same result.

Thus it is seen that the rotation vector is not unique.
To any orientation there corresponds infinitely many rotation
vectors (a one fold infinity for ¢RB # 2nm and a threefold
infinity for ¢RB = 2nm where n is any integer). The converse
- is not true, however. In the next section, it will be seen

that CRB is a single valued matrix function of QRB'

3.2 The Relationship Between QRB and CRB

In this section CRB will be derived as a unique matrix
function of the rotation vector QRB where CRB is the coordin-

ate transformation matrix that transforms a vector from a
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Body Frame representation into an equivalent Reference Frame
representation.
One method for deriving CRB in terms of QRB is to note

that if

Wep = Wl (3.4)

where 1, is a unit vector whose orientation is fixed, then

k

CRB(t) = exp {(t—to)[gin]} (3.5)

satisfies the differential equation

“RB _ .RB_ B
C™ = C lupp

x1] (3.6)
subject to the initial condition

c®Pe) =1 (3.7)
This can be verified by substituting Eq. (3.5) into (3.6).
Unfortunately, Eq. (3.6) has a solution in the form of Eqg.

(3.5) only for the case where wpn is the zero vector or is

constant in direction. This results from the noncommutativity

of finite rotations. The right hand side of Eg. (3.5) may be
evaluated using the Cayley-Sylvester theorem for matrices

(ref. 11). The result is
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RB

RS
DN

where

(

e
i

6" = ¢

Eg. (3.8)

cRB _

Note: Whe

¢i + (¢2~¢§) cos ¢ ¢X¢y(l—cos 9) - ¢¢, sin ¢

¢§ + (6%-2) cos ¢

¢y¢x(l—cos o) + ¢¢Z sin ¢ v

¢, ¢, (l-cos ¢) - ¢¢y sin ¢ ¢z¢y(l-cos ¢) + ¢¢  sin ¢

|
¢X¢Z(l—cos o) + ¢¢y sin ¢

9,9, (1-cos ¢) - ¢¢, sin ¢

02 + (6%-92) cos ¢

(3.8)

E-t,)upp

i)

can be written more compactly as

—%-{¢¢T(l— cos ¢) + ¢21 cos ¢ + ¢2 sin ¢ [¢x]}

o2 b

(3.9)

n the vector is used as the argument of the coor-

o}
PC

dinate transformation C" ™, it is understood (unless otherwise

stated) to

Egquat
arguments.
ship betwe

troduced,

mean QPQ'
ion (3.9) can also be derived from purely geometrical
This will afford better insight into the relation-

B

en QRB and CR because angular velocity is not in-

and so there is no restriction that the direction of

w be fixed.

—RB

Let £§

Suppose that at t = t

28

be an arbitrary vector fixed in the Body Frame.

o CRB = I, Then



r® = R
~o =0

Then let the Body Frame rotate with respect to the Reference
Frame through the angle ¢ about a Body Frame axis u. At time

t, a new vector is defined by
) = B P
. B B . . .
or since r = r_ 1is fixed in the Body Frame,
R (e) = ) 1 (3.10)

These relationships are shown in Figure 3.1.

Figure 3.1.- Rotation vector geometry
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The relationships used in

je

u
b -
In the matrix
a =
b =

S_

£R(t) a+ b sin ¢ + ¢ cos ¢
Egs. (3.10) - (3.12) can be combined to get
RBB _f T, _ . \.B
C r, = {EE (l- cos ¢) + I cos ¢ + [u x] sin ¢}£o

But since rB
=0

CRB

Now let

3:

Then Eg. (3.1l) becomes

I

RB

Ie

{o

C

C

ou

9?

c = -

-

(1- cos ¢)

|
I
&

|o
i

|
i

8

+ I cos ¢ +

which is in agreement with Egq. (3.9).

30

sin ¢

¢

T¢ x]

is an arbitrary vector, it follows that

Eg?(l— cos ¢) + I cos ¢ + [u x] sin ¢

constructing the figures are

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)



Other forms of Eq. (3.15) may be readily derived. By

analogy with the vector identity

$ x(dxv) = ¢(¢-v) - ¢2z

one may write the matrix identity

[6 x1[¢ xIv = [§ xI% v = (647 -¢°T

¥

and by direct expansion, it can be verified that

+ I (3.16)

00" 19 x1°
2

= ¢2

-©-

Substitution of Eg. (3.16) into Eg. (3.15) gives

cRB -1 4 Sig b x] + L2998 0 g x1? (3.17)
¢

: 2
RB _ sin ¢ 1 sin ¢
C = I + r [¢ x]1 + T 7 Co5 % < 3 [¢ x]) (3.18)
Since QRB X gRB = 0, either Eq. (3.17) or Eq. (3.18) may
be used to show that
R _ RB,B _ .,B _ B
-(RRB—C ¢RB‘I91RB‘9RB (3.19)

Eg. (3.19) demonstrates that a vector parallel to the axis of
rotation is not changed by the rotation.

It follows immediately from Eg. (3.14) that
RB RB
c [¢RBL¢] = C [(¢RB+2n“)l¢] (3.20)

Eg. (3.20) demonstrates the non-uniqueness of QRB in describing

relative orientation.
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Finally, it will be shown that

RB, T RB, -1

(C7)" = (C) (3.21)

in order to demonstrate that the direction cosine matrix as
derived geometrically is indeed an orthogonal matrix. Note
that if the rotation QRB_generates the coordinate transforma-
tion CRB, then the rotation _QRB’ which would return the Body
Frame to coincidence with the Reference Frame, must generate

the inverse transformation. That is
RB B -
R (=g = [P (0pp) 17T (3.22)

Direct substitution in Eg. (3.17) shows that

T (3.23)

~RB . RB
C(=9pp) = [C (¢pp) ]
Combining Egs. (3.22) and (3.23) establishes Eq. (3.21) and the

orthogonality of cRB. It is natural to define

bt

PR (gpp) = 1P (hpg) 17T = CB(=g ) (3.24)

3.3 The Theory of Rotation Vectors

It is well known (ref. 7) that rotation vectors do not
obey the normal rules for vector addition. If the rotation'g
is desired such that it is equivalent to the combined effect
of taking rotation A followed by rotation B, then it is un-

fortunately not true in general that
C=Aa+8B

because of the coupling that exists between the rotations A



and B. A new operation is defined by Laning* which he calls

"rotation sum" and denotes by the symbol "#" such that
c=a+#B

This is read as "C is equal to A rotation summed with B".

A simple example serves to indicate the several aspects
of the problem. Let the Body Frame and the Reference Frame
be two coordinate frames that are coincident at the time
t = 0. Let the Body Frame experience an angular velocity

QRB(t) with respect to the Reference Frame as follows:

-'n/z7
whg () =] 0 0 < tgl
bO -
and
o
wpp(e) =lr/2| 1< tg2
|0

The relative orientations of the Body Frame and the Reference
? .
Frame at times t = 0, t = 1, and t = 2 are shown in Figure 3.2.

Let A = QRB(l)’ B = QB(l)B(Z)’ and C ='9RB(2)’ Then from Fig-

ure 3.2,
m/2 0
A=|0 B =|m/2
0 0
and

k3

This operation and notation was introduced by Laning (ref.12).
The parts of Laning's theory that pertain to this thesis are
developed in Appendix A. There the rotation sum operation is
derived in terms of elementary vector operatioms.
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Figure 3.2.- An example

13
c=1aniA3
1/\3
So evidently
C#A+B

Obviously
but just as obviously

bpp(t) # wpg(t)

since

of composite rotation



2

bpp () # 9pp (L) +f weg (t)dt
1

This would appear to contradict the notion that QRB(t)
is the rate of change in the orientation of the Body Frame re-
lative to the Reference Frame. The resolution to this apparent
conflict is that the infinitesimal rotation QRB(t)dt must be
"rotation summed” with QRB(t) in order to‘get‘gRB(t+dt). Mathe-

matically

t+dt) (t) # wpg(t)dt

$rp ¢ = %zp

A more convenient formulation is to find that infinitesimal
rotation ngB which when added to QRB(t) by the normal laws
of vector addition yields QRB(t+dt). That is, an infinite-

simal vector ngB is sought such that

g_{RB(t+dt) = g;_RB(t) + ddon (3.25)

It is anticipated that d¢., will be a function of (L and
QRBdt. An elegant and rigorous derivation of the differential

equation

W) (3.26)

EB-RB = £(9ppr%p

due to Laning is presented in Appendix A. Eq. (3.26) will be
derived in this section by a more intuitive approach.
The starting point for this derivation is Eq. (3.19)

RB.B _ .B
C¢rs = %RrB

Taking the time derivative of each side of Eg. (3.19) with

respect to the Body Frame gives
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- ag d¢
( d CR%) rB “¢rp _ “Igpp (3.27)

¢ + C =
atB <RB dtB dtB

where the notation d/dtB indicates that the derivative is taken
with respect to the Body Frame. Since Eqg. (3.6) is a differen-
tial relationship taken with respect to the Body Frame, it can

be used in Eq. (3.27) to get, after a slight rearrangement

B d-(R-RB

)
dtg

RB

C = (r-cR

[Wpg X1 9pp (3.28)

The notation d/dtB will be dropped with the understanding that
all time derivatives are taken with respect to the Body Frame
unless otherwise stated. Premultiplication of each side of

Eg. (3.28) by cBR gives

CBR

[opg X10pg = (C =I) pp (3.29)

If the factor CBR—I is expanded by means of Egs. (3.24) and

(3.17) to get

(1- cos ¢_.) sin ¢
cBR _ 1 _ 2 RB [ %12 - ; RB (g X]
92p RB
(1- cos ¢,5) sin ¢
B vl S F o Lons * ]
RB

(3.30)

then it can be seen that CRB - I is singular since it can be
written as the product of two matrices, one of which, [QRB x],
is singular. Therefore, Eg. (3.29) cannot be solved for

R

éRB by premultiplying each side by the inverse of cBR _ 1,
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The physical implication is that the factor cPR - I projects
éRB onto a two dimensional space. (The crossproducts indicate
that this space is orthogonal to QRB')

As in the case of vectors, it is true that

x]

[opp *10pp = ~lopp X1Upp

Using this identity and Eq. (3.30) in Eq. (3.29), premultiply-

ing each term by [QRB x]/¢§B, and transferring all non-zero

terms to the right hand side gives

(1- cos ¢RB)

1 2 .
0 = 5= l¢gg X1 wpy + y) [$pp *18pp
*rB %R
sin ¢
1 RB 2 .
+ [0 x1° & (3.31)
> 3 rB ORrB
ban RB

where the second term on the right has been reduced by the

identity

-¢2[9 x1V

11

[¢ x]17 V

Note that when w is constant in direction,

RB
Yr T %RrB
as was the case in the derivation leading to Egq. (3.9). More-

over, it is true in any case (refer to Appendix A) that

.

9% * Ypp = %rp " %mB (3.32)

that is, Wpp and éPB always have the same component in the

direction of ¢... In matrix form Eq. (3.32) is
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T T

Sre®re = rBiRE

Premultiply each side by QRB/¢§B and add the resulting equa-
tion to Eg. (3.31) to get

T

$npd.
RBzRB = % ~[¢rm x1% + 9R39£B “rB
28 %Rrm

(1- cos ¢RB) . 1 sin ¢ )
+ (6, x1d. + RB 4. x12 §
2 ZRB “1XRB 2 b IRB ZRB
¢RB ¢rp RB

Finally subtract [¢p, X]ZéRB/¢§B from each side and invoke

Eg. (3.16) once again. The result in vector notation is

¢ =w+ B x - Cl(d)d x(oxh) (3.33)
where
B(¢) = ;% (1- cos ¢) (3.34)
- L {,_sin ¢ (3.35)
C(¢) ¢2 (l 3 )

Two other forms of the rotation vector differential egua-
tion are derived in Appendix A. All forms are mutually equi-
valent in the sense that any form can be derived from any

other form. These equations are listed here for convenience.

N} =

d=w+ 3¢ xuw+ AP x($ x W) (3.36)

where

I

A(p) =

_ ¢ sin ¢
(l (1= cos ¢)) (3.37)

A
Y



Also

- cl4 )
=0+ X(B(q,) w + 2A(¢) ¢ (3.38)

~—

To obtain yet another form, when the substitution

¢ = l¢ 4 arctan % (3.39)

is made in Eg. (3.36), then a lengthy reduction yields

- 16

az 1 1
o = (l + = Jw + 7 o X w + g ox (axw) (3.40)

The coordinate transformation can also be expressed as a

function of a. The result is

[6)
RB L - 16

cP =14+ 1 2

o 7 e
o O
(1 + 1—6-> 2(1 + E)

The last pair of equations is worthy of note in that no trigono-

(3.41)

metric functions are involved in either the rotation vector
solution o or in the coordinate transformation. Eq. (3.39)

shows, however, that o is unbounded for ¢ = 2T1.

3.4 The Goodman Robinson Theorem

The 1950's were a decade in which great advancements were
made in the design, manufacture, and testing of gyroscopic ins-
truments. As 1is often the case, unexpected results were ob-
served in the testing process, and so a theory was developed
to explain these results. One such unexpected result was the
now famous "coning" phenomenon in which a gyro, when subjected
to out of phase sinusoidal oscillations about its spin and out-

put axes, indicates a constant input axis angular velocity when,
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in reality, no net change in orientation is occurring about
its input axis. In 1957, Goodman and Robinson presented a
paper (ref. 13) in which they explained the cause of the coning
phenomenon,

The Goodman-Robinson theorem will be presented here be-
cause of its historical significance and also because it

affords an interesting and independent derivation of Eq. (3.35).

The Goodman-Robinson Theorem

If a rigid body undergoes an arbitrary angular motion

with respect to the Reference Frame, but at some time t_ one

f
Body axis, say the ith axis l? returns to the orientation it
had at to' then the net effect of the angular motion was to

displace the Body Frame relative to the Reference Frame by a

rotation wi taken about i? where wi is given by

t
_ £
wi —“/Z wi(t) dt + Ai + 2mm7 (3.42)

where n is an integer

Ai is the solid angle described by ;? and is equal to the

surface area traced out by l? on the unit sphere

Goodman and Robinson proved the theorem first for the case
where the curve traced out on the unit sphere by ;E is a simple
closed curve. Their argument is somewhat hard to visualize geo-
metrically. Broxmeyer (ref. 4) offers a proof that affords
considerably more insight. Refer to reference (4) or (12) for a
proof.

Goodman and Robinson then extended the theorem to curves

which are not closed. They did this simply by postulating a



convenient closure for the curve. The argument is as follows:

Suppose the Body Frame and the Reference Frame are coincident

at t = tg. An arbitrary angular velocity Wgpp ON the interval

(to,tf) takes the Body Frame from coincidence with the Refer-

ence Frame into some orientation at t = t_ that can be uniquely

bl

described by the principal value of the rotation vector QRB(t

f)'

The curve traced out on the interval (to,tf) can be conceptually

closed by conceptually rotating the Body Frame from its relative

orientation at t = t_. through the vector rotation Then

f ~$rp-

since this conceptually rotated Body Frame again coincides with

the Reference Frame, wi in Eq. (3.42) is zero. When this is

done,
/tf |
=3 -— = O
wi wi(t) dt + A, + 2mm ¢i (3.43)
t
o)
If
t
£
/ w(t) dt| < 2 (3.44)
t
o

then it is true that m = 0. Solving Eqg. (3.43) for ¢i gives

te
¢, =/; wg (t) At + A, (3.45)

o]

whenever Eq. (3.44) holds.

To find the area Ai, Goodman and Robinson used the so-
called Green's Theorem in the plane (ref. 14). The result to

be employed here is
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A, = % ){ (xdy - ydx) (3.46)

where
A is the plane area within a closed curve C,
J{}s the line integral taken in the positive sense around
C,
f(x,y) = 0 is the eqguation of C
The use of Eq. (3.46) will yield an approximate expression
for the area within the contour traced out by l? as closed by

the conceptual rotation -9 This is shown as the shaded area

~RB*
in Figure 3.3. In order to adapt Eq. (3.46), a change in coor-
dinate system must be introduced. Let the local area around

lg (say) be approximated by a plane, and define a ¢X,¢y coor-
dinate system, in that plane as shown in Figure 3.4. In terms
of this coordinate system, Eqg. (3.46) becomes (in parametric

form)
£ aé do
A (t) = %U/f (?x H?Z - 9y 3?5) ar (3.47)

which when used in Eq. (3.45) gives

£ L as,, SE
d)z(t) =/ [U)Z + '2'"(¢X T - (by I dt (3.48)
t
)

The equations for ¢X and ¢y are obtained by cyclic permutation
of the indices. Egquation (3.49) and the equations for ¢y and
¢X can be differentiated with respect to time to get the differ-

ential equations
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Figure 3.4.-~ ¢y s ¢y coordinate system
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O
1]
e
+
N} =

(0,8, = 9,00

X X
by = wy + 3 (0,0, = 0.6) > (3.49)
by = Uyt 3 (bdy = 900

By defining the vector 9? =[¢x ¢y ¢Z], Eg. (3.49) can be written

in vector form.
. 1 .
$=uw+ 5 ¢ x9 (3.50)

This is a reasonably good approximation to Eqg. (3.33) which

is written here in expanded form.

By comparing Eg. (3.33) with Eg. (3.50), it is seen that there
are two areas of disagreement. They are (a) the coefficient
on the gxé term and (b) Eq. (3.50) omits the final term in
Eg. (3.33). Intuitively, these discrepancies can be explained
as follows:

(a) Let Ap be the area of a plane circle of radius ¢.
Then from plane geometry,

2
A =
P ¢

Let AS be the spherical area enclosed within the spherical
small circle in Figure 3.5 where the central angle from the

pole to the small circle is ¢.
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Fig:}@ 3.5.- Spherical area enclosed by small cycle

A\

If the sphere is a unit sphere, then from solid geometry,

AS = 2w (1l - cos ¢)
The ratio
1
— (1 - cos ¢)
Bs _ o°
AT 1/2
b /

is exactly the ratio of the coefficient of the gxé term in
Eg. (3.33) to that in Eg. (3.50).

(b) Referring to Figure 3.3, the area given by Eq.(3.47)
approximates the sum of the shaded area and the crosshatched
area whereas the desired area is only the shaded area. This
happens because the closure for this greater area is a great
circle which appears as a straight line in Figure 3.4. The
actual closure generated by —QRB is, in general, a small
circle which would appear as a curved line in Figure 3.4, but

the parametric form of Green's Theorem given by Eq. (3.47)
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takes the area enclosed by (a) the curve generated by the
parameter t and (b) a straight line from the origin to the
location of the point (¢X,¢y) at time t. The area discrepancy
(shown as the cross hatched area in Figure 3.3) is equal to

¢—:2L— (l - Sig Cb)gl x ($x$)




CHAPTER 4

THE MEASUREMENT OF ANGULAR VELOCITY

4,1 Problem Statement

In Chapter 2 the analog computation of the &

correc-
RB

tion term required a triad of continuous signals representing
QEB' The gyros measure the components of QgB’ and from a
combination of signals, observable in the gyros, the desired
signals must be derived.

If a gyro with a linear rebalance loop followed by an
integrator and quantizer is used, the generation of the de-
sired analog signals is straightforward. The performance of
a single degree-of-freedom integrating gyro* as given by
Egq. (2.8) becomes

2
(Is"™+Cs) A = H(wIA—wfb) (4.1)

if the non-ideal performance term is neglected and Hwext is

taken to be zero. Hwext = HG in a pulse rebalanced gyro, for

in that configuration, the summation and integration of

H{ +5) takes place in the gyro and the quantization operation

1A

*An integrating gyro is so named because of the absence of a
mechanical restraint torque proportional to float angle. An
integrating gyro may be used in a rate gyro mode by using a
linear rebalance loop.

47



is performed by the rebalance loop. 1In a gyro with a linear
rebalance loop followed by an integrator and quantizer, 6 is
neither integrated nor quantized by the gyro and so it is
added to Wra at the input to the integrator-quantizer. 1In
linear rebalance loops, the rebalance torque wab is propor-

tional to float angle A.

wab = KA

With this substitution Eg. (4.1) becomes

(Is®+Cs+K) A = Ho, (4.2)

An electrical signal Cag’ proportional to float angle A

eSg = KSgA (4.3)

is taken to be the output of the gyro. The gyro transfer
function is found by using Eq. (4.3) in Eq. (4.2) and taking

the Laplace Transform (assuming zero initial conditions)

esg(s) KSgH/K

= 5 (4.4)

wrp (s) (I/K)s® + (C/K)s + 1

In the case of the linear rebalance loop, at low frequencies
the signal eSg is proportional to Wra with a scale factor of
ngH/K volts per radian per second. The high frequency charac-
teristics are modified by the presence of the second order
dynamics of the gyro.

For the pulse rebalanced gyro, it is not so obvious how
to proceed. One possibility for obtaining a voltage propor-
tional to Wi is to fit an (n—l)th or lower order polynomiai
through the last n data points, i.e., the last n A6's from
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the gyro. This is done in the digital computer. The value

of the polynomial (over the interval from the previous
sampling instant until the time of the next fitting process)
is made available to the analog circuitry by digital to analog
converters. With three components of 933 to extract, this
computation could not be performed often enough to have signi-
ficant bandwidth without imposing a rather large load on the
computer. The phase lags of low computation rates or the in-
accuracies of fast rates have detrimental effects (when “pp
has a broad band power spectral density) on the coordinate
transzrmation (computed by any technique) and on the compensa-
tion of the gyro dynamic errors N(w,f,t). For an analog rate
extraction scheme, the pulse rebalancing feature makes it im-
possible to obtain the desired signals from signal generator
observations alone. As will be seen, the torque generator
signal supplies the needed additional information for the rate

extraction process.

4.2 Filter Analysis

The starting point for this analysis is again Eg. (2.8)

2 _ _ .
(Is“+Cs) A = HmIA wab + HO + N(w,f,t) (4.5)

where HS has been substituted for Hwext‘ The block diagram
of the gyro modeled by this equation is shown in Figure 4.1.
A three level relay is shown in the rebalance loop, but this
is not essential; the filter design for a gyro whose rebalance
loop utilizes any nonlinear element would be identical to that

for the gyro with the three level relay. An intuitive approach
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is taken in the design process, and the results are then
analyzed to justify the design. Two questions lead to the
filter configuration.

(a) Suppose the gyro were operating open loop (no re-
balance signal). How should the output of the signal genera-
tor be treated in order to obtain the desired signal?

(b) Although the rebalance loop is in fact closed, can
the torquing signal be processed and introduced into the fil-
ter in such a way as to allow the filter to operate on the
signal generator signal of an equivalent open loop gyro?

With the gyro operating open loop, the wab - HG term
in Eq. (4.5) is zero. Also neglecting the non-ideal perform-
ance term, Eq. (4.5) becomes

2 —
(Is“4+Cs) A = HwIA

Using Eq. (4.3), the gyro transfer function is

esg(s) ~ ngH/C (4.6)
wra(8) (1 |
S(a— S+])

The output e is proportional (exclusive of gyro dynamics)

sg

to the integral of w as expected, and so the filter must

IA
therefore differentiate the signal generator signal. At fre-
quencies above those in the desired range, attenuation at the
differentiator output is desirable. This is especially true
when the signal generator output is an amplitude modulated
signal since a ripple at twice the carrier frequency is the

by-product of any demodulation process. This ripple is re-

moved by filtering. The filter function is chosen as
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(4.7)

where
w* is the measured value of Wrp
Ke is the filter gain constant

We is the filter natural frequency

Notice that the denominator is an underdamped second order
term. The particular choice of damping constant,\ﬁZ/Z, gives
the filter a maximally flat response (ref. 14). This filter
function is called the signal generator section of the w-
Filter.

With the w-Filter given by Egq. (4.7), the overall trans-
fer of the angular velocity measurement is

* HK(K_ /C

— sg
= 2, 2. 73 (4.8)
(TgS+l)(S /wf+ Zs/wf+l

where Tg is the gyro time constant I/C.

The gyro is, of course, not operated open loop in a
strapdown system. But with the torque generator signal passed
through the exact electrical analog of the gyro and entered
into the filter of Eg. (4.7) with the opposite sense as the
torque generator signal (which has passed through the real
gyro), then as far as the w-Filter is concerned, the gyro is
operating open loop. Such a filter concept is shown in Fig-

ure 4.2(a). 1In this filter section, the torque generator
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section, the differentiation cancels* the integration per-
formed in the gyro. The result is shown in Figure 4.2 (b).
With the w-Filter implemented in this way, Eg. (4.8) is
still valid as the basic transference of the measurement pro-
cess. There are three main sources of error in this system.
They are (a) the uncompensated portion of the non-ideal per-

formance term SN(w,f,t), (b) an error Se due to imperfect

tg
cancellation of the torque generator signal, and (c) an error
ny which arises in the demodulation process. The way these
error sources effect the system is shown in Figure 4.3.

The non-ideal performance term N(w,f,t) is, in reality,
a sum of terms. This sum includes a constant term; a series
of terms which are functions of angular velocity w, and a
series of terms which are functions of specific force f. Each
term is characterized by a coefficient which may or may not be
capable of unique determination in a calibration process.
These coefficients may change with time and there is an un-
certainty in the determination of each coefficient. It is the
practice, in mechanizing a high quality inertial navigation
system, to compensate for the non-ideal performance as much as

possible. Assume this has been done through application of a

compensation torque Nc(g,g,t) to the gyro float. The ability

*It is acceptable to cancel an integration with a differen-
tiation, but the attempt to cancel a differentiation with an

integration results in the situation known as non-observability

because the bias component on the input to the differentiator
is not known (observable) and hence cannot be restored after
the integration.
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to apply this compensation implies the ability to measure
angular velocity and specific force and to compute the correc-
tion. When this is done, the error 6N in applying the compen-

sation is given by

GN(QIEIt) = Nc(_@_rf_lt) - N(nglt) (4.9)

In Figure 4.3 this error is shown as an error torque acting

on the torque summing member. The statistics of this error
torque are rather complicated and no attempt will be made

to discuss them here. Since 6N is a function of angular velo-
city and specific force, it is expected that this noise will
be correlated with the input.

The error due to imperfect cancellation of the electric-
ally applied torques is the result of inexact voltage trans-
mission from the torquer input to the filter torque generator
section. (The difference between the real gyro dynamics and
the simulated gyro path dynamics might be considered at this
point but this additional level of attention is not justified
since the g correction signal to be generated from filter output

is itself small in magnitude compared to This error is

|wgpl -
shown entering the torque generator section of the filter in
Figure 4.3.

