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EXPERIMENTAL WERBFICATBON OF EFFECTS OF T U R ~ ~ ~ ~ N ~  BOUNDARY MYERS 

ON C ~ ~ ~ ~ C A ~ ~ K ~ N ~ T ~ C  MEASUREMENTS BN A SHOCK TUBE 

by F. E. Bel les and T. A. Brabbs 

Lewis Research Center 
Na t i ona 1 Aeronau t i cs and Space Adml n I s t r a  t T on 

Cleveland, Ohio 

Experiments were conducted t o  demonstrate the existence and magnitude 

o f  the e f f e c t s  o f  nonuniform shock-tube f l ow  on k i n e t i c  resul ts .  Atomic- 

oxygen concentrat ion was observed I n  a r i c h  H2/02/CO/Ar mixture behind 

inc ident  shocks t h a t  produced turbulent  boundary-layers and essent ia l  ly  con- 

s tan t  shock-front temperatures, a t  e igh t  i n i t i a l  pressures from 50 t o  820 

t o r r ,  The exponential time-constant f o r  growth o f  [O) and the time a t  which 

peak concentrat ion 

H + 02 4 OH + 0. 

data using two ana 

occurs are governed by the ra te  constant f o r  

Values o f  the r a t e  constant were f i t  t o  the 120-torr 

yses: one incorporat ing the boundary-layer e f f e c t s  on 

f l o w  propert ies and residence time as formulated by Wirels; and the other 

making the conventional assumption o f  constant post-shock condit ions. Two 

sets o f  predic t ions were then made f o r  the lower-pressure runs and compared 

w i t h  experiment. The comparison showed t h a t  the conventional analysis i s  

incorrect ;  t h a t  there i s  a large e r r o r  i n  the ra te  constant derived from it; 

and t h a t  M i  r e l s '  formulas s a t i s f a c t o r i l y  account fo r  the observed resul ts,  

I NT'RODUCTI ON 

M i re l s  has suggested tha t  f l o w  non-uniformit ies induced by the boundary 

layer behind an inc ident  shock may s i g n i f i c a n t l y  a f f e c t  shock-tube studies 
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of. chemical k inet ics ,  

steady case i n  which the shock and the contact surface have reached t h e i r  

maximum separation2,3. 

and gas residence time are a l l  predicted t o  increase w i t h  distance behind 

the shock f ron t ,  even though at tenuat ion of the shock i s  no longer considered. 

H i s  discussion' of these e f f e c t s  was f o r  the quasl- 

Under these circumstances the temperature, densi t y s  

M i re l s '  suggestion has apparently not had a great impact on chemists 

using shock tubes. There have been only  a few published instances i n  which 

correct ions for  changing condi t ions were mentioned and s t i l l  fewer i n  which 

correct ions were appll ied. And even i n  the most thorough analysis4 t h a t  has 

been performed, there were no concurrent experiments t o  show t h a t  the k i n e t i c  

data actual  l y  requi red correct ion,  nor tha t  M i  r e l s l  formulation1 o f  boundary- 

layer e f f e c t s  was a proper basis f o r  making corrections. Thus, i t  i s  not  

su rp r i s ing  t h a t  others should hes i ta te  t o  rev ise the usual p rac t i ce  of  i n t e r -  

p re t i ng  shock-tube data as i f  the f l ow  remained uniform, 

'The present work was done t o  show tha t  the changing condi t ions behind 

shock waves do indeed have a s i g n i f i c a n t  e f f e c t  on k i n e t i c  data, and t o  

invest igate how w e l l  Edirelsl desc r ip t i on  o f  the f l o w  appl ies t o  experiments 

done i n  the presence of  turbulent  boundary layers, The approach was t o  do 

a k i n e t i c  experiment i n  reverse: Rather than measure ra te  data, co r rec t  

them f o r  boundaryPlayer e f fec ts ,  and then compare the resu l t s  w i t h  other 

data which are themselves o f  uncer ta in  accuracy, we explo i ted the s e n s i t i v i t y  

t o  changing f l ow  condi t ions o f  a slmple chemical system t h a t  i s  already we l l  

understood. 

ature, emits a b r i e f  pulse o f  b lue l i g h t .  'The shape and time o f  occurrence 

o f  t h i s  pulse a re  governed almost e n t i r e l y  by a s i n g l e  reaction, the ra te  

A very r i c h  H2/02/C0 mixture, when shocked t o  a s u i t a b l e  temper- 



and progress o f  which a re  sens i t i ve  t o  changes i n  temperature, density, and 

residence time. Therefore, the l i g h t  pulse serves as a chemical transducer 

w i th  which t o  probe the f low proper t ies.  

