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•	 EJECTION OF INTERNAL MASS

FROM SPINNING SPACECRAFT

WITH COLLISION INTERACTIONS

Franz Zach

ABSTRACT*

This report treats ejection of internally stored mass (e.g. an apogee motor

casing) from a spinning spacecraft wherein a collision occurs. The problem is

attacked by formulation of twoprocesses: first,an ejection process which includes

the release mechanism, the separation trajectory of stored mass relative to

spacecraft, and the determination of the collision point; and second a collision

process whereinthe impulse exchanged is computed based upon consideration of

surface friction, mechanical deformations, and coefficient of restitution. A spe-

cific case is treated where both direction and magnitude of spacecraft body rates

following collision are determined as functions of the collision parameters. A

knowledge of these body rates is required to perform directional despin of a

spacecraft about its final axis of maximum moment of inertia.

*The work for this paper was performed while the author was granted a National Research Council
Postdoctoral Resident Research Associateship supported by the NASA/Goddard Space Flight
Center. The author is very much indebted to Mr. W. I sley, Mr. E. Stengard, Mr. R. Bartlett and
Mr. D. Endres for their contributions.
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Nomenclature and Abbreviations

a	 distance from CMS to CMC

B 1i B 2 	 brackets of the solar aspect sensor

b	 distance from CMM to CMC

CMC	 center of mass of spacecraft and internal mass together, before

ejection of internal mass

CMM	 center of mass of internal mass alone

CMS	 center of mass of spacecraft alone

D	 angular momentum

E d	energy transferred from motion into deformation

e	 coefficient of restitution

ex , ey , eZ unity vectors in directions x, y or z respectively

f	 range of spring operation

I	 impulse

[I]	 moment of inertia matrix

I	 maximum moment of inertiamax

M	 motor

mm	 mass of the internal mass alone

m s	mass of the spacecraft alone

n	 unity vector normal to collision surface

P	 point of collision on the spacecraft measured in the xs , Ys, zs set

Q	 point of collision on the motor measures in the x M , yM , zM set

F	 distance vector

rs	 distance vector from CMS to P

rM	 distance vector from CMM to P

vi



S spacecraft

S collision vector

SAS solar aspect sensor

'	 SM 1 spin mode before deployment of internal mass

SM 2 spin mode after deployment of internal mass

t time

v velocity

V velocity of CMM

V MP velocity of colliding point of motor

v velocity of CMSs
v sP velocity of colliding point of spacecraft

x,y,z right handed coordinate system with center in CMC and axes along

axes of principal moments of inertia

xs ,ys ,z s right handed coordinate system with center in CMS and axes parallel

to the x, y, z set

xm ,yM ,z M right handed coordinate system with center in CMM and axes

parallel to the x, y, z set

µ coefficient of friction

77, inertial coordinate system

coordinate system with center in CMM and axes parallel to ^,77, f

P angle of friction, = arctan µ

or angle of S against -y

W vector of angular velocity

vii



EJECTION OF INTERNAL  MASS FROM SPINNING SPACECRAFT

WITH COLLISION INTERACTIONS

1. INTRODUCTION

A spacecraft despin maneuver is often required following orbit injection

and deployment of the apogee motor casing. This report treats ejection of such

stored mass under conditions where the spin axis after apogee motor burnout is

not the spacecraft axis of maximum inertia. This condition could result from

a damping mechanism which is not compensated for by active nutation control.

Under such circumstances, the spin axis will now be aligned along the new

axis of maximum inertia which will not be the axis of symmetry, normally

assumed for motor ejection. This can produce a collision process between the

ejected mass and spacecraft, wherein the resulting body rates can dictate the

final spin direction. The determination of body rates can be approached through

definition of an Ejection Process and a Collision Process. In the Ejection

Process, the release mechanism, departure trajectory and collision point are

established. This is then followed by formulation of the Collision Process wherein

impulse exchange is computed in terms of surface friction effects, mechanical

deformations, and coefficient of restitution. Based upon the impulse exchange,

direction and magnitude of spacecraft body rates are determined. Some despin

mechanisms, such as Yo-Yo devices , require a specified initial spin direction

in order to remove angular momentum. If the axis of deployment symmetry

becomes the axis of maximum inertia following motion ejection, then final spin

direction will be determined by direction and magnitude of body rates after

collision and damping characteristics of the spacecraft structure.
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It is therefore apparent that estimation of body rates after collision can

dictate ultimate despin capability of the spacecraft. Part 2 develops equations

for the Ejection Process. The release mechanism is modeled in Section 2.1 as

an impulsive device, which essentially idealizes the acceleration as a pure

addition of velocity.