Observe that Getg can assume (neglecting dynamics) one of
three levels depending on whether a positive, negative, or
zero pulse of rebalance torque is being generated. Again, this
error is correlated with the input. In fact, the statistical

properties of de are identical with those of the rebalance

tg

torque itself. These statistics will not be developed here.
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The final error source, the demodulation error voltage

Ny is given by the expression [see Eg. (4.15)]

ng = Ks(cos 47£E)A (4.10)

where f is the modulation carrier frequency. This error is a
consequence of the demodulation process. It also is a func-
tion of float angle A. Since its power is concentrated at

the frequency 2f, it is easy to attenuate this error by fil-
tering. Since n4 is a function of float angle A, it is corre-
lated with the input.

Filtering which attempts to discriminate against the im-
perfect compensation error SN(w,f,t) and the imperfect to;que
cancellation error Getg on the basis of different power spectra
of noise and input signal will not be too effective since:
these errors are themselves functions of the input signal. The
best way to suppress these noises is to suppress their sources.
The demodulator noise ny on the other hand is not a result of
gyro and rebalance loop imperfections, but arises as a con-
sequence of the demodulation technigue. Since most of its
power (except for sideband power generated by the variations
in float angle A) is concentrated at twice the modulation
carrier frequency f, this noise can be conveniently attenuated
by filtering. The filter function for the signal generator
is

Fsg(s) = KfS/Q(S) (4.11)

and is chosen to have the desired bandpass for the angular

velocity Wra and the desired attenuation to the demodulator

noise ng.



4.3 Filter Design

The filter is conveniently divided into 4 sections, a
demodulator, a signal generator section, a torque generator
section, and a final section. The relationship of these sec-
tions is shown in block diagram form in Figure 4.4. The gyro
characteristics and the design of each of the filter sections
will be discussed now. A transfer function will be developed
for each filter section. The actual circuit for each filter
section is found in Appendix B. Section 4.3 may be omitted
by those whose interest is in w-Filter performance and not
its detailed design. Performance and test results are pre-

sented in Section 4.4.

4.3.1 Gyro Characteristics

The mechanical and dynamic characteristics of the Honey-
well GG 334A gyro necessary for the design of the w-Filter

are shown in Table 4.1

4.3.2 Demodulator

The signal generator excitation voltage is used in the

demodulator and is given by

ep = 5 gin 2nft volts (4.12)

The signal generator secondary signal is given by

e = K_ A sin 2nft volts (4.13)
S Sg

In order to obtain a voltage proportional to the float angle,
this secondary signal must be demodulated. The demodulator

consists of a multiplier whose transference is given by
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TABLE 4.1
GG 334A CHARACTERISTICS

Name Parameter Value Units
H Angular Momentum 2xlO5 gm—cmz/sec
C Output Axis Damping 5x105 dyne-cm-sec
I Output Axis Inertia 250 gm—cm2
KS Signal Generator Sen-
g sitivity 25-30 volts (peak)/
radian
A Threshold Float Angle 6x10° radians
AT Sampling Interval 1/3600 seconds
AB Quantization Level 14 radians
Trg Torguer Time Constant 5x107° seconds
Signal Generator Carrier 3
Frequency 28.8x10 hertz
*
D Relay Output Voltage 5 volts
z Torque Generator Sen- 4
g sitivity 8x10 dyne-cm/volt
e** Signal Generator Excita-
P tion 5 volts (peak)
wIA,MAX Maximum Input Angular
Velocity 2 radians/second

60

*These are parameters which are given for the simulated gyro
path only. 1In the real gyro, the output of the three level
relay is a current. A 5 volt signal is generated for readout
purposes only,

**e actually has a peak value of 7.35 volts but it is attenua-
ted to 5 volts peak for use in the demodulator.
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z = xy/Km

where z is the output voltage, x and y are input voltages,
and Km is equal to the maximum permissible voltage level of
either input. For the demodulation process, it is necessary
to amplify ey and then multiply it by ep. If the amplified

e is Kaes, then the demodulator output is

e, = K e
a

a es/Km . (4.14)

p

The multiplier chosen for this filter (see Appendix B) has a

maximum permissible input of 5 volts. Therefore K, = 5 volts

and using Egs. (4.12) - (4.14),
e, = K 5K_ A sin2 2nft/5
d a” tg
= K_KA L (1- cos 41 ft)
sg-a 2
= Ks(l— cos 41 ft)A (4.15)
where
_ 1 \
KS =5 ngKa A (4.16)

KS may be regarded as the equivalent signal generator sensitiv-
ity for the signal flow path through the w-Filter. Since K,
is dimensionless, the dimensions of KS are the same as those

of KS , viz., volts per radian. Substituting Eq. (4.10) into

g
Eq. (4.15) gives

eq = KSA - ng | (4.17)

Suppose it is desired when A = A that KSA = 1.8 volts.

t
From Eg. (4.15), the maximum value of eq = 2KSA. Thus at

Tl
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threshold, = 3.6 volts. The difference between this

e
d, max

and the 5 volt maximum allows for the possibility of exceeding

the threshold without saturating the multiplier. Then

K
S

|

1.8/A,
5

1.8/6x10

3x104 volts/radian (4.18)

Il

From Egs. (4.16) and (4.18) and Table 4.1, the required value

for preamplifier gain is

K
a

2 KS/KSg

2x3x10%/30

2000 (4.19)

4.3.3 Signal Generator Section

This section implements the transfer function

Elm

K .w
ff
F (s) = f (4.20)

NE

0
Q
e |
%0
IUJ

Hh N
e
Hh

where Kf is chosen so that an overall scale factor which re-
*

IA’ MAX to OMax has some desired value and we 1s chosen

so as to achieve the desired bandpass on one hand and adequate

lates w

filtering of ng on the other.

The actual chain of elements in the transference path
from Wip to w* is shown in Figure 4.5(a). The equivalent
transference is shown in Figure 4.5(b). 10 volts was chosen

. * . _ .
for the maximum value of w . Then since wIA, MAX = 2 radians/

second, it is necessary that
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= *
H RKe/C = 0 /wIA, MAX

5 volt-sec/radian

Therefore

=
i

5C/HK

5x5%10°

= secC
2x10°x3x10%

4.17x10" % sec (4.21)

I

The gyro float time constant g is I/C, which from Table
4.1 is
4

g = 5x10 - sec (4.22)

or equivalently, the gyro break frequency wg is
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w =1
g =Yg

2x103 rad/sec (4.23)

It

w
g9

The noise ng has a characteristic frequency w, given by

w_ = 4nf
n

4mx2.88x107

= 3.62x10° rad/sec
Therefore, choose
4
we = 10° rad/sec (4.24)

This is sufficiently above the gyro float break frequency so
that the input signal bandpass is still primarily limited by
the float lag. It is also sufficiently below the demodulator
noise frequency so that the demodulator noise is heavily atten-
uated by the filter.

Note from Figures 4.2a and 4.3 that Wra is attenuated by
a second order characteristic in the filter since the float
integration and filter differentiation cancel. In contrast
with this n4 experiences only a first order attenuation since
in its path there is no integration to cancel the filter dif-
ferentiation.

By substituting Eqs. (4.21) and (4.24) into Eq. (4.20),

the signal generator section transfer function becomes

4.17 <”§Z>
(s) = 10 (4.25)

Fsg s 2
B
10 10
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4.3.4 Torque Generator Section

This section must simply duplicate the path that must be
taken by the torquing signal. From Figure 4.2b, it can be
seen that the transfer function of the torque generator section
is

K, KK /C
(s) = tg s f (4.26)

T ) )& T3, )

Using values from Table (4.1) and Egs. (4.18), (4.21), and

(4.24), this becomes

th(S) =

(4.27)

4.3.5 Final Section

The final section is responsible for combining the out-
puts of the signal generator and the torque generator sections.

It is merely a summing amplifier.

4.4 Test Results

The w-Filter was built (Appendix B) and tested. The re-
sults were generally as expected although a perfect cancella-
tion of the torque generator signal was not achieved. At the
filter output, there were small residual pulses of opposite
sign occurring before and after the generation of a torque
pulse in the gyro. These residual pulses had a one volt
magnitude. In order to suppress these pulses, a lag was in-

troduced at the output stage having a 1072 second time
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constant. The residual pulse were attenuated by a factor of
10, but the first break frequency was reduced to 100 rad/sec.
The filter gain and phase vs. frequency plot is shown in Fig-
ure 4.6.

The filter was adjusted to have zero output when the
float angle A was constant and to have a 1.000 volt (1/10 of
full scale voltage) when the gyro pulse rate was 3600 pulses

in 10 seconds (1/10 of maximum pulse rate). Thus the filter

was adjusted for zero error at two points. The output voltage

error at any intermediate point was less than 1 percent of
full scale voltage. A suggested design goal is an output

voltage error of less than 1 percent of the nominal output

voltage at any intermediate point.

Conditions adversely affecting the filter performance
were:

(a) The gyros were not temperature controlled. This
rendered an exact electrical analog of the gyros difficult to
achieve.

(b) The signal generator signal used by the filter Was
taken from the output of the rebalance loop preamplifier. The
gain of this preamplifier tends to have a different value
above the threshold for generating a torque pulse than below.
It is recommended that the signal generator signal itself be
used rather than the rebalance loop preamplifier output.

(¢) The multiplier used in the demodulator has a nomi-
nal bandwidth of 25 KHz. The multiplier output signal is a
57.6 KHz signal. A better multiplier is recommended.

(d) The gyro wheels were not on. The result of this

factor is difficult to assess.
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CHAPTER 5

SYSTEM MECHANIZATION

5.1 The Choice of an Equation

The system to be mechanized is that system which inte-
grates éRB and evaluates the coordinate transformation CRB
given by Eg. (3.17). 1In Section 3.3, four forms of the rota-

tion vector differential equation were given as Egs. (3.36),

(3.33), (3.38), and (3.40). They are rewritten here for con-
venience.
b=w+ioxwtAd) ¢ x(gxw (5.1)
é = w + B(¢)Qxé_— C(¢) ¢ x(gxé) (5.2)
Lo C(9) :
$=uw+ B(9) ¢ x w + 2A(¢)¢x9 (5.3)
and
=11+ a2 + 1 + 1 ( ) (5.4)
9(,_— —6- 9 'Z-_X_(g §'9{,_X X W .
where
@ =1, 4 tan & (5.5)
hd =¢ 4

When expanded as infinite series, A, B, and C are [from

Egs. (3.37), (3.34) and (3.35)]
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2 4 6
¢

_ 1 0 ¢
A =15 % 535 * 37,240 T 1,209,600 (5.6)
2 4 6
_ 1 _ ¢ 0 _ :
B=3-357% 535 - 70,320 " (5.7)
2 A 6
1 _ 9 ) - ¢
C=¢%- 170 * 5040 ~ 362,880 ' (5.8)

A desirable property of the equation to be used is that when
'lw is constant,é = w. In other words, it is desirable to be

able to cast the system equation in the form
b=uw+0 (5.9)

In this form, é can be regarded as the correction rate for
the noncommutativity phenomenon, and in the absence of a non-
commutativity effect (Lw constant), é is just the same as it
would be if the ¢ loop in Figure 2.1 were opened. This loop
could actually be opened wheﬁ the direction of w is essen-
tially constant over the update interval. Equation (5.5)
introduces a scaling applying to Eg. (5.4). As a result,
this form of the rotation vector differential equation is
subject to additional sources of analog computation error
over the other three forms and will not be considered further.
If only the first term of the series expansions for A,
B, and C is used in Egs. (5.1), (5.2) and (5.3), then the

approximate relations

o=+ %QXQ + -% ¢ x(¢xw) (5.10)
o= u+ 3 oxb - 7o x(exd) (5.11)
bmw+ox(Fu+zd) (5.12)
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are obtained. The most significant neglected term in Eqg. (5.10)

is

¢4
where ¢ = 19 . In Eg. (5.11), the most significant neglected
term is

3
-9 ;
2% l¢ X9
and in Eg. (5.12) it is

q) .

3
o1, xw + 2 1, xb

3
90 —¢ 720

Obviously, for any value of lg|, Eg. (5.10) gives a
superior result to that of Egq. (5.11]). Hence, Eg. (5.11) is
excused from further consideration. While the approximation
errors in Eq. (5.12) are two orders of magnitude larger than
those in Eq. (5.10), Eq. (5.12) enjoys a distinct computational
advantage over Egq. (5.10). 1In Eqg. (5.10), two cross products
are required, while in Eq. (5.12) only one is required. Re-
cognizing the fact that analog computational elements do con-
tribute errors, the impact of the errors generated by the addi-
tional cross product requirement of Eq. (5.10) would have to
be assessed before a choice could be made between Egs. (5.10)
and (5.12) strictly on the basis of relative accuracy.

Relative accuracy, however, need not be the basis for
the choice. The choice of a particular equation need only be
substantiated on the basis of the absolute accuracy of its

solution. The scale factor uncertainty of the gyros used in
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the experiment (Honeywell GG 334A éyros) has an rms value of
about 200 ppm. Therefore an error of 20 ppm can be tolerated
in the equation without significant effect on the solution.

This justifies the choice of Eg. (5.12) subject to a restric-

tion on ¢ that will hold the error in é to less than 20 ppm.

MAX L
Using Eg. (5.9), Eg. (5.12) becomes

wH TS (5.13)

Nj

b= w+ ¢x(

The accuracy and the stability of Eq. (5.3) for large
¢ (¢<m radians) and of Eq. (5.13) for small ¢ have been verified
by a highly accurate digital computer integration. This veri-

fication is given in Appendix C.

5.2 Analog System Configuration

The analog system mechanizing Eg. (5.13) is shown symboli-
cally in Figure 5.1. The considerations of voltage scaling
are also indicated. Since each signal in an analog computer

is a voltage, each real variable being modelled is a product

of its corresponding analog voltage and a scale factor. 1In
particular,
w =X e (5.14)
-~ W=
= k-e- 5.15
8 = kieg (5.13)
g = k(.jg_gj (5.16)
=k (5.17
9 = ke )

One scale factor, kw’ can be chosen at once. Since the
maximum voltage on the analog computer is 100 volts and since
the maximum angular velocity for the gyros is 2 radians per
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second (Table 4.1),

| Wyrax |

K = _ 2 rad/sec
w |e | 100 volts
=w ,MAX
k, = 2x10 2 rad/sec/volt (5.18)

é does not appear as an electrical signal in Figure 5.1,

so the choice of k: is immaterial. €y and 96 are summed to-

¢

gether to obtain e:; and so ké is chosen to be the same as

k .
w

k, = 2x107% rad/sec/volt (5.19)

Before choosing k an expression will be derived for the

(bl
first neglected term in Eg. (5.13). Since

¢ =+

fa-

it is seen from Eqg. (5.l3f that

g =% oxu + ¢ oxb
_ 1 1 1 .
= 5 ¢xw + 5 ¢ x( 5 ¢xw + & ¢x& )
_ 1 1 1
= 5 ¢xw + 15 ¢ x(¢xw) + 3 9 x (¢x0)

Note from Eg. (5.13) that

e
[a-
Il
o

so the last term of the preceeding equation becomes

2
3 ¢ x(ex0) = - 4o ¢

and therefore
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By comparing this result with Eg. (5.1) and using Eg. (5.6)
and (5.9) it can be seen that the first neglected term in

Eq. (5.13) is

¢3

¢

Eg. (5.20) shows that the maximum error magnitude in Eg. (5.13)
is of the order of ¢3/72 times that component of w which is

perpendicular to ¢. is taken to be 0.1 radian, then

If ¢MAX

the maximum error is 14 ppm times the component of w perpendi-

cular to ¢. Since ¢ will range anywhere from 0 to ¢MAX and

since the average of 1l xw will be somewhat less than w

¢ MAX '

the choice of

¢MAX = 0.1 radian (5.21)

results in a probable error not more than 5x10—6]9| and a

guaranteed error of not more than l4x10_6|g|. With ¢MAX as
given by Eq. (5.21), k¢ is then
0.1 rad

& = T00 volts
= 1073 rad/volt (5.22)
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5.3 The Frequency of the Update

The hybrid computational technique obviates the need
for high frequency updating for the purpose of maintaining an
accurate direction cosine matrix. Accuracy i1s maintained by
generating an analog correction signal 6 which accounts for
the noncommutativity phenomenon encountered in finite rota-
tions. This allows the accumulation of the A¢ pulses from
the gyros over arbitrarily long intervals of time, subject,
of course, to the restriction that an update must occur when
¢ exceeds ¢MAX'

Since the direction cosine matrix is not an end in it~
self, but exists (a) in order to transform vectors from the
Body Frame into the Reference Frame and (b) to describe the
attitude of the vehicle; it should be these considerations
which specify the frequency at which it must be updated.

It is important to obtain a good transformation of the
accelerometer measurement from the Body to the Reference Frame.
As in the case of the conventional direction cosine matrix
update process, this transformation can be done by a simple
application of the direction cosine matrix to each AV (incre-
ment of integrated specific force) by accumulating the AV's
over a longer time interval and then applying a more sophisti-
cated transformation algorithm. In the former approach, a
sufficiently accurate direction cosine matrix must be avail-
able as often as the accelerometers are sampled. In the latter
approach, the overall computational burden of the transforma-

tion process is reduced somewhat by using a more sophisticated
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algorithm at a slower rate. Typical transformation rates range
from 100 to 3000 transformations per second (ref. 15).

The navigation equations are integrated less frequently,
with typical rates on the order of 1 integration step every
10 seconds (ref. 16). This means that from the point of view of
navigation requirements, the transformation of velocity incre-
ments can take place at a slower rate than that given in the
previous paragraph. Even the implementation of a guidance
law (such as the nulling of the velocity-to-be-gained vector)
does not require a high transformation rate since only very
low vehicle angular rates (except perhaps for vehicle angular
vibrations) would occur in such a guidance process.

The foregoing paragraph provides the rationale for the
hybrid velocity transformation method presented in Chapter 7.
There it is seen that a direction cosine matrix update fre-

quency of

fu = 10 updates/second (5.23)

is quite adequate for most velocity transformation purposes.
The important point is that in the hybrid method, it is
the use of the coordinate transformation matrix that governs
the frequency of the update, and not as in conventional methods
where the accuracy of the updating process governs the fre-
quency of the update. This is because in the hybrid method,

the same accuracy is available at lower update frequencies.

5.4 System Error Analysis

There are three error sources in the hybrid computa-

tional process in addition to the gyro errors. These are:
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(a) Equation mechanization error
(b) Analog computation error

(c) Gyro storage error

The coupling between the error sources is weak. Therefore,
these sources are regarded as uncoupled. Each error source

will now be examined in detail.

5.4.1 Equation Mechanization Error

This error was derived in Section 5.1 and was approxi-

mated by Eq. (5.20) which may be rewritten as

5§e=§a—§¥%§;¢xg (5.24)
where
dée is the eqguation mechanization error
éa is the approximation to é as given by Eg. (5.13)

An approximation to the rms angular velocity drift due to equa-

tion mechanization error is found as follows:

6
((Sq’e)z_ 80e * 0% = 72-72 Ly xu - lyxuo

6
_ ¢ 2 Loy 2
= 7ao7z Lo (Lyrw)

Now suppose that ¢ grows linearily with time; i.e., that
¢ = kt

until

kt = 0.1 radian

(at which time ¢ is reset to zero). Suppose further that



W

1[2_

1 - us=

¢

This is equivalent to an assumption that the component of w
parallel to ¢ is the same as that perpendicular to ¢. Also

suppose that |w| is a constant. Then

k6t6w2

562 (t) = 3
(72)°x2

This is averaged over one cycle from t = 0 to £t = 0.1/k to

get the mean square value of §¢.

0.1/k
5o - 1 kt8u®
0.1/K 72:72-2

0
10k’ w? [t7] 0.-1/k w2
S 72722 T o (72) 2x2x7x10°
= (3.71x1076) % 2
or
8¢ rms = 3.71x107% & rad/sec (5.25)

Let ééSF be the error in ¢ caused by gyro scale factor

uncertainty. In even the best strapdown gyro available today,

Sbgp = 1072

The value of Gée rms given by Eq. (5.25) compares favorably
14

with this.
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5.4.2 Analog Computation Error

In order to analyze the effects of the analog computing
elements, it is necessary to assume an error model for each

analog computing element. These models are:

Integrator

(a) 1Initial condition error 6@0
(b} Input voltage offset o
(c) Dynamics DI(s)

(d) Transfer function

D_(s)

Vot (8) = ——— [y (s)+a(s)] + 8¢

Summing Amplifier

(a) Input voltage offset B

(b) Dynamics Dz(s)

(c¢) Transfer function

Vout (8) = Dy (8) [¥, (s)+v, (s) +8]

Multiplier

(a) Multiplication error ¢
(b) Output noise n

(c) Dynamics DM(s)

(d) Transfer function

Vout (8) = Dy(s) [(1+e)v v, (s)] + n

Notes

(a) It is not strictly proper to use Laplace transform

notion for the multiplier error model since a multiplier is



a nonlinear computing element. It will be seen, however,
that this error analysis is equivalent to a perturbation
analysis and the nominal product may be cancelled by sub-
tracting it from the unperturbed product. This will become
clearer as the linearization proceeds. The result, after
the nominal product is cancelled, is linear and the Laplace
transformation notation is then appropriate.

(b) No error model is assigned to the coefficient
potentiometers. Instead, the summing amplifier noise B will
be made large enough to account for this omission.

(c) Only one summing amplifier is shown in Figure 5.1
although the actual system mechanization (See Appendix D)
contains several. Here again, 8 will be taken large enough
to account for the noise contributed by the neglected summing
amplifiers.

The analog computation system (except for the w-Filter)
is shown in Figure 5.2 with its error sources. Notice that
the complementary integrators shown in Figure 5.1 have not
been included in Figure 5.2. Since only one integrator is in
the circuit at any one time, only one has been shown in Fig-
ure 5.2.

The object of this error analysis will be to evaluate
the relationship between the error sources, symbolically de-
noted d(s), and the analog computational drift rate §a.

Mathematically

85 (s) = F(s)d(s) (5.26)
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where

T T T
_qT = [gT §T en” de d¢.] (5.27)
From Figure 5.2
e 4 b0, = 150 (oin) (5.28)
=5 =G 2 k == :
b = (g¢+690) x a(l+e) KMDM(S) (5.29)
_ 1
a = Dz(s)[sw+agw+§f 3 (gé+6§%J] (5.30)
D; (s)
5 + 8¢, = S (e, *de te tbe ta)+ 6¢ (5.31)
Combining Egs. (5.28) - (5.31) and neglecting 2nd and higher

order terms gives

where
Dl(s) = DZ(S) DM(S) DI(s)
D2(s) = DZ(S) DM(S)

Now subtract out the nominal value of

es (set all error

sources to zero to get nominal) and collect terms containing

the factor 696 on the left hand side.

This gives
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de, + §9 Dl;S) e, ¥ Se.
= E% Dl(s) &5 X &y g
+ -]-{le Dl(s)[e X %%4'% x_+ % 6?”— %‘9]
- E% DZ(S)(é + %—gé) x 8¢ + % ;ﬁ n (5.32)

The integration indicated by the 1/s factor refers always to
the error sources. Thus the error dgé tends to grow with time
for non-zero error sources. In order to further simplify

Eg. (5.32) assume that

k Se.
¢ -9
Se. >> 3 Dl(s)gw X —
Since k, = lO"3 rad/volt, this is a good approximation for

¢

most run times. Note that if |gw| is large, the run time will
be small and vice versa. The effect of the analog circuit
dynamics can also be ignored since the response of all analog
computing elements used in this experiment is flat to 20 KHz
whereas the gyro response rolls off at 2 KHz. Further, since

|| <.1, Egs. (5.9) and (5.10) reveal that

o] << |u]

and consequently |g6| << |gw|. In view of these assumptions

Eq, (5.32) can be simplified to
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- _¢ e, ¢ ==
690 =3 e xe st ey XS
k Se k
¢ —w ¢
T 38y X g 2 Su ¥ 8¢
k
1 7¢
m

The auto correlation function for 696 is given by (ref. 17)
¢6e.6e.(T) = E[Ggé(t) . 696(t+T)] (5.34)
G 0O
where E is the expectation operator. In order to evaluate the

auto correlation function it is necessary to transform Eg.(5.33)

to the time domain. This operation gives

t
K
Se. (t) = 2 e, x e h(t-x) e(x) dx
=0 3 =¢ ~Ww
(@]
k t
+ e, x [ RE 18002001 ax
(@]
k t
+—%§_é x/ h(t-x) e, (x)dx
O
k k
__%gwxa%(t) +%%n(t) (5.35)

where h(t) is the unit step function u(t), the impulse response
of an integrator. Now use Eg. (5.35) in Eg. (5.34) and reduce
using the following assumptions:

(a) The noise sources are unbiased and uncorrelated

(b) The three components of a, 8, égw, 690, and n are

equal (ax =a, = a,, etc.).

y 85



{¢) Assume

E[gw - al =0
E[gw - Bl =0
Ele, Sgw] =0
Ele §¢,1 =0

(d) All error sources are Gaussian white noise processes

such that

¢ ()

SR Q86 (t)

¢ (E)

oo 3Qu6(t)

(t) 3056 ()

bgg

¢6e Se (t) = 3Q6e (t)
W oW W

Y5980, (£)

%45 ©)

¢nn(t) = Qnﬁ(t)

where §(t) is the unit impulse and Qi is the variance para-
meter of the ith process. The factor 3 arises because of
assumption (b).

Using these assumptions, a lengthy reduction gives

5
boo se. (E) = D 0, (8) (5.36)
c O .
i=1
where
k;};42
b1(8) = 5% ejes0 kit (5.37)
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¢, (L) = % kiei(Qd+QB) k.t (5.38)
¢3(t) = % kgeieiQée ktt (5.39)
w
6, (t) = 3 kielog, (5.40)
O
2
¢(t>=3}i99 (5.41)
5 4k2 n .
m
kt = 1 second (5.42)

It is clear from Egs. (5.37) - (5.41) that ¢6e se
576

stationary time function even if each noise source is a sta-

(t) is not a

tionary random process. This is because of the integration of

some of the noise signals. The rms value of a Gaussian white

noise process passed through an integration grows as the square

root of time. (See Appendix C for a plot of the results of
integrating an input angular velocity corrupted by Gaussian
white noise.)

