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HEAT TRANSFER IN A CHANNEL WITH RANDOM VARIATIONS IN FLUID VELOCITY

Morris Perlmutter
NASA Lewls Research Center, Cleveland, Ohio

Abstract

Heat transfer results have been obtained for randomly varying laminar flow

in a heated parallel plate channel. Two types of heat transfer boundary con=-
ditions are considered: (a) The channel walls are at constent temperature;
or (b) a specified uniform heat flux is transferred at the walls. The heat
trangfer behavior is obtained along the entire length of the channel. The
temperature distributions are two-dimensional but a slug flow velocity pro-
file is assumed. The results show significantly higher mean wall tempers-
tur~s and, for short channels, lower wall heat fluxes when compared to the
sceady flow cases.

INTRODUCTION

Although flows in internal flow systems are commonly assumed to be steady,
velocity fluctuations are always present to some extent. These flow fluctua-
tions may arise due to flow instabilities or from unsteadiness in the pumping
system. It is of interest to determine the effect of the rendom velocity fluc-
tuations on such things as wall heat transfer and wall temperatures which will
also fluctuate and may be significantly different from the steady flow case.

Practically no analytical papers have dealt with the problem of heat transfer
in a parallel plate channel with randomly fluctuating velocities. 1In Ref. 1
an analysis was carried out for & sinusoidally varying laminar slug flow in
a channel. For the constant wall temperature boundary condition and ccnstant
properties the time average wall heat transfer was found not to change appre=-
ciably due to the oscillating flow velocity. These results were extended to
the case for the two-dimensionel velocity profile in Ref. 2 and similar re-
sults were found.

In Ref. 3 the heat conduction through & solid with randomly varying internsl
heat generation or randomly varying wall heat fluxes and wall temperature was
analyzed. Since the heat conduction problem is linear & straightforward
analysis yielded analytical solutions.

The present analysis treats the problem of heat transfer to & fluid with ran-
domly varying velocity. Since this problem is nonlinear, it is difficult to
find analytical solutions as in the linear case. The present method of
anslysis depends partially on model sempling or the Monte Carlo technique to
obtain the solution to the present problem. The randomly varying velocity=-
time history is generated by randomly choosing velocity amplitudes and times
between changes in velocity amplitude from the appropriate distributions.
The velocity function so generated can be used in obtaining the wall heat
transfer or temperature as & function of time using standard analytical
methods. By repeating this process so as to obtain ensemble averages the
various characteristics of interest of the system can be obtained.
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Random Velocity

The fluid velocity is assumed constant across the channel but varying in
time. Nondimensionalizing tne velocity by the mean flow we can write

U(e) = 1 + yU'(6) (1)
The U' 418 the fluctuating component of velocity with a mean value of zero.

The value of U' is constant for & time increment 6y and then U' changes

to & new value. The amplitude factor 7Y is & parameter of the problem and
determines the magnitude of the velocity flugtuation.

The times between changes of the velocity amplitude (6g) sre assumed inde-
pendent events randomly distributed along the time axis with an averasaz time
of occurrence Ga. The Poisson distribution (Refs. 4 and 5)

-G/Ga K
£(8,K) = Z _ia(e/ea) (2)

gives the distribution of K random events occurring independently during
time 6 for a given average time per event of Ga. The occurrence of one
event at the end of time 6 is given by first no event occurring during
time 6g and then one event occurring during the incremental time d6. The
probability of this occurrence is given by the product of the two probabili-
ties

£(6g) = £(65,0)1(06,1) = 51- e.e5/ea (3)
8

The distribution of 65, the time between velocity changes, is thus given by
f(65). To pick a time between change in velocity 95 from the distribution
f(es) we proceed as shown in Ref. 4. Set R, the random number picked from
e uniform distribution between zero and 1, equal to the cumulative distribu-
tion of £(6).