A ser ies o f  observed l i g h t  pulses was analyzed w i t h  and wi thout  con- 

s idera t ion  o f  boundary-layer e f fec ts .  The s i m p l i c i t y  o f  the chemistry made 

i t  poss ib le  t o  ca r ry  ou t  the two analyses by using i n  each a d i f f e r e n t  value 

of the c r u c i a l  parameter: the ra te  constant of the dominant reaction. The 

v a l i d i t y  o f  each method o f  analys is  could then be judged by i t s  success i n  

accounting f o r  the experimental resu l ts .  

BACKGROUND 

Boundary-Layer Ef fects  

A f t e r  the shock and contact surface have reached t h e i r  maximum sepa- 

ra t ion,  the temperature, density, and residence time o f  the gas a l l  increase 

behind the shock as they would i n  a Subsonic f low i f  the cross-sectional 

area of  the passage were increasing. 

layer, the e f f e c t i v e  area i s  given by the fo l l ow ing  equation 

For the case of a tu rbu len t  boundary 

1 

where 

A, e f f e c t i v e  cross-sect ional  are$ o f  tube 

A actua 1 cross-sect iona 1 area o f  tube 

x distance behind shock, equal t o  ( laboratory  time) x (shock ve loc i t y )  

1, maximum separation of shock apd contact  surface. 

The value o f  1, depends on the gas mixture and i t s  i n i t i a l  temperature and 

pressure, the hydrau l i c  diameter of the tube, and the Mach number of the 

shock, and can be ca lcu lated from formula$ given i n  reference 3 .  
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Chem i s t r y  

The i n t e n s i t y  o f  the blue l i g h t  (60 flame-band rad iat ion)  t h a t  i s  

emitted when a H2/02/60 mixture i s  shock-heated t o  s u f f i c i e n t l y  h igh 

temperature i s  d i r e c t l y  proport ional  t o  the product o f  CO and 0 concen- 

t rat ions5. 

compared t o  OZp very l i t t l e  of the 60 i s  consumed; thus, the l i g h t  i n t e n s i t y  

e s s e n t i a l l y  var ies w i t h  the 0 concentration, [O]. 

I f  the mixture contains r e l a t i v e l y  large amounts o f  H2 and CO 

We1 1-conf i rmed shows tha t  [O] i s  governed by the f o l  lowing 

sequence o f  reactions. Immediately a f t e r  the gas has been shock-heated, 

one o r  both o f  the fo l lowing i n i t i a t i o n  reactions produce a small concen- 

t r a t i o n  o f  chain-carr iers (H, 0, o r  OH): 

H2 + 02 --3 20H 0) 
CO + 02 4 C02 + 0 (ii) 

The b r i e f  i n i t i a t i o n  per iod i s  fol lowed by an induct ion period dur ing which 

the concentrations o f  a l l  three chain c a r r i e r s  grow exponent ia l ly  w i t h  time 

and a l l  w i t h  the same exponential time constant,&, as a r e s u l t  o f  the 

chain-branching reactions o f  hydrogen combustion . Wariaus o f  these reactions, 6 

assume d i f f e r e n t  degrees o f  importance i n  d i f f e r e n t  mixtures but  i n  very r i c h  

ones such as t h a t  used i n  the present work (H2/02= lO/I)$ d i s  governed 

almost e n t i r e l y  by react ion ( I ! )  o f  the H2 - 02 combustion mechanism: 

H + 0 2  -9 O H + O  ( 1 1 )  

I n  the l i m i t  of extreme H2/02 r a t i o s  and i n  the absence o f  boundary-layer 

e f fects ,  4 i s  given by the fo l l ow ing  equation6: 

&=  7-021 k2 to21 (2) 



-5- 

where 

d exponential time constant f o r  growth o f  0 concentration i n  laboratory 

t ime-coord i na t e  system 

e21 densi ty  r a t i o  across the shock 

k2 

[Oaoxygen concentrat ion 

ra te  constant f o r  react ion ( I ! )  