These results can be put in a more practical form. Let

§& = k.d8e.
rms 0 ~0,rms
[ 1/2
= k. |0 (t)]
o 535695
_ ~L/2
ni,rms - Q':‘L
where Ny s is the rms value of the ith noise source. Then
14

considering only one noise source at a time and using
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the following results are obtained

k 3
. 5w 3,1/2
6o (e) = % e g (k) (5.43)
RE 1/2
56 g (0) = V5 kyuo o (k t) (5.44)
RE 1/2
65 (B) _\[; kg8 g (ki t) (5.45)
66, (be) = % k¢w26ew’rms(ktt3)l/2 (5.46)
56 (86 ) = —= Kk wd¢ (5.47)
rms o 2 7o o, rms ’
k
. 3k
60rms(n) T2 k. kwnrms (5.48)

Typical values are given in Table 5.1 for the noise sources
considered in this section. Table 5.2 was constructed using

the value t = 0.5 sec and the values for kw and k, given in

¢
Egs. (5.18) and (5.22).

TABLE 5.1

TYPICAL NOISE SOURCE VALUES

Source > o Sey 90 N
RMS Value 0.01 2.5x%x10"3 2.5x10-3 1 5xlO_3 7.5x10"3

RMS value is in volts except for ¢ which is dimension-

less.



TABLE 5.2
RMS DRIFT IN ANALOG COMPUTATION

Argument 6érms(A)

. A w=0 w=1 w=2
1 € 0 3x10-5 2.4x10"4
1 o 0 1.5x10~6 3.0x10-6
B 0 1.5x10-6 3.0x10"6
Se,, 0 3.5x10-4 1.4x10-3
86, 0 4.5x1076 9.0x1076
n 1.4x1072 1.4x10-5 1.4x10-5

Units of éérm are radians/second

S

From Table 5.2 it is clear that the multiplier noise

sources £ and n are the most serious sources. This is because

all other noise sources must pass through a multiplication by
¢ and as a result are scaled by k¢.

5.4.3 Gyro Storage Error

At each evaluation of CRB, there is an error in CRB due

to the quantization of ¢. This error doesn't become permanent

until ¢ is reset to zero. The digital computer computes

cNB(g) = cNRcRB () (5.47)
where CNR is the initial condition matrix which premultiplies
CRB. This initial condition matrix relates the Reference

Frame to some specific Navigation Frame and is given by

cNR - CNB(tr) (5.48)

where t is the time at which ¢, was last reset to zero. Thus

the quantization error in ¢ doesn't become incorporated into

CNR until QRB is reset to zero.
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Furthermore, the only recoverable part of the quantiza-

tion error is the error in &. Since

t+AT
Adp iJ/. (w(t)+5 (1)) dr
t

it can be seen that the only part of A¢ that is a function of
¢ is

t+AT t+AT

A& =/ o(t)dr =/ ) x(% w+ % ‘.E)d'f

t t

The rms magnitude of the quantization error e (q)

1/2 1/2
_ (égi) (é62+A02>

€ 2 2

rms (9

This is a result of the assumption that the gquantization error
is uniformly distributed over the interval (0,A¢). The part
of the qguantization error due to the quantization of § is

approximately

2
_ Ao [re
®rms dao) = F6 (-7—>

This can be approximated by

1/2

L /2
- 9 (A9
erms 9ag) T G (—§_> (5.49)

To evaluate Eg. (5.49) as a function of quantization level
Adp, an expression for the relative magnitudes of é and w must

be obtained. From Egs. (5.9) and (5.13) it is seen that

>~

5% 3 oxw



and so as an approximate relationship

2 2 (6 - w)?

2 _ ¢Tw = —
O = 73 )
As an extreme case ¢ - w = 0. Then
2 _ olu?
4
and
o _¢
w 2

so Eg. (5.49) may be written

2
_ 9 (4o
°rms (Qag) = 3 (’T)

The quantization error is incorporated in the initial condition

1/2

matrix when ¢ is reset to zero. 1In the experimental system,
¢ = .1 when reset, so as a final result

erms(qAO) - 222
V2

5.5 Test Results

A (5.50)

An experiment was conducted to verify the theoretical re-
sults of Chapter 3. The experimental system consisted of:

(a) An inertial sensing unit consisting of three Honey-
well DDG 334A gyros.

(b) A set of w-Filters of the design described in Appen-
dix B.

(c) An analog computer patched as described in Appendix
D to generate §; to transmit the A¢ pulses and the basic clock

frequency (fc = 3600 pulses/sec, This was scaled in the analog
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computer logic section by a factor of 36) to the digital com-
puter; and to synchronize the ¢ resetting process in both the
digital and analog computers.

(d) A digital computer to accumulate the A¢ pulses and
to periodically evaluate CNB(t).

The results of the actual experiment were compared with
the results of the numerical integration of the é equation
giveﬁ in Appendix C. Two situations were tested. They were

1. An initial value of ¢ on one axis and an angular
velocity about another axis.

2. Out of phase sinusoids about mutually orthogonal
axis.

The test results are shown in Table 5.3 and Table 5.4.

In these tables, the error in the noncommutativity correction
generation is indicated at the right hand side of the page by
<nc. In Table 5.3, one error component in each run is labelled
"w" at the right hand side. This error is due to the inexact
application of the input along that axis and is not an error

in the hybrid computation since the computation responds to

the input. 1In all cases the noncommutativity correction error

was less than a one pulse error (A¢ = 5.555x10 2

). In a pulse
rebalanced gyro, a one pulse error is to be anticipated be-
cause of gyro storage and guantization. The storage error is a

function of the threshold of the relay in the rebalance loop

and the quantization error is a function of the pulse weight.
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TABLE 5.4

TEST RESULTS-CONING MOTION

Coning Run Time Drift Angle ¥ Error
Amplitude Ang. Freq. seconds Experimental Theoretical wexp Ipth
2
3] w t 1/26%wt
.02 10 1 0.002222 0.002000 0.000222 <nc
.02 10 1 0.001666 0.002000 ~0.000333 <nc
.02 10 10 0.024444 0.020000 0.004444 <nc
.002 100 10 0.001666 0.002000 -0.000333 <«nc

Ap = 0.00055555

Note: Drift Angle ¢ refers to the drift in orientation (about an axis which
experiences no angular velocity) induced by the coning process. The theoretical

value is the predicted value. The experimental value is the coning drift
correction generated by the system.




Test Note

The test was performed with the gyro wheels off. Elec-
trical torques were applied to the torque summing member to
simulate the torques due to physical inputs. A test table was
not available to generate an accurate coning motion profile.
The sine wave oscillator used to generate the out-of-phase
sinusoids to simulate coning motion was not entirely free of
bias, so the mean value of ¢ generated by the ¢ integrators
tended to increase rather rapidly, thus preventing low fre-
guency coning experiments or long time duration experiments.
Also, there were no accelerometers on the inertial sensing
unit. The gyros were 6perated at their normal operating
temperature, but were afforded only coarse temperature con-
trol. Without the wheel and accelerometer heat sources, the
inertial measurement unit block temperature distribution was
too abnormal to allow fine temperature control by the gyro

temperature controllers acting alone.
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CHAPTER 6

EVALUATION OF THE HYBRID CONCEPT

6.1 Preliminary Considerations

In this chapter, the hybrid computation will be compared
with conventional schemes. It is necessary to define those
performance features to be compared, since when any compari-
sons are made, it is important to correctly choose the basis
upon which those comparisons are made.

It sometimes happens that error analyses treat those
errors that admit readily of mathematical formulation and the
physical significance, the sources, or the meaning of an
error is often not adequately understood. An example of this
practice occurs in the evaluation of strapdown coordinate
transformation computation algorithms. The example is the
evaluation of the extent to which the computed direction co-
sine matrix loses its orthogonality property. That is, the
direction cosine matrix should be an orthogonal matrix.
Accordingly, it should have a unity determinant, and the rows
(columns) should be mutually orthogonal. It is easy to analyze
mathematically, the growth of the determinant and the loss of
perpendicularity of the row (column) vectors, and such an

analysis is commonly performed. A better way, however, would
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be to impose orthogonality as a constraint and to periodically
perform a computation that reorthogonalizes the direction co-
sine matrix. Then (as makes good physical sense) the overall
drift of the computed Navigation Frame relative to the true
Navigation Frame is the only criterion for algorithm performance.

There are two ways in which a computed direction cosine
matrix can become nonorthogonal. Let

CNB - CNRCRB (6.1)

where the N-Frame is the Navigation Frame in which the naviga-
tion problem is to be solved, the R-Frame is the Reference
Frame which is taken to be the initial coordinate frame from
which the change in orientation of the Body Frame is reckoned
over the current updating cycle, the B-Frame is the Body Frame.
The nonorthogonality modes are:

(1) 1If CNR and CRB are orthogonal matrices to within the
limits of computer precision, then cNB tends to become non-

orthogonal in the round-off process that occurs when CNR and

CRB are multiplied together.
(2) The algorithm that generates CRB does not generate

an orthogonal matrix.

Mode (1)
In the hybrid algorithm, a new Reference Frame is estab-
lished when only QRB is reset to zero. Therefore the average

frequency at which nonorthogonality mode (1) generates an error

that becomes permanently incorporated in CNR is

f (1) =

hyb wavg/¢

max
97



98

where wavg is the average angular velocity magnitude.
For the scaling used in the thesis experiment, ¢max =

0.1 rad and w = 1 rad/sec and sO
avg

£ 1) £ 20/sec

hyb(

In purely digital algorithms, a new Reference Frame is estab-

lished at each update cycle. Therefore

fdig(l) = fupdate

Mode (2)

The hybrid digital algorithm generates an orthogonal
matrix. 1In the hybrid system, Eq. (3.18) is mechanized; its
orthogonality is established by Egs. (3.23) and (3.24). There-
fore nonorthogonality mode (2) does not occur in the hybrid
evaluation of CRB. In the case of the digital algorithm, non-
orthogonality mode (2) is a direct function of the specific

algorithm used. Thus

l
o

fhyb(z)

f.. (2) =

dig fupdate

6.2 Round-Off Error

Round-off error in the direction cosine matrix computa-
tion occurs because of the finite word length in the digital
computer. In addition to causing nonorthogonality, round-off
error also causes drift in the orientation of the computed
Navigation Frame with respect to the actual Navigation Frame.

Round-off error is not discussed further here except to note



that as for other arithmetic (as opposed to kinematic) errors
in the direction cosine matrix, the round-off error in the
hybrid algorithm accumulates at the rate at which QRB is reset
to zero. In purely digital algorithms, the round-off error
accumulates at the rate at which the updating process occurs.

For a good discussion of round-off error, see Reference 17.

6.3 Kinematic Response

From Eqg. (5.9),

%8 = Yrp t YRp

it is seen that the angular velocity experienced by the strap-
down inertial measurement unit gives rise to either a zero or

a non-zero noncommutativity rate éRB' When QRB = 0, there

is no kinematic coupling of the angular velocity component
along one axis into an orientation rate about another axis.

In this case, the direction of w. is fixed. If the direction

RB

of Ypp changes with time, then éRB # 0. For example, if
- w_ sin ¢ sin w_t
c c
Wpp = w, sin ¢ cos wct

(1- cos ¢) W (6.2)

where Wy is called the coning frequency, then for

¢
o(t) =0
0

it can be shown by direct substitution into Eg. (5.2)
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1 . 1 sin dépp .
R - Yre 52 (1= cos ¢pp) SppXipp + 52 1- . dpp¥ (SppXdpp)
RB RB
(5.2)
that
¢ cos wct
g (t) = | ¢ sin w t (6.3)
0

is a solution for the orientation resulting from the Yrp given
by Eq. (6.2). This is the classical coning motion. It is
readily seen from Egs. (6.1l) - (6.3) that

5, = -{1- cos ¢)wc (6.4)
since ¢Z = 0. The case where ¢ * w = 0 (as in the classical

coning situation) results in a maximum kinematic coupling of

angular velocity with orientation and |§ is a maximum for

pal

a given . Thus, coning motion provides an excellent set

logg
of circumstances for testing the accuracy of direction cosine
algorithms since there is a known closed form solution for the
coning motion direction cosine matrix. cRB g evaluated by

means of Eq. (3.18) using QRB as given by Eq. (6.3).

In summary, an algorithm may be completely evaluated by

two test cases: (a) no kinematic coupling; IQRB(QRB)! = 0
(the direction of WRB is fixed) and (b) maximum kinematic
coupling; IQRB(QRB)! is a maximum for a given IQRBI (classical

coning motion).
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6.4 Performance Comparison

Four algorithms have been selected for performance compari-
son. They are:

1. First order Taylor series

B = MR (14p0x1) (6.5)
2. Second order Taylor series
B = MR (zerexl + 2 [0x1%) (6.6)

3. Second order Runge-Kutta

B = MR (rrex] + 500,x116,x]
- 3 tex1? - 2 re,x1?) (6.7)
4., Hybrid
cNP = MR (14 gx] + ol9x1?) (6.8)

where

6 and ¢ are the sum of the A0's and A¢'s respectively
over the update interval T.
gl and 8, are the sum of Af's over the first and second

half respectively of the update interval T

2 4 6 .
= - L ¢ - Cb ~ S1in (i)
P =1 6 " 120 T 5040 © T %
~1
2 44 48 . 2
o = p? (2 - 97 + %E - %20> 2 sin” ¢
¢$“ (1- cos ¢)

The relative computer loading factor (RLF) per update
for each algorithm is shown in column 2 of Table 6.1. The

rectangular integration algorithm (First order Taylor series)
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(AN

1 2 3
Relative Load Drift Rate
Algorithm Factor w=0
1st Order 1 0
Taylor Series
2nd Order 1.5 0
Taylor Series
2nd Order 2.3 0
Runge-Kutta
Hybrid 1.9 1.4x107°

l

update frequency

coning frequency

|E
H

angular velocity

TABLE 6.1

ALGORITHM COMPLEXITY

€
©
il "

A
Il

2nf
c

4

Drift Rate
1l = const.
_w

2
w /fu

N} -

RN
£
~
h

1.4x107°

+3.5%x10 7

coning amplitude

(rad/sec)

AND PERFORMANCE

5 6

Drift Rate Drift Rate
Coning fu>2fc Coning fu<2fc

52,2
1 c 1 ¢2
8 E, 7 ¢ Wo
2 2
L0t L2,
16 T 2 c
2 3
1 ¢ % 1,2
20 ;2 7 9 Yg
u
2 2
-5, g% 1 .2
1.4x107°+ —555 = 9%
1+t w
g C

Drift Rates units are
radian/second

gyro float time constant



is the simplest of all the direction cosine algorithms and so
it has been assigned an RLF per update of unity.

The drift rate for’QRB
Table 6.1. In each of the all digital algorithms, Egs. (6.5)-

= 0 is given in Column 3 of

(6.7), all terms but the matrix I are zero for Wpp = 0 (since

B = 0). Table 5.2 shows that for Wpp = 0

the hybrid algorithm analog section has a drift rate (for the

this results in GR

set of system parameters chosen in Chapter 5) given by

5

ldg(ﬂﬂ = 1.4x10 ° rad/sec

Since §§ # 0, is therefore not zero. This shows that when

-(BRB
 Wen is small, hybrid system performance is inferior to pure
digital system performance. There are two ways to reduce this
hybrid error. Since it is directly proportional to ké, the
noncommutativity correction scale factor, reducing the scaling
of e would reduce this error proportionately. The second

way is to create an open circuit in the § signal path when |&]
is smaller than some predetermined value. These suggestions
were not implemented in the experiment.

The algorithm drift rate given in columns 3-6 refers to
drift generated by the dominant source of error in each
algorithm, exclusive of round-off error, where drift is defined
as the magnitude of the orientation vector relating the actual
Navigation Frame to the computed Navigation Frame. Column 4
shows the algorithm drift rate in radians per second as a
function of angular velocity and update frequency for the case

of fixed angular velocity, exclusive of quantization effects.

Column 5 gives the algorithm drift rate for coning motion at
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coning frequencies that can be discerned by the rate approxima-
tion process performed by the algorithm. Column 6 is the
algorithm drift rate for coning frequencies above those that
can be discerned. This is the full kinematic rate 62 (Eq. (6.4)
for small ¢) generated by the coning process.

The drift rate for the hybrid method is the sum of the

5

drift rate (1.4x10 ° rad/sec) generated by the multiplier

noise (Table 5.2) and a function of angular velocity. When

lw = constant, the dominant error function of angular velocity
is kwéormS(Gew) as given by Eg. (5.46). (The choice of
parameters was kwéew = 0.0lw and t = %.) In the case of

coning, the dominant error is caused by the roll off in
the frequency response of the gyro. This is described by

the amplitude response function

* 1

= ]

( 2 2)1/2 IA

1+17w
g C

*
where w 1s the measured value of wIA

Tg is the time constant of the gyro

W is the coning angular frequency.

*
At low coning angular frequencies, w = w and the coning

IA
correction is accurately generated. At high coning angular
frequencies, the coning drift rate is the coning rate minus

the coning correction. This is given by

c 2 c l+T2w2 2 Cc
) gc
2w2
o[ lele Y12,
- l+12w2 2 ¢
104 g c



In Figure 6.1, relative computer loading is plotted
against IQRBl for four algorithms. Drift rate is held con-
stant at the drift rate of the hybrid algorithm which was
arbitrarily assigned a relative computer loading of unity.
(In all figures, only the drift rate attributable to the
dominant kinematic algorithm deficiency is plotted.) The

curves above = are immaterial, since w is the

IQ-RB| max max

maximum angular velocity to which the system may be subjected.
They are drawn to show that the hybrid algorithm is superior

to the 2nd order Runge-Kutta algorithm over a very wide dynamic
range. For a given vehicle and its dynamic motion specifica-
tion, the hybrid system is scaled to favorably locate the

range of in which it offers better performance than the

|opgl
all digital algorithms. The scale factor to change to re-

locate the region of superior performance is ké where

d = k.e.
= 5=6

Figure 6.2 is a plot of algorithm drift rate vs IQRBI
for equal computer loading. The computer loading of the hybrid
algorithm was taken as the standard. For a certain range of
[ERBI’ the superiority of the hybrid method is quite clear.

In Figure 6.3, the coning performance of the hybrid com-
putation is compared with that of the 2nd order Runge-Kutta
algorithm (the most efficient of the digital algorithms). The

solid diagonal lines show relative loading for constant coning

amplitude. These lines show that the hybrid algorithm is more

efficient at higher coning frequencies than the digital algorithm.

This is misleading however, since the power required to generate
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ALGORITHM DRIFT RATE (RAD/SEC)
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Figure 6.2.- Drift rate vs angular velocity magnitude for
equal computer Toad
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coning motion increases as the square of the coning frequency.
It is more reasonable to assume that for a given vehicle, the
coning power will not change very much since the vehicle power
plant has a fixed upper limi£ on the power that it can generate.
The more efficient the engine and vehicle, the less the power
that goes into generating coning motion. The dashed lines in
Figure 6.3 show relative computer load for equal accuracy at
constant coning power where ¢w2 is taken to be a measure of
coning power. This graph shows that for constant coning power,
the hybrid algorithm is more efficient at low frequencies and
the digital algorithm is more efficient at high frequencies.
This is because at high frequencies, there is less coning
drift than at low frequencies, given constant coning power.
Figure 6.4 is a plot of algorithm drift rate vs coning
angular frequency at the same computer loading for the hybrid
algorithm and the 2nd order Runge-Kutta algorithm. As in the
case of the constant angular velocity, there is a region in
which the hybrid algorithm exhibits the lower drift rate. This
region is bounded on either side by regions in which the

digital algorithm gives the better performance.
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Figure 6.4.- Coning input algorithm drift at equal com-
puter Toading
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CHAPTER 7

THE TREATMENT OF SPECIFIC FORCE

7.1 Vector Integration in a Rotating Space

In Chapter 3, a differential equation was derived for the
rotation vector QRB(t) relating the orientation of the Body
Frame to the orientation of the Reference Frame at time t. One

of the many forms that this equation may take is given by

Egq. (3.38)
d¢ )
EEE e % gxw + g% (} - 2($—ségs¢¢)) 9x ($xw) (7.1)

where the symbol d/dtB indicates that the derivative was taken
with respect to the Body Frame.

A similar problem, that of finding an equation for
d‘Birb(t)/dtB is considered in this chapter, where the vector
zrb(t) is the velocity of the origin b of the Body Frame at
time t relative to the origin r of that Reference Frame with
which the Body Frame was coincident at time t,. It is necessary
for a physically meaningful integration that the coordinate
frame with respect to which the derivative (integrand) is taken,
be the same as the coordinate frame in which the derivative
(integrand) is coordinatized. For example, strapdown accelero-

meters sense (in a zero gravitation environment)
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B
fB _ o zrb
= dtR

where f, the specific force vector, is defined (ref. 1) as the
reaction force per unit mass exerted by the accelerometer on
its mounting structure. (The Reference Frame is always an
inertial frame in this thesis even though it is redefined when-
ever QRB is reset to zero.)

It is true that
/t R (1) /t v, (1) R
£ (1)dT = - = v (1)
to to dTR rb

but the integral

F b © Puy
h(t) = £2(r)ar = - —2— ar

t £ R

(@] (@]

is a physically meaningless quantity if the B and R Frames
have relative angular motion. Since strapdown accelerometers
integrate'gg, the conventional approach has been to approxi-

R
mate Zrb(to+nAT) by

n-1 to+(i+l)AT
zrb(to+nAT) = § : C (to+1AT+a) £7(t) dt (7.2)
i=0 to+iAT
0 S o 2 AT

n=1, 2, 3,...

where AT is the accelerometer sampling interval (A more com-

plex, but more efficient, algorithm could be used.)
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There are two problems with Egq. (7.2). The first is that

the integrals in the summation are only approximations to Xib'

The second is that CRB must be computed and applied once during
each integration cycle. Depending on the characteristics of

the accelerometers and the transformation algorithm, the fre-

quency of the transformation process may be greater than 103

cycles per second.

The Law of Coriolis provides a way to avoid the problems
described in the preceding paragraph. Define Vv by the relation-
ship |

B dBv
= £ = g% - 222 (7.3)
£ = "

m’m
W<

t

where G is the gravitation vector. Then by the Law of Coriolis

[refs. (1) and (18)]

- wB x B (7.4)
at dt Ygp * ¥

Since the coordinate frame with respect to which the derivative
is taken is the same as that in which the components of the
derivative on the left hand side of Eg. (7.4) are expressed,

the left hand side may be integrated to get

t dBv
wo =.//. — drt (7.5)
- dTB
t
o
It will be shown in the next paragraph that
t
a =.//. £Rar (7.6)
t
o
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The advantage of the formulation given by Eq. (7.4) is that
Eq. (7.4) can be integrated entirely iﬁ Body Frame coordinates
using a hybrid technique similar to that used to integrate

Eq. (7.1). Then at a comparatively slow rate, the transforma-

tion
voo=CTvy (7.7)

is performed and velocity is obtained by integrating gravita-

tion G in a nonrotating coordinate frame and then using the

relation (whose validity is a consequence of Eg. (7.6))
t
R _ R. _ R
Yeb —/ G dt v (7.8)
t
o

To verify Eq. (7.6), it is sufficient to show that the
derivatives of both sides are always equal and that at some

time, both sides have the same value. It is clear that

t
d—ﬂ—/ fRar = £R (7.9)
- £ £

t
o]

To eveluate the derivative on the right hand side of Eg. (7.6)

use Eq. (7.7) and the Law of Coriolis

d R_ _d (BB _[wR x] CRB_B

dt, v dt, “RB Y
_ [ a RrB) B rB Vg R RB_B _
= HEE C v + C EEE - QRB X[CTTV (7.10)

Since
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d .RB _ RB| B
g, ¢ T € [QRB X]

Eg. (7.10) becomes

R
d R RB[ B ] B RB d B
= Vv = C w x{v + C -V
dtR = —RB R dtB =
_. R RB B ‘ (7.11)
L—UP-RB X] C v

By premultiplying the last term on the right hand side of

Eg. (7.11) by

_ cRBLBR

H

and recognizing the similarity transform

B _ BR| B RB
Ygrp = € [QRB X]C

Eq. (7.11 becomes

d 2R - CRB[LL)BB X] 2B + CRB d 2B

dt, ~R dtg
RB B
- C [upy X1 v
- cRB di VP (7.12)
B
but by Eq. (7.3),
di ER _ CRBEB
R
and so
dd B = R (7.13)
tr — =

By comparing Egs. (7.9) and (7.13), it is seen that the deriva-
tives of both sides of Eg. (7.6) are identical. If the initial
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1le

conditions

B - .
vo(t) =0 (7.14)

are arbitrarily assigned, then Eq. (7.6) is established since
both sides are equal at t = to.

By the laws of vector addition

() = v (e) + vl (e (7.15)

where n is the origin of the Navigation Frame in which the
navigation equations are solved. Since

N = NRR
—rb —rb

Eq. (7.15) can be written as

NR_R

N N
an(t) - an(t) +C Yy

or using Egs. (7.7) and (7.8), this becomes

t
e = o (e) + CNR(t)f cR(myar - MB(r) vP(x)
t

o
(7.16)

From Egs. (7.14) and (7.16), it can be seen that

znr(to) - an(to)

If the Navigation Frame is an inertial frame, then

v (8) = v ()

nr ' o
and
t t t
CNR(t)/ (_;R(T)d't =/ CNR(tO) ER(T)dT =f C_-':N(T)d'l'
to to to



These relationships are substituted into Eq. (7.16) to get

t

V(e = W (k) +/ c"(myar - MBe) VBt (7.17)

tO

7.2 System Mechanization

‘The system functional diagram is shown in Figure 7.1. The
computer must solve either Eq. (7.16) or (7.17) given Ag? as
generated by the accelerometers and the analog Coriolis correc-
tion circuitry. The equation solved by this circuitry is found

by combining Egs. (7.3) and (7.4) to get

B

oY
<

.B _
y_ =

_ B _ B B
= f Wpp X ¥ (7.18)

Qi

g

The pulse output from the accelerometer triad is

t +nAT B

B © v
Av (to+nAT) = —— dt
to+(n—l)AT

n=1, 2, 3,...