6 -6 /6
R=/6f(9)d6=1-e5/a (4)
0

Thus by having the computer generate R using a uniform random number gen-
erator we can solve for the random variable 6y, the time between changes in
velocity from Eq. (4a). We can rewrite the above, using R =1 - R, as

After finding 6y the time to the change in value of U' & new value of

U' must be randomly chosen from f£(U'), the distribution of amplitudes of
the fluctuating velocity component U'. In the present anslysis we assume
that U' takes the values of +1 or -1 with equal probability. The new
value of 1' is thus chosen at the end of time increment 6g by generating
a new value of R. If R 1is less than 0.5, then U' is teken at +1
otherwise it is -~l. In this manner an entire history of U can be gener-
ated (see Fig. 2). Using a similar procedure different distributions of
amplitude of U' can be used as well as different distribution of time to
change 6y to represent different randomly fluctuating velocities.

The value of ¥ teken in the present analysis is always less than 1 so
that the fluid velocity U 18 always positive. Since the average value of
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U' is zero, (U') = 1% (1/2) =1 x (1/2) = O, then the mean value of U 1is
given by (U) = 1 + y(U') = 1. The standard deviation of the velocity is
given by '

oy = ((U2) - W22 .y (5)
Since
(U2) = ((1 + vU')2) = 1 + y2(U'2) + 2p(U') = 1 + y2

The final term of interest is the normallzed autocovariance of the velocity
8)u(e + A)) - (U(6))2 '
(o) = LUOWE £ 2)) - (o)) (6)
(us(e)) - (u(e))
vhere A 1ig & time incremept added to 6.

If we let £(6,0) be the probability that an event has not occurred in time
6 1in Eq. (2), then since there are only two possibilities, either an event
has not occurred or hes occurred in time 6, we can write

(u(e)u(e + &) = (U¢)r(n,0) + (UY2[1 - £(s,0)] (7)
Then CU(AJ, the normalized autocovariance, becomes
- -6/6,
oy(6) = ) = ) -6/e, (8)
%

It can be seen that in the present case the mean, (3) = 1, the mean deviation,
-6/6

oy = Y, and the normalized autocovariance, CU = e a, contain all the pa-

rameters needed to describe the fluctuating velocity (Egs. (1) and (3)).

Knowing these quantities allow the generation of randomly fluctueting veloci-

ties by model sampling that have the correct statistical behavior as was done

in the present case.

Analysis for Uniform Wall Temperature
The unsteady energy equation for flow in a parallel plate channel is (Fig. 1)

g—%+u(1)g§=ab—% (9a)

Viscous dissipation and axial conduction have been neglected and radial con-
vection is assumed zero. Constant properties are assumed. The slug flow
approximation has been made for the velocity. This equation for the uniform
wall temperature case can be written in dimensionless form as

T dr _ 38T
5-9-+U(9) 5%=S;é' . (op)

using as the dimensionless temperature T = (t - to)/(tw - t.) (see Fig. 1);
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dimensionless axial distance from entrance of heated channel X = (xu)/(u_a2)
and dimensionless time 6 = (7o/a?); where u, represents the mean flov in
the channel.

The boundary conditions on Eq. (9) are

T=0 at X=0 for all & and Y, constent entering temperature (10a)

T=1l at Y= 21 for all X and 6, constant wall temperature (10p)
g% =0 at Y=0 forall X wnd 6, symmetry (10c)

The method of solution follows the procedure given in Ref. 1. The solution
for steady laminar slug flow in & channel with & constant wall temperature
is given by

T8=1-2§S-é—il?-e-nixcos E,Y (11)

where E, are the eigenvalues [n + (1/2)]=x.

For the case of randomly fluztuating velocity we assume a solution, as in
Ref. 1, of the form

T=1a2 Z L—)—G(Xe)cosEY (12)

n=0

This form of the solution automatically satisfies the boundary conditions
(100) and (10c). Substitution of Eq. (12) into Eq. (9) gives

g-g‘l +U ;:2 = -Eﬁcn (13)

Using the method of characteristics we write the auxiliary equations as

de_él‘._

(14)
r.ic

The first two terms in Eq. (14) can be integrated to yield & set of curves
or characteristic lines in the x - 6 plane.

) X
f u(e)as = / X = X (15)
6 0

o

The characteristic lines of interest begin at X = O since it is at this
point the boundary condition (10a) must be satisfied. Equating the first
and last terms of Eq. (14) yields a relstionship for G as a function
of 6 along the characteristic line.