The shor t  supply of oxygen i n  very r i c h  mixtures eventual ly  causes the 

exponential bu i ldup of [O] t o  be o f f s e t  by rap id deplet ion 8 . 
flame-band rad ia t i on  i s  observed t o  peak and then t o  drop rap id ly .  The 

time a t  which the peak occurs,T , i s  a lso  governed mainly by the ra te  of 

re i rct ion ( 1 1 )  i n  the l i m i t  o f  extreme M2/02 ra t ios ,  although there is ip minor 

As a resu l t ,  

t i a t i o n  by react ion (i) as wel l .  This can be seen 

on, which i s  der ivable from re la t i ons  given i n  

e f f e c t  o f  the ra te  o f  i n  

from the fo l low ing  equat 

references 6 and 8: 

where 

time a t  which peak 0 concentration occurs i n  laboratory time - coordinate 

sys tern 

ra te  constant f o r  react ion (i) ki 

C expression containing factors  that remain constant i n  t h i s  e&periment. 

Despite the small propor t ion o f  02 present i n  the extremely r i c h  mixtures 

under consideration, both the exponential r i s e  and the peak i n  [O] occur 

before any appreciable amount o f  i t  has been consumed. 
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APPROACH 

Experimental Conditions 

The experimental ob jec t i ve  was t o  obta in  a s e t  o f  measurements o f 4  and 

t h a t  would, when analyzed w i t h  and without considerat ion o f  e f fects  

induced by a turbu lent  boundary layer, reveal the presence o f  such e f fec ts .  

I n  order t o  accomplish th i s ,  several requirements had t o  be considered i n  

planning the experiments. These reqeri rements are 1 i s ted  below, together 

w i t h  the measures taken t o  f u l l f i l l  them. 

Simple chemistry: To avoid the ambiguit ies t h a t  a r i s e  when experiments 

must be analyzed by permuting the r a t e  constants of many reactions. 

Although Eqs. (2) and (3)  are not  q u a n t i t a t i v e l y  co r rec t  f o r  a H2/02 = 10/1 

mixture, they do c o r r e c t l y  show t h a t  k2 i s  the only  adjustable parameter o f  

any consequence. 

Low oxyqen concentration: To prevent excessive heat release t h a t  might 

cause i rregular  wavesg, 

Not the s l i g h t e s t  evidence o f  i r r e g u l a r  waves was found, e i t h e r  i n  l i g h t -  

The mixture chosen was M2/02/CO/Ar = 5/0.5/6/88.5. 

emission o r  pressure records. 

Low temperature: To keep k2 low and thereby delay the l i g h t  pulse so 

tha t  the boundary layer could exer t  s i g n i f i c a n t  e f f e c t s  (see Eq. (1 ) ) .  

However, the temperature must not be too low l e s t  chain-breaking by 

H + 02 + bl --+ H02 + ld assume undue importance. 

Constant temperature: To make pressure the on ly  experimental va r iab le  

and t o  e l iminate arguments about the inf luence o f  the a c t i v a t i o n  energy 

chosen f o r  [ l  I ) .  By t r i a l -and -e r ro r  changes i n  d r i v e r  pressure, shock-front 

temperatures were held t o  the narrow and su i tab l y  low range o f  1140' 2 12OK. 
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Hiqh pressure: To assure turbulent  boundary layers3. The lowest i n i t i a l  

pressure used was 50 t o r r .  Runs were made g t  10-torr  i n te rva l s  up t o  120 t o r r .  

Analysis 

A f t e r  the osci l loscope records o f  l i g h t  i n t e n s i t y  had been p l o t t e d  semi- 

l oga r i t hm ica l l y  against  laboratory time t o  y i e l d  values o f d  a n d T  , the 

data were analyzed by means o f  a computer program. 

the equations o f  chemical change f o r  reactions occurr ing behind a shock 

wave and was equipped t o  handle two cases: (1)  the case i n  which the apparent 

area of the tube var ies under the inf luence o f  the boundary layer i n  accor- 

dance w i t h  Eq, (l), w i t h  r e s u l t i n g  changes i n  temperature, density, and 

residence time of the gas; and (2) the conventionally-assumed case i n  which 

the area remains constant and the on ly  changes i n  propert ies are those due 

t o  chemical reaction. The two approaches w i l l  be re fer red t o  subsequently 

as the varying-area and the constant-area methods o f  analysis, respectively. 

