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ABSTRACT

The MHD stability of tangential discontinuities is first con-

sidered. We treat these discontinuities as structured forms rather

than as sharp breaks in the magnetic field. An unfamiliar form of

the MHD energy principle is applied, and stability is proved pro-

vided that there is no fluid flow tangent to the "discontinuity" plane.

Perturbations which simply transform the system from one equi-

librium to another are neutrally stable. Using comparison theorems

we conclude that the observed stability of tangential forms in the

solar wind implies near isotropy of the particle pressure in them.
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STABILITY OF TANGENTIAL DISCONTINUITIES

The frequent appearance of tangential discontinuities in the solar wind flow

(Burlaga, 1968; Siscoe et a]., 1968; Burlaga and Ness, 1969) suggests that they

are stable structures. Contrary to the implication of the name "discontinuities,"

these structures are often thick enough that their internal details can be observed

within the time resolution of the measurements (Siscoe et al., 1968: Burlaga and

Ness, 1969). They therefore are more appropriately named tangential forms.

These forms are stationary in and convect with the solar wind. In the solar wind

frame the magnetic field lines are straight and rotate in direction about an axis

normal to the "discontinuity" plane. However, as stated above, the "discontinuity"

really is thick and should be considered as a series of parallel planes (see Fig.

1). As the field rotates through the form, it may change magnitude also. The

special case where the magnitude is constant is a force-free field (Woltjer,

1958).] 	 rotation varies from monotonic, to non-uniform, to erratic (Siscoe

et al., 1968; Burlaga and Ness, 1969). Because of this great variety of patterns,

which have been seen to convect hundreds of earth radii (Fairfield, 1968;

Burlaga and Ness, 1969), it seems that there should exist a universal proof of

their stability .

There is in fact such a proof. This proof follows from an unfamiliar form

of the MHD energy principle. This form was published recently by Grad and

Rebhan (1969). They show that the second order variation in total energy

(magnetic plus plasma) of an MHD system under a trial displacement (y can

be written
[3..
Y

,i.
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where B(r) is the unperturbed (equilibrium) magnetic field at point r, P(K) is the

unperturbed pressure, and the integration extends over the system. The necessary

and sufficient condition for stability is that b W > o for all 	 satisfying certain

boundary conditions. The (r) need not be normal modes. The energy variation

linear in 5 vanishes for equilibrium.ti

For an unbounded spatial system the energy principle exists only for the

class of displacements which vanish as one goes infinitely far from the originti

of an arbitrarily located coordinate system. Our stability analysis is therefore

restricted to such perturbations. Practically speaking, we are thus limiting

ourselves to perturbations of scale length short compared to the lateral (i.e.,

parallel to the discontinuity plane) extent of the observed tangential forms.

Such is not a serious limitation, however, as tangential forms have a lateral

extent of tens of R E (Burlaga and Ness, 1969), and we expect any perturbing

effect to be of much smaller dimension. Indeed our unbounded model is r_ot

even appropriate for treating perturbations of scale length comparable with the

lateral :size of the tangential forms.

Returning to Eq. (1), we see that the first and last terms in the integrand

are positive definite. The middle term happens to vanish for all tangential

forms. Therefore all tangential forms are hydromagnetic ally stable. The

vanishing of the middle term is easily seen from the following relations. At

equilibrium
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G'^Pt 8^ 	
B. D B	 (3)

Thus any situation, such as the tangential forms, where B does not vary as

one moves along a field line, is stable. This stability is not recognizable from

the usual (Bernstein et al., 1958) form of S W.

Syrovatskii (1953) has solved the sharp boundary problem. The solution is

reproduced by Landau and Lifshitz (1960). In his work, structure is ignored and

the tangential discontinuity is represented as the sharp plane interface between

two incompressible fluids. The magnetic field is tangent to and changes dis-

continuously (in magnitude and direction) across the interface. In the absence

of tangential fluid flows at the interface, this configuration is hydromagnetic ally

stable. Our result proves stability in the more general case of an arbitrarily

structured transition regardless of the compressibility of the fluid.