6 G ‘
ae
[de-_-_.l_[naf}. (16)

(o)
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6 -6,m= 'i?,' 1n G, | (17)
The boundary condition Gn =1 at 6 = 6, fixes the value of G, at

X= O since 8 = 6. corresponds to the geginni of a character?stic line

at X = O, This rugfills boundary condition (10a). Substitution of Eq. (17)
into Eq. (12) gives

™6) =1 -2 Z %!1-33 e'gg(e'%) cos E Y (18)

nw=0

In a situation vhere the wall temperature is specified it is desirable to
compute the heat transferred from the wall to the fluid. This can be found
from the temperature distribution by applying Fourier's law

%
: K(gy)y-a (1)

Differentiating Eq. (18) and evaluating it at Y = 1 yields the wall heat

flux
00 2
E(6-6,)
,Q(e)sfrttrsg—t—oj---z Z e ° (20)

n=0

To solve for Q(6) in Eq. (20) we have to find 6 - 6, from Eq. (15). We
can generate a random velocity U(®) as discussed previously. This U(8)
can be used to give values of X a8 a function of © where

x(8) = _4'8 u(e)ae

Thie is plotted in Fig. 3. We would like to obtain values of the wall heat
flux Q at various values of time, Q(6), Q(6 +4), . . . Q(6 + nd) for a
fixed position along the heated channel X. For Q(6) the value of (6 - 6,)
needed in Eq. (20) is obtained as shown in Fig. 3. A value of 6 is picked.
This defines a point along the X coordinate. Moving back along the X co=-
ordinate a distance X defines point 6? ags shown graphically in Fig. 3.

e

To find Q(6 + A) we need the value of [(€ + &) - 6, ,1.\.] given by the follow-
ing equation

6+
f u(e)ae = x : (21)
60,0

Thies is found as before by finding a point along X in Fig. 3 corresponding
to 6 + A moving back & distance X along X then finding 6_ .. In this
manner we can obtain 1Q(6), 1Q(6 + A), 1Q(6 + 2A) . . . based o’ the randomly
fluctuating velocity 1U(8$ where the 1 superscript denotes one member of
an ensemble. This same procedure is repeated using a newly generated funce
tion of U(8) for the second member of the ensemble by generating a new ran-
dom velocity 2U(8) and finding 2Q(6), 2Q(6 +4), . . .. This is done K
times end the following ensemble averaged values are obtained; Q(6), the
mean wall heat flux; the standard deviation of the wall heat flux; -

o - {[F@) - [{@ 4 (22)

!

%

§
T &
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and the normalized autocovariance of the wall heat flux

Q(8)(8 + ud) - [al8))? (28)
5%

These results have been evaluated and will be given later. The value of K
was taken as 2000 after comparison of results for a K of 4000 showed neg-
ligible change.

Cq(m) =

sis for Uniform Wall Heat Flux Case

For this case the energy equation is the same as giveﬁ in Eq. (9) except the
dimensionless temperature is now T n (t = to)k/qa. The boundary conditions
remain the same but Eq. (10c) becomes

g%: = 1] at Y= 21 forell X and 6 (24)

Following the analysis in Ref. 1, the steady slug flow solution for constant
wall heat flux is given by

2 == (.1)D
™ =X + opml 3 L—)-zl e~ (81)%X cog nny (25)
8 6
(nx)
ns=
For the precent analysis we assume & solution of the form
Q0
- -1\D
™ = Fo(ex) + §!EE-#L -2 L-El—-F (6X)cos urnyY (26)
(nn)2 P
n=
Substitution into the energy equation gives
oF, oF,
-l +U > S 1l (27a)
oF ar
s+ U -a-x-'l = ~(nn)2F, (27v)
Using the method of characteristics the auxiliary equatiomns are
. '
d6 = 55 = dF, (28e)
daF
a6 = %¥ = —2 (28b)
-(nn)°F,
These can be solved to give
Fo=6 =6, (29a)
2
={nr)“(6=6
p = e () (66 (25b)

where 6 - 6_ 18 given by Eq. (14). We can now write the solution for the
wall temperufure by letting Y = 1
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Then following the procedure described earlier we can then find lT*(G),
(6 +4), 1T(6 + 24), . . . based on the randomly fluctuating velocity
U(6). This procedure is repeated and_the following ensemble averages are

obtained. The mean wall temperature, T:(G), the standard deviation of the
wall temperature,

S = {[W] - [=¢e)] 2}1/2 (31)

and the normalized autocovarience of the wall temperature
FZS'(G*«M)-E(GI

2
BT

These resulte have been evaluated and will be given later.