This program integrated 

The procedure was as fol lows, F i r s t ,  the run a t  the highest i n i t i a l  

pressure (120 t o r r )  was analyzed by both methods. 

culat ions,  two d i f f e r e n t  values o f  k2 were found t h a t  would c lose ly  reproduce 

the observed CC . Although the chemistry i s  dominated by react ion I I ,  12 

other  i n i t i a t i o n  ((i) and (I i)), chain-branching, and recombination reactions 

pe r t i nen t  to the H2=02-C0 system were included i n  the analysis. 

t h e i r  r a t e  constants were taken from recent 1 i te ra tu re  and were i den t i ca l  

f o r  both methods o f  ca lcu lat ion,  

By t r ia l -and-error  ca l -  

Values f o r  

Next, the ca lcu lated peak times were matched to t h e ' t  observed i n  the 

120-torr run by modifying ki (see Eq. (3)).  This resul ted i n  two d i f f e ren t  
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values o f  k i  corresponding t o  the two methods o f  analysis. 

The ra te  constants obtained i n  t h i s  way were as fol lows: 

kZ(cons t a n t  area) = 2 .10~1  Ol4exp(- 16600/R~) (4a 1 
k2 (va r y  i ng a rea) = 1 . k4x 0l4exp (- 16600/RT) 

ki (constant area) = 2. l ox  012exp(-39000/RT) ( 5 4  

ki (vary i ng a rea) = 1 20x 012exp(-39000/RT) 

(4b 1 

(5b) 

Only the pre-exponential parts o f  Eqs. (4) and (5) resul ted from the t r i a l -  

and-error f i t s ;  the a c t i v a t i o n  energies were assigned. That f o r  react ion 

( ! I )  was derived from an Arrhenius p l o t ,  covering a wide temperature range, 

o f  ra te  constants from many 1 i te ra tu re  sources t h a t  were considered re1 iable. 

The a q t i v a t i o n  energy assigned t o  react ion (i) i s  the value reported i n  

reference 10. 

The f i n a l  step i n  the analysis was t o  use the two sets of ra te  constants 

t o  p r e d i c t  constant- and varying-area values o f  oc" and 1: f o r  the runs made a t  

the pressures below 120 t o r r .  

mental data could then be made. 

Comparison o f  the predict ions w i t h  the experi- 

APPARATUS AND PROCEDURE 

Shock Tube 

The tube was a s i n g l e  piece of s ta in less s tee l ,  5.7 meters long. The 

in te rna l  dimensions were 6.4 x 6.4 cm. w i t h  corners rounded t o  a radius o f  

1.3 cm. The e n t i r e  length of the tube was ground t o  constant ins ide dimen- 

sions and then honed t o  a highly-pol ished f i n i s h .  

Stat ions f o r  shock-wave detectors were located a t  15-cm. i n te rva l s  i n  

the downstream por t i on  o f  the tube. 

e raster  osci l loscope was fol lowed by four matched pressure transducers 

A p iezoe lec t r i c  pickup which tr iggered 
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f o r  v e l o c i t y  measurements. 

type and had shor t  r i s e  times. 

These transducers were o f  the quartz p iezoe lec t r i c  

Hidway between the l a s t  two s ta t i ons  was a p a i r  o f  2.5-om. diameter 

windaws made o f  calcium f l u o r i d e  and located opposite one another. 

f i l m  gauge was located t o  provide an accurate i nd i ca t i on  o f  the time a t  

which a shock wave a r r i v e d  a t  the center o f  the windows and t o  ascer ta in  t h a t  

the boundary layer wqs turbulent,  A l l  pickups and windows were c a r e f u l l y  

i n s t a l l e d  w i t h  t h e i r  surfaces f l u s h  w i t h  the inner wal ls  o f  the tube. 

A t h in -  

The assembled tube could be evacuated t o  a pressure of about 1 micron 

and had a leak r a t e  less than 0.2 micron/minute. A l i q u i d  n i t rogen cold 

t r a p  i n  the vacuum l i n e  guarded against  the possible back-migration o f  pump 

o i  1. 

Veloci t y  Measurement 

The Qverr id ing experimental requirement was the precise measurement o f  

shock ve loc i t y .  Uncertaint ies as large as 1 percent, f requent ly  to lerated 

i n  shock-tube work, would have completely v i t i a t e d  the resu l t s  o f  t h i s  

p a r t i c u l a r  experiment. This can be seen by examining Fig. 1. These com- 

puted p r o f i l e s  o f  the product of CO and 0 concentrations are equivalent t o  

I lght-emission h i s t o r i e s .  The di f ferences i n  shape and peak time a re  

read i 1 y apparent. 