One can not show from Eq. (1) the neutral stability of our structured system

to perturbations which either (a) rotate the direction of B by an arbitrary angle

uniforml y in any discontinuity plane; (b) increase the magnitude of B by an arbi-

trary amount uniformly in any discontinuity plane; or (c) both rotate the direction

of B and increase its magnitude. Any configuration obtained by processes a-c

is another equilibrium, since for each such configuration 0 P = I x B . Further,

these equilibria are dense: there is infinitesimally close to any equilibrium

another equilibrium obtained by rotating the r,i,-. netic field of the initial equi-

librium through an infinitesimal angle and/or by increasing its magnitude by an

infinitesimal amount. The transition between such infinitesimally adjacent
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equilibria is continuous in the sense that the macroscopic variables (pressure,

magnetic field, and density) change smoothly. One can pass by processes a-c

between two finitely separated equilibria by a series of infinitesimal displacements

ti through intermediate states, all of which are themselves equilibria. For each

one expects b W = 0.
ti

The trouble is app lying Eq. (1) to show that b W = 0 for such e , s i$ (that the Iti

5's are not spatially local (in fact, ti becomes larger in magnitude as one gets

further from the origin of coordinates) and surface terms which have been

neglected in deriving Eq. (1) become important.

The neutral stability of such rotational perturbations is, however, evident

from a more primitive form (Bernstein et al., 1958) of S W

SW = - If F . 1-I^ ^ c I'V	 (4)

where

..

r it ^ - c^^Pv• r C -ti PI

-r	 x	 X(, x^)^-x 1 v^ ^ax(^ xB)j	 (5)

is the force on the element of fluid (of mass density p) displaced from its

equilibrium position by the amount] . (In Eq. (5) 'Y is the ratio of specific heatsti

and all quantities take their equilibrium values).

In the Appendix we discuss the form of which produces (uniformly in each

discontinuity plane) an infinitesimal rotation of B and infinitesimal change in 	 .ti

We conclude that without loss of generality	 can be represented as the 2-
ti

dimensional vector

^^r-rte
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= x ► 	 ((I) X, 	
CK +^P(^)GC^)].x^ f e.2	 (6)

We here adopt the orthogonal coordinate system x, ,x z ,z with e l (;:) _ (z)/

131 (z) I , e . along the rotation axis and therefore normal to the dir ► continuity

plane, and e l X e 2 = 
e z . P(z) and B(z) in Eq. (6) are the pressure and magnetic

field intensity of the initial equilibrium; K' = (P' + $ - A) is th ,3 fi; ,st order

change in total pressure (magnetic plus thermal) produced by the perturbation

and is independent of z (primes denote perturbations); G (z) = B • P' B- 2 - P'(yP )- 1

-_	 is the first order change in In	 p-1) (The density p and P are related by Pp- r

= const. ); and E (z) _ (' ' e 2 )	 - 1 is to first order the sine of the rotation

angle. In the Appendix we also show that for as given by Eq. (6) F { } and

hence S W vanish.

The importance of establishing MHD stability lies 'n comparison theorems

a	 (Kulsrud, 1964), which show that the hydromagnetic 6W is less than any of the

"_ rt	 SW's obtained using one or more adiabatic invariant3 in a collisionless plasma.

'

	

	 The following conditions must, however, be met fog the comparison theorems to

hold: (1) the y of the gas in the MHD g W must b y. taken as 5/3, as it has been

in deriving Eq. (1); (2) the pressure in the adiabatic S W's must be taken as

isotropic. From the comparison theorems wf; thus conclude that collisionless

tangential forms should be stable for isotropic pressures.

•

	

	 If the pressure anywhere in the tange-atial form were sufficiently aniso-

tropic, the mirror and firehose instabilities (Rosenbluth, 1956 i Chandrasekhar

et al., 1958) would exist. These instabilities can be derived from the adiabatic

'	 SW's and are not prohibited by the comparison theorems which hold only for

5



isotropic pressure. The long-term stability of the tangential forms is experi-

mental evidence that the pressure in them is not excessively anisotropic.
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Figure Caption

The Structure of a Tangential Discontinuity. Five slices through the discontinuil

are shown. B changes arbitrarily in magnitude and direction from sheet to

sheet but always remains in the plane of a sheet.
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APPENDIX

We here outline the derivation of the 2-dimensional plasma displacement

c, given by Eq. (u), which produces an infinitesimal rotation of B and an infini-

tesimaI change in I B1. We then show that for this; , F i y) as given by Eq. (5)

vanishes. NVe conclude by discussing an equilibrium-transforming 3-dimensional

Z and prove that the changes in pressure and magnetic field produced by this 3-

dimension'-', plasma displacement can always be effected by a 2-dimensional s .ti

Since the perturbed state is also a tangential aiscontinuity we demand that

it satisfy three conditions:

(t ^^^ C	 r.r)=(^	 (A-1)

P
z

t r1= (P4-	 e f	 ` ( Ĵ l C +)(1.%	 (A-3)