The Ay?'s are accumulated in the digital computer to obtain
23(t0+nAT). As in the case of the hybrid coordinate trans-
formation computation, a filter is used to extract a continuous
triad of signals representing E? from accelerometer observ-
ables. An analog Coriolis correction, Wpp ¥ Y 1s generated

and fed back through the accelerometers so that they then
integrate and quantize Q? instead of g? as they normally

would. A reset v signal is generated by the digital computer

whenever |v| exceeds a predetermined value. Since the Coriolis

correction Wpp X 2? is generated using analog circuitry, it
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must not be permitted to become significant compared with

B . e .
fMAX' the maximum specific force magnitude that can be mea-

sured by the accelerometers. Thus, the criterion is imposed

that when

...B B
|£U_RBX\)_'. l Z 0.1 fMAX

that YP will be reset to zero. So 2? is reset when

B
Dl —. (7.19)
!0'19RBIMAX

Since the frequency at which CRB is updated 1s predicated
upon the uses which CRB serves, an estimate of the frequency
at which 2? is reset is required. This is because 2? is trans-
formed by Eq. (7.7) just prior to being reset. The maximum

rate of resetting 2? or the minimum time t between resets

R,min
occurs when

Then at the time of reset,

V] = £

maxtR,min

This is used in Eqg. (7.19) and the resulting equation is solved

for tR,min to get

1

tlein B

| 0lupg | MAX

. B :
or the maximum frequency f, MAX of resetting v~ to zero 1is
14
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£ = IngRB|

R,MAX MAX

It was shown in Chapter 5 that there is significant

analog computer error growth with time and with increasing

magnitude of the integrated vector, in this case vB. For

this reason, the frequency of resetting fR would always be

taken to be

fr = fr,Max

= |0lw

—RBIMAX (7.20)

In the experimental system | 2 rad/sec. If the

vppluax =
specific force transformation were mechanized for this sys-

tem, it would require a 2? resetting frequency of

fR = 20 resets/sec

7.3 Two Sample Problems

Example 1

For this example assume a vehicle in an environment with

no gravitation and a specific force, angular velocity profile

given by
£B(t) = -a 1B
= =
t < t<t_ + T
B [0]
wpp(t) = 0
and
£2(t) = 0
t, + T < £t + 2T
B 2m .B
wpp (B) T iy
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From physical considerations, it is apparent that‘gﬁb is as

R
Yrb

The navigation system would solve the problem by inte-

shown in Figure 7.2a and that is as shown in Figure 7.2b.

grating Egq. (7.18) and solving Egq. (7.17). Assuming gﬁb(to)=g,
Egq. (7.17) becomes

Ao = B ) = R P (7.21)

On the time interval

tO < tStO + T (7.22)
then
WB(t) = -at 10 (7.23)
and
cRB(ey =1 (7.24)
B
iy
8='2-T7L1',1>10+T
UB (1), t.<t<t +T
_rb ' 0 -0
B
1y
to g 1 /10+T
B
- >
y’rb(t),t to+T
. B
Figure 7.2(a) Vb
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r—> — >

R R R R
YV (t)=atl U =
tg <t < 15+T to+T<t<to+2T
R

Figure 7.2(b)

]<
=
o

since

QRB'_‘_O_

when the inequality (7.22) is satisfied. So during this time
interval, the combination of Egs. (7.21), (7.23), and (7.24)
give

VR = at lR
=

On the time interval

tO+T<t5tO+2T (7.25)

Eg. (7.18) becomes

B _ _2m B B —
Ve = ~F Vy vx(to+T) = -aT
vB = 2T vB B(t +T) = 0

y T 'x vy o

B _ B -

v, = 0 vz(tO+T) =0

The solution to this equation set is

B _ 27 _
vx(t) = -aT cos =% (t t,)
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(t)

aT sin 2L (t-t,)

v T

i
<o

v_(t)

NW N

and the direction cosine matrix is

2T .27 i
cos % (t—to) -sin =7 (t-t,) 0
RB L 21 o
C = sln '—T (t tO) cos T (t tO) 0
i 0 0 1
Therefore
Vie) = -cRPe) vB (e
= aT lR
=X

when the inequality (7.25) is satisfied. This is in agreement

with the physically deduced result shown in Figure 7.2b.
Example 2

Although it is not a practical situation, imagine a strap-
down inertial sensing unit whose center of mass is stationary
on the (ncn—rotating) Farth. Assume that at time t = 0, the
z accelerometer's sensitive axis is down and that the inertial
sensing unit is rotating at w rad/sec about its y-axis. Under
these conditions Eg. (7.3) shows that

-G sin wt

f- = 0 (7.26)
G cos wt

where G is the magnitude of the gravitational force. Also
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wpp = | w (7.27)

/ " dr = et1} (7.28)

The inertial sensing unit is stationary, so
Vep(t) =0

With the use of Eq. (7.28) Eqg. (7.17) becomes

5 )
ct1l = c®Pr) vP(x) (7.29)
Since
cos wt 0 sin wt
BBy = 0 1 0
-~sin wt 0 cos wt

it is possible to solve Eg. (7.29) for gB(t).
B
vo(8) = (o) el
-Gt sin wt

0 (7.30)
Gt cos wt

\iB (t)

The analog mechanization of Figure 7.1 must yield Eg. (7.30)
as a solution of Eg. (7.18). If it can be shown that the
derivative of Eg. (7.30) is always equal to the form Eq. (7.18)
takes for this problem then the solution to Eg. (7.18) is

indeed Eq. (7.30) if it can be shown also, that for one



instant of time, the solution to Eq. (7.18) is equal to

Eq. (7.30). Note from Eq. (7.30) that

vo(0) = 0

and from Eg. (7.18)

0
S Pwar=o

0

Thus.léédt and YF are equal for t = 0. Using Egs. (7.26) and

(7.27) in Eg. (7.18) gives

oB - B _ B 4 B
~ = ~RB v
- - - - - -
-G sin wt 0 vB
X
= - B
0 wlx vy
G cos wt 0 vg
= 4 L A
Or using Eg. (7.30), this becomes
-G sin wt] 0 -Gt sin wt
2? = 0 -lw|x 0
LG cos wt 0 Gt cos wt
(-G sin wt - wGt cos wt
WP = 0
| G cos wt - wGt sin wt (7.31)

This is Eq. (7.18) evaluated using the given ;P and QEB and a
guess, Egq. (7.30), for g?. Taking the derivative of Eq. (7.30)
gives

-G sin wt - wGt cos wt
= 0

G cos wt - wGt sin wt
125




Since this is identical to Eq. (7.31), it is concluded that
the integration of Eg. (7.18) by the system mechanization
shown in Figure 7.1 must give the same result, viz., Eq.(7.30),

as was deduced from physical considerations.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 General Discussion

In this thesis, a new concept for accomplishing the strap-
down coordinate transformation computation was developed and
tested. A vector differential equation for QRB' the argument
of the coordinate transformation CRB, is integrated by the
gyros. Then the coordinate transformation CRB(QRB) is evaluated
as a matrix function of the argument ¢pp.

Analog computing elements generate a correction éRB for
the noncommutativity effect. The time rate of change of ¢pn
is

$rg = Yz t IpB (5.9)

Thus it is convenient to apply the analog signal gRB to the

gyro torgue summing member and let the gyros themselves integrate
and quantize iRB . ¢gp is maintained in the digital computer by
counting the incremental outputs from the gyros. The only
digital computation is the evaluation cR® from drp*

In the canventional strapdown techniques, the matrix dif-

ferential equation

éRB - CRB[

x] (8.1)

“rB
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is integrated numerically in the digital computer. Noncom-
mutativity precludes a closed form solution to Eg. (8.1)
except in the certain special cases (ref. 23). Consequently,
the algorithm for integrating Eq. (8.1) must either approxi-
mate Yrp from the accumulated gyro pulses by a vector QRB
that admits a closed form solution or it must employ some
other approximation technique for solving Eq. (8.1).

The performance of three conventional algorithms was
compared with that of the hybrid algorithm on the basis of
accuracy, complexity and bandwidth (Chapter 6). The hybrid
method was shown to offer a significant saving in digital
computer loading. The point of diminishing returns for im-
proving the accuracy of the coordinate transformation com-
putation is generally taken to occur when the errors con-
tributed by the computation process are smaller than the
errors contributed by the gyros themselves. Computation
errors and instrument errors are both frequency dependent.
Conventional computation and hybrid computation alike serve
well at low frequencies and each type can be made to do so
at high frequencies. The state-~of-the-art in analog com-
puting elements is such that hybrid computational bandwidth
can easily be made to exceed gyra bandwidth by an order of
magnitude. In Chapter 6, it was seen that the bandwidth
of efficient conventional algorithms for a given computational

*
load was of the order of 10 rad/sec. The bandwidth of

*
Rectangular integration rules mechanized by DDA computation

have much higher bandwidths, but the computational accuracy
is comparatively poor as seen in Chapter 6. Also, a special
purpose computer is required in addition to the navigation
computer.
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currently available strapdown gyros and therefore of the
hybrid computation process for the same load is of the order
of 1000 rad/sec. The bandwidth of the conventional algorithm
is directly proportional to the computational load imposed

by the algorithm. To double the computational bandwidth,

the computational load must be doubled.

8.2 Gyro Quantization Level

A major consideration in the design of a pulse rebalanced
strapdown gyro is output pulse quantization level. From a
gyro designer's point of view, long sampling intervals are more
attractive than short sampling intervals since the gyro opera-
ting frequencies can be made lower. This allows one cause of
scale factor error (due to the uncertainty in the switching
times of the torque pulses) to be more easily controlled. From
the point of view of gyro dynamic errors, the gyro error model
contains terms which are a function of float angle. These error
terms increase as quantization level and hence the rms float
angle increases. Conventional algorithms require fine quantiza-
tion in order to achieve accuracy in both the coordinate trans-
formation computation and the transformation of specific force.
It can be seen from Section 5.3.3 that when using hybrid com-
putation, quantization effects do not produce errors in the
coordinate transformation with significant growth rate. Still
the resolution of the coordinate transformation is limited by
the quantization level. That is, the hybrid coordinate trans-
formation is not degraded significantly in accuracy by coarse
quantization, but its precision is a direct function of gquantiza-

tion level. 129



8.3 Computer Round-Off Error

The round-off error in the direction cosine matrix com-
putation increases as the frequency of the update in conven-
tional computation. In hybrid computation, it is not the fre-
quency of the update that determines the growth of the round-
off error, but the frequency with which QRB is reset to zero.
This is because the round-off error becomes permanent only
when the initial condition matrix is multiplied by the computed
matrix to form a new initial condition matrix (Chapter 6).
This occurs at each update in conventional computation, but
only when QRB is reset in the hybrid technigque.

The tendency of the computed coordinate transformation
to become non-orthogonal is a problem that, like the round-
off problem, grows more severe as the frequency of generating
a new initial condition matrix increases. As in the case of
round-off error, this tendency is much less pronounced in the

hybrid computation.

8.4 TInertial Sensor Design Considerations

In the hybrid computation scheme, a continuous voltage
representing the primary input must be generated from signals
which can be measured at the sensor. That is, the sensor
must be inherently, an analog device. (The Geiger counter,
for example, is an inherently digital measurement device.)
Many inertial sensors have a modulated output. The signal
generator signal from the DDG 334A gyro used in the experi-
ment is an amplitude modulated signal. The output signal

from a vibrating string accelerometer is a frequency
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modulated signal. Modulation itself does not effect the
analog measurement as long as the modulation frequency is
well above the sensor's first roll-off frequency, as is
usually the case.

It is not necessary to be able to sum an externally
generated correction signal with the input in the sensor it-
self, but if the sensor is pulse rebalanced, it is very con-
venient to do so. When the physical input signal and the
externally generated correction signal are integrated and
quantized separately, then there is a separate quantization
error for each signal and this is to be avoided when con-

venient.

8.5 Recommendations

8.5.1 Filter Design

One of the most important links in the analog computation
chain is the w-Filter. In Section 5.4, it was seen that the
magnitude of the noncommutativity correction G relative to the

magnitude of w is

Q
li¢
N
e

For ¢max = 0.1 rad and ¢avg = 0.05 rad,

Oan = 0.025 w

Care must therefore be taken to insure that the analog measure-
ment of w is at least 1/40 as accurate as the basic measure-
ment made by the gyro. The quality of the w-Filter used in the

experiment was marginal. The linearity, the quality of the
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demodulation, and the quality of the torque signal cancella-
tion could all be improved. Additional effort in w-Filter
design would be rewarding.

The frequency at which the response of the gyro filter
ensemble begins to roll off is l/Tg where Tg is the gyro float
time constant. This frequency determined the theoretical band-
width of the hybrid computation. Perhaps lead-lag compensa-
tion could be introduced at the filter to extend the gyro-
filter ensemble bandwidth, thus extending the dynamic range

of the hybrid computation.

8.5.2 Cross Product Term Generation

The cross product term generation involves the subtrac-

tion of two relatively large numbers to obtain a relatively

small one. In Section 5.4, it was seen that, as an apprqxima—
tion

G =5 oxu
Suppose ¢xw = 0 but that ¢ and w both have rather large magni-
tudes. Now

65 = 3 $5010m1 3 0519541 (8.2)

Fach term on the right hand side is rather large for at
least one component of ¢, but since 6i = 0, the two terms on
the right hand side of Eg. (8.2) must be equal. Perhaps a
better mechanization of the cross product term could be found

that would not have this undesirable feature in generating



8.5.3 The Treatment of Specific Force

Chapter 7 describes the hybrid computation scheme for
integrating and transforming the strapdown specific force mea-
surement. Only a theoretical development is presented. An
error analysis and an experimental verification of the method
are recommended as the next steps in the process of demonstra-

ting its operational feasibility.

8.5.4 Analog Computation Scaling

It was seen in Chapter 6, that there is a definite part
of the input angular motion dynamic range in which the hybrid
computation is superior to all digital computation, and there
is a region in which it is not.

For any assumed mission and vehicle, the analog computer
scaling could be chosen to most effectively place that portion
of the dynamic range where the hybrid computation is the best.
Perhaps, a systematic procedure for scaling the analog computa-

tion could be devised.

8.5.5 Analog Inertial Sensor Compensation

An error analysis of an analog compensation scheme for
gyro and accelerometer dynamic errors and a performance com-
parison between analog and digital dynamic errors compensation
schemes might reveal that analog compensation is a significantly
superior method of gyro and accelerometer compensation. It is

recommended that such a study be performed.
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Appendix A

LANING'S THEORY

In the late 1940's the M.I.T. Instrumentation Laboratory
was engaged in pioneering work in the area of fire-control.
The paper, "The Vector Analysis of Finite Rotations and
Angles" by J. Halcombe Laning, Jr. (ref. 12) was a consequence
of his participation in that work. Because of its unique
approach, it offers fresh insight into the dominant mathema-
tical problem of strapdown inertial navigation. 1In this
paper, Laning noted that, "The geometric problems of principal
interest in the fire-control field are characterized more by
complexity than by a high intrinsic level of mathematical diffi-
culty ... The chief geometric difficulties are those which
involve relating angles and space rotations, together with
their time rates of change, to such kinematic quantities as
angular velocities. Since angles and rotations possess direc-
tion and magnitude, and are not dependent for their definition
upon a particular system of coordinates, a vector representa-
tion of these quantities seems natural. The principal obstacle
in the path of such a representation is the fact that the
natural laws of combination are not those of ordinary vector

addition."

134



The main features of Laning's report will be presented
here although this appendix will by no means be a complete
exposition of that report. That which is presented will suit
the present purpose. In order to develop an algebra for rota-
tion vectors, it is useful to develop first an algebra in
which the angles defined by two intersecting lines are con-
sidered as vectors. The mathematical relations which can be
developed, then serve as the foundation upon which the algebra
of rotation vectors can be built and understood.

Let A denote the vector representing the angle between

—BC

the directed line segments B and C

Bpe = I X 1o a(Bpc) (A.1)
where
B - B,
c - c1
g(A,.) = (A.2)

BC

Figure A.1.- Geometry at angle vector 135



o
>

—CD

fiBD

Figure A.2.- The angle sum - coincident sides
The vector éBC (Figure A.l) has a magnitude equal to the

radian measure of the angle from B to C and a direction per-
pendicular to the plane of B and C in a sense chosen by the
right-hand rule. Without the factor q(ABC), the magnitude of

would be equal to sin A and not to AB

Bpc BC c

The angle vector is defined in terms of the vectors which
form its sides. Thus when two angle vectors are added, the
addition operation can be developed in terms of component
sides of the two angle vectors. Before defining angle vector
addition, note that there are many derived quantities defined
as combinations of vectors and scalars, e.g., the product ma
of a scalar m and a vector a; the vector product a x b, the

difference a - b, etc. involving the vectors a and b. It is

important to note "that these definitions are made purely as

a matter of convenience, because these combinations occur so
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often in applications, and are in no way intrinsic to the

concept of a vector."

A.l1 The Angle Sum of Two Vectors

A definition will now be given for the "angle sum" opera-
tion. First consider the case where the terminal side of one
angle vector is the initial side of the other as shown in Fig-
ure A.2. Let éBC and éCD be the angle vectors defined by the

intersecting vectors B and C and the intersecting vectors C

and D respectively. The angle vector A whose initial side

=BD’

is B and whose terminal side is D, is defined to be

Bpp = 2pc (*) 2qp (A.3)

where the symbol (+) denotes the angle sum operation. Employ-

ing Eg. (A.1l) gives

Bpp = 1p X 1pd(Agp) (A.4)

To express this in terms of A and A the vector identity

—BC —CD’

1, = 1.(1g * 1) + 1. x (lp x 1) (A.5)
is needed. Since
lB lC = COS ABC
and
Bac

Eg. (A.5) becomes
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lB = lC cos ABC + lC X q(ABc) (A.6)
Similarly, it is found that
A
_ _ CD
lD lC cos ACD lC X ﬁTKEET (A.7)

The combination of Egs. (A.6) and (A.7) with Egq. (A.5) yields

A cos A
—BD BC
= = 1, x 1 =- ——21 x (1.xA_,)
q(ABD) =B D q(ACD) =C ~C7=CD
N cos ACD 1xa ) % 1. - (lcxéBC) X‘(lCXéCD)
qa(Ag.) "=CT=BC =C q(ABC)q(ACD)
(A.8)

The vector triple products can be reduced by means of Eqg.(A.5)

to get
“lo ¥ (LeXBop) = - Lo(lg + Agp) + Aoy = Agy (A.9)
(1cxBpe) % Lo = Bpe = Lo(le * Ape) = 2ye (A.10)

Note from Figure A.2 that EC is perpendicular to both éBC and

éCD' The vector quadruple product can be treated as follows
- (xhe) % (Lxhe)
= 1o (IeXBpoAop) F App (LeXBpe o)
= Lo (Lo Bpc*Acp) (A.11)

The last step follows from the identities

[
%

b-c=a-bxc

|
»

b-azo
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Now it is true that

“lc(le * Ape X Agp) = “Ape X A

—BC —CD
since the vector éBC X éCD has the same direction as lC in as
much as éBC and éCD both lie in a plane perpendicular to lc.
Hence
~(Lc¥Ape) x (IexBeop) = ~Bpo X 2o (A.12)

Now substitute Egs. (A.9), (A.10) and (A.12) into Eg. (A.8)

to get
éBD = éBC cos A + ~§92—— cos A - éBC X éCD
alAgn) — qa(Bgl) CD  q(ALp) BC  q(@g.) 7 qlay)
(A.13)
But according to Eqg. (A.3)
App = Bpc (M) 2gp
so with this substitution, Eg. (A.1l3) becomes
A_ . (+)A
—BC
€D By Acp - By Aep
= B cos ACD + 575%_7 cos ABC - TB) X LGN
q|Agc (H) AL | BC CD BC cD
(A.14)

Eg. (A.1l4) is taken to be the basic algebraic definition of
the angle sum (+) operation.

Now consider the case where the terminal side of the first
angle vector is not coincident with the initial side of the

second angle vector. This is shown in Figure A.3. Note that

any simultaneous rotation of both vectors P and Q through the
same angle in the plane of P and Q leaves the vector éPQ un-
changed. $So if B and C are
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Figure A.3.- The angle sum - non-coincident sides

rotated together until C' coincides with the line of intersec-
tion of the B-C plane with the D-E plane and if D and E are
rotated together until D' coincides with this same line, the
vectors A and A g are unchanged, but the terminal side C'

—BC D
of éBC coincides with the initial side D' of éDE and Eq. (A.14)
applies.
Clearly Eqg. (A.1l4) which defines the angle sum operation,
does not rely on the initial side-terminal side visualization

of a vector, but it may be used to define the angle sum opera-

tion for any two dimensionless vectors. Therefore

A(+)B A B A B
q‘A(+)B| = T®) cos B + &TET cos A - T X @)
(A.15)
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for any two dimensionless vectors A and B. Let

B = (A.16)

then Eq. (A.15) may be written as
~) ~ ~J ~
A(+)B=A cos B+ B cos A ~-AXxXB (A.17)

Eq. (A.15) taken by itself is not entirely free of
ambiguity since in this equation and in Egs. (A.14) and (A.17),
the magnitude of the vector A(+)B has been replaced by the

. In cases of

sine of the magnitude by division by qLé(+)E

doubt, the formula
cos |A(+)B| = cos A cos B - X - B (A.18)

may be used to resolve the ambiguity. Eg. (A.18) is derived

from Figure A.2 from which it can be seen that

=1, -1

cos [Apc ()Aqpl = 1p « L

When Egs. (A.6) and (A.7) are used, this becomes

cos |§BC(+)§CDI = cos Ay, cos A,y —(;CXABC) . (leACD)
— A X » iy
= COS Apn COS Anp = Bpo " Agp

Eg. (A.18) is this result in terms of the two dimensionless

vectors A and B.

A.2 Algebraic Properties of the Angle Sum Operation

Commutativity

The presence of the cross prodﬁct term, which is non-
commutative with respect to its constituent vectors, makes
it obvious that the angle sum operation is non-commutative,

i.e., | 141



A(+H)B # B(+)A

Associativity

To show that
[A(+)B] (+) C = A(+)[B(+)C] (A.19)
Eg. (A.17) is used on the left hand side of Eg. (A.19) to get
TZIIYET\717/E’= g?:Tﬁ/cos c + C cos |a(+)B| - ﬁ?:Té/x &
Upon using Egs. (A.17) and Egq. (A.18), this becomes

[A(+)B]_(+) C = X cos Bcos C+ B cos A cos C + C cos A cos B

n ~ ~ n no ~
- Ax Ccos B~-~BxCcos A-—AZXBcos C
+ {&xB) x & - & &5} (A.20)

Applying Eg. (A.17) to the right hand side of Eg. (A.1l9) gives

A(+)[B(#)C]l = & cos |B(+)C| + B(+)C cos A - A x B(+)C
= K cos B cos C + ﬁ cos A cos C + Glcos A cos B
~ ~ ~ ~ ~J ~
A X Bcos C~-~AxXxCcos B~-BxCcos A
+ {Ex BxC)-E@B - ©) (A.21)

Eg. (A.21) is identical, term by term, with Eg. (A.20) except
for the final bracketed quantity whose equality can be estab-

lished by noting that

ExB) x C=8@ -8 -2A® - )
and
Xx Bx¢) =88R . & -C@A - B)

Thus it is proved that

/_\_//_\_/
[A(+)B] (+)C = A(+)[B(+)C]
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However, this equality would hold even if |[A(+)BI (+) Cl,
say, were in the first quadrant and |é(+)[§(+)g]| were in the
second. To resolve this ambiguity, again resort to Eq. (A.18)

to prove that
cos|[A(+)B] (+) C| = cos |A(+)[B(+)Cl]
Making this substitution gives

T~ A
cos |A(+)B| cos C - A(+)B * C = cos A cos |B(+)C|

A —~—

- A « B(+)C

and again gives
~ L4 s ~ nt ~t
cos A cos Bcos C -A - BcosC~-A - CcosB-B - C cos A

~ nt ~t

+ A x B C

= cos A cos B cos C - cos A(§ ’ ﬁ)
~> ~ ~) L4 ~ e "~

-A+*BcosC-A-+-CcosB+A -+ BxC

which is an identity since
ld al Rl L ~d ~
AxB-C=A¢+BxC.
Thus Eg. (A.19) and the associativity of the angle sum opera-

tion are established.

Further Algebraic Properties

For any vector A, it is known that there exists a vector

B = (-A) such that A + B = 0. To show that
A(+) (-A) =0 (A.22)
use Eg. (3.15 to get

A(+) (-3) A (-A) A (-a)

T cos (-A) + AN cos A 16y X =R

gl|A+) (-2) | )

Since
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cos(-A) = cos A

Ax (-A) = -AxA=0
this reduced to
A(+) (-a) A A
alA(+) (-a) | T @)y COS A - g@my Cos A =20

In this equation, there is no ambiguity, so Eqg. (A.22) is estab-
lished.
Eq. (A.15) can be used to show that if A and B are parallel

vectors, then

A(+) B=2A + B (A.23)

To show this, write

A(WB 2 B A B
——————— = — 8in A cos B + — sin B cos A - X
B A B
Since A and B are parallel
AxB=0
so
A(+)B
: = ;A(sin A cos B + sin B cos A) = lA sin (A+B)
a|A(+)B]
A+B
q|A+B|

establishing Eq. (A.23).

Finally, to show that
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-[A(+)B] = (-B) (+) (-A) (A.24)
let

x = —[A(+)B] (A.25)
Then by Eq. (A.22)

A(+) B(+) x =0

(-B) (+) A(+) B(+) x = -A

0(+) B=B(+) 0 =8B (A.26)
can be readily verified using Eq. (A.15). Therefore
B(+) x = -A

Further manipulations give

(-B) (+) B(H)x = (-B) (+) (-A)
0(+)x = (=B) (+) (-2)
x = (=B) (+) (-B)

or in view of Eq. (A.24)

~[A(+)B] = (-B) (+) (-A)

which was to be proved.