In Section 2.2 the release mechanism is defined to represent time dependent

acceleration. In Section 2.3, Collision point and closing velocity are determined.

Part 3 treats the collision process. Section 3.1 considers a representative static

structural load test. The collision impulse vector (S) is computed as a result

of much test data. In Section 3.2 a mathematical model is developed for calcu-

lation of S. This Section also covers determination of body rates die to the

collision process which are evaluated as functions of coefficient of restitution

and surface friction.

2. The Ejection Process — Trajectory and Collision Point

2.1 Release Mechanism — Impulsive

Figure 1 shows an example of the geometric configuration for the space-

craft and stored mass which is represented herein as an apogee motor casing.

It shall be assumed, that the x-axis is the axis of maximum moment of inertia

and that spin is stabilized about this axis. This fact is indicated by w x in Fig. 1.

It shall be assumed further that the apogee motor is released during this rotation

and accelerated by springs in the z-direction. The springs usually are effective

only over a small distance and are located rotational-symmetric about the

z-axis. It is assumed herein that the release mechanism involves no tip-off

errors. This means that there are no reaction torques between spacecraft and

2



apogee motor due to separation, and implies that no change of angular velocity

is produced during separation. Therefore, both spacecraft following separation

and apogee motor casing will have the same Z as the original composite space-

craft. The fact that the springs usually work only over a small distance results

in a simplification of the problem: The motion of spacecraft and apogee motor

can be calculated under the assumption that the springs impart a relative

velocity in z-direction to spacecraft and apogee motor in an impulsive manner.

Figure 2 shows the situation. immediately after release. The relative

velocity in z-direction is given by the experimental data for the spring force and

shall be called vri:

	

vrI = I vM . I + I vs. I .	 (1)

Because there are no other forces active, the law of conservation of impulse

yields

	

MM I vM. I - MS I vs. I = 0 '	 (2)

which together with (1) allows calculation of I 
vM, 

I and I vs. I . 
vMY 

and vs r

are obtained as follows: upon separation, the CMM rotates through displacement

b about CMC with the angular velocity w X , CMS rotates about CMC with w;

through displacement a (see Figs. 1 and 2). Because there are no impulses in

y-direction due to separation, the motor will move with velocity:

vMr = — w x b 	 (3)
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(4)vSY =w x a

and the spacecraft will move with velocity

As some time t after deployment, relative position and motion in an inertial

coordinate system will be as shown in Fig. 3. The displacements are given by:

TIM (t) 
_ I/M(t) - 

Tls(t)	 (5)

^M (t) _ ^ M (t) - ^sk--)

and

y (t) _ - C * (t) s±n wt + * (t) cos wt

z (t) _ '* (t) cos <,jt + 77* (t) sin wt	
(6)

y (t) and z (t) give the motion of the apogee motor with respect to the CMS.

Based on Figs. ( 1) through (3), displacemento in the 7^, C coordinate

systems become:

'IM (t) = v MY t = Iw x I bt,

^ M ( t ) = vM. t +b,	

onff

7 7 S ( t ) = V Sy t = - Iw	 at,	
t^)

m

^S ( t ) v Ss t - a = - vMs — Y t - a.

MS

7, M ( t ) _ (a + b) I ^ x I t
and	 (8)

^N(t)=vM. (1+ M
m

) t+a+b=vt+a+b.
MSS

Entering Eq. (8) into Eq. (6) now gives the time history of the CMM in the y-z

coordinate system. Because the same wx is valid for spacecraft and motor

after deployment, Eq. (6) produces the trajectory of every part of the motor

with respect to the spacecraft, the initial condition being given by Fig. 2. The
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axes of rotational symmetry (aligned along the z-axis in Fig. 2) of spacecraft

and apogee motor always remain parallel.

