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INTRODUCTION

The classical Kepler equations for the elliptic and hyperbolic

cases of two-body motion are written

M= E- e sin 

(1)

M=a sinhH - H

respectively, where

M= Ta7(t -T) 	(2)

Here a is the semi-major axis; T is the time of pericenter passage;

µ = G(ml + m2), where G is the universal gravitational constant and

ml and m2 are the masses of the two bodies; and e is the eccentricity

of the relative orbital motion. The quantities E and H are defined by

the relations

tan E/2 = l+e tan 0/2

tanh H/2= 
1+e 

tan 0/2
$s

where 0 is the true anomaly. Note that we have used the sign conven-

tion for the semimajor axis, i.e., a > 0 for an ellipse and a < 0 for

a hyperbola. In both cases a is obta-ned from the equation

(	
1_1

- \ 2 - v2
a

r µ

where r and v are the magnitudes of the position and velocity vec-

tors respectively.

a	 1

(3)



It is easily shown that Kepler's equation possesses a unique

solution. Wien the eccentricity is not close to one, there are effi-

cient iterative methods for obtaining this solution. However, when a

becomes large and forces the eccentricity near unity, both the elliptic

and 'hyperbolic equations suffer a critical loss of accuracy. These are

designated "nearly-parabolic" orbits and their solution requires special

treatment.

The parabolic motion is described by the cubic equation

2 . ! 1 ( t - T ) = tan g j 2 + 1 tan A /2	( 5)
V

where p is the semilatus rectum and is such that

p = a (1-e2)

for elliptic and hyperbolic motion and

p=2q

for parabolic motion, where q is the distance between the focus and

vertex of the parabola. It is easily shown that one and only one real

root exists for this equation.

THE GAUSS METHOD

The classical method for solving Kepler's equation in the nearly

parabolic region is an iteration approach due to Gauss, and a detailed

description of the technique has been given by Herget C57 . The method

requires the use of auxiliary functional quantities which are usually
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obtained from special tables. However, Benima et al 
[2] 

have derived

series expansions for these quantities which makes the method suitable

for high-speed computer solution. Following the notation of Benima, the

equations for Gauss' solution are

1-` _ge
	 5( 1-e)	 5(1*e)	 (6)a= i	 10	 b 1 + 9e	 c= 1 +9e

	

A = b tang w/2	 (7)

B a 
2q 

(t - T) - tan w/2 + 3 tan3 w/2	 (8)

tan 0/2 = c C tan w/2	 (9)

where

A=15(E- sin E)	 B_20f+T
9E + sin E	 '	 9E + sin E

C = -1 tan E/2
3^

for elliptic orbits and

A_ 15(H- sinhH)	 B_20V_-_A
9H + sin H	 '	 9H + sinh H

C = 1 tanh H/2

for hyperbolic orbits.

Since B and C are functions of A, they may be tabulated or, as

developed by Benima et al, expanded as

3
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I,

i

i

(10)

(11)



W	 S

B =	 S^ Ai 	 C =	 yj Ai	( 12)

J=O	 J=O

This form is more efficient for computers, because now only the coef-

ficients need be stored. The first eight coefficients for these expan-

sions have been presented by the above authors.

The Gauss procedure to determine g from (t - T) is to solve equa-

tion (8) for tan w/2 by successive approximation, beginning with B = 1.

The value of tan w/2 obtained by solving the cubic equation with B = 1

permits the computation of A by equation (7). This in turn yields a

new value for B by the series expansion (12) and permits a more ac-

curate solution for tan w/2. This process is repeated imtil A reaches

a desired accuracy, and then tan 012 is computed from equation (9),

having used the expansion (12) for the calculation of C. Rapid con-

vergence of the method results from the condition that ^j = 0 in equa-

tions (12). Numerical efficiency is increased if, after the first

step through the algorithm, the cubic equation is solved by a single

iteration using the solution of the cubic from the previous step as an

initial guess. It should be noted that double precision accuracy re-

quirements for other than short time intervals would force the calcu-

lation of more series coefficients than the eight given and hence the

expense of considerable labor.

The calculation of (t - T) when given 9, the reverse of the above

problem, is not rapidly convergent using the Gauss method. For `.his
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calculation Benima et al introduce the series

C-2 =

	

	 of Aj
	

(13)
J=O

which is somewhat more rapidly convergent than the series for C. The

procedure is then to set C = 1, obtain tan w/2 from equation (9), com-

pute a value for A from equation (7), and then calculate a new C 2

from the zeries (13). This scheme is repeated until A reaches its

final value, then B is computed from equation (12) and (t - T) from

equation (8) .

The position and velocity may be written

r = q D (1 - tan  9/2) 1 F + 2q D tan 9 12 In

(14)

v	
q l+e \1 + tan e 2^ L-2 tan 9/2 l E + (l+e - tan' A/2)TnJ

where ^^ is a unit vector in the direction of pericenter and I n is a

unit vector in the direction of t, X Y where -L is the angular momentum

of the orbit. Here

D=1 (1+cos E)2
for an ellipse and

D 2 (1 + cosh H)

for a hyperbola. As before D may be tabulated as a function of A,

expanded as
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D	
L b j Ai	 (15)	 '

j-0

or simply calculated from

D :_ (1 + AC') 
i	

(16)

The coefficients $ j , y j , Qj and 6  are presented in Table II of
reference [2] and are reproduced in our Table I for completeness.