(nx)?
-(e.e)+ -22;-——”(“”9'%) (30)

Cplnd) =

1m1tigg Solutions for Large Times Between Changes in Velocigl

For very large values of 6,, the average time between changes in velocity, the

problem reduces to the case of heat transfer in s.eady flow, half of the time
at velocity U= 1 + v and half the time at U= 1 - ¥y, This means that the
wall temperature and wall heat transfer results will be given by the steady
flow results half the time based on velocity U= 1 + v and the other half of
the time based on U= 1 = y. In Fig. 4 is a plot of the steady wall temper-
ature versus X for the case of uniform wall heat flux. The wall temperature
at the steady flow velocity U= 1 + vy can be read off this curve at

X0, X

Ty © (1 + r)u e’ Ty (33)

So that to find the wall temperature at X when the velocity is U= 1 + 7
read the steady flow wall temperature at xl*r which i8 equal to X divided

by 1 + 7. For the limiting case of Ga -+ «» the average wall temperature for
the uniform wall heat flux case is now given by

Ty = (T, 247) (%') + (T, 1-y) (%‘) =5 (T 14p * 1) (3¢)

We can find the limiting case for the fully developed region as follows. In

the fully developed region for the steady wall heat flux case the steady wall
temperature is given by Ta g = X + (1/3 We can then rewrite Eq. (34) for

the fully developed regions’as

=y _1 X 1\ X 1\ | X 1

T;,“,d"a[(l+r+3)+(r—-r+3'] ——71-r+3 (35)
We can see from Eq. (35) that in the limiting case of large times between
velocity changes in the fully developed region that for zero value of, the
fluctuating velocity, ¥ = O the mean wall temperature is the same as the
steady state case, however, when the velocity fluctuation approaches the

value of the mean flow, Y¥ 1 so that the velocity will be close to zero

gk e,
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part of the time then the mean wall temperature becomes very large and ap-
proaches infinity. The wall temperature standard deviation for the constant
wall heat Tlux case for the limiting case of very large time between velocity
changes is given following Eq. (351) es

ST,O = [(%,lﬂ' - ES"“)Z %“" (I?l,l-r - E,N)Z %‘]1/2 (38)
This reduces to
- T:,ql-f - T‘*'il*r

S co > (37)
We can find the limiting result in the fully developed region which is
L _
S, q ™ —: | (38)

We cen see that the standard deviation cf the wall temperature for 6, very
large in the fully developed region goec to zero &s the amplitude of %he vee
locity fluctuation T go to zero. However, as Y = 1 then sT,w,d - w,

A similar typz of limiting argument would apply to the wall heat flux Q for
the constant wall temperature boundary condition. As in Eq. (34) we can write
for the case of very lcng times between velocity changes, Ba-»,m,

1 1
LYy gt Yyt (39)
where Q1 and Q1 are evaluated from the stezdy flow result as shown in
+r =T :
Fig. 6 for Q at Xy4p OF Xj_ 88 given by Eq. (33). We can similiarly
write t?e §tandard deviation of the wall heat flux for tne Limiting case as
in Eq. (37

5. = Qup = Gy
»® 2

These limiting values are discussed in the section on results.

Results for Uniform Wall Heat Flux Case

The wall temperature results for the uniform wall heat flux case are shown in
Fig. 4. The s80lid line shows the limiting solution of the wall temperature
for the steady flow case. Mean wall temperatures are shown for two different
amplitudes of flow velocity fluctuations y = 0.9 and vy = 0,5. The r of
0.5 means the fluctuating component of the velocity has a positive or negative
amplitude S50 percent of the mean flow. These mean wall temperature results
are considerably sbove the steady flow values. The larger value of y giving
results further above the steady flow case. The mean wall temperature results
are also given for different values of Ga, the average time between changes
in the fluctuations in the velocity. These results indicate that for large
values of Oa the average value of the mean wall temperature fall further
above the steady flow result. The limiting result cf 64 = » are also

shown. This limiting solution i1s the average of the wall temperatures for

the steady flow case when the velocities are taken at the maximum value

l+ 7, and the minimum value 1 - 7.