A.3 The Rotation Sum of Two Vectors

What rotation vector C produces the same net effect as
taking rotation A first and then rotation B? In other words,

an expression is sought for 145



C=a#B (A.27)

where the symbol # denotes the rotation sum operation. Eqg.
(A.27) is to be read as "C equals A rotation summed with B".
Consider the special case of a 180° rotation about one
axis followed by a second rotation of 180° about a different
and intersecting axis. Since the orientation of a rigid body
is completely determined by the orientations of any two non-
parallel lines within the body, it is sufficient to examine
the motion of two lines only. A natural choice of these two
lines is the set of axes about which the two 180° rotations
are taken. 1In Figure A.4, these lines are shown as M and N.
AMN is the angle from M to N. First rotate the body through
180° about the M axis. The lines M and N are thus rotated
into orientations denoted by M' and N'. Next assume a rota-
tion of the body through 180° about the fixed N axis. M' and
N' are transformed into M" and N" by this rotation. The com-
bined effect of the two rotations is to transform M and N into

M" and N" respectively. Note that

It is evident that this transformation is equivalent to a
single rotation of magnitude ZAMN about an axis in the direc-
tion of M x N. This rotation may be represented by the vector
2§MN’ since the orientation of the body is completely defined
by the orientation of the lines M and N.

In the general case, the two successive rotations are of

arbitrary magnitude, but this same technique may be applied.
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2Aun

Figure A.5.- The rotation sum - general case
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Let A and B be two vectors representing arbitrary rotations
as shown in Figure A.5. Draw line L perpendicular to the
vectors A and B as indicated in the figure.

There exists a unique line P which is carried into the
orientation L by rotation A. Likewise, there exists a unique
line Q into which L is carried by rotation B. A plane is con-
structed containing P and L. The line M lies in the plane and

bisects the angle A

bL* Similarly, the line N lies in the plane

of L and Q and bisects the angle ALQ' Thus

A=Ay = 2R, (A.28)

B =2, = 2Ay (A.29)

By the preceding discussion, the rotation A is equivalent to
two successive 180° rotations about M and L. Similarly, B

is equivalent to two successive rotations about L and N. If
these four rotations are performed consecutively, the result
is equivalent to the combined effect of performing the rota-
tions A and B in succession. The two intermediate rotations
about L cancel, so the net result is equivalent to the first
rotation of 180° about M followed by another rotation of 180°
about N. But these two rotations are equivalent to the single

rotation represented by 2§MN. So far it has been shown that

A ¥ B = 28 (a.30)

From Figure A.5, it is seen that

Ayw = Bur, (P Ary

but from Egs. (A.28) and (A.29)
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Nf [

Byp, =

N} |

-—A—LN

Using these last three equations in Eq. (3.30) gives

A B

This equation is the definition of the rotation sum operation
in terms of the angle sum operation. From Eg. (A.15) it can

be seen that the factor 2 can not be cancelled in Eg. (A.31).

A.4 Algebraic Properties of the Rotation Sum Operation

Since the angle sum operation is non-commutative, and
since the rotation sum operation is defined in terms of the
angle sum operation by Eq. (A.31), it follows that the rota-
tion sum operation is also non-commutative.

The associativity of the rotation sum is readily estab-

lished. It is desired to show that
[A#B] # C = A # [B#C] (A.32)

Applying Eq. (A.31l) twice to the left hand side of Eq. (A.32)

G o 3)
25(‘*‘)7 # C

G o 3) e 2]
2 > (+) 5 (+) 5 ‘ (A.33)

Similarly the right hand side of Eqg. (A.32) becomes

[é (E 9)]
é# [_]_3_#9]‘—:25("')‘2‘(“‘)5 149

" gives

[

[A#B] # C




but by the associativity of the angle sum, this is equivalent
to Eq. (A.33) and so the associativity of the rotation sum is
proved.

The following algebraic properties of the rotation sum
operation follow from Egs. (A.31) and (A.32) and the similar
properties of the angle sum operation.

There exists a rotation vector -A such that

A# (-A) =0 (A.34)
If A and B are parallel, then

A#B=RA) B=A+B (2.35)
Also,

~[A#B] = (-B) # (-A) (A.36)

A.5 The Rotation Vector Differential Equation

The differential equation for the rotation vector will be
derived next. Let ¢(t) be the value of a rotation vector at
time t. Let g(t+At) be the value of this vector at time t+At.
Define

A pyp  Lo(t+ar) - ¢(8)]
dE - At-0 Rt

(A.37)

as the rate of change of the rotation vector ¢(t) with respect

to time. This leads to the expression
¢ (ttdt) = ¢(t) + d¢ (A.38)

From the disembodied vector point of view, there are two
ways in which an infinitesimal rotation vector, which will be

symbolized as d#g, may be rotation summed with the rotation

150



vector ¢. It may be rotation summed from the left or from the

right. These operations are

_ 4
dpp (E+dt) = dpdpp # Gpp(t) (A.39)

where the symbol d is that infinitesimal rotation vector

#
LQRB
that must be rotation summed from the left with QRB(t) to yield

QRB(t+dt), and

#
dpp (ttdt) = QRB(t) # dRQRB (A.40)
where dggRB is the right hand differential rotation vector.

By the definition of angular velocity, the incremental
change in the rotation vector QRB as seen by an observer, fixed

with respect to the Reference Frame, is wgB dt. Thus

bpp (E+AE) = ¢R (£) # wry dt (A.41)

A comparison of Egs. (A.40) and (A.41) shows that

(dggRB)R = uX, dt (A.42)

In the next section, it will be shown that for an arbitrary

vector v,

R _ B
VU= (=bpg) # Y # dpp

and therefore from Eg. (A.34),

VP o= b VN (dpp) (n.43)

Eg. (A.41) can now be manipulated as follows:
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R _
Opp (EHAE) = o1 () # R at & [-oF ()] # ¢ ()
= .‘ﬁgB dat # $§B<t) (A.44)
Now it is true that
R _ B
dpg (+AE) = 6O (t+dt)
R _ B
$pp (B) = opp(t)

where the B' frame is the B frame at time t + dt, so Eq. (A.44)

can be written

B' _ B B
dpp (E4AE) = wpp At # oo (£) (A.45)

Comparison of Egs. (A.39) and (A.45) shows that

# B _ B
(drogg) = wpp dt

since Egq. (A.39) defines that variable QEB(t+dt) that results
# . . .
when the vectors dLgRB and QRB(t) are coordinatized in the
Body Frame. By combining Eg. (A.38) with Eg. (A.45), there re-

sults

B _ B B
wpg At # dpp = ¢pp + (ddpp)

Now, rotation sum ~9pp ON the right on both sides (and suppress
the superscript B under the understanding that it is implied

unless otherwise stated) to get

w dt =

“rB ($pptdd;

re) * (“gg)

It is convenient to introduce the scale change
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bpg = 2 (. 46)

This gives

wh, dt = [2(y+dy)] # (-29)

Apply Eq. (A.31) to get
1
S wop At = (P+ay) (+) (-3)

and expand using Eq. (A.15).

1 B by ¥
7 9)_RB dt = m CcOs 11) - W CcOs Ii}‘f‘d?l
y+dy v
- qu+dyl X S0 (A.47)

If terms of order ldw|2 are neglected, the following relation-

ships can be obtained.

ragl = Cay - a1V - g S
v - day
cos |yt+dy| = cos ¥ - =TT
and
1 sin(p+ %7%f§9 1 y - odp )
q|y+ay| ) o+ v - dy =gyt 2 (cos v - W))

When these last two expressions are inserted into Eg. (A.47),
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it is found, after a slight manipulation, that

7 tpp Ot =S W 3 (l -2t} - apy

or, on dividing each side by dt,

ay ay
l B _ cos y - 1 _ cos ¥y =
2% T q) FE T2 (l o_['(wT)(E ' dt)i
1 4 (A.48)
- p Q- .
) 9t
Two intermediate results can be easily derived.
¢
cos ‘%E 1
(chB) T qlogy) (2.49)
A
and
2(1~ cos ¢_.)
l¢ - e (A.50)
*(22) b

Using Egs. (A.46), (A.49), and (A.50) in Eq. (A.48) gives

d¢ d¢
1 2rB 1 1 °rB\
e T g(9.y At T 2 (l T g% )) (QRB ST ) L2
RB 3 RB

L - cos ¢pq dorp

- 7 $rp ¥ It
*rB

and since
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depp 2 degp ( ngB)
($RB " Tt ) ¢rp = %re @t ' frp *\%rB * At

this becomes

1l - cos ¢

_ RB ;
wpp = ®&pp " 7 ¢rp ¥ rp
(bRB
1 ( 1 ) .
TR S [ S, B S C I
¢§B 3 (Bpg) RB RBXERB

(A.51)
where é = d¢/dt. With q(¢RB) as defined in Eq. (A.2), it is
apparent that Eg. (A.51) is exactly the same as Eq. (3.33)
using the definitions of Egs. (3.34) and (3.35).

From Eg. (A.51) it is clear that

W

$rp * “rp = %rp ° %R (A.52)

This fact was used in the derivation of Eg. (3.33).

A.6 The Coordinate Transformation

Eg. (A.43) is the rotation sum form of the coordinate
transformation. To show that, write

VR = CRByP

Using Eg. (3.17) in the above equation and writing the result

in vector format gives

0 1 - cos ¢
R _ .B *rB B RB B
v =y + q(¢RB) A ¢2 QRB x (QRBXY.)
RB
(A.53)
It will be shown that
VR = (bpg) ¥ VD # 0pp (A.54)
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can be manipulated into the same form as Eg. (A.53). To do

this, make the substitutions

2V = ¢pp (A.55)
_ B
W=V (A.56)
in Eg. (A.54) and expand using Eq. (A.31). Then Eg. (A.54)
becomes
SR = () (+) Uy (A.57)

According to Egs. (A.1l6) and (A.20), this can be written as

172 VR U u v

2 = ¥
cos" Y - 2 A0 X T

gy = 5O cos Y

1} Q) v v v H)
+;"<q<w) *gmy) * gy T am <q<w> " q() :

If the bracketed term is manipulated into the form

( (] u ) ] 1] ( ] u )}
3‘ q@ * gy * gy T q@y \q® "~ g

U 9 ¥ 9) ¥
= gy stn v - 2 (q<w) * gor) * T

and if this is used in Eq. (A.58), then

1/2 vy v U v u
(

g/29 ~ qooy T2 o8 Y gmy X gy 2 g X<q<w> * g

(A.59)

Taking the dot product of each side of Eg. (A.59) with itself

yvields

R

1/2 V u

q (U)

—

(A.60)

q(1/2v)



After two applications of Eg. (A.18) to Eq. (A.57), the re-

sult reduces to

cos ysl= cos U (A.61)

DO}

From Egs. (A.60) and (A.61) it is inferred that
I% y3|=|g’ (A.62)
and as a result

q(l/2v) = g(U) (A.63)

Eq. (A.63) allows the cancellation of the factor q(l/2V) on
the left hand side of Eq. (A.59) with the factor gq(U) on the

right hand side. The result is

R _
V' = 2U + 2 cos y D) x 20
¥ ( 1
+ 2 ) X ) x 2U (A.64)

Now make the inverse substitutions for ¢ and U as given by

Egs. (A.55) and (A.56)

¢ 9.
VR = vB 4 cos RB _RB B
I\
1 1 B
t3 ¢rp ¥ (V) (2.65)

2<¢RB>
ENA

Finally, the use of Egs. (A.49) and (A.50) in Eg. (A.65) gives
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¢

R B —RB B
V =V 4+ —/————x Y
=TT T gl T

1 - cos ¢
BB g % (GppxV) (2.66)

*rB B

But Eg. (A.66) is identical to Eg. (A.53) and so Eg. (A.54)

is established.

A.7 Other Forms of the ¢ Equation

Egq. (A.51) may be written as

6 = w + Bgxd - Cox (¢x¢) (A.67)
where
1
B = —5 (1- cos ¢) (A.68)
¢
_ 1 sin ¢
C = ¢—2 (1- 3 ) (A.69)

This equation may be manipulated into several different forms,
two of which are stated in Chapter 3 as Eq. (3.36), rewritten

here for convenience

é = w + % ¢ x w + Adx (oxw) (A.70)
where
1 _ ¢ sin ¢
A= ;—'(1 2(1I- cos ¢)) (2.71)

and as Eg. (3.38) also rewritten here for convenience.

$=w+ QX(% £+2Aé) (A.72)
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Eq. (A.70) may be found by taking the cross product of

¢ into both sides of Eq. (A.67) to get

0 x § = ¢ x wtBpx(9x$) ~ Cox (9x ($x4))

or simplifying slightly

(1-4%C) 9xb = ¢xw + Box (6xd) (A.73)
Now take the cross product of ¢ into both sides of Eq. (A.73).
(l—¢2C) Qx(g;é) = ¢x ($xw) =~ B¢2 gxé_ (A.74)

If Egs. (A.73) and (A.74) are solved simultaneously for gxé

and gx(gxé), the results are

2

ox¢ = l;% s gxw + % ox ($xw) (A.75)
: ¢2 1—¢2c
$x (9x9) = - 5 oxXw + —Hp— ox (9xw) (A.76)

When Egs. (A.75) and (A.76) are substituted into Eq. (A.67)

and the result simplified then Eqg. (A.70) is obtained.

To obtain Eq. (A.72), multiply Eq. (A.70) by C/A and add

the result to Eg. (A.67) to get

(l + %—)9 =(l + %).“l’*’gx(é% 9+Bg'_>_)— Cox (9x (¢+w))
(A.77)

The last term in Eg. (A.77) can be reduced to C¢2(é—9) by

noting from Eq. (A.67) that ¢ - (¢-w) = 0. Using this result

in Eq. (A.77) and rearranging gives
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C 2.\, _ . c :
(l tx -9 C> (p-w) = 9x<—2-x 9+Bg) (A.78)
It can be verified from Egs. (A.68), (A.69) and (A.71) that

C 2, _ B
L+x-9¢7C=52

Use this identity in Egq. (A.78) to get
. v R C .
¢ ~w = QX(E\ £+2A$) (A.79)

which when\w is transferred to the right hand side is identi~-

cal with Eq. (A.72).
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Appendix B

w~Filter Design Details

The w-Filter is designed using operational amplifier RC
active filter networks. The Fairchild Semiconductor uA 709
was the operational amplifier selected. It is described in
Reference 19. The multiplier chosen was the GPS Instrument

Company Mu4o0.

Demodulator

The demodulator consists of a gain of 25 preamplifier
and a gain of 1/5 multiplier. The preamplifier is shown in

Figure B.1l. The multiplier connection is shown in Figure B.Z2.

Signal_Generator‘Section

This section must implement the transfer function

( ; )
4.17\10%
2 . '
s S
- RN Y (S
(1o4> (1o4>

The circuit for accomplishing this was designed by a procedure

Fsg (s) =

given in the Burr-Brown "Handbook of Operational Amplifier
Active RC Networks" (Reference 20, p. 78).
For practical reasons (reasonable resistance and capaci-

tance values) implement the function
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2 4
F (s) = 10

T () ()

()

(B.1)
10%
The resulting circuit is shown in Figure B.2

Torque Generator Section

The data pulses (A6 pulses) from the gyros have the follow-

ing wave shape (GG 334A Gyro):

VOLTS |
+A¢ & [* 3600 ]
ol Al | TIME
VOLTS
a4 5|
0 I 1l 1 rime

TIME UNITS = SECONDS

The wave shape and duration of the +A¢ pulse is the same as
that of the positive torque pulse. The same comment applies
to the -A¢ pulse except that the corresponding torque pulse
is applied in a negative sense. The transfer function to be

implemented by the torque generator section is

The resulting circuit is shown in Figure B,2.
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Figure B.2.- w-filter



Final Section

By comparing Egs. (4.25) and (B.l) it is seen that the
gain of FSg as given in Eq. (B.l) is down by a factor of 5.90
over the gain that is called out in Eq. (4.25). Hence the
final section must restore this gain. That is

e
w

= 5.9
e
sgs

Likewise, the gain of Eq. (B.2) differs from that of Eg. (4.27)

by a factor of 2. Therefore

The circuit diagram for the final section is shown in

Figure B.2.
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APPENDIX C

Numerical Integration of the ¢ Equation

Three experiments are described in this appendix for
verifying the accuracy, stability, and performance of the ¢
equation selected in Chapter 5. The equation chosen for sys-

tem mechanization was

é=9+9><(—§-9+%—§) (5.13)

which is an approximation to

. (C(d>) >
¢ =0+ ¢ wt+ 2A(4) ¢ .
B (¢) (5.3)
where

A(¢) = —%—(1 - ¢ sin ¢ )

¢ 2(1- cos ¢)
B(¢) = —% (1- cos ¢)

q) -

_ 1 _ sin ¢

C(4) ¢2<1 3 )

A 4th order Runge-Kutta (ref. 21) integration scheme was
chosen to perform the numerical integration of Eg. (5.3). The
digital computer program for accomplishing this task is in-

cluded at the end of this appendix. The three experiments are
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described in the following sections.

Experiment 1

The purpose of this experiment is to verify the integra-
tion of Eg. (5.3) yields the correct answer in a familiar situa-
tion. The situation chosen to demonstrate the accuracy of
Eg. (5.3) is taken from Section 3.3. It can be seen in Figure
3.2 that the initial condition

T/2

(L) =f 0 radians
0

rp

and an angular velocity

0
QiB =|n1/2| rad/sec
0

applied for 1 second should yield

1 1
6. (2) = = 27 = [1]= 1.209200]1
<IRB 3 \Fg :

1 1

The results of the run are shown in printout labelled Experi-
ment 1. It is seen that for dt = 0.01 the numerical integra-
tion is accurate to 1 part per million in each component of

$rp (2) -

Experiment 2

Experiment 2 serves two purposes. The first is an accurate
numerical integration of Eg. (5.3) under circumstances that can
be matched by the experimental system. The results of this in-

tegration establish a performance bench mark against which the
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EXPERIMENT 1 ~ PRINTOUT

ApPENDlx‘c‘:; NUMERICAL INTEGRATIEN 8F THE PrHIDBT EQUATION

Exp&nmh\:

T Te§70796327 77 «00U000CO0CT v 000000000 T T oo
. +0000C0C00 14570796327 +000050C00
"7TTe0000C0000 T 2020CC000 T w0000p00CO T T T T e =
+00C0COCC0  +00G0000CC 000000000
TTT+0000C0CC0 T 000000600 T C00050000 T T T T T
oOOOl»
B Dt e et e e
1
T T S N
e e - el - OMEGA™ -
- - 145757263 " 0000000
+00 +C0202C0 15707963
- T sC0C00CO ™ T eC0C0000 T
145566974 +00C0C00
.20 +24£5556 1¢57¢7963
+24¢5877 +CC00000
e o, 1+e5142225 - 20000000 "~
40 +492000C 1e57C7963
. o 24920017 +0CC0000
1v4428228 +C000000
- .60 - «7331583" - 1+57C07263
07351593 +CCC0000
143415279 + 0000000 -
+80 09747285 1457C7963
- - + 9747286 «00C000C -
142091987 ~ «00C0000
i - 1.¢0" 1e+2092C03 145707963
1+2091990 +00C0000
“END-BF -F [LE* _ i o ) i



results of the experimental system can be judged. The condi-

tions are as follows:

g(to) =l0.0
0.0

QRB(t) = O.l/tf rad/sec, tO < t;stf
L0.0

The result of the integration is

0.099917
9(te) =[0.099917| rad
0.005000

This result is used in Table 5.3.
The second purpose is to demonstrate the stability of
Eq. (5.3) when “RB

noise. The noise is taken to be an unbiased Gaussian white

consists of a nominal value plus additive

noise applied independently to each axis. The predicted
error growth rate from passing Gaussian white noise thréugh
an integrator is proportional to the square root of time.

A 1000 second integration run was made using a 0,1
second integration step and the following nominal conditions:

—

0.0} rad
[ 0.0

1

¢ ()

0.0

QRB(t) =|0,005| rad/sec
[ 0.0

0<t<20
20+40i<t<60+403 i=1,3,5...
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and
0.0

(t) = -{0.005|rad/sec
0.0

YRB

204+40i<t<60+401i i=0,2,4...

Every 10 seconds, the result of the nominal integration was
compared with the result of a similar integration in which
each component of angular velocity was independently corrupted
by additive Gaussian noise with a standard deviation of

0.0005 rad/sec. The results of this experiment are plotted

in Figure C.1l. The horizontal axis is the time axis. The

vertical axis is

_ . _ 1/2
o0y | ={1e, ()-¢(0)] - Lo, ()-p(e)1}

where

¢n(t) is the resulting vector when w.

rRp 1S corrupted by

noise
¢ (t) is the uncorrupted vector

Also plotted in Figure C.1 is

_ 2
750 T %50
where o§¢ is the variance parameter of |dg . This is found
from
2 _ 2
06¢ = 3owAt t

where oi is the variance parameter of the noise process W
At is the integration time step, and t is the running time
parameter. The factor 3 arises because ¢ is a three dimensional

vector. In Experiment 2, a time step of 0.1 second was used.
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So

and from the given noise statistics

0.0005 rad/sec

Q
il

Therefore
1/2

2
O (30wAt-t)

¢

= 0.0005 xV0.3 x t+/2

2.7 x 10°4 ¢1/2

It can be seen that the results [§¢(t)| of the sample run do
not differ markedly from the plot of the standard deviation
parameter 06¢(t)‘ This parameter represents the expectation
of the standard deviation over an infinite set of such numeri-

cal integrations.

Experiment 3

This experiment integrates the ¢ equation for the case of
the classical coning motion where
fw cos wt
w(t) =lfw sin wt

0
The theoretically predicted value for ¢Z(t) (ref. 22) is

¢z(t) = % szt

The results of Experiment 3 for the conditions

0 = lO—3 radians

w = 207 rad/sec
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are shown in the printout labelled Experiment 3. The pre-

dicted value of ¢Z(10),is

1

$,(10) = 2 (107

)2 x 2m x 10

= T X 10_4 radians
It is seen that the numerical integrations of the é

equation give results in excellent agreement with the pre-

dicted results.
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APPENDIX € == NUMERICAL INTESRATION 2F THRE PHIDBT EGQGULATION

EXPERIMENT 3

TIME PHT X PHT Y PRI Z

«2000 «GC12CC0 By olelelel¢1alo) «C00C0CO
1.0000 10015020 0050000 +C000314
240000 +3C1CC30 .50GCOCO <00GCE28
3.000 10C1GE0 . 300000 .0C00942
e 0000 001600 000001 .CO01257
540000 «2210030 0000801 \00C1571
642000 - 0510000 . (000001 «COC1845
744000 221000 .5000CC01 +00C21399
242000 L0015850 . 0050001 10002513
242000 <0710000 .CL00CC +0C02827
1C+8C00 ' ' «02150¢0 » 5O0C002 +00C3142

FEND-OF=FILE
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APPENDIX C <= NUMERICAL INTEGRATIEN 3F THE PHIDET EGUATIEN

AFBRTRAN G9sLS
R
23

g e

4

e gyt

63
et S
8: C
s g g o
103 &0
L LRI et
123
g
143 C
s Ll
16 1000
B 4 S

40

&0

TEND

MATN PREGRAM T

TREAD=5

IWRITE=6

CEMMON IREAD, 1WRITE, OT, HOT e e

READ( IREAD, 1000 NEXPER ™
GS Te (4C,%C,80) NEXPER
CALL EXPERL™ ~ T - R
8MEGA IS PIECEWISE CONSTANT -- NB NBISE

EXPER]

Ge TE 207 7T
CALL EXPERZ
EXPER2™™ T 7
c8 T8 2C
CALL EXPER3
EXPER3

GETETRCTTTTTY

FERMAT (I1)

“BMEGA 1S PIECEWISE CENSTANY == ADDITIVE NOISE

SMEGA_PRODUCES CBNING MOTION
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TAPPENDIXTC == NUMERICAL INTEGRATIEN 8F THE PRIDST EGUATIBN

: SUBREBUTINE EXPER1
TUTRE T DIMENSION PHI(3), ANGVEL (3)) ceLp(3) -
] 33 - DIMENSISN 9MEGA(3,4) )
o THYT T CEeMMEN TREAD, IwaTE: DT, HDT
S3 READ(IREAD;IOOQ) (PHI(1), 1=21.3)
e T T READ (IREAD,.1000) (ee8al1,1), 121,3)
73 READ(IREAC,100C) (8MEGA(1,2)s 1:21,3)
©8FTTTTTTTREAD(IREAD, 100C) (BMEGALIL3)s =1,y T
9: READ(IREAD, 1000} (BYESA(L1,4)) 121,3)
T X0 T READ(IREAC, 105C) >} o T
112 READ(IREAD,1050) . vIME
U2 T READUIREAD, 1100 NINT T e e e
13: REAC(IREAD,1100) NPRINT
TTTTRRITTTT T WRITE(IWRITES 1200y T T e
15: WRITECIWRITES,1C2C) (PHI(D), I=1,3)
TTT160 T T T MRITE(IWRITES 10C0) (6MEGALILN1), [=1,3)
17 WRITE(IWRITE21000) (GMEGA(1,2)s 121,3)
CTTTI8YTTT T WRITE(IWRITES 1000y (BMESALILN3), 151,33
19: WRITE(IWRITE, 1000) (OMEGA(I,4), 1=1,3)
20T T WRITE(IWRITES1050) DT o
21: WRITE(IWRITES»1050) TIME
TR T UTUURRITECIWRITES 1100) NINT T T o e s
23: wRITE(lelTE:Ii“O) NPRINT
a0 T DT/ 0 . L
25 LI\JT =0
T268TTTTTT T MINT=Y T ) T -
27: NDT=0
287 7 UTTURUNTIMEEDWDS Y e
29: SUBTIME=040
30: WRITE(IWRITE,»1250) ' I
31 - WRITE(IWRITES1350) FHI(1),BMEGA(L,1) -
“3ey fFITE(InRITEol“OO) RUNTIME,PHI(2),8MEGA(2,1)
33 -'\XTL(I\'RITEI 450) PHI(3),8~EGA(3,1)
34 20 gt A A SR LA
35: G9 Te 100
36 40 J=2
37: G8 Te 100
38: 80 J=3 . A
393 ‘GS Te 100
301 8O Jau - e e e
41; MINT=0
TT42% 77 100 DB 120 1s1,3 0 0 oot e R
433 AVGVEL(X)-ewEaA(X,J)
TO44377 120 COLD(1)=8MEGA(I,y) 0 T T e
45 200 CALL RKSTEP (PHI:ANGVEL:ANGVEL)ANGVEL:CBLD)
TTREYTTTT U URUNTIME=RUNTIMESDY ~7 T T , .
472 'SUBTIME=SUBTIME+DT , .
TTURBYTTT T NDT=ENDT 41 : T T e e e e e
49; IF (NDT=NPRINT) 200,220,220
TS0 TT220 NDTEQ T e
51 WRITE(IWRITE, 1350) PHI(l):AquEL(i)
T823 T - T WRITE(IWRITES 1400) RUNTIME: PHI(2) s ANGVEL(2) - »
53: WRITE(IWRITE,1450) PHI(3);ANGVEL(3)
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“APPENDIX € =% NUMERTCAL INTESRATIEN &F THE PHIDGT EQUATION
S4i IF (SUBTIME-TIME+C,COCCOL) 200,240 240