Figure 4 shows trajectories based upon the following values:

a = 3.2". b = 26.24"

w x	 10 rpm to - 150 rpm	 (9)

v	 = 41.9 in/sec.
rz

Calculations with varying w x and v r Z = 0 produce trajectories which fall

on top of the case where wx = -150 rmp in Fig. 4. This shows the spring to

have little effect on the trajectory for w x greater than 92 rpm.

2.2 Release Mechanism - Time Dependent Acceleration

The previous section considered the release mechanism to be impulsive.

For time dependent acceleration consider Fig. 5 and assume at first deployment

without a spring. The deployment is assumed to be in th.: Listant when the z-axis

passes through the ^' -axis. The , ' - ^' system has its origin in CMS, the

77 ' axis is not rotating and points in the z-direction in the instant of release.

Defining r(t) in terms of Eq. (8) gives

r(t) _	 _^N 2 ( t ) + ^M 2 (t) = (a + b)	 1 + (Co. t) 2 (10)

and

.	 r(t) = (a + b) w 2 (1 + wX t 2)-3/2	 (11)

For the additional acceleration caused by the spring the force F is:

F = K [r-(a+b)]

where K is the spring constant.
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The acceleration of the apogee motor due to the spring is F/m M and the

acceleration of the spacecraft is F/ms.

The sum of these accelerations gives 'r 4) due to the spring. The validity

of this calculation is over the range f of spring -operation.

Entering the additional acceleration into Eq. (11) gives

r(t) = (a + b) wX (1 + 
wXt)

-ail + K m" + 
ms 

(r - ( a +b)J	 (12)
mM m s

for a+b:^r:^a+b+f.

'	 Consider a specific case having the following parameter values:

= -92 rpm

K = 2.81 x 106 Sig s-2	

(13)
f = 1 1'

a + b = 29.44"

Calculations of the two extremes, i.e.

(a) no spring at all

(b) spring action executed impulsively

show approximately no difference in the trajectories. Eq. (12) gains importance

for higher spring forces and lower 1 x 1 .

2.3 Collision Point and Closing Velocity

The trajectory of the CMM has been developed in Sections 2.1 and 2.2. The

determination of initial collision point must be based upon the surface configu-

ration of motor and spacecraft.

	

In Fig. 6 Qi (x, y, z) represents any selected point on the motor surface and 	 '

Pi (x, y, z) a corresponding point of intersection with the spacecraft surface as

determined by transformation of the CMM trajectory into Q  (x, y, z) The
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initial collision is found by solving the minimum time problem for all per-

missible Q, (x, y, z) mapped into the set of all points P i ( x, y, z).

A geometrical solution is most often the simplest means of finding the

initial collision point where surface envelopes are matched in a graphical

manner.

The solution for the initial collision point shall be designated P = P(xs, YS , zs )

on the spacecraft and Q (xm, yN, zM ) on the motor.

xs , ys , z s coordinates are measured with respect to CMS. The x M , yM , zN are

coordinates measured with respect to CMM• Consider a configuration which

yields a collision point characterized by P = (-3.9, - 22.5, 32.9) and Q = (-4.8, -16.1,

-6.3). The time to collision at point P is obtained by solving Eqs. (6) and (8)

for t with

Y(t) = ny = Ys - YM

and

Z(t) = Oz = z s - (a + b + zM).

The closing velocity components can be obtained by differentiation of Eqs.

(6) and (8) with respect to time. Using the following values:

y s = - 22.5"

Z , = 32.9„

y M = - 16.1"

z M = - 6.3..

the closing velocity components are found to be:
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v = - 171 in/secy 

and

vzr =	 164 in/sec.

3. Collision Process

Once it has been established that a collision takes place using methods

described in Section 2.3, it becomes necessary to formulate a dynamics

model for the collision process.

it is important to calculate the impulse exchange between internal mass

and spacecraft whici, gives the initial condition of translatory and rotational

velocity after collision.

For this purpose a good approach is to assume a collision vector S

(Ref. 1) which is the time-integral over the forces in action during collision:

S= f t Fdt.	 (14)
0

F as a function of time is given by the geometry at the collision point, by

the amount of the relative velocity, by the masses of the colliding bodies and

the structural properties of the two bodies in the area which is effected by the

collision.