The required prec is ion WBS obtained by e l e c t r o n i c a l l y  processing the 

These signals from the fou r  matched transducers so as t o  produce pulses. 

were displayed on a raster  osci l loscope along w i t h  1-microsecond t iming 

marks. 

percent. 

I n  t h i s  way, v e l o c i t i e s  were measured w i t h  an uncer ta in ty  of 0.2 
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bight-Detection System 

Flame-band emission was observed through one o f  the windows by means 

o f  a l : 1  o p t i c a l  t rans fe r  system. A lens imaged the center o f  the shock 

tube onto a s l i t ,  0.25 mm wide, which acted as a f i e l d  stop. The i l luminated 

s l i t  became the l i g h t  source fo r  a spher ical  mi r ror ,  which t ransferred the 

luminous image a t  u n i t  magnif icat ion through a f i 1 t e r  (bandpass, 3700-5600 A) 

and onto the cathode o f  a photomul t ip l ier  tube. 

m u l t i p l i e r ,  complete w i t h  load r e s i s t o r  and cabling, was checked by a 

ga l l ium phosphide photogdiode tha t  was dr iven by a square-wave generator. 

The l / e  r i s e  t ime was close t o  1 microsecond. 

Gas Mixture 

The t e s t  mixture was prepared by the method o f  p a r t i a l  pressures i n  a 

0 

The r ise-t ime o f  the photo- 

s ta in less-s tee l  tank. Oxygen and hydrogen were research grade gases. Carbon 

monoxide was CP grade and was cold-trapped t o  remove carbonyls. Fargon had 

a stated p u r i t y  o f  99.99 percent and was cold-trapped t o  e l iminate water 

vapor. 

insure homogeneity. 

A f t e r  preparation, the mixture was allowed t o  stand f o r  a week t o  

RESULTS AND DISCUSSION 

Exper imenta 1 Data 

Figure 2 shows the osci l loscope record obtained f o r  the run a t  90 t o r r  

i n i t i a l  pressure. The clean, noise-free character of t h i s  record i s  com- 

p l e t e l y  t y p i c a l  o f  a l l  the data. A f t e r  a r r i v a l  o f  the shock wave a t  the 

observation point ,  indicated by the d e f l e c t i o n  o f  the middle trace, no l i g h t  

was observed f o r  some time. Then, B b r i e f  and almost symmetrical pulse o f  
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f lame-band rad ia t i on  appeared, r e f l e c t i n g  the ant ic ipated r i s e  and fa1  1 o f  

atomic-oxygen concentration, The lower t race shows the th in - f  i l m  s ignal  

a t  higher gain; the continuous r i s e  f o l  owing the i , n i t i a l  Jump shows t h a t  

the boundary layer was thoroughly turbu ent, as desired. Had there been 

any appreciable laminar port ion,  i t  wou d have shown up as a hor izonta l  

i ine fo l l ow ing  the i n i  t i a l  jump”. 

As stated e a r l i e r $  the two experimental l y  observable propert ies t o  be 

used I n  the evaluat ion o f  boundary-layer e f fec ts  were the exponential time 

constant, 4 I and the peak-time, 7 

These were obtained from semi-logarithmic p l o t s  o f  l i g h t  i n t e n s i t y  against  

laboratory tlme. Figure 3 i s  such a p lo t ,  made from data read o f f  the 

o f  the atomic oxygen concentration. 

o r i g i n a l  o f  Fig. 2. The well-defined exponential p a r t  of the record com- 

pr ised 1.5 t o  2 decades o f  r i s i n g  l i g h t  i n t e n s i t y  i n  a l l  runs. The slope, 

d , o f  a l i n e  drawn by eye through t h i s  l i n e a r  po r t i on  o f  Fig. 3 and 

the peak-time, also picked o f f  v i sua l l y ,  are given i n  Table I together 

w i t h  the resu l t s  o f  the runs a t  the other pressures. 

Ana ly t i ca l  Data 

In  add i t i on  t o  experimental resul ts ,  Table 1 contains the fo l l ow ing  

calculated data. 

Shock-f ront  temperatures were computed from the shock v e l o c i t y  measured 

by the two pickups s t radd l i ng  the window. 

machine program i n  which f u l l  thermal equ i l i b r i um was assumed, real-gas 

thermodynamic data were used, and chemical composition was assumed frozen. 