TUTTREY T 2RO TUINT=UINTHD T T e
561 MINT=MINT+1 i
S NI EIG e -
58; IF(LINT-NINT) 260,28Cs280 .
591 7 260 GE T8 (20.,40260,80) MINT W 7T
.60 280 RETURN ) B o
TTUUB14TI000 FERMAT (3F1299) T -
623 1020 FORMAT (1H1/3F12.9) _— o
" A3 1050 FSRMAT (R L0y T T T Ten oSO m mmmm T e
641 1100 FSRMAT (I4) i

655 1150 FERMAT U14//7) v
667 1200 FERMAT (1H1/1X, 1zHEXPERIVENT 1/7/)

677 1250 FORMAT (18Xs 4HTIVE, 14X, 3WPHI, 16X, BHIMEGA//7/)
68: 1350 FORMAT (26Xs F10,7, 10Xy F1Ce7) .
T 6917 1400 FERMAT (10Ks F6e2, 2(10%, F10s7yy ~~ 777 77— =77 T
70: 1450 FRRMAT (26Xs F10e7s 1Cxs F1Ce7//)

YAtE END T h '
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APPENDIX 'C == NUMERICAL INTEGRATIEN OF THE' PHIDBT EGUATIEN"

1: SUBRSBUTINE EXPER2
23777 77 DIMENSISN PHI3Y, ANg GVEL(3), CeLpt3)y - TTr T T e e

33 DIMENSIEN PHIN(3), ANGVELN(3)s COLON(3)s DELPHI(3)

HE T DIMENSIGN BMEGA(3,4) -
53 C3MM3N IREAC, IWRITE, DT, HDT

ST 8T 7T READ(IREAD,1000) (PHI(IY, I=1,3) " T T e

7 READ(IREAC,1000) (B¥ESA(Is1)s l21,3)

BT READ(IREAC,1000) (BMEGA(I,2)s 151,3) "7 7 o e

REAC(IREZAC,1000) (BMEGA(1,3)s 1=21,3)

T READ(IREAD, 10CC) (BMEGA(IF4Ys I31,3) "= =7 v e e
READ(IRZAL,1050) pT
READ(IREAL, 1050) TIME
READ(IREAC,11C0O) NINT
READ(IRFAD, 1100y “PRINT 7~
READ(IREAD, 1070} SONBISE
»RITE(Xr«ITFJIECJ) ”
KRITE(IWRITES1C2C) (PHI(IYs 1=1,3)

e e s s
+F W~ 0w
os oo ae e oa ve

o

- e

NoO»;

.o ow
‘

18% WRITE(IWRITES100C) " (OMEGA(INL)) [=21,3) " - 7 =
19 “RITE(IWRITES10CO) (stGA(I,E), 1=1,3)

203" 7 WRITE(IWRITES10C0) (EMESA(IN3)) [=1,3y -~ - -
213 WRITECIWRITES10CC) (OMES A(I;#): 1=1,3)

22; SRITECIWRITES1050) DT ’ Tmomrm e

23: WRITE(IWRITES1CHD) TIME

24 ‘ WRITE(IWRITES 1100y NINT ™

25: ARITE(IWRITES1070) SDNIISE

26 ARITE(IWKITZ21150) NPRINT o

27 HDT=2DT/240

28: 1X=32109 oo B e

29: LINT=O

3¢ MINT=1 -
31 NRT=0

32¢ RYSNBISE=0.0" TTOT T s e s e

33: RUNTIME=0.0

341 - SUSTIME=0+0 T - ; ;
35: WRITE(IWRITE,1220)

363 SRITE(IARITES123C) 3ONDISE - T

37: ARITE(IWRITES1250) :

38: WRITE(IWRITES1350) PHIC1)sPHI(1),BMEGA(1,1)
39 WRITE(IWRITES1400) «UNTI”F;PHX(E):PHI(E)IB”EPA(Eii);RMSNEISE

SOy WRITE(IWRITE, 1450y T PHI(3)sPAT(3),9MEGA(3,1)
41 D3 1C 1=1,3

42: 10 PHINCI)=PHIC(T) ~ 7 - m mmmrs o e

43 20 J=1

hby B8 TB 100 -~ e e e FE
45 40 J=2

U460 T GBCTY 1000 T o ol T e --

47: 60 J=3.

487 GB TR 100 - - - T - -
49; 80 J=4

T B0y T MINT=0 " - T T T e T
51; 100 b8 120 1=1,3

523 7 ANGVEL(I)=9MEGA(I,J) TTU o e e

533 ceLDN(1)=e~EGA(I;J)
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APPENDIX C == NUMERICAL INTEGRATIEN SF THE PWHIDST EQQATIBN

63y

543

554

56:

57

58;
593

.60
61:7

621

642
651
662
67
68

M

703

712

723
73:
743

75

76
77:
78:
793
80:
a1:
&2
a3
843
85;
861
&7
8&1
89;
90:
91
92:

120 C3LO(1)=6MEGA(L,U)
160 D& 180 1=1,3 T oo o
CALL GAUSS(IXsV)

180 ANGVELN(I,-AVJVFL(I)+oD\BISE’V ’

200 CALL RKSTEP (PH!;ANCVFL:ANGVEL;A\GVEL;CELD)

© 7. CALL RKSTEP (DHXN,A'GVELN:ANQVEL\:ANGVELN;CBLDN)
RUNTIME=RUNTIME+DT

T SUBTIME=SUBTIME+DT
NDT=NDT+

CIF(NDT=NPHINTY 1602220,220 777 CoTm T

220 NDT=0

’ D8 23C 1s1,3

230 DELPKI(D)=PHIN(I)-PKI(])

RMSNEISE=SRRTIDELPHI (1) *» s 24DELPH] (2) % x2+DELPHI (3 ) »%2)
#RITE(IWRITES1350) PHICL) PHIN(L)» ANGVEL (1)
SRITECTWRITES1400) RUNTIMESPHI(2),PHING2)sANG VEL(2),RMSNBISE
WRITECIWRITE, 1450) PHI(B);P%IN(3J:A\GVEL(3)
TF(SUBTIME-TIYE+C,000C01) 16Cs24C2240

240 LINT=LINT+1
MINT=MINT+1
J;J"TI?"E u-O
IF(LINT=NINT) 268,250,280

260 G2 T2(20,40,56C,8C) MINT

230 RETURN o

1C6C0 FOR™AT (3F12+93)

1020 FERVAT (1H1/3F12.9)

1050 F3RVAT (F12.4)

T1C70 FERMAT (F10.7)

931

11C0 FRRMAT (14)

1150 F2RVAT (14///7)

1200 F2RYAT (1H1/1Xy 1ZHEXPERIMENT 2///)

1220 FORMAT (s PHI  WA3 GENERATED FR2M 8MEGA WITHEUT NOISES)

1230 FERMAT (84H PHIN <AS GENERATED 4]TH OMEGA CERRUPTED BY wHITE NBI
1 #1TH A STANDARD SEVIATIEGN 8F, F10e7/)

1258 FORMAT ( 6Xs 4HTIE, 8Xs 3HPHIs 11X, 4HPHIN, 9Xs SHOMEGA» 8Xs 9N

1S NBISE///)
1350 FERMAT (10Xs» 3(4x, F1Ce7))
1400 FERYAT ( 3Xs F742, 3(4Xs FICe7), 4Xs E12+5)
1450 FERVAT (1CXs 3(4X, F10e7)/7)

END h B L
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APPENDIX C =< NUMERICAL INTEGRATIEN B8F THE PHIDET EGUATISON
13 SURRSUTINE EXPER3

STt U UDIMENSIEN PHIC3),cBLD(3) ) ANGVELA(3) ) ANGVELB(3) ) ANGVELC(3)
3: CeMMBN TREAD, IWRITE, DT, HCT
- c4ym 7 U READ(IREAD, 1000) GMEGA ‘
St READ(JREAD, 1000) CONINGAMP
g T 7T READ(IREAD,1000) DT
.7 READ(IREAD,1000) QUNTIME
SR U READ(IREADS 1100) NPRINT
9: WRITE(I#R{TE»105C) EMEGA

S 40T 7 T WRITE(IWRITEL1000) CONINGAMP "7
11 . WRITE(I®WRITE,1000) DT
12¢° 7 ° WRITE(IWRITE,10C0) RUNTIME
13: WRITE(IWRITES1100) NPRINT

ST T A=CONINGAVPH*BYEGA © T o7
15: HDT=0T/240

- 168 NDT=O 0 T T T T
17: PHT(1)=CONINGAMP
18y 7 TUpHI2)=Ce0 o -
19: PHI(3)=20+0
208 TIME=0.0 C R
211 WRITE(IWRITES1200)

T 228 WRITE(IRITES1250) oo T T
23: WRITE(I#RITES1350) TIME, (PHI(I), 1=1,3)
24 © ANGVELA(1)=0+0 ' : -
25: ANGVELA(2)=A
26 ANGVELA(3)=Ce0 7
27: CoLD11)=Cs0
281 O COLD(2)=ATT
29: COLD(2)=0.+0
308 77 G3 Te 60
31: 20 DB 40 [=1,3-

327 40 ANGVELA{II=AN3VELC(])

33: 60 ANGVELB(1)==A*SIN(BYESA*(TIME+YHDT))

34 ' ANGVELB(2)= A*CBS(B8YEGA*(TIME+HDT))

353 ANGVELB3(3)=000

36: ANGVELC(1)=-A*SIN(BYEGA¥(TIME+DT))

373 ANGVELC(2)= A*CE8S(6¥EGA*(TIME+DT))

38; ANGVELC(3)=C.0

39: CALL RKSTEP (PHI,ANGVELA,ANGVELB,ANGVELC,CBLD)

T 403 CTIME=TIME+DT i e o T
413 NDT=NDT+1
423y IF(NDT-NPRINTY 20,8C.80
43; 80 NDT=0

T 447 GRITE(IWRITE»1350) TIMEs (PHI(I), 1=1,3)
453 IF(TIME-RUNTIME+0,00CC01) 2C»10G,100

46 ° 100 RETURN ' e e

47: 1000 FSRMAT (F13¢8)
483~ 1050 FORVAT (1H1/F1343)
49; 1100 F3IRMAT (14)

-~ ®G: 1200 FERMAT (1H1/1X, 1ZHEXPERIMENT 3///) S :
51: 1250 FSRMAT (8X, 4HTIME, 14Xs SHPHI X, 10X, SHPHI Y, 10X, SHPHI 2///)

52+ 1350 FBRVAT (5X, FR8e4, 5% 3(5X, F10,7))y "~ ~ 7 =~ =7
533 END
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9o 00 0¢ 20 o4 va 4 04 sk 40 s 5 ce aece vo e

[ Y SO NP SN N

1

NN
N 0w
e oo ve eo

23:
L
23:
263
27:

10

20

40

€0

80

SUBRBUTINE RKSTEP (FEE,3A,82,6C,CD)

CIMENSIEN FEE(3),8A(3),8B(3),6C(3),CA(3),CB(3),CC(3),CDI3),SIGMA
1)sFRE(3)

CSMMSN IREAD, IWRITE, DT, HDT =

CALL XPREC(BASFEE,CE,SIGMA)

D8 10 1=1,3" ' D
CA(T)=8A(1)+SIGMA(T)

83TAIN AN INITIAL CAs™ 7 "7

CALL XPRCC(9AsFEE,CA,SIGMA)

58 50 11,3 el
CALT)=8A(I)+SIGMA(])

A3TAIN A FINAL CA,

FOE(I)=FEE(I)+HDTACA (1)

‘CALL XPROD(9B,FEE,CA,SIGMA)

D2 40 1=1,3 _
C3UI)=B3(I)+SIGUA(TY  ~° 7 i e e
FOE(I)=FEE(I)+HDT=CA (1)

CALL XPRSS(BBsFSE,CE,SIGMAY
05 60 1=1,3
CCU1Y=8E(1)+SIGMA(T)
FIE(1)=FEE(1)+ DT+CC(I)

CALL XPROD{2C,FSE,CC,SI3MA)
LY 80 [=1,3
CO(1)=5C(1)+SIGMA(T
FEE(1)=FE E(I)+DT*(CA(T)*E*(CS(I)+CC(I))*CD(I))/6-O
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1|
‘2"
33

-
20

S

e

7

- gy

93

" 10

112

12y

13:

14

15

163

17:

18

193

“ 208
212

40

- 60

.END P -

SU3RBUTINE XPRED (8GA,PHIE,PHIDET,SIGA)
DI4ENSIEN 3ZA(3),pHIE(3),PHIDET(3),S1GA(3) ~

FIESQR= PHIZ(1)pi IE(1)+PHIE(2)*PHIF(2)+PHIE(J)*PHIE(3) .

IF(FIESSR-Cs 0001 ) 2C,20s40°
CA=(1+C+FIES4GR/20.0+FIESGR*FIESGR/E4Ce0) /340

CR={1+C+FIESGR/E0.0+F IESGR*FIESGR/2520+C)7640

G8 T8 60
FIE=SGRT(FIESARY -~ 7
A=1+0-C2S(FIE).

1. 0=SIN(FIEY/FIE ™
CA=R/A
C=FIE*SIN(FIEY
£322.0%(1e0~C/(2e0*A))/FIESGR
sst(1>-p~xec?)*(CA»ECA(3>+Cu:PoneT(33)“"“

SIGA(1)=STGA(1)= PHIE(3)'(CA*BoA(E)*Cd*PHIDGT(E))

SIaA(E)’PHIE(3)*(cA*BaA(i)#C3*Pn1D°T(1))

SIGA(Z)=SIGA(2)=PIF (1) ¥ (CAxG GA(‘:H(;B»PHIDer(a))' -

SIGA(3)=PHIE(1)*(CAfSSA(Z)#CB’PhXDST(E)Y“

SI15A(3)=S1GA(3)-PrrE (2) % (CAXBGA(1) *CBXPHIDBT (1))

RETURN



APFENDIX C == NUMERICAL INTEGRATIBN 8F THE PHIDBT EGQUATIEN
1: SUBRSUTINE GAUSS([X,V)
e o R
3: 08 50 1=1,12
ThY T TUCALL RANDULIX2IYLYY T T T e e e e e
58 IX=1Y
T BO SRSy
V=A=640
‘€ 7V 18 NBRMALLY DISTRIBUTED WITH 'ZER)I MEAN AND UNITY STANs DEVs
5%5URN

OW -~
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"ENDIX'C == NUMERICAL INTEGRATISN ©F THE PHID3T EGUATIEN

13 SUBREUTINE RANDU (IX,IYsYFL)
2870 U7 YFL IS A UNIFBRMLY DISTRIBUTED RANDBM VARIASLE BN (0s1)s
1Y=IX*1553125

4y IF L1Y) Bs 55 6

53 5 1Y=1Y+8388607+1
et e YRL=1Y A T

7: YFL=YFL*¢11920928G551E=6
C 8T UURETURN :

9:

¥
I
3
t
)

.Efqa e ue
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APPENDIX D

HYBRID COMPUTER ANALOG PROGRAM

The amalog computer used in the thesis experiment was a
Beckman 2200 analog computer. The operation and patching of
the Beckman 2200 are described in Reference 23.

The analog computer symbols used in Appendix D are shown
in Figure D.l. Tables D.2 and D.3 are computer set-up check
lists. Figure D.2 is self explanatory.

The complementary é integrators discussed in Chapter 5
are shown in Figures D.3 and D.4. In normal operation, in-
tegrators 72, 73, and 74 are in the integrate mode, switches
24, 25, and 26 are closed; integrators 76, 77, and 78 are in
initial condition mode, and switches 36, 37, and 38 are open.
When ¢ is reset, the roles integrate and initial condition,
open and closed are interchanged.

The cross product term generation discussed in Chapter 5
is shown in Figure D.5. Figure D.6 is self explanatory.

Figures D.7, D.8, and D.9 are discussed in Appendix E
for the most part. The function of the circuitry in Figure D.7
not discussed in Appendix F is to generate the timing se-

quences shown in Figure D.S8.
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N €o

t
INTEGRATOR eo =:[o (1-e,+10-e,) dt +IC

e, —
N e
10 0
€,

SUMINING AMPLIFIER eg =-(1-e,+10-e,)

B
0\
POTENTIOMETER eq= B e,
€y
ey €o
-ey R
MULTIPLIER e," €x &y

100

A

® TRUNK LINE A=T TRUNK =~ ANALOG BD-OUTSIDE
A=P TRUNK 8 ANALOG BD-CONTROL BD
A= E TRUNK = CONTROL BD-LOGIC BD

ANALOG

-F DIGITAL
OUTPUT o”  INPUT

Figure D.1.- Analog computer symbols




=—— SIGNAL ORIGINATING ON SAME PATCHBOARD

—= SIGNAL TERMINATING ON SAME PATCHBOARD
FS N

v _
_—g?o“_ lé i gPENTER
-__OD -
POSITION
D = DOWN SITIO
FUNCTION SWITCH A = ARM
N>
e
INVERTING LOGIC AMPLIFIER
SIG
SIGNAL FROM DIGITAL COMPUTER GENERATED
BY "S EOM O3000N" INSTRUCTION
INT

(N) INTERRUPT LINE- A PULSE ON THIS LINE
| CAUSES EXECUTION OF INTERRUPT N

OUTPUT
INPUT 2| N Jo— INVERTED OUTPUT

ONE SHOT MULTIVIBRATOR

SET—2sk OUTPUT
TOGGLE—FF INVERTED OUTPUT
RESET—AN
FLIP FLOP

A — A —

B ——-DO—D B N\ D
c — c—d1/

NOR GATE D:A+B+C OR GATE  D:=A+B+C

Figure D.1(cont).- Analog computer symbols
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1. 1ISU Cable Disconnect
2, Console Switch 1A

3. 9300 Console

Sense Switches 2 & 4 Set

Others Reset
4, Logic Board FF00, SROO Set
5. Function Switches 6,7,8 Down

6. Perform Anacheck 3,4,5,9,10,11 Up
12,13,14 Center

7. ISU Cable Connect
8. Function Switches 6,7,8 Center
9. Adjust R32 (See Figure B2) on

each w-filter for stationary

Butterfly Pattern
10. Adjust R412, R414, R416 to

null w reading (observe out-

put of A015, A019, A023 res-

pectively)

Table D.1 Anacheck and Circuit Set Up
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w N

Console Switch 1A
Preset Counter 2 36

One Shot Multivibrators

a. Con Bd 1 10 Sec -5cew
b. Log Bd 0 100 " -4 "
1 10 " -5 "
2 10 " -5 "
3 10 " -5
4 10 " -5 "
5 1o " -5 "
10 10 " -5
12 10 " -5 "
13 1o " -5 "
Interrupt Switches 0,1,2,3,10,11 Up
Others Down
Function Switches 12,13,14 Center
3,4,5,6,7,8,9,10,11 Down

Table D.2 Analgo Computer Set Up
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- P
+FIC  »— 9 +4
| 2>
05 @ ‘
(3) !
.95 .
|
—-FIC +>—¢— FSO3 B
‘—-O{&A T l
oc 10
= @2
60—
+100V > 412 os AlIO +
(e '
16 P
+A
T ~— ¢ | e ¢ (02)
@&—
.05
F _(17) ' P
.95 —/ -Ay
T 7
FS04 J.'—
Y ——AT73,1
AT l _
og wy
D H{06) 101 19 AT7,1
+ 100V +>- 414 Alla =1
05 L AlI2,]
F —~(z0)- ' +8dy g
20 £—05)
W(—
.05 .
+ 465} I -0¢, [~
.95
N ©
U —» A74,]
AT [
10
—op R@——T 23 AT8,|
+ 100V >— 416 Ali8 »
.05 L e Al
@ I\CLOCK PULSE /=
T 22 {04)
«@—
Figure D.2.- ISU input buffers
_ Note: Letter to left of T-Trunk symbol indicates connector

‘ pin designation
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.45

(o]
U CiD 00
A

172
+FIC | FsP09 b
— iy L ie
Al5S  -—
5 1172
AIO9 —
.45

+FIC
IC

A5 —
) 76
Al09 +—2
25 =
u cio
+FIC 73— ©
-
Alg  »—2 !
. 73
ANz »—Y !
25

- |
Alg  »—J
_.y |
AlI3 >
K ag
174
+FIC F !
-Ww
A23 -»—2 !
_.Z 1
A7 >

4>X(O)

M39,-Y

M40,Y

—» M39,Y

M40,-Y

L—» REC 00

M4l,-Y
M36,Y
Mal,Y

M36,—-Y

REC 03

M37,-Y

M38,Y

l

M37,Y

M38,-Y

l

REC 06

Figure D.3.- ¢ Integrators (excluding mode control)

191



C6T

[

SR FF | 72 I 76 cs24 | cs36
oo | oo 173 177 cs 25 | cs37
I 74 177 cs 26 |cs3s
RESET | RESET || comp hC. CLOSED | OPEN
RESET| SET IC. COMP | OPEN | CLOSED
SET | RESET || comp comp | OPEN | OPEN
SET | SET .C. 1.C. CLOSED | CLOSED E E
00> ,ﬁ
T e 3 ® ? ? G
2 1% 176 178 MODE
/1@, 1 ® | ®1  ® CONTROL —dé —
- i
flot ol o o S G G
He O | :OI IO: :O A ™
MODE | | | B 8
xFEr| @ | I®| | @ 1 ® o9 A? - -
xEER| ® | : ® | ' ® | l' ® A
IDA E I E E B
QX1 @10 @i 1 @10 b
M1 I
e $ 191 e 1O ¢ =4O ¢ Tk 2
c @ Lo ! . 1o ! @ o 8 B
—O | 1 | @ O | 2 A 14
10 | I 15 CONFIGURATION
cr1O! —+O | 0! | CONTROL A
P ;} I__J |_J B

CONTROL BOARD

_BO_

LOGIC BOARD

Figure D.4.- Integrator mode, configuration and switch control
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-y | .05
Y
X |3 317
A53 » Py -10 by wy
Rt | | .05
AlS - Y
3333 |08 O 3dD—213
10 ¢z wy
AS6 + +
' .05
_¢z L
< |3 309
-Y
¢ _
A57 »—2 10 ¢, wy
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y | .05 &
Al9 ’——L v y
3333 |12 X (39— 217 H3
I0¢xwy
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X |a 313
-Y
nas X 1 1080,
A53 Py
AZ3 el | 105 -0y
Y
3333 e X |a>—{209 n7
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N 10 ¢y w,
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Figure D.5.- Cross-product term generator
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Figure D.6.- Gyro 1o torquer signal synthesis
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100 LSEC
E +AP
£ 05 orx [c INT
CLOCK P 30 \
@) o8 00 ©- ‘: 30
A IOp SEC ' O
* E
SI6 %o 21 - 0%y ¢ INT.
£3\DIS. CLOCK P B,
oA
104 SEC £ s
316 SR ¢3{sR)—& COUNT ENABLED - tAPy ¢
4?2 INT
@EN.CLOCK R 30 R 3l WHEN SET P C} B 3
A
]
10.LSEC E
~-AP c
SIG y INT
PLACE ALL INTS IN IC s @3
©— l’% FF}— INv.00 P B l33 03)
FL jCR
RIOOL o \\v. o E ¢
MODE P Blas 10
CONTROL e
E
@-A¢z [ INT
5(sr B Izs
00 }sse FIGURE D.4 1A
" si6 104 SEC
‘ <O:OILRESET ¢ INTEGRATORS MODE c
: | CONFIGURATION P Blso
A
3 LA |
@PRESET 01, OVERFLOW |67 SEC
S sr os| |INT
Rl 2ap.P| 13 12
SIG , .-
&) ADVANCE PRESET COUNTER A .
Bls 28

Figure D.7.- Synchronization and A¢ transmission circuitry

SYNCHRONIZATION AND A¢ TRANSMISSION CIRCUITRY
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INV. 08, CLOCK
0S 00, +A¢,
0S Oi, —A ¢y
08 02,+A¢,

0s 03, —Agy

0S 10, COUNT INPUT
PRESET Ol OVERFLOW
FF 02 ENABLE INT 12

SR 29 GENERATE INT I2.
FF Ol , TOGGLE MODE CON

OS I3, INT, 12

O—- O~ O- O— O — 0O -

oO-0-0- 0- 0o- O0—- O-

Figure D.8.- Interrupt signal timing diagram

! —{ 2777 pSEC je— 4y,
| [ == 100 1] [ 1,1 1 1
A —{[=10 1l y I 1
1l —}=I0 || ¥ Al i
i =] —, | I
I >{[=I10 Il — 1 I
Il —{}=10 1 v 1l il
e
l W |
1 1 W |
I 'y
[ N
I W 0



m

P
@—2 ¢
E
P _Ag E
P

E
GYRO CLOCK PULS
+4 ¢, .
-Ag¢, E
& &

- @ @

SET 36
E R_IPRESET |+
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Figure D.9.- Clock pulse counter and trunks
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APPENDIX E

HYBRID COMPUTER DIGITAL PROGRAM

An SDS 9300 digital computer was used to perform the
digital part of the hybrid computation. The programming
language is a combination of BECKTRAN (a Fortran II variant
with hybrid computation statements) described in Reference 24
and machine language Symbol instructions described in Refer-
ence 25. The Symbol instructions are prefaced by the letter

S in column 1.

The Main Program accepts typewritten inputs for the print-
out title block. It then types "Ready to Run" and then "Pause".
When the pause is cleared (by toggling Sense Switch 6), the
Main Program calls a series of three subroutines to initialize
the Hybrid computer. In the final subroutine in this series,
Subroutine Run Start, the computer idles until a command is
received to begin the run.

The runtime part of the Main Program is an idle loop in
which the computer awaits either a command to end the run or
to update the direction cosine matrix. In a navigation com-
puter, this idle time would be used for the other required
computations of the navigation system.