For the purpose of evaluating a specific collision process, it is assumed

that the motor and spacecraft configurations at the instant of collision are as

represented in Fig. 7. The impact geometry shows initial contact with a

bracket (BI ) which supports a solar aspect sensor at 12° angle measured from

minus Y. The second imps.,A takes place at bracket (B2 ) at 30 0 angle.
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3.1 Collision Vector Determined From Static Structural Data

Assume that static measurements have been performed for simultaneous

loading of two brackets of the type shown in Fig. 7 and that deformation

behavior is as represented in Fig. 8. From Fig. 7 geometry, bracket B 2 will

not be contacted until bracket B 1 has deformed .625". Let t = 0 denote the

time when B 1 deformation is initiated, t = t 1 the time when B 2 deformation is

initiated, and t = t 2 the end of deformation. The time t 2 is also the moment

when the entire kinetic energy, present at t = 0, is absorbed by the deformed

material. Fig. 9 gives the deformation diagram for both brackets with the time

history outlined above, where t 2 occurs when the area under the deflection

curve for B 1 + B2 equals to the initial kinetic energy.

Using the value of v y  taken from Section 2.3, the kinetic energy to be

absorbed by the structure is:

T= 4618 lb in.	 (15)

The kinetic energy absorbed at t  can be taken from Fig. 9 as 230 lb-in.

Therefore, 4388 lb-in., are to be absorbed when both brackets are deformed

simultaneously. It should be noted that the deformation of the first bracket is

already in a more advanced phase than the deformation of the second bracket.

Considering Eq. (14) for S the direction and magnitude of F has to be

given at all times. The magnitude is given by Fig. 9, the direction by the

surface at the collision point, and the friction coefficient µ. This latter term

gives the maximum angle of deviation of actual force acting between the two bodies

from normal to surface at collision interaction. There is always some

q
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uncertainty in predicting the surface configuration due to (1) reproducibility of

test data and (2) proper modeling of the structural dynamics. However, in'

this case a good assumption can be made by knowing that the surface of the

motor at the collision point is highly rigid whereas the brackets are deformed

very easily. The collision surface therefore is given primarily by the shape

of the motor. Considering Fig. 7 shows a deviation of 12° from a plane normal

to y during deformation of B I . For deformation of brackets B 1 and B2 both

are considered separately, therefore giving the same 12 0 as above for B I and

30 1 for B 2 . F 1 will be called the force acting on B I , F2 the force acting on

B2.

According to Eq. (14) we receive with

ds
V y r =	 Y = v(S)

dt

where s Y is the deflection taken from Fig. 9:

f - sf F dt=	 F1	 (16)
 vy 

where vyr can be calculated as follows: the kinetic energy at t = 0 is given by

T y ( 0) = 2 M
M
 v y r ( 0) 	 (17)

and will be reduced due to the area E d under the curve in Fig. 9:

TY (0) - T Y (t) = E d . 	 ( 18)

S=

10



With

Ty (t) = 2 M M v 	 (t)	 (19)

we receive

vyr(t) = vyr (0) —

	

	 Ed	 (20)
M

M

which is given in Fig. 10.
N

Determination of the direction of F in every moment involves the following

considerations: with very high friction the force would be aligned along y,

because this is the direction of impact. With small friction deviation of the

direction of the force from normal to collision surface cannot be different

more than given by/.4.

The normal to the impact surface at B 1 is 12 0 and at B2 is 30° off from

y-direction. If we assume that the bracket id made of aluminum, the motor

s	 of steel, and the contact surface is lubricated, j- will range from .1 to .2.

Then, F2 will deviate from the y-direction by 24.3 11 for u _ .1, and 18.70

for µ = .2.

Eq. (16) can be written in the form

_ 	

v

( t 1 ) i	 a(t2
)F(S(t2)F	

9(t2)

F

fS 
ds +	

J	
— ds =	 1	

J
ds +	 sds (21)

S( 	 5(tl)	
v	 S(0)	 v	

S(tl)	
v

since F2 is ^ 0 only for t l ^ t < t 2. Figure 11 now shows F/v for B 1 and

for B 2 , both as a function of the deflection, s.
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The area under the graphs in Fig. 11 now gives the absolute value of S

for B 1 and B 2• However, it must be noted that this is only valid for an inelastic

collision process, where no forces are acting between the two bodies after the

maximum deformation of the structure is obtained.