Other resu l t s  of the shock ca lcu lat ion,  wh i l e  no t  l i s t e d ,  were needed as 

inputs f o r  the analysis; these included the pressure, density, and v e l o c i t y  

of the shocked gas. 

This computation employed a 
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As already described i n  the sect ion on Analysis, the two methods o f  

t rea t i ng  experimental data were appl ied t o  the 120-torr run t o  ob ta in  two 

sets o f  ra te  constants tha t  gave c lose f i t s  t o  the observed o& and ‘cs . 
These ra te  constants were then used t o  ob ta in  the predicted constant-area 

and varying-area values o f  d and T tha t  a re  l i s t e d  f o r  each run a t  the 

lower pressures. 

The values o f  I,, needed t o  def ine the apparent area change i n  the 

varying-area analysis,  were ca lcu lated by formulas3 tha t  apply t o  the case 

o f  a l l - t u r b u l e n t  boundary layers. This ca l cu la t i on  required the use of a 

quant i ty ,  designated (3, i n  reference 3 ,  which I s  tabulated there fo r  argon 

and f o r  a i r .  

value o f  Po f o r  t ha t  gas was used. 

lnasmuch as the mixture contained 88.5 percent argon, the 

Compa r i son o f  Ana 1 yses 

The two methods o f  analys is  are most read i l y  compared i n  terms o f  the 

r a t i o s  o f  predicted t o  observed values o f  d and . Barr ing experimentel 

errors,  a completely successful analys is  should produce valueq o f  these 

essure runs as they are r a t i o s  t h a t  a re  as c lose t o  u n i t y  f o r  the lower-p 

f o r  the 120-torr run. 

Figure 4 shows the resul ts .  I t  is immediate 

area analys is  based on Eq. (1) i s  super ior  t o  the 

y evident t ha t  the varying- 

conventional one i n  which 

boundary-layer e f f e c t s  are neglected. The constant-area method introduces 

a discrepancy w i t h  experiment tha t  increases as pressure decreases from the 

match po in t  a t  120 t o r r .  
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This pressure e f f e c t  can be understood by considering Fig. 5. Here 

the computed e f f e c t s  o f  the boundary layer a re  shown f o r  the 90- tor r  run, 

which i s  t y p i c a l  o f  the others i n  t h i s  respect, A t  low pres$urer where the 

react ion ra te  i s  reduced and the l i g h t  pulse tends t o  be delayed and spread 

out, there i s  a counteracting e f f e c t  due t o  the r i s i n g  residence tine and 

ra te  constant. Hence, 

they would i n  the absence of  f l o w  non-uniformit ies. 

and 7 do not  change w i t h  pressure as much as 

I t  should be noted tha t  the e f f e c t s  p l o t t e d  i n  Fig. 5 are gas-dynamic 

ved i n  t h i s  

the calcula- 

and not due t o  any p e c u l i a r i t y  o f  the chemistry t h a t  i s  invo 

p a r t i c u l a r  experiment. V i r t u a l l y  i den t i ca l  curves r e s u l t  if 

t ions are repeated w i t h  a l l  r a te  constants se t  equal t o  zero 

Shock-Contact Surface Sep3ra.t ion * 

The success o f  the vqrying-area analysis i n  accounting f o r  the experi- 

mental resu l t s  suggests tha t  the essent ia l  ingredient i n  the analysis, l,, 

should be examined more close 

was t o  e x h i b i t  the ef fects of 

and to ascer ta in  tha t  M i re l s '  

use o f  the resu l t s  should be 

data. I n  t h i s  l a t t e r  regard, 

moreover, using values o f  Po 

y. Although the immediate aim o f  t h i s  work 

f l ow  non-uniformit ies i n  a k i n e t i c  experiment 

approach could deal w i t h  them, the u l t ima te  

o improve the accuracy o f  shock-tube k i n e t i c  

the use o f  calculated 1m'S (calculated, 

f o r  pure argon) introduces an element o f  

uncertainty.  I t  was therefore decided t o  measure the lengths. 

This was done by s e t t i n g  up an i n f ra red  monochromator w i t h  an indium 

antimonide detector coupled t o  an osci  1 loscope, t o  observe 4.7-micron 

emission from CO i n  the gas mixture. Runs were made a t  50, 70, 90, and 
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120 t o r r ,  over the same small range of  shock v e l o c i t i e s  as before. A sharp 

jump i n  emission corresponded t o  the a r r  va l  o f  the shock a t  the window 

and an abrupt drop t o  the a r r i v a l  o f  the contact surface, The measured 

separation length, 1 ,  was obtained by mu t i p l y i n g  the durat ion of i n f ra red  

emission by the shock ve loc i t y .  