Condition A-1 requires that the total magnetic Leid not vary as one moves along

a field line. Condition A-2 asserts that the total pressure is everywhere constant,

whi'le from condition A-3 the partial p-ressures and B itself may change but

only in the direction perpendicular to the discontinuity planes. In linearized

form these ccndit-lor_s are

(A-la)

	

P l k' B 1 - f`	 (A-2a)
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In terms of the plasma displacement e , the pressure perturbation P' and
ti

the magnetic field perturbation B' are (Bernstein et al., 1958)

^ I =	 r — Y r 17• j 	 (A-4)

(A-5)

We next assume that a has only xl and x 2 components, use A-4 and A-5ti

for P' and B' (e -VP = e • 0 ^ = 0 for this 2-dimensional ), and obtain

expressions for the components from the conditions A-la - A-3a. We find
ti

that the most general 2-dimensional is
ti

Af, = [ ,X , '- "i \ I	
.

+ ^QZ) X, — (^(P t^K' t	 G(z^ J f ^. c^ ^'^ (Z) (A-6)

In (A-6) L represents a translation of plasma in the x2 direction, uniform in

each discontinuity plane, but varying arbitrarily from one discontinuity plane

to another. Since a tangential discontinuity is at each z infinite and uniform in

the x 2 direction, the translation L does not effect either a pressure or magnetic

field change. Hence we take L = 0. Similar arguments also justify dropping H.

When we now reintroduce A-6 into Eqs. A-4 and A-5, we find

A J , + Y P ^r
' l f t ^,	 ----	 (A-7)

(A-8)

i
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Solving for E and G (using A-2a for K'), we obtain

(A-9)
(4 1

and

(A-10)

is to first order the sine of the rotation angle. From the relation Pp --1 = const.,

it is easily shown that G is the first order change intn( I B

Proving that F	 as given by Eq. (5) vanishes for ti as given by A-6 is a

straightforward exercise in differentiation. The individual terms appearing in

F are
ti

l	 ^`	 l
4	 3 L

!	 1	 ^j	 \ J !
Oj

` ,Kl,:X011 
_ -f'^ ^a^` . `r_̀ f ^^!	 1^?^(rP^-^'^ (^+^P'^

c'^

The sum of these four terms is zero. To show this we use the facts that

a /? z ( N I . e2 ) = 0 and ^ 1'8 z (P + B-//2) = 0.

The entire procedure outlined so fax i.n this Appendix can also be applied to

the case where is assumed to have a z-component in addition to its x l and

X 2 components. Neglecting trivial arbitrarinesses (terms equivalent to H and

L in A-6), we find
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For this ; it is also straightforwardly shown that F {6 } = 0.
ti	 ti ti

We note from (A-11) that if C is independent of z so that the z-translation

of plasma is uniform among discontinuity planes, no other component of is

modified. In this case C is a trivial rigid transiation of the entire system. How-

ever, when C depends on z the plasma density and hence the plasma pressure

are changed in a non-trivial manner by the plasma displacement C. The magnetic

pressure is also changed since the moving, conducting plasma carries field

lines along with it. The dependence of plasma pressure and magnetic pressure

on density is not the same however, so that in order to maintain constant total

pressure in the z-direction, the plasma expands (or contracts, depending on

the sign of aCPz) in the x  direction.

The pressure and magnetic field perturbations produced by the 3-dimensional

ti
are

1'{
A

	

	 C ?1EIP

	

l^	 d Z (A-12)^P+ F	 IEI o ^

	

I - —	 ClT _	
If^ ^r	 — ^' r	 (A-15)

t P	 d
It is possible to relate e, G, and C to changes in pressure and magnetic field,

4

s	 just as was done in Eqs. A-9 and A-10 for the two dimensional .

's
4
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ti	 ti

Suppose now we define E and G as

	

E ^^^	 — Pl	 (A-14)
)Z

I fJ I	 F r	 = f ^^	 fi i'	 (A-15)
ad-

It may then be readily verified that A-12 and A-13 become

' - r l [ea	 t ^J	 (A-16)

	

X	 +
(A-17)

X

Comparison with A-7 and A-8 indicates that these same changes B' and P'ti

can be effected by the 2 dimensional 5ti

x;	 e^ -F 
L

= J X, 	 (k J f ^f ^: y^ ^) C,	 (A-ls)

Eqs. A-14 - A-18 illustrate the fact that the same changes in magnetic

field and pressure can result from several different plasma motions. In

particular changes due to an infinitesimal three dimensional plasma displace-

ment which transforms one tangential discontinuity into another can always

be duplicated by a s having only x l and x2 components.	 j

12
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