(The direction of S for B 1 and B 2 is given by the normal to the collision

surface at B 1 or B 2 respectively and byµ ).

The area under the graphs in Fig. 11 can be determined graphically from

s = 0 to s = 2.1 11 . F 1 /v and F2 /v reach infinity at s = 2.17"; therefore, from

s = 2.1" to s = 2.17" an analytic form of integration must be applied.

F
1	 2	 1	 2

and F constitute the numerator for F /v and F /v and only the interval

2.1" < s `- 2.17" is considered F 1 and F can be treated as constants for the

purpose of integration.

For v(s), Eq. (20) can be applied where the term -2E d /m. can be expressed

in terms of s. This can be done by graphic approximation of E d in Fig. 10:

from s = 1.75" to 2.5" E d can be approximated by the linear expression:

E d = 2 (k 2 s - k 1) •	 (22)
MM

Evaluating k 1 and k 2 from E d in Fig. 10 and substituting in Eq. (20) yields:

v = v o v2.36 - 1.09 s.	 (23)

Integration in Fig. 11 now results in:

Is, I = 37.6 lb-sec
and

	

	 (24)
Is e 1 = 16.7 lb-sec.

12



We are interested mainly in the further motion of the spacecraft, namely

w. immediately after collision. For this purpose the change of angular momen-

tum shall be calculated based upon

t 2

DD= f	
X 

F dt

0

where 0 < t < t 2 is the time interval during which the collision happens, and

generally is assumed to be very short. r is a vector leading from the CMS to a

point where F is acting. Here, two points of collision must be considered with

r 1 leading to B 1 and r2 leading to B 2 , where r 1 and r 2 are assumed to remain

constant during 0 :S t < t 2 . Therefore, Eq. (25) can be written as:

t 2 	t2
DD =r 1 x f F1 dt +r 2 x f F2dt=r1xS1+r2xS2.

0	 0

Using Fig. 7, r 1 , r2 , S 1 and S 2 can be determined as shown in Fig. 12. The

collision point can be represented by:

4.	
r 1 = - 3.5 e x - 21.9 e  + 32.9 e=

and	 (26)
r 2 = - 8.4 e x - 20 e  + 32.9 e Z .

Using Fig. 5 it can be determined that a collision takes place when the tra-

jectory of the motor forms an angle of 45° with the z-axis. Therefore, the

following expression for components of the collision vector is valid:

S1'_S;x + S? Y for i = 1, 2.	 (27)

(25)

13



Now the following expressions can be written with p = arctan µ
^	 1	 H

S 1 = -37.6 sin (12° - p) e x - 37.6 cos (12° - p) e  + 37.6 e = for O:Sp^S120 ,

S 1 = - 37.6 e  + 37.6e . for P2:12*,

S 2 = - 16 .7 sin(30° - p) e x - 16.7 cos (30° - p) e  + 16.7 e Z for O:Sp:S30° (28)

and

S 2 = - 16.7 e  + 16.7 e = for P 2 300 .

We are mainly interested in changes of angular velocity D D S of the space-

craft about its z-axis. Combination of Eqs. (25), (26), and (28) yields:

2
,n,D ZS _	 (rx

i 
F

Y i 

- r

Y i

 Fx 

i ).

	 (a)
i.1

This leads to

,Ds' = 1161.5 sin p- 164 cosy for 0:5p512°,	 . (b) (29)

CD =s =90+339 sin g-80 cos pfor 12°^p^300	 (c)

and

nD zi = 190 for p > 30°.	 J	 (d)

The above mentioned uncertainties in surface configuration can be put into

Eqs. (25) through (29). For example, the uncertainty inµ can be considered

by changing p in Eq. (29) to smaller and greater values starting from the

most likely value of p R. can be calculated from Eq. (29b) that

14



AD,, 5 0 for u = tgp	 '42
and	 (30)

AD =N ? 0 for lu = tgp 2:  142

If a positive value of w.: after collision is desired, µ = .142 gives the

lower limit for friction between the colliding surfaces.

Ens pointed out earlier, the above calculations of I S I by integration of the

areas in F!g. 11 are made under the assumption of inelastic collision. To

consider different degrees of elasticity a different approach is applied as

follows.