The measured 1's were w i t h i n  20 percent o f  the 1,'s calcu ated f o r  the 

same pressures. Thus, i t  i s  c lea r  why the varying-area analys s succeeded 

so wel l .  Nevertheless, the experiments were re-analyzed using 1 ' s  read 

frpm a l i n e  f a i r e d  through a p l o t  o f  1 against  i n i t i a l  pressure (see Table 

I ! ) .  The same ra te  constants (Eqs, 4(b) and 5(b))were used. The resul ts ,  

l i s t e d  i n  Table I I  as r a t i o s  o f  predicted t o  observed values o f  d a n d r  , 
show by Fomparison w i t h  corresponding data based on 1, t ha t  use of the 

measured 1 ' s  improves the agreement i n  d and leaves v i r t u a l l y  unchanged, 

A l s o  i n  Table I t  are resu l t s  showing the consequences of apply ing the 

theory 3 o f  separation-length development, according t o  which ca l cu la t i on  1's 

should have been much less than 1, a t  the window pos i t i on  o f  the shock tube. 

Re-analysis w i t h  these predicted separations required re- f  i t t i n g  the 120- 

t o r r  run; t h i s  y ie lded a new k2 15 percent smaller than before. 

a t  the lower pressures (Table I ! )  are  c l e a r l y  i n f e r i o r  t o  those obtained 

w i t h  measured 1 's. 

The resu l t s  

Whether the unexpectedly rap id approach t o  1, i s  a general r u l e  o r  

pecul iar  t o  t h i s  tube i s  unclear. U n t i l  the s i t u a t i o n  i s  c l a r i f i e d ,  i t  w i l l  

be necessary to use measured separations i n  the reduction o f  shock-tube data. 



-1s- 

Imp1 icat ions f o r  Shock-Tube Kinet ics  

The experimental resu l t s  obtained i n  t h i s  experiment can b Viewed as 

data designed t o  determine the r a t e  constant t o  which the resu l t s  are most 

sensi t ive,  namely, k2, From t h i s  p o i n t  of view, the e f f e c t  o f  apply ing 

boundary-layer correct ions i s  two-fold. F i r s t ,  the ra te  constant a t  120 

t o r r  i s  30 percent less than the value obtained when correct ions are 

neglected; and second, repeat determinations a t  lower pressures y i e l d  values 

w i t h  an average e r r o r  o f  only ?I 4.3 perqent, whi le  the conventiona) t r e a t ?  

ment of the data produces a pressure-dependent r a t e  constant. 

This suggests t h a t  much o f  the shock-tube k i n e t i c  dqta i n  the l i t e r -  

a ture i s  wrong i n  Some degree. It i s  a lso l i k e l y  tha t  some o f  the sca t te r  

and some o f  the discrepancies i n  the resu l t s  of d i f f e ren t  invest igators,  

commonly noted i n  shock-tube work, can be a t t r i b u t e d  t o  the neglect o f  

boundary-layer e f fects .  Consider, f o r  example, what would have happened if 

only  the runs a t  50 and 120 t o r r  had been made and analyzed i n  the usual 

way. 

o f  the d i f ference i n  shock-front temperatures, the r e s u l t  would have been 

two values o f  the pre-exponential p a r t  o f  k2 t ha t  d i f fered by 25 percent. 

This would no doubt have been accepted as experimental scatter.  I t  i s  

apparent t h a t  an even larger  d i f f e rence  could have been found i f  these two 

runs had been made i n  separate shock tubes, especia l ly  i f  the tubes d i f f e r e d  

i n  length and diameter. 