THE UNIVERSAL METHOD

In place of the separate equations given above to describe ellip-

tic, parabolic and hyperbolic motion, a universally valid Kepler equa-

tion may be written Ell

(t-to) = A 83 S(aH2 ) + B ^2 
C(ae2) + ro 8

2	 (17)
ro , vo	 1	 2	 vo

A=1 -aro,	 B= 	 a=a = ro	 µAl

where ro and vo are the position and velocity vectors at time t = to

and the C and S f actions are defined by the series

( -x) i	 C( x) _
i
	 -x)1	 (18)

i=0 (21 + 3) '.i=0 (21 + 2)

The symbols A, B, C and a defined above are independent of these of the

previous section. Given the time t and the position and velocity at

to, S is found from equation (17). The position and velocity at time

6



t are

r = [1 - ro C (a	 fP`)] r0 + L(t - to) - 	S (aB2 )J v0

v = rr o [Cle 3 S(ao2) - P^ rc + F1 - 
	

C( cxB2 ) J vo 	 (19)

r = A B' C(crB2) + B 18 - a 8 3 S(aB2 )] + r0.

The universal Kepler equation, which is independent of the peri-

center location has several important features. For a = 0, the para-

bolic case, equation (17) reduces as it should to the cubic equation

f(E) = ,7 (t - to)	 (20

where

f(8) =
6

A P3+ 2
BB24 roB.	 (21)

For the parabolic case B may then be identified as ^—p ' (tan 812 - tan 90/2)•

Moreover if we define

y(9) = A 83 S( QV82 ) + B 82 C ( crB2 ) + ro B	 ( 22)

we find that

° ro +A 82 C(^82 ) + BL^-aB3 S(a82 ) j =r	 (23)

when 
do 

is evaluated aL the root of y(P) _	 (t-to). We also find

that y(B) has inflection poiati given by

7



(24)

V

1	 -1
tan	

B/_9
Binf - —
	

l- A J
V 01

when a > 0 and

B	 = 1 tank-1 /7 13 V"--,Y)
inf 

3-a	
A l

when a < 0. Thus there is only one inflection point for hyperbolic

motion and an infinite number given by

(25)

+ nn

Binf - Binf
o 3a

n = 0, fl, f2,	 .. (26)

for elliptic motion, where 
Binf 

denotes the principal value of the
G

arctan in equation (24). The value of y at an inflection point is
+ B

given by y(8inf) _ 
Oinfa	

for all a.

Various tecr^iques exist in the literature for the solution of

equation ( 17) for ^ when ( t-to) is given. In general an iterative

method will be found most efficient, but in certain instances other

methods of solution may be advantageous[41.

For the case under consideration, that of nearly parabolic motion,

a is a small quantity. This fact has been utilized in expanding the

solution of equation (17) as a power series in a[3]. However, under

this situation the universal Kepler equation may be solved very effi-

ciently for P. given (t-to) by calculating an initial value for ^ from

the cubic equation (20) and then applying a Newtjn-Raphson iteration

technique. Optimal computing forms for the C and S functions have been

obtained 
[61 

which greatly increase the numberial efficiency when



solving the universal formulation. This method of solution then has

advantage over the Gauss method in that it is not tied to periapsis

location, and moreover it is a special solution for nearly parabolic

motion only in the selection of an appropriate starting value for the

iteration procedure. In direct numerical comparison with the Gauss

procedure of Benima. et al, the methods displayed equality for short time

intervals (approximately three iterations for double precision accuracy),

but otherwise the universal technique displayed marked superiority.

_'—*--es 1 and 2 are graphs of y(^) and f(^) for elliptic and hyperbolic

orbits respectively showing the approximating features of the cubics

f(8) expanded about inflection points.

In contrast to the Gauss method, the reverse calculation using

the universal Kepler equation is as efficient as the procedure outlined

above. If ^ is a given quantity, (t-to) may be simply evaluated from

equation (17) with no numerical difficulty. The calculation with

(8-8 0) as a given quantity is a little more involved. The dependence

of the eccentric anomaly and its hyperbolic counterpart on the true

anomaly may be written

E-Eo
tan 2 = f d

H-Ho
tank 2 = ;/ -a d

A-Ao
ro sin ,

d=	 —
E 	 8-90	 A-Ao

l cos 2 - B sin 2

ro

cot `A2Ao^ r 0 ( 2-aro) - B` J - B

(27)

t
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rr^

Figure 1



Figure 2



(28)

Define

X EE-E C
, X -

_ H-ho

2

where we express

p = a(l-e2 ) = 2ro - aro2 - B2

to retain significant digits which would otherwise be lost when e ie

close to unity.

for elliptic and hyperbolic motion respectively. There then results

the universal equation

x - a x3 S(ax2) = d 
r

Fl - axe C(ax2)
	

(29)

where x is related to the universal variable ^ of equation (17) by

i	 x =2^'1
	

( 30)

The solution of equation (29) may be easily obtained by a Newton-Raphson

method, yielding

r 2 )^ - d[l-axi
2
 C(axi 2 )]xi -axi 3 S(axi 

(31)
i 1	 i	

L1-axi2 C(axi2 ) I + adj xi -axi3 S(axi2)^

The authors have found that full double precision accuracy is usually

attained in only two iterations with the use of

10



1
i

xo = 1 tan-1 (/a— d)
Q'

(32)

xo = 1 tanh-1 ( a d)

as initial values for the elliptic and hyperbolic cases respectively.

Then by equations (30), (17) and reduction formulas for the C and S

functions Ill we may calculate the time from

Ax3 S(4ax2)T (t-to) = 4	 + 2 Bx2 C(4ax2 ) + rox
2

or
	

(33)

2 (t-to) = Ax3S(ax2) + rox + ^1-axe S(01X2)

`ix3 C(ax2 ) + Bx2(1-axe S( ax2 ) )}

It should be noted that another technique for the solution of the

reverse calculation which is more efficient than the Gauss method lies

in the use of the unified form of Lambert's theorem, due to Lancaster

and Blanchard L71 , where a series expansion is given for the normalized

time of flight in the near parabolic region.
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