3.2 Collision Process Based Upon Coefficient of Restitution

In this section we apply another approach for calculating the collision
H	 ^

vectors S, and S z . For simplification, S, and S 2 are combined to one vector

S. S can be calculated directly based upon the dynamics of the collision when

a coefficient of restitution is assumed. The coefficient of restitution gives the

degree of elasticity involved in a collision process. The coefficient of restitu-

tion a (Ref. 2) is defined as

VS — VM
e=	 ,

vu vs

where v M and v s are the velocities normal to the collision surface before

collision of motor or spacecraft, respectively, and vw and vs are these values

after collision. Generally, all prime terms represent values after collision.

All velocities have to be taken at the point of collision and are different in

general from the velocities of CMS and CMM.

(31)

15



3

e = 0 denotes a completely inelastic collision,

e = 1 a completely elastic collision.

In order to receive the change in motion due to collision, we relate ';he inputs

and the angular momentum. of both the spacecraft and the apogee motor to the

collision vector.

I-IS=S

I M ' - I M = S
(32)

D S ' - DS =rSxS

D M ' - D M = r M x (-S)

r , is the distance vector from CMS to the point of collision P, rN is the dIL ince

vector from CMM to P. Consider only the change of motion due to collision and

set I S =0 ' 5M =DS =0.

Eq. (32) can be written as:

M  VS = S,

(V M - V M ) _ - S,	
(33)

^I S )^s =rSxS

and

The velocity immediately before collision is vMP = V M , and vS = vsP = 0.

The velocities immediately after collision are:

16



v3P = vs + [I s ] -1 
r s x S] x rs

and	 (34)

M1P	 M 
+ AIM]

-1 [rM x (-9)1 x rM.

i

With n denoting the unity vector normal to the collision surface, Eq. (31) can be
s

written as follows:

{vs+[[ is ] -1 (rs xS)]x rs — vM— [[IM ] -1 ( rM x(S))]x 7M)•{n)=a
{vM)• {n1(35)

(x denotes a cross product, • a dot product).

Instead of assuming two different collision points (P1 and P2 in Fig. 12) we

assume the collision impulse acting at a point P between P 1 and P, . S is now

determined by its magnitude I S I and angle Q against the minus y-axis. The

amount I S I, can be calculated from Eq. (35) by assuming e. It is found that for
ti

assuming full inelasticity I S1 based on this calculation is equal to 91 + S2 1 as

calculated in Section 3.1. The angle Q is determined herein on the basis of an

inelastic collision process, where it has been tacitly assumed that S produces the

same resulting Ds= as in Section 3.1. This condition results in Fig. :3 where

Eq. (29) is applied and compared with

0 D = rs x S,	 (36)

where

17



rs =- 3.9ex -22.5eY +32.9 z	 (37)

is assumed as distance from CMS to P.

Based upon 0- taken from Fig. 13 and the condition according to Eq. (27)

S can be expressed by:

S=- _rS sine - S_r Cos ae + ,5̂ e,
/ 2	 x	 12	 Y , 3

where	 (38)

S	 S^•

The structure, is deformed continuously during collision. It is reasonable to

assume that deformation is such that n, (which is necessary for application of
y

Eq. (31)) lies approximately in the direction of S.

Therefore, Eq. (38) ca.; be written as

S = S n	 (39)

and

_- sin 7 e - co s Q e + 1 a	 (40)-2	 x	 _2	 Y 

This flexibility in considering structural deformation at the point of collision is

an advantage of this approach compared to that used in section 3.1.

Eqs. (33) and (39) now are inserted into Eq. (35) in order to receive the

following equation for ; S 1:
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S -	 (e + 1) n . 
vM	

(41)

f
1n + [ [IS ] - 1 (rsx n)] x is - wn - [ [I M ] -1 [ rM x (- n)] ] x Y4{n}

M

S now can be inserted into Eq. (33) and the motion of spacecraft and motor after

collision can be calculated.

For this purpose the following special values for masses and moments of

inertia are chosen:

a. for the spacecraft and apogee-motor combined

	

M	 = 1125 lbs.
C

Icxx 
= 115.6 slg ft2

ICYY 
= 111.9 slg ft2

ICs= = 105.9 slg ft2

b. for the spacecraft alone

M = 1003 lbs
S

I Sxx 
= 87.7 slg ft2

I s y Y = 84.0 8 l ft2

ISIS  = 101.17 slg ft 2

c. for the apogee-motor casing alone

MM = 122 lbs.