Assuming tha t  the a c t i v a t i o n  energy were known so a5 t o  take account 

The s i ze  and the s ign o f  the e r ro rs  i n  e x i s t i n g  data depend i n  a comw 

p l i ca ted  way on the s i z e  o f  the tube, the pos i t i on  o f  the observation point ,  
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the gas mixture and pressure used, and the type of measurements made, as 

well as on the r a t e  and a c t i v a t i o n  energy o f  the reaction. Rate constants 

derived from measurements close t o  the shock f r o n t  a re  obviously the l eas t  

suspect. Thus, the resu l t s  o f  an invest igat ion t h a t  covered a temperature 

range are l i k e l y  t o  be more r e l i a b l e  a t  the high end o f  the range. A t  the 

B O W  end, where rates are low and observations must be extended f a r  behind 

the shock, large e r ro rs  are possible, especia l ly  i f  the a c t i v a t i o n  energy 

is large and therefore causes the r a t e  t o  grow rap id l y  because o f  the 

r i s i n g  temperature dur ing the observation period. 

by neglect ing the f l o w  non-uniformit ies i n  such an experiment may be e i t h e r  

p o s i t i v e  o r  negative, i n  most cases i t  w i l l  be p o s i t i v e  (Ref. 11, describes 

a less-common case i n  which the e r r o r  was negative). 

tendency must e x i s t  i n  the l i t e r a t u r e  f o r  low-temperature ra te  constants t o  

be too large, wh i l e  high-temperature values are more near ly correct ,  so t ha t  

a c t i v a t i o n  energies w i l l  tend t Q  be too low. An example o f  t h i s  behavior i s  

the a c t i v a t i o n  energy of ( I I ) ,  which was found t o  be 16.3 kcal/mole w i t h  and 

only 11.9 kcal/mole wi thout correct ions f o r  nonuniform f low12. 

A1 though the e r r o r  incurred 

Therefore, a general 

CONCLUSIONS 

Changes i n  temperature, density, and residence time induced by turbulent  

boundary layers i n  shock tubes have been shown by carefu l  experiments on a 

simple chemical system t o  s i g n i f i c a n t l y  a f f e c t  both the accuracy and repro- 

ducibi  1 i t y  o f  k i n e t i c  resul ts .  E x i s t i n g  boundary-layer theory, together 

w i t h  measured separations between shock and contact surface, s a t i s f a c t o r i l y  

accounts f o r  these e f fec ts .  The resu l t s  show tha t  much o f  the e x i s t i n g  data 

based on the conventional assumption of uniform f low must, i n  varying degrees, 

contain some error .  
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TABLE ! I .  - COMPARlSON OF WARYBHG-AREA ANALYSES USING DIFFERENT 

Measured separation, II cm, 

4 (ca 1 c'd. )/4 gobs e ) 

Limt ting separation, lm9 cm. 

d (ca Icl d. )/d (obs. ) 

Calcld. separation at 

window, l w p  cm. 

d(ca 1 c' d. )I& (obs . ) 
%(caIc'd.)/T(obs.) 

SHOCK-CONTACT SURFACE SEPARATIONS 

120 

144.5 

B 0 003 

1 .oa6 

151 . O  

.983 

1.032 

95.1 

1 002 

1.018 

60 

145.0 

1.023 

* 975 

127.0 

I .  052 

P 

.956 

87.5 

1.153 

.goo 

Av, deviation 

11211.3 

1.082 

987 

.057 

024 

85.2 

1.170 * 145 

949 .040 
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FigureJ., - I l lustrat ion of sensitivity of light-emission profi le to changes in shock 
velocity. Calculated by constant-area method for H21021COIAr = 5/0.5/6/88.5 
mixture at 90-torr in i t ia l  pressure, processed by a shock with velocity required 
to  heat the  gas t o  1100" K and by shocks 1 percent faster and slower. 
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Figure2,. - Experimental record obtained from H2/02/CO/Ar = 5/0.5/6/88.5 mixture 
at %-torr in i t ia l  pressure, shocked to 1141 OK. Upper trace: flame-band rad- 
iation. Center trace: th in- f i lm record showing shock arr ival at observation 
point. Lower t race  amplified th in- f i lm record showing immediate onset of 
turbulent boundary layer. 
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Figure 3. - Semi-logarithmic plot of flame-band emission shown in f igure 2. 



E-4938 

- 

RATIO 

1.00 

*90 t e 

Figure 4(a). - Comparison of predicted and observed exponential t ime 
constants. 0, a(predicted, varying area)/a(observed). 0 ,  a(pre- 
dicted, constant area)/a(observed). 
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Figure 4(b). - Comparison of predicted and observed 
peak times. 0, dpredicted varying areaMobserved). 
0,  dpredicted, constant arealdobserved). 
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Figure 5.. - Variation with t ime of post-shock properties for 90-torr run shown in 
figure.2. Ratios of properties calculated by varying-area analysis to those cal- 
c u  lated by constant-area analysis. 