The flags ISSZOLD and ISS30LD are used in Subroutine

Data In. The flags IUPAA, IUPBB, and IEND are set in Subroutine
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Increment Phi.
The Main Program flow chart is shown in Figure E.l.

Subroutine Data In

The functions of Sénse Switches 2 and 3 and their assoc-
iated programming is to call for new Run Parameters (total
time, time between printouts, and ¢MAX) and for new Initial
Conditions respectively whenever their settings are changed.
The heading is printed on the printout page. FEESQMAX, NPERPR,

and NOUT are used in Subroutine Increment Phi.

Subroutine Computer Set Up

The Symbol instruction EOM 030003 (Sig 03)* sets the flip-
flop SR30 (Figure D.7). This action resets flip-flop SR31 dis-
abling gates 58, 30-35, and 59. This in turn blocks both the
interrupt signals and the clock pulse which advances Preset
Counter 02 (Figure D.9). Preset Counter 02 divides the gyro
clock pulse by 36. The Symbol instruction EOM 030004 (Sig 04)
pulses the one shot multivibrator 0S12 (Figure D.7) which
then resets Preset Counter 02 (Figure D.9).

The various flags, registers, and the direction cosine
matrix are initialized.

The initial value of ¢ (from Subroutine Data In) is trans-
mitted to the integrators (Figure D.3) by the CALL DAL instruc-

tion. This initial value is then incorporated into the CZERO

*

Sig 03 refers to the analog computer designation for the
Logic Board patch point on which the pulse generated by
EOM 030003 arrives.
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200

(_ACCEPT TITLE PAGE DATA )

v

10

C

TYPE " READY TO RUN" )

C

PAUSE )

(_cALL pATA IN (SUBR) )

( CALL COMPUTER SET UP (SUBR) )

(_CALL RUN START (SUBR.) )

> = T 20 >
— IF | UPPA ) |
4 40
FALSE TRUE
——  IF SENSE SWITCH 1 )
< 60 >
—( IF {UPBB —

80 ¢

(CALL UPDATE (MATRIX (SUBR))

<

>

4

o\

IF

|END Y

|

100 §

(CcALL END OF RUN (SUBR) )

C

GO TO 10 )

Figure E.1.- Main program synoptic flow chart



matrix which serves as CNR in the equation

CNB - CNRCRB (6.1)

Each of the next six sets of four Symbol instructions
sets up a "Single Instruction Interrupt". A typical set of

four instructions is

S70 LDA 80S

S STA 043
S BRU 90s
S80 MPO NYNEG

Instruction S70 loads the instruction MPO NYNEG to be executed
by Interrupt 03 into the accumulator. The instruction MPO
means "memory plus one". Therefore NYNEG, the number of —A¢y
pulses that have occurred, is incremented by one. The next
instruction stores the MPO NYNEG instruction in memory loca-
tion 43. (When Single Instruction Interrupt n occurs it
causes the execution of the instruction stored in memory loca-

tion 40+n.) The instruction

S BRU 908
then causes the program to branch unconditionally to instruc-
tion S90. The Symbol instruction NOP (no operation) is the
Symbol equivalent of the Fortran CONTINUE statement.

Symbol instruction EOM 030001 (Sig 01) causes a pulse
which passes OR Gate 71 (Figure D.7) and advances the Preset
Counter 02 (Figure D.9) to an initial count of 1. The need
for this is seen in Figure D.8 which shows that Interrupt 12
(which calls Subroutine Increment Phi) does not occur until

Preset Counter 02 has been advanced to 1.
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FALSE TRUE
——— IF SENSE SWITCH 5  )———

=

5 >
——< IF(IUPAA+ IUPBB-1) )——

y 10
IUPAA=0 IPRINT= 0
GO TO 120
L
< ¥'5 9y >
—=( IF (1 UPAA) >—
4 20
C | UPAA = O )
< >
—— IF (1 PRINT) —
y 40
KPRINT =1  IPRINT=0
GO TO 70
‘}60
C KPRINT = 0 D)
70 4
COMPUTE ASUB
FOR AA UPDATE B S U B
5
C IF (KPRINT) )——
y 80
SET UP T AND PHIPRINT
GO TO 180
|
¥ 120 ¢
COMPUTE ASUB
v FOR BB UPDATE BS UB
180 180 v

Figure E.2.- Subroutine update C matrix synoptic flow chart
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FALSE { \ TRUE
\ IF SENSE SWITCH 5 ),

¢ 140
( SET UP T AND PHI PRINT )

Y ‘ l|80L

C COMPUTE CRB )
< ' >
—( IF KUPBB )
 |FALsE g 240 TRUE
4 IF SENSE SWITCH 5 )
< 4 260 >
— IF KPRINT >
vy 280
(MARK=0 NO ASTERISK BY PRINTOUT)
I
} 300
(MARK=I  ASTERISK BY PRINTOUT)
3204
( CPRINT = CRB )
= ! >
—( IF KUPBB —
y 420§

(  CczZERO = CRB )

T4 ) ae0

C RETURN )

Figure Z.2(cont.).- Subroutine update C matrix synoptic flow chart
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Symbol instruction EOM 030002 (Sig 02) sets both the
Mode Control flip~flop FF00 and the Mode Configuration flip-
flop SRO0 (Figure D.7). This places both sets of integrators
in the initial condition mode thus preventing any integrator

from overloading before the run begins.

Subroutine Run Start

The instructions involving Sense Switch 4 form an idle
loop that awaits a change in the condition of Sense Switch 4.
Symbol instruction EOM 030005 (Sig 05) resets the flip-flop
SR30 (Figure D.7). This opens gate 58 which sets flip-flops
SR31 and resets the Mode Configuration flip-flop SR00. When
SR31 is set, gates 30-35 and 59 allow generation of Interrupts
00-03, 10, and 11, the generation of the pulse which incre-
ments Preset Counter 02 (Figure D.9). When SR00 is reset,

the integrators are in normal complementary operation.

Subroutine Update C Matrix

A synoptic flow chart for the Update CMatrix Subroutine

is shown in Figure E.2. This subroutine evaluates

cNB _ NR.RB (6.1)
where

RB .

C is generated as CMAT

NR .

C is remembered as CZERO

CNB is formed by the operation symbolized as CRB =

CZERO * CMAT (CNB is called CRB in this sub-

routine.)
If a printout is requested either because ¢ was reset

to zero or because the time till the next printout has elapsed,
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then CRB and the time at which CRB was generated are stored
as CPRINT and T until the run is over. Then Subroutine End
of Run causes the stored matrices to be printed out. Setting
Sense Switch 5 causes the printing of CRB when ¢ is reset to
zero to be suppressed.

The flags IUPAA, IUPBB, IPRINT, and IEND are set in Sub-
routine Increment Phi.

Subroutine Increment Phi

The first set of instructions increments the ¢ vector
and zeros the registers which are incremented by the A¢ in-
terrupts. Then |¢| is tested to see if it exceeds the magni-
tude which calls for ¢ to be reset to zero. If this is the
case, the timing logic on the Logic Patch Board (Figure D.7)
is set up so that ¢ is reset to zero just prior to the next
time that the Increment Phi interrupt is energized. The flag
MUPBB is set so that at the next Increment Phi interrupt, ¢
will be reset to zero in the digital computer as well as in
the analog computer. Then the flag IUPBB is set so that
Subroutine Update CMatrix updates the CMatrix and establishes
a new CZERO matrix.

The TESTFEE cycle occurs every 0.01 second. Statement
140 counts 10 of these cycles before calling for a normal
CMatrix update by setting flag IUPAA. Statement 220 counts
the number, NUPAA, of normal update cycles and calls for a
printout, IPRINT = 1, when NUPAA = NPERPR. The value NPERPR,
the number of updates per printout, was set in Subroutine
Data In. When the number of printouts, NPRINT, equals the

205



total number, NOUT, allotted in Subroutine Data In for the
run, IEND is set to 1 and this calls for Subroutine Fnd of

Run in the Main Program.

Subroutine End of Run

The printout of the stored CMatrices and the stored vec-

tors occurs in this subroutine.
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ISU SYSTEM - PRINTOUT

€7 7T JACK BORTZ

C MAY 2, 1969
CTTTTTTTHESTS TUISTING == ISU SYSTEN 77T TN e s e
c

T meme e e et e v e o e L

C SENSE SWITCH 1 SET T8 END RUN

CrT T T e T SENSE SWITCH 277 7 'TBGGLE T8 CHANGE RUN PARAMETERS -

C SENSE SWITCH 3 TBGGLE T8 CHANGE PHI(0)

C 7T T U UUSENSE SWITCH R T TBGGLE TO STARTURUNT T T
g e inaem . SENSE SWITCH 5~ SET T6 CELETE FEE RESET PRINTBUT
C

C"‘—‘“’MAI\ PQAGRAM T T TS mmemn s mme e e e s e TR T e

DIMENSISN CZERS(323)s» CRB(3,3)s CMATI(3,3), ASUB(3s3), BSUB(3,3)
"DIMENSIBN PHI(3),™ PHIAA(3)a PHIEB(3)s T(200), TEND(200)
DIMENSIAN CPRINT(600,3), MARK{(20C), PHIPRINT(600), PHIB(3)
7 7T CBMMEN 15S29LD; ISSRNEW, 1SS538LD, ISS3NEw, CPRNT TIMg, PHIB, NxPBS™~
CeMMAN NXNES, NYP°S: NMYNEG, NIPOS, NINEG, NRUN, FEEMAX, TBTAL TIME
TCeMMBN CR3, CZEREs CPRINT, DPHI» IENDs INDEXs MARK, FEESGMAXs NBUT
CEMMBN FEESAA, FEESB3, PHIAA, PHIBB, TUPAA, TUP3B, NTESTFEE, KUPBB
COMMEN TUPAA, IUPEB, NTIMg, IDAY, NWRITE, PHIPRINT, PHI, IPRINT, T
CEMMON NUPAA, ICALLENDs NFRINT, NPERPR, “8NTH, MUPBB
S e [GSEBLDAD - - el TTAMLEL FRRTTRS Tenine TUT
15S38LD=2
CTYPE 1000 Tt et e meeeml el el
ACCEPT 1050, IDAY
CPYPE 1070 s mem m e e eem e e L -
ACCEPT 1080, MENTH
S TYPE 1100 - - e s e
ACCEPT 1150, NRUN
10 TYPE 1200 "= = ©' = & ¢ e e e e
PAUSE
TCALL DATATIN T T T
CALL CBMPUTER SET UP
CALL RUN START 77 "7 77 77 ommms s Tt o e
20 IF(IUPAA) 4C,40,8C
o ~ AN UPCATE INTERVAL HAS ELAPSEDe UPDATE THE CMATRIXe = =
40 IF(SENSE SAITCH 1) 100,60
c SET SENSE SITCH 1 T8 END RUN™ 7 7~
80 IF(IUPBB) 20,20,80
C— """ FEE HAS EEEN RESETS UPDATE CMATRIXAND CZERB4 - === oo
80 CALL UPDATE CMATRIX
o XF(IEND) 20,2C,100 -~ TT e e e
o IEND=1 IMPLIES TeTAL RUV TI“E HAs ELAPSED-

‘41CO CALL, END BF RUN " TTToTommmoom e e
G8 T8 10
T AL RE GUE S T T e e o o
C THE REQUEST PACKAGE IS LBADED INTS MEMBRY F“R PBSSIBLE LATER USE

© 1000 FBRMAT ($ TYPE IN DAY BF MBNTH$) = -~
1050 FBRMAT (12)

© 1070 FORMAT {$ TYPE "IN MONTHE) ~ -w— © = mmr smmmsmcos o
1080 FBRMAT (A4)

1100 FERMAT (S TYPE TN NRUN$) =7 === momrm s e e

1150 FBRMAT (14)

UAD0 FBRMATT ($7READY T8 RUNGY ™ =77 = =--m smism sesimml ol
END

SJBRBUTINES REGUIRED .
TTUNTYPE T AREADKB T T\PAUSE T DATAINT T CEMPUTER — RUNSTART ™ NIFSNSW 7 UPDATE
ENDQFRUV QVGJEST \ST8P
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SUBRBUTINE DATAIN =~ = ’ T
DIMENSISBN CZERE(3,3), CRB(3,3), CMAT(3,3), ASUB(3,3), BSUB(3,3)
DIMENSIAN PHI(3)s PHIAA(3), PHIBB(3)s T(2C0)s, TEND(20O) o
DIMENSISN CPRINT(600,3), MARK(200), PHIPRINT(600), PHIB(3)

CBMMBN 1SS28L0, ISS2NEW; "1SS38LD, ISS3NEws CPRNT TIME, PHIB, NXP8S
COMMBN NXNEG, NYPSS, NYNEGs NZPGS, NINEG, NRUN, FEEMAX, T8TAL TIME
COMMEN CR3, CZERE,» CPRINT, DPHIs "1ENDZ TINDEX, MARK, FEESGMAXs NBUT =
COMMBN FEESAA, FEESBB, PH[AA, PHIBB, TUPAA, TUPBB, NTESTFEE, KuPBB
- cgMMEN TUPAA, IUPEB, NTIMg, IDAY, NWRITE, PHIPRINT, PHIs IPRINT, T~ 7

CaMMBN NUPAA, ICALLEND, NPRINT, NPERPR, M3NTH, MUPBB
“"DPHI=0+0005555555555 7 ST e

INDEX=200

C~ " INDEX 1S THE NUMBER 8F CMATRICES THAT CAN BE STEBRED FBR PRINTINGs

UPDATE TIME = 0.1
CTTTUU IRT(SENSE SWITCH 2) 5,107 T
(o TBGGLE SENSE SwITCH 2 T8 cHANGE RUN PARAMETERS.
e e g 1SSENEWEY | e o ERME FATANE RSy
Ge T8 15
10 I§SeNEW=Q ~ T T T
15 IF{1SS2NEwW=-1SS26LD) 20,25,20
20 ISSPELD=ISS2NEW T T 0T
TYPE 1000
et CACCEPT 1050, TOTAL TIME  © 777
TYPE 1100
“ACCEPT 1CS5C, CPRNT TIME™ 77~
TYPEZ 1150

T ACCEPT 1050, FEEMAX™

25 IF (SENSE SWITCH 3) 30,35
: TAGSLE SENSE SWITCH 3 T8 gNTER'NEW PHI(OY ~ ~ ~ 7

30 ISS3NEW=1

TUTGR T8 40

35 ISS3INEW=0

40 JF(ISS3NEW=1SS3PLD) #5,50,45 7~ 777

45 1SS39LD=1SS3NEW
o TYPE 1200 T T
ACCEPT 1050, PHIB(1)
TYPE 122¢C )
ACCEPT 1050, PHIB(2)

TYPE 1250 o T
ACCEPT 1050, PHIB(3)

50

PRINT

1300

PRINT
PRINT"
PRINT
C T PRINT

PRINT

1350,
1400,
1550,

1600,

1650,

FEESOMAX=FEEMAX¥%2™ 7 o

MBNTH» 1DAY
NRUN 7
TBTAL TIME

CPRNT TIME ===~
FEEMAX

NPERPR=CPRNT TIME/UPDATE TIME +0.001
s NgUTEe THTAL TIME/ZCPRNT TIME 7777 - - — o
C NBUT IS THE NUMBER B8F PRINTEUTS CALLED FER BY THE LENGTH B8F THE UPDATE
£ —INTERVALALBNE+ THERE MAY BE BTHER PRINTBUTS DUE™TE FEE BEING RESET,

RETURN
~1000-FERMAT
1050 FERMAT
4 400-FBRMAT
50 FGRMAT

- 1200 FORMAT
1220 FBRMAT

(s TYPE-IN TOTAL "TIMES)Y
(F9+3)

(s TYPE IN CPRNT TIMESY™
(s TYPE IN FEEMAXs)

s TYPE IN PHI{17g) "~

( & TYPE IN PHI(2)s)

-4 250 FERMAT -t -3 TYPE "IN PHIX(3)3Y

1300 FERMAT ($1JACK BBRTZ =-- THESIS PRBBLEM $///)
1350 FERMAT (22Xa A4s 4¥2 124 AHs 1969737 7 7 o=
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1400 FRRMAT (22X, THRUN N8+ 2% 147) o T T T
1550 FERMAT (22X, 14HTSTAL RUN TIME,33X» FSe3, 8H SECONDS)

"T1600 FBRMAT (22X, 31HTIME INTERVAL BETWEEN PRINTOUTS,18X, F7.3; 8H SECB™ 7
INDS) .

"7 OTFBRMAT (22X, SCHFEE' IS RESET WHEN ITS MAGNITUDE ESUALS BRTEXCEEDS ~ 7~

1, F6e2, 84 RACIANS////)

SUBRBUTINES REGUIRED — 7 i ) o T m e
OATAIN ~ NIFSNSW _ NTYPE ~  NREADKB _ \PRINT _ NFPBWER _ \STOP

CaMM8N STORAGE

777C% CZERB ~~7 777727 CRB™ 7777 ¢bCZ5 PHITTT TT703347PHIAA T 70326 PHIBB
652C4 T 70665 CPRINT 70351 MARK 66033 PHIPRINT 77764 pHIB
77777 1SS28LD 77776 1SS2NEw 77775 1SS38LC 77774 [SS3NEw 77772 CPRNTT
77763 NXP8S 77762 NXNEG 77761 NYPES 77760 NYNEG 77757 NZpPBS
77756 NZNEG 0 77785 NRUNTT T 77733 FEEMAXTT T 77751 TETALTIM 70663 DPHI ¢
70662 IEND 7Ce&1 INDEX 70347 FEESGMAX 70346 NOUT 70344 FEESAA
70342 FEESB3 70324 TUPAA T 70322 TuPBB T 7C321 NTESTFEE 7C32C KuPBB .~
70317 1UPAA 70316 1UP2B 70315 NTIME 7C314 1DAY 70313 NWRITE
C 66024 IPRINTS 65203 NUPAA 65202 ICALLENDT 652C1 'NPRINT 65200 N7ERPR
€5177 MONTH 65176 MUPB8B

NSN-RECURSIVE STEBRAGE
C0000 CMAT™° °  CCC22 ASUS ~ ~ ° COC44 BSUB - 0C0&6 TEND =~ 7

END BF CBYPILATIEN
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SURHBJT‘NE COMPUTER SET up

CIMENSIAN CZERH(3,3)s CRB(3,3), CMATI(3,3), ASUB{3,3), BSUB(3,3)
DIMENSISN pHI(3)s PHIAA(3), PH138(3)s T(200),» TEND(200) C
DIMENSION CPRINT(60C,3), #ARK(200), PHIPRINT(6CC), PHIB(3)

COMMEN 1582210, 1SS2NEW, 1SS38LD, I1SS3NEWs CPRNT TIME, PHIE, NXPBS
ceMMaN NXNEG, NYFES, NYNEGs, NZP2S, NINEG, NRUN, FEEMAX, TEBTAL TIME

T caMMaN CR3, CZERS, CPRINT, DPHI» IEND, "INDEX, MARK, FEESGMAX, NOUT
CaMvaN FEESAA, FEESBSs PHIAA, PHIBB, TUPAA, TUPBB, NTESTFEE, KUPBB
TCOMMEN IUPAA, IUPEB, NTIME, IDAY, NWRITE, FHIPRINT, PHls IPRINT, T
CeMMEN NUPAA, ICALLEND, NPRINT, NPERPR, MENTH, MUPBB

TCALL CHANDITIEN T oot T e e CoTTm T
INITIALIZE THE HYERID INTERFACEe

TCALL MUX TRACK ’ o
PUT DVM INTH TRACK MEDE.

CeNNECT INCREMENT PHls 127 77777777
THE GYRZ TIME ASE TR]JGE\S THEQE Tne INTERRUPTS.

CALL COBNSSLE (1) T e T T
SELECT CONSSLE NUMBER 1.

T E8M C300C3 o o
DISABLE THE CLEBCK PULSE.
PRINT 1CCO o

S £9% Q200C4

€ " " RESET THE DT COUNTERe =~ 7~ 7~ 7~ Cm o mmes s m s

Cabl SYSTEM ARM
C ENARLE ANALSG CEMPUTER T8 SEND INTERRUPTSe e T T
CALL STANDBY
ICALLEND=O
IEND=0
e IPRINT=] - s eeem e e
JUPAA=1
1UP32=0
KuP38=0
MUPER=0 e e e -
NPRINT=0 :
NRUNENRUN+L ™ 7
NTESTFEE=Q
NTIME=0
NUPAA=Q
NWRITE=O ’ ’ o B T N
NXPES20
e NYNEGEG- e omes e e emn
NYPBS=0
NYNEG=Q o o
NZPBS=0
NINEG=Q - o e e e e
TUPAA=Q«0 L
CCZERB(121)=1,0 "7 w77 TUTr o Tmmms T s mn e e
CZERS(1,2)20.0

CZERB(153)a0sQ = 1o = ToemmSme s iis s s
CZERB(2,1)2040

Ha i a N s)

nno
§ i

.

i

f

;

{

i

i

t

e CZERBU2sR)a1aQ " T T TTemimeimsmmeimmmemmncmmoo e

CZERE(Z2,3)20.0
e CZERE (310800 ¢ T SRSl e s

CZERB(3,2)=0.0

CZERE(3,3)x1.0 = =~ -~ "o mommmmnn s

DB 10 1=1,3 . U

10 PHI(I)=PHIB(T]) - o T ;

CALL DAL (0, =PHI(1)s 100CeC» 'PHI(E)l IOOCuO: ‘PHI(3)I 1000.0)
e pHTAA (LY =PHI(LY T T M T T T

PHIAA(2)=PHI(2)

PHIAA(IY=PHI(3) — 77— 77 7 CoTTTITTT AR T s T

. R B T J S ey
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TCTUTTTTHE NEXT OB TINSTRUCTIONS CAUSE TINTERRUPT
S LDA 20s
‘s CCGTA D4 I e e s s
S BRU 3CS

'S20 TTMPB NXP3E T T
C THE NEXT &4 INSTQUCTISVS CAUSE INTERRUPT
©S307 7 LDA 40§ T T T e

COVMNOVGCOBLVROV BT O

T FEESAA=PHI(1)x¥2 + PHI(2Y#%2 + PRI #ws ~ 7
CALL UPDATE CMATRIX

C 777 THE NEXT & INSTRUCTIBNS CAUSE INTERRUPT 2 18

S STA C41
§TTTUUTBRU B0 T T
S40 MPB NXNIG
S50 LDA 6CS
S "TUUSTA c42 T T
S BRU 7CS
T SE0” TTMPB NYPSS T
S70 “LpA 80s”
S STA O43
5 " BRU 90§~ "

S80 ¥B8 NYNEG
80 LDA 100S

3RV 1103
100 "MpP8 NZPSg "

LDA 1205

STA 053

BRU 1308 °~

3120 MPB NINEG

130 NBP© - e
geM 030001

gem 030002

" RETURN -~

1C00 FER™AT (26Xs 4HTIME» 40X, 8KC MATRIXs 32Xs» 3HPHI//)

END™ 0"

"SUBRBUTINES REQUIRED -
CeMPUTER C”NDITIn MUXTRACK

STANDBY = "DAL ™" " " \FPBWER
COMMEN STBRAGE ~ —~=~
77705 CZERB 77727 CRB
65204 T -~ =" 70665 CPRIN
77777 18S28LD 77776 1SS2MIw
T 77763 NXPBRS 0 77762 NXNEG
77756 NZNEG 77755 NRUN
-70662 1END - 70661 INDEX"
70342 FEEsSBS 70324 TUPAA
0317 IUPAA - - 70316 lUPRB
66024 IPRINT 65203 NUPAA
65177 MENTH 65176 MUPBB -
NEN-RECURSIVE STSRAGE - )
00000 CMAT 00Cz2 ASUB

e —

T STA gs52° ¢ T

INITIALIZE PRESET CSUNTER T2 A CEBUNT BF ¢+

1 TB ADD 1 18 NXNEG.' o

c THE NEXT 4 INSTRUCTIONS CAUSE INTERRUPT 3 T
T 77 THE NEXT 4 INSTRUCTIENS CAUSE INTERRUPT 10778

THE NEXT 4 I ST«U’TIB\S CAUSE IVTERRUPT 11 T8

INCREMEN

\CONAECT

UPDATECM \STep-

T

66025
70351
77775
77761
77753
7C347
70322
70315
65202

COO44

PHI
MARK
1SS36LD
NYPBS™
FEEMAX
FEESQMAX"
TUPBB
NTIME

ICALLEND

0 76 "'ADD "1 78 NXPBSe 7

ADD "1 T8 NYPBS.

8 ADD 1 T8 NYNEGs

ADD 1778 NZPOS. ~

70334
66033
7777%
77760
77751
70346
7¢c321
7Cc314

65201

0COos66

PLACE ALL I\TEoQATSRS IN THr INITIAL CB\DITIB\ MBDE.