I M:x =7.35s1gft2

.	 IMYY 
= 7.35 slg ft 2

IM=: 
= 4.33 slg ft2

	

r 	 is given by Eq. (37)

	

F	 =-4.8 a -16.1e +6.3e

	

M	 x	 Y	 T
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Figs. 14a and 14b show the change in wx , wy and w= for the spacecraft as

function of o- and e. The value of a-, where w i changes its sign is called vC r i t i c. t

The corresponding value for µ can be found to be 4critic.I = .141. Lower

frictions than µ^ 	 give negative w= contributions to the motions of the

spacecraft after deployment of the apogee motor.

4. Discussion of Results

Equations developed in Sections 2 and 3 can be used to establish ejection

and collision processes if the following parameters can be specified:

1. Moments of inertia for spacecraft and ejected body

2. Mass of spacecraft and ejected body

3. Geometrical configuration for C.M. locations in spacecraft and ejected

body

4. Surface friction properties at impact point

5. Structural elastic properties at impact point (expressed in terms of

coefficient of restitution)

6. Release mechanism behavior

7. Velocities and angular rates prior to release

8. Impact geometry and deformation time-history

Usually, parameters (1), (2), (3) and (6) are readily available for a given

spacecraft. Parameter (7) can be established by in-flight measurement. The

uncertainties associated with these items are considered herein to be small

and would have no significant influence upon the impact study. However, param-

eters (4), (5) and (8) are generally not known to such precision and must be

treated within a bound of uncertainty in order to predict limits of impact be-

havior. For example, both surface friction and elastic properties are normally

20



based upon practical tests wherein reproducibility of data is of prime concern.

The uncertainties associated with these parameters can be used to determine

a range of collision vectors, S, which then permits a prediction of the upper

and lower bounds on resulting body rates following impact.

Consider now the special case described in Sections 2 and 3 where param-

eter (8) is based upon static test data. The influence of parameters (4) and (5) is

shown in Figures 14a and 14b. The friction coefficient for a lubricated surface

of the selected materials is estimated to lie at a value between 0.1 and 0.15.

The angle sigma can be used to set upper and lower bounds of uncertainty on

the friction coefficient. The upper bound on sigma is 17.5 degrees, which

results from the consideration that friction coefficient becomes zero at this

angle. The lower bound on sigma is 0 degrees and represents the point where

friction coefficient exceeds a value of 0.577. This limiting value is based upon

the angles shown in Figure 7, wherein tan 30 0 equals 0.577. A range of values for

coefficient of restitution, e, from 0 (inelastic case) to 0.5 was considered for the

structural elastic behavior. Higher values for a are not likely to occur for the

subject case. Figure 14b shows that a has no effect upon determination of

direction for w Z . For the most likely condition of inelastic collision, w = is

found to range from +0.12 radians per second (6.87 degrees per second) at friction

factors of 0.577 and above to - 0.10 radians per second (-5.73 degrees per second)

at zero friction. Where no lubrication is applied to the contact surfaces, one can

expect the friction coefficient for bare metal surfaces to be unity or higher. If

the surfaces are painted, one could expect even higher friction factors. Either of

these latter two conditions would produce an wZ of about +0.1 radians per second.

It is of interest to note that the lubricated condition will produce an w = having

bounds of +O.U1 radians per second and -0.028 radians per second.
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5. Conclusions

A semi-analytic approach has been developed herein for determining the

residual spacecraft body rates produced by impact with an ejected mass. Two

processes are involved. The first phase describes the mass ejection, which is

handled analytically. The second phase is the collision process which requires

formulation of an empirical deformation model which is combined with an

analytic model for the collision vector.

A specific case, examined using this mathematical approach, revealed that

the residual spacecraft z axis rate can be bounded by coefficient of restitution

and surface friction properties. The coefficient of restitution influences only

the magnitude of the residual rate whereas the direction is given by surface

friction.
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P, point of collision on bracket B,

P 2 point of collision on bracket B2
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involved.
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