CBNSBLE \PRI

PHIAA -
PHIPRINT
ISS3NEW
NYNEG
TOTALTIM
NEeUT
NTESTFEE
1DAY
NPRINT

TEND

ADD 1 78 NZNEGe

NT

70326
77764
77772
77757
7G663
70344
70320
70313

652C0

SYSTEV

Pi4188B
PHIB ™
CPRNTT
NZPBS -
DPHI

FEESAA
KurBs
NwRITE
NPERPR
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TGUBRSUTINE RuUN START T T s e e e
DIMENSISN CZERO(323)s CRB(3s3)s CMATI(3,3), ASUBI(3,3), BSUF(313>

TUDIMENSIGN PRI(3), PHIAA(3), PHIEBI(3)s T(200), TEND(200)
DIMENSION CPRINT(600s3), MARK(200), PHIPRINT(6CC)s PHIE(3)

ST CAMMEN 1852810, ISS2ENEW, 1S53°SLD, ISS3NEWs CPRNTT TIME, PHIB, NXPES ™~ 7

CaMMBN NXNEG, NYPES, NYNES, NZP2S, NINESG, NRUN, FEEMAX, TOTAL TIME

CaMvaN CROs CZERBs CPRINT, DPHIs TENDs INDEXs MARK, FEESGMAXs NBUT 7

CBeMMAN FEESAA, FEES38B, PHIAA, PHIBB, TUPAA, TUPBB, NTESTFEE, KUPBB

U CEMMENT TUPAA, JUPES, NTIMp, IDAY, NwRITE, FHIPRINTY, PRI, IPRINT, T

COMMEN NUPAA, ICALLENDS NPRINTS NPERPRs MONTH, MUPBB

T O TIF(SENSE SAITCR B) 20,400 T TITUT T oo e

ZC IF(SENSE SWITCH 4) 20C,6C
40 [F(SENSE SulTCH 4% GO, 4Qr "~ "o == mm mm e e
c TEGGLE SENSE SWITCH 4 T8 SEGIN RUN
60 CALL C8VPUTE P
CALL AR™ (0s 1, 25 35 12, 11, 12)
CTTUSET DIGITAL CEMPUTER TE ACCEPT SPECIFIC TINTERRUPTS, 7777777

S gaM 030CC5
C ° " ENASLE THE CLBCK PULSE. RESET PH] MBDE CENTRB8L FLIF«FLBPW
RETURN
END - . e e e e e e e o
SURBRPGUTINES REQUIRED "~ 77 ™7 CTTTT S T mmomnine nmmom gmm e mmmomm I Themm o
RUNSTART \IFSNSWw  C8MPUTE ARM \ST8P
CeMMBN STARAGE
77705 CZERB 77727 CR3 64025 PHI T 70334 PH]AA ~ 70326 PH1BB
£5204 T 70665 CPRINT 70351 MARK 66033 PRIPRINT 77764 PHIB
77777 1sszoLp 7777¢ 13S2NEw 77775 1SS38LD 77774 ISS3NEw 77772 CPRNTT
77763 NXPES 77762 NXNEG 77761 NYPBS 77760 NYNEG 77757 NIFOS
7756 NINEG 77755 NRUM 77753 FEEMAx 77751 TBTALTIM 70663 DeHl
70662 1END 7C661 INDEX 70347 FEESQMAX 70346 NEGUT 70344 FEESAA
70342 FEESB3 70324 TUPAA 70322 TUPBB ~ 7C321 NTESTFEE 7C320 KuPBB
70317 1UPAA 7¢316 1uP3B 70315 NTIME 70314 1DAY 70313 NaRITE
66024 IPRINT = 852C3 NUPAA 65202 ICALLEND 65201 NPRINT ™™ 65260 NPERPR
65177 MENTH 65176 MUPBB
NEN-RECURSIVE STORAGE
00000 CMAT 0C022 ASUB CCC4%4 BSUB - C0066 TEND ™7~ 7 -
END BF CEMPILATIGN ™ ~ ° "7 T memenme o mammnn mmm s -
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CSMMBN 1SS291D, ISS2NEw, [SS38LD, ISS3NEws CPRNT TIME, PHIG, NXPES
CaMMBN NXNEG, NYPES, NYNEGs, NZPES, NINEG, NRUN, FEEMAX, T8TAL TIME
" ceMMBN CR3, CZERS, CPRINT, CPHI, TEND, INDEX, MARK, FEESQMAXs NBUT ~
CaMuON FEESAA, FEES3Bs ‘PHIAA, PHIBB, TuPAA, TUPBB» NTESTFEE, KUPBB
" CBMMBN TUPAA, IUPEB, NTIME, IDAY, NWRITE, PHIPRINT, PHI» IPRINT, T

COMMBN NUPAA, ICALLENE, NPRINT, NPERPR, MOTH, MUPBS

“1F (SENSE SWITCH £) 15,57 A RO
IF(IUPAA+IUPRE-1) 15,158,110

IF 38TH 1UPAA AND 1JP33 ARE SETs ONLY DO A TYPE B3 UPDATE.
1UPAA=Q

IPRINT=0 e e
Ge T8 120

TIFCIUPAAY 120,120,020 & T 77w s s e e e e o
IUPAA=L INDICATES A C MATRIX UPDATE INTERVAL HAS ELAPSED
1UPAA=0 ' -APSE!
[FUIPRINT) 60,6Cs40

KPRINT=1 7" °

K~FLAGS ARE SET UP SINCE THE [-FLAGS ARE SUDJECT T8 CHANGE [N THE
INCREMENT PH] INTERRUPT SUSREUTINE. - e N
IPRINT=Q

Ge T8 75 - -
KPRINT=G

5C
70

© P=1eC-FZECAA/E

T BSUB(2,1)=

"BSU2(3,2)=

SUBRBUTINE UPDATE C“ATQIX

CIMENSION CZERS(3,3),
DIMENSIZN PHI(3)s PHI
DIMENSI3N CPRINT(600

FEEWAA=FESSAASFEESAA ~ 7~

FEEEAASFLE4AASFEESAA

PSG=P«P
G=1+C/(2.

CR8(3,23), CMATI(3,3), ASUQ(3:3), BSUB(3,3)
AA(3), PHIBB(3)s T(200), TEND(2CO0)
23), MARK(200), PHIPRINT(&CO)s PKIB(3)

C+FEE4AA/12CeC-FEEGAA/DCHC.O0

C-FEESAA/2eC+FEL4AA/24C-FEEBAA/7200)

PHIZAAX=PHIAA{1)*PHIAA(L)
PHIZAAY=PHIAA(Z)2PHIAAL2) T o
PHI?AAZ’PHXAA(3)'PHIAA(3)

ASUZ(1,1)= 1.0
ASU3(1,2)=-P»PHIAA(3)
AQU (1,3)= PxPHIAA(Z)
ASUR(2,1)= PxPKIAA(3)
ASUZ(2,2)= 1.0 o
ASU3(2,3)==-PsPHIAA(L)
TASUS(3,1)=-FxPHTAA(Z)
ASUR(3,2)= D»PHIAA(l’

ASUR(3,3)= 1.0 ~

BSUE(1,1)==5«PS2#(PA]
BSU3(1,2)=
38U3(1,3)a

BSUB(2,2)==Q#PSQ* (PHI
BSUB(2,3)=
BSU2(3,1)=

BSUB(3,3)a=04PSG# (PH]

IF(KPRINT) 180,180,80 "

[RE¥=3=NPRINT
NPRINT=NPRINT+1

NPRINT IS THE TETAL NU”BER GF PRINTBUT MATRICES CALLED FBR 58

T(NPRINT) =TUPAA/3600%
pe_100 ¥=1,3

L=M+IROW S
PHIPRIVT(L)=PHIAA(M)
6 T8 180 -

CPSC#PHIAACLY«PHIAATRY 7 7o e =
O#PSI*PHIAA(1)sPHIAA(3)
G#PSO#PRIAA(Z)¥PHIAACYY —7 77 o

2AAZ+PH12AAY)

2AAX+PHI2AAZ)

C¥PSOAPHIAA(2)#PHIAALZ) "= m =7 e
Q¥PSGHPHIAA(3)%PHIAA(1)
DePSCHPHIAA(3) WPHIAATR) T 7= = s oo o

2AAX+PHI2AAY)

o -
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120 kuPgg=1" " " T
1UPBR=0
TFEE4BE=FEES3B#FEESBS 7 7
FEE6BS=FEE4EB¥FEESRS

o “Pz1eC-FTES33/6+C+FEE4#RB/120C-FEEBBR/S0N00 7T

PSA=P*P
e e =21, 0/(2.0-FEESSB/ 2. C+FEE4BB /24« 0-FEESBR/72CL0) T T T

PHXEBBX=PHIBB(1)*PHIBB(1)

S T

PH1Z332= PHIPB(a)»PHIBS(3)

e e AcUD(l 1)_ 1 O eomTT T Rt hdee b it et
ASUS(1,2)==P*PHIB2(3)
TTASUR(1,32)s PxPHIBB(2) T
ASUS(2,1)= PxPHIBBI(3)
TASU3(2,2)= 1.0 o
ASUS(2,3)==PxPKFIB3(1)

T TTTAGUR 3, 1) =-PaPISRI2YTT T T
ASUZ(3,2)= “*Dhlb:(l)

ASUR(333)=2 1.0
RQUR (1,1} ==0%P3S*(PHI28EZ+PH12B3Y)

" RSUR(1,2)= 0«PSA*PHIB3(1)«PHIBBI(2) T 77
BSUB(1,3)= C*PSC*PHIEB(l)*PHIBB(3)
BSUB(Z,1)= 2#PSR+PHIBB(2)#P=]IBB(1)
5su5(2,2>--"*Psﬁ*(wac ax+PH12832)
BSUS({2,3)= *PHI%“(E)*PHIBB(B)’
RSUB(3,1)= C*PSQ’PHIBE(3)»PHXSB(1)
B3UZ(3,2)= .*PsnapHIB<(3)«phxaﬂ(2)““ o

BSUS(3,3)=-5#Ps3» (PHI2B3X+PH1288Y)
IF (SENSE SAITCH 5) 1805140 ° - e e .
o SET SENSE SNITCH 5 TS SUP.‘E S FEE RESET PRINTBUT| B

140 XPRINT=1
IRDA23#NPRINT
NPRINT=NPRINT+I™"
T(NPRIVT)-TUPGB/360”-O
oo DB 160 M=1,37777 7
L=M+IROW
160 PHIPRINT(L)=PHIBBIM)Y ~ =™ e T m o nmTEEn
180 pp 200 M=1,3
. ) N DG 200 \;1‘3 T emm ot - R St
, . . 200 C“AT(“:\)-AQUE(V)V)+BSUB(MIN)
' ) Tt o pR 220 M=1,3 T i
D9 220 N=1,3
T CRS(”:N)-CWAT(”:1)*CZERS(11\)+CVAT(V12)GCZERB(2:N)+CPAT(M,3)!CZERB
1(3»N)
220 CeNTINyE T T e e cmnsomem o mo TS ST RS SmTAmTATT T vemiom Tt
1F {KUPBB) 260,260,240
\ c- 2407 1F (SENSE SWITCH 5) 420,300 ~ T Gy TR T T
260 IF(KPRINT) &60:460;280
280 MARK({NPRINTY=0 ~ ~ 7 oo oo

c THIS CAUSES PRINTEUT NBT Te PRIMT AN ASTERISK BY THIS MATRIX
~—-" 68 T8 320" e emimesn e mmemT s
300 MARK(NPRINT)=1
weC-n ~PRINT AN ASTERISK BY"THE MATRIX PRINTED gUT AT THIS TIME.,™ =~ 7~
c THIS INDICATES BN PRINTBUT THAT FEE WAS RESET

- 2pQ [0/ 340 M=1,3 T
De 340 Ns= 1;3

B L=Mi[ROW e et o e e i e -
340 CPRINT(L,N)= CRB(”:N)
IF(NPRINT-INDEX) 400,360,360 - e e e e s
360 1F(IEND) 380,380.400
380 Xf‘ALLEN"‘ [ e e C e e - e e
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€7 7 UALLUTHE CPRINT STSRAGE HAS BEEN USEDs

" CALL END 8F
400 KPRINT=0

RUN

IF(KUPB3) 4560,460s420
‘0 DR 440 M=1,3 ' )

D& 440 \ 1,3

T h4Q CZERS(MsN)=CREB(MIN)
C THE UPDATE WAS CAL LED BY
C ~ '~ CZER® MUST BE 3RO JGHT UP
KyPgg=0
“460 RETYRN 777
EVD

SUBRBUTINES REGQUIR
UPDATECM "\IFSNS

CBMMBN STSRAGE ~ ~°
"~ 77705 CZER9
65204 T
77777 15S28LD
77763 NXF2S
. 77756 NINEG
70662 1END
70342 FEESB3
70317 1UPAA
66024 1PRINT
65177 MENTH

NBN-RECURSIVE' STER
7000 CMAT

END 8F COBMPILATION

ED

% ENDSFRUN T

77727
7C665
77776
77762
77755

T 7C661

70324
7C316
65203

T 6E176

AGE
OCUEZ

CRB
CPRINT '
[SS2NEw
NXNEG
NRUN
INDEX
TUPAA
1uP28
NUPAA
vMUPRES

ASUB o

nEoETTING FEE T8 l:RBt
T8 DATE. o

\sy8pP

66025 PHI
70351 MARK
77775 1SS38LC
77751 NYPES
77753 FEEMAX

T 70347 FEESGMAX

7C322 TuP38B
70315 NTIME
£5222 ICALLEND

CCC#4 BSUB

70334 PHIAA
66033 PHIPRINT
77774 1SS3NEW
77760 NYNEG
77751 TGTALTIM.
70346 NBUT 7
70321 NTESTFEE
7C314 IDAY
65201 NPRINT

_CCo66 TEND

"70326

77764
77772
77757
70663
70344
70320
70313
652CC

P+18B
PHIO
CPRNTT
NZPOS
DPHI
FEESAA
KJpds
NaRITE
NPERPR
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© SUBRAUTINE INCREMENT ®PWp 77 0 T )
DIMENSICN CZERD(3,3), CR3(3,3), CMAT(3,3), ASUS(3,3), BSUB(3,3)
“DIMENSISN PHI(3)s PHIAA(3), PHIBBI3)s T(200), TEND(200) ~  ~ =~ 7 ==
DIMENSISN CPRINT(6C0,3), wARK(2C0), PHIPRINT(600), PHIB(3)
T C8MMENT 1SS22 D, ISS2NEW, '1SS3ELD, ISS3INEWs CPRNT TIME, PHIG, NXPOS ™
CeMMEN MNXNEG, ANYP8S, NYNEGs NZPSS, NINEG, NRUN, FEEMAX, TBTAL TIME
TTCeMMBNTCR3, CZERD, CPRINT, CPHI, TEND» 'INDEX,™ MARK, FEESGMAX, ‘NBUT
COMMaN FEZSAA, FEES3Bs» PHIAA, PHIBB, TUPAA, TUPBB, NTESTFEE, KUPBB
CEMUEN TUPAA, IUPEB, NTIMg, IDAY, NWRITE, PHIPRINT, PRI, IPRINT, T
CAMMBN N\UPAA, ICALLEND, NPRINT, NPERPR, “8:1THM, MUPBB"
T DXENXPYS.NXKEG T T o B o
DYZNYPBS-NYNEG
ST DZENZPASeNINEG T T T T CTeemeemems e
NXPaS=0
e NXNEGD e e e e ———— e e
NYP2S=z0
TTTNYNEGED
NZPSs§=0
CNINERSOT O S
PHI(1)=PHI(1)+DX*DPHI
PHI(2) =DM (B) 4Dy sDPHT ™ = " & e e e mmen el
PHI(3)=PHTI(3)+02Z*0PHI
NTIE=NTIvVE+36 ~ 7 -
NTESTFEE=NTESTFEE+]
FEESQR=FHI(1)nPHIfl’*PH1(3)*PHI(2)4FHI(3)~PHX(3Y"“" T
IF (MUP3E) 100,100,130
100 IFIFEESIR-FEESSYAX) 150,120,120 =~ 77 777 mormmim s s e
120 MyP33=1
Es¥ 030000 e - e .- SR
MEDZ CONTRIL FLIP-FLEP IS RZSET JUST PRIER T8 NEXT INTERRUPTe
"GB8 T9 140 A ’ o
30 JyP3B=}
c FEE wAS JUST RESETe UPDATE CMATRIXe 55 =~ mmmmes o o o memin s
MUP33=0 }
S QUPZEENTIME ot v e see e cee e o
FEESAA=FECSRR
_ FEESBS=FEEGAR ~ = = = eemee e e el eend em s i e L
PHIAA(L1)YaPKI(1)
CPHIAA(2)=PHI(2) T T T o e s e e
PHIAA(3)=PHI(3)
PH155(1):PH1(1)“ ’ T ST rms ot st e s ise e s s
PHI3Bl2)=PH](2)
o PHISB(R)EPH () e e e e e o .
PHI(1)=0.0 .
e BT R) 0@ t et meemeeemee e i e e
PHI{2)20,0
180 IFINTESTFEE=1C)Y 160,180,180 ™ W =~ = omsm omrs s e - s i
160 RETURN
. 180 NTESTFEE®Q " ™77 7777 17 ST s o e e s s e s e e
o UPDATE TIME HAS ELAPSED. UPDATE CMATRIX,
e P AASNUP AR T e e ek TR e
IUPAA=]
e P AAENTME e S S i s = ot 4 et i e e+ + e oo
IF (luPEB) 200,200,22
200 PHIAA(I)I®PHI (1) ~77 7 mmrsms s s mamm v s e s e s e s e o e
PHIAA(2)=PHI(2) .
PHIAA()ePHTI[3) 7 577 7 77 7w o S e i et s s e T e
FEESAA=FEESQOR
© 2207 1IF (NUPAA=NPERPR) 240s260,260 ™" 7"~ — = = -s=c necemmies e e
240 RETURN
260 NUPAASQ = = @ - e e e o e e e oo e

ow
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¢ PRINT TIME KpS ELAPSED. PRINTSUT CMATRIX.

NWRITE=NZRITE+]
IPRINTaL 77 7

IF (\WRITE=%gUT) 280,300,30C

PR0 RETURN 7
0 1eEND=1

c TETAL TIME HAS ELAPSEDs E\D THE RUNe'

RETURN
END T

AU;N{REMgN 7\3739

CBMMAN STORAGE

77705 CZER® 77727
65204 T 7C665
77777 15S28i.D 77776
77763 NXP3S 777¢2
77756 NINEG © 7775%
70662 1END 70661
70342 FEES33 0324
70317 1UPAA 70316
€6024% IPRINT 65203
65177 MENTH £5176
NBN-RECURSIVE STORACE
CO00C C¥AT geceee

CcR3
CPRINT
[SS2NENW
NXNEG
NRUN
INDEX
TUPAA
1JPER
NUPAA
MUPBB

ASUB

END 8F CEMPILATIBN ~° 77~

66025
7C351

© 77775

77761
77753
70347
70322
70315
€5202

"CCO44

PHI
MARK

15S38LD

NYPBS

FEEMAX ~
FEESGMAX

TUPBB
NTIME

ICALLEND

BSUB

70334
66033
77774
77760
77751
70346
70321
7¢C314
65201

C0066

PHIAA
PHIPRINT
ISS3NEW
NYNEG
TOTALTIM
NBUT

NTESTFEE

ICAY
NPRINT

"TEND

70326
77764
77772
77757

"70663

7C344
7C¢32C
70313
65200

PHIBB

PHIB

CPRNTT
NZPBS
DPHI

FEESAA

KUPEBB

NARITE
NPERPR
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CSUBREBUTINE £4D EF QUN T
DX”E\:I“V CZhQ3(<;J)l CQD(Jl:)I CWAT(3:3): ASUB(3:3)' BSUL(3I3’
TTTTUDIMENSIEN PHII), PEIAA(3)» PHIZBI3)s T(2C0), TEND(200) e

DIMENSION CPRINT(600,3), 1ARK(220), PHIPRIMT (600), PHIB(3)
TTTOTTCEMMEN 1852310, 15S2NDw, 1SS38L3, ISS3NEW, CPRNT™ TIME, PHIB, NxP8s -
CaMMEN NXNE5, NYPES, NYNEGs NZP2S, NZNEG, NRUN, FEEMAX, TETAL TIME
T CBMMBNUCR3, CZESS, CPRINT, OPHIS IERDS INDEX, “MARK, TFEESQMAX, NBUT T T
COMMEN FEESAA, FEES3B, PHIAA, PHIBB, TUPAA, TUPSB, NTESTFEE, KUPBB
TUTTTTTCRMYEN TUPAAY LUPER, NTIMES IDAY, NWRITE, PHIFRINT, PHI» IPRINTY T°
CEMMBN NUPAA, ICALLE\D: NPRINT, NPERPR, MO ITH, MUPBB
TSTTTTTTESM 0303003 7 -
o DISABLE THE CLS2CK PULSE.
T T CALLT DISARY (C2152,321C,1 51y~ s
CALL SYSTEM DIaARM
CALL sTasDBY
1COUNT=D
TlsKIpay oTT mo
M=0
g TEeM 0300502
C PLACE ALL INTEGRATBRS IN THE INITIAL Ce\hxrxe\ _MBDE.
720 N=3sMT T
L=M
: TMaMel
C M NUMEERS THE PRINT BUT MATRICES SERIALLY
T
PRINT 1000, CPRANT(<'1): CPNI\T(KaZ)l CrRINT(<:3)n _PHIPRINT(K).
e TN tae
IF(MARK (™)) 6Cs60,40
T URO0°PRINT 11050, 'Ly T(M), CPRINT(Ks1), CPRINT(Ks2), CPRINT(K»3), PHIPRI
INT(K)
-C 'PRINTRUT REZUIRED BECAUSE FEE WAS RESET. PRINT AN ASTERISK.
Ge T8 80
TTTUB0 PRINTTII00, Ka TUM)» CPRINT(Ks1), CPRINT(KS2)» CPRINT(K»3), PHIPR] ~ ~
INT(K)
80 KxKep = e
PRINT 1150, CPRINT((:l); CPRXNT(KIZ)I CPRIVT(K:3): PHIPRINT(K)
T IR AMeNPRINT) 85,110,110 - - - s
C WHEN MaNPRINT, ALL ST“RFD “ATQICES HAVE cEE\ PRINTED.
85 ICOUNT=ICBUNT+] . T
IFCICEUNT=6) 20,90,90
=790 ICBUNTsQ " v -~

PRINT 1170
TISKIPEISKIPHL 7 7 7 T e e i s s
IF(ISKIP=2) 9‘:100;100
- 95 Gg TB 20 - B I T, -
100 ISKIP=0
- B o1 B T -2 R e
110 IF(SENSE SWITCH 5) 140:120
120 PRINT 1200 RO TN G RATAN L mdmm AT e e e macws t  w vie smx | oy a e e e e e - — -
140 IF(ICALLEND) 18C»180,160
TIB0 PRINT 1RG0 = T o e e e e R
180 IF({1ISKIP) 220,220,200
.. _BOO.VPR.!NT .71170«‘_. e e —— T S e S et e i & A A e dmRas A i e el cvme e Cam— = - - e m— o
220 RETURN

~1000 FERMAT (52X» 2(F1148s SX), F11e8, 1CXs F1148)- Coe T )
‘750 FORMAT (12Xs 1H=s 2Xs 13, SX; F9oSl ‘OH SEC: 16Xl 2(F11-8a 5X)s F11
“1e8s 10Xs» F11.8) " — - — -~ - : i

1100 FSRAT (15X, 13, 5X, F945, 4H SEC, 16Xs 2(F11.8, 5x), F11
e B2 e N o) T b B - R T IR

1150 FER¥AT (52X, 2(F1148s 5X), F11.8, 10Xs F11:8///)

1170 FERMAT (s13)- - T o -
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1200 FER¥AT (3 AN ASTERISK (w) MCANS THIS PRINTOUT WAS CALLED BY FEE BE

1ING RESET T® ZEFRE

$//7)

1250 FERMAT (3 THERE WAS N3T ENBUGH STORAGE ALLOTTED IN CPRINT%///)

END

SUTTBUTINES REGUIRED

~DEFRUN™ DISARM’ SYSTEMD]

CBMMBN STERAGE

77705 CZER3 77727

65204 T 7C€685
77777 1sS23LD 77776
77763 NXPES -77762
77736 NINEG 77785
70662 1END 7C661
70342 FEESBRE 7C324
70317 I1UPAA 7C316
66024 IPKRINT 62233
65177 MENTH - 65176

NIN=-RECURSIVE STR3RAGE
0C000 CMAT gccea

CEND 9F CB¥PILATIGN

CRB
CPRINT
ISSANEW
NXNEG
NRUN
INDEX
TUPAA
1UP38
NUPAA
MJP33

ASUB

STANDRY

66025

70351

77775
777561
777323
7C347
7C322

© 70315

65202

Ceoss

\PRINT®

PHI

MARK "~
15538LD
NYPBS
FEEMAY
FEESGMAX
TUPEB
NTIME ~
ICALLEND

BSUB __

\IFSNSW ~\sTOP "

70334 PHIAA

"66033 PHIPRINT

77774 1SS3NEW

"777€J NYNEG

77751 TOTALTIM
70346 NOUT
70321 NTESTFEE

70314 DAY
165201 NPRINT

CCO66 TEND

70326
77764
77772
77757
70663
70344
7CG320
70313
65200

PH1BB
PHISB
CPRNTT
NZPBS
DPHI
FEESAA
KupBB
NA4RITE
NPERPR
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APPENDIX F

NOTATION CONVENTIONS

F.1 Matrices

Matrices are represented by a capital Greek or Roman
letters. 1In particular
C = direction cosine matrix
Coordinate transformation matrices bear a pair of capital
letter superscripts: the first indicating the coordinate
frame of the transformed vector, the second indicating the
coordinate frame of the vector to be transformed. For
example
CMN = the direction cosine transformation from the
N frame to the M frame
(The coordinate frame indices always occur in pairs on coor-
dinate transformation operators.) Other matrix conventions
are

AT = the transpose of A

(TPQ)~1 PQ

the inverse of T

F.2 Vectorxs

Vectors are designated by a subwritten bar. For example:
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As in the case of matrices,

g? = the transpose of a

The coordinate frame in which the components of a vector are
expressed is indicated by a capital letter superscript. For
example:

£S = the vector r coordinatized in the S frame

A component of a vector is indicated by a lower case subscript.

For example:

V§ = the y component in the I frame coordinate sys-
tem of V
The special symbol 1 is used for denoting a unit vector in
the direction of a coordinate frame coordinate axis. For

example:

li = a unit vector in the direction of the R frame

X axis.

F.3 The Cross Product Operator

The notation

A = [a x]
is used to denote the matrix equivalent of taking the cross
product of the vector a into another vector. For example:
Ab=1laxI'b=axb

If the components of a (necessarily in the same coordinate

frame as the components of Q) are Ay ay, and a,r then

0 -a, ay
A = [a x] = a, 0 —a,
-a a 0

y X 221
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F.4 Coordinate Frames and the Time Derivative

From time to time it is necessary to indicate both the
coordinate frame with respect to which the time derivative
of a vector is taken and the coordinate frame in which the
components of the time derivative are expressed. The nota-

tion

o
3

Qs

o

indicates that the derivative of the vector v is taken with
respect to the Q coordinate frame. The notation

dP

<

I

dt
indicates that the components of the derivative are given

with respect to the P coordinate frame. For example

P P

o))
<
o
<

gi
1.

- U)P X VP
=PQ —

(o}

(1-
0

Q
]

t

is the Law of Coriolis applied to the vector Vv where all vec-
tors are coordinatized in the P frame, the derivative on the
left~hand side is taken with respect to the O frame, and the
derivative on the right-hand side is taken with respect to

the P frame.
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