Also shown in Fig. 4 are the standard deviations of the wall temperature ST.




These results indicate the amplitude of the variation of the instantaneous
wall temperature above and below the aversge wall temperature. The standard
deviation‘'is given in Fig. 4 as thc difference in values between thz open and
tlie 8olid symbols. The standard deviation approaches zero as the average wall
temperature approaches the steady flow value. Very large values of the atan-
dard deviation which indicate large fluctuations in amplitude of the wall tem-
perature occur for large values of Y and 6, as can be seen in the figure.

The wall temperature autocovariance results are shown in Fig. 5. For compari-
son the autocovariance for the velocity fluctuations are shown as & solid line,
The slope of the autocovariance curves are indicr.tive of the average time be-
tween changes in the wall temperature, the steeper the slope the shorter the
time between changes in wall tempersture. 1In Fig. 5 the slopes are smaller
for the unsteady wall temperature then for the unsteady velocity, meaning that
the average time between changes in wall temperature are somewhat longer than
for the case of the fluid velocity. Also for larger values of X the average
time between changes in wall temperature increase as cen be deduced from

Fig. 5.

Using the mean value, the standard deviation and the asutocovariance results
for the wall temperature, the wall temperature can be generated as a function
of time in a similar manner as the velocity used in the present analysis was
generated as discussed earlier.

Results for the Uniform Wall Temperature Case

The resulting mean wall heat flux for the constant wall temperature boundary
cundition is shown in Fig. 6. The solid line shows the resulting wall heat
flux for the steady flow case. Mean wall heat fluxes are shown for two differ=-
ent amplitudes of the velocity fluctuations ¥ = 0.9 and 71 = 0.5. The mean
wall heat flux is significantly below the steady wall heat flux for heated
channel lengths less than about X of 0.6. However, since the fluid must
finally reach the temperature of the wall in the case of constant wall temper=-
ature boundary condition the mean wall heat flux for values of X greater
than 0.6 must be above the steady value. These results indicate that for
short heated channels there can be a significant decrease in heat transfer for
unsteady flow. The mean wall heat flux results are also shown for different
values of Ga, the average time between changes in the velocity fluctuations.

The results indicate that for larger values of Y and larger values of 6
the mean wall heat flux falls further below the steady flow value for shor%
channcls. The limiting results for Ga-* « are also shown. Also shown

in Fig. 6 are the standard deviations of the wall heat flux S,. These
results are given as the difference between the solid and the open points.
The standard deviation becomes smaller as the mean wall heat flux comes
closer to the steady flow case, i.e., small values of 7Y and ea.

The wall heat flux autocovariance results are shown in Fig. 7. For comparison
the autocovariance for the velocity is shown as a solid line. The slopes of
the heat flux resulis are smaller than for the velocity indicating a larger
average time between changes in wall heat flux compared to the average time
between changes in the velocity fluctuations. The slope was smaller for
larger values of X +than for smaller values of X.

B R
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Conclusion

Adding an unsteady axial component of velocity with e mean value of zero to
slvg flow in a heated channel can result in significantly higher mean wall
temperature and, for short channels, lower wall reat fluxes. These effects
were found to increase as the amplitude of the velocity fluctuations were in=-
creased and also as the average time between velocity fluctuations were in-
creased.

The method of anelysis consisted of generating a randomly fluctuating velocity
as & function of time by picking amplitudes and times to change in amplitudes
randomly from the appropriate distributions. These were used in the energy
equation which were solved ueing standard methods of solution. This process
was repeated so as to obtain ensemble averages. This method allowe complex
nonlinear stochastic problems to be readily solved that would be very difficult
using more usual analytical procedures. The resulting mean value, standard
deviation and autocovariance results for wall temperature and well heat flux
given in the present report can be used as in the case of the randomly fluc=-
tuating velocity to generate an approximate time history for the wall temper-
ature and wall heat flux that could be used in the analysis of other problems
such as temperature stress in materials.

The present method of analysis can be extended to different forme of the ran-
domly fluctuating velocity.

Several as:umptions were made that could have significant effects on the re=-
sults including: no random fluctuations in velocity normel to the mean flow
direction, no axial conduction and the slug flow velocity profile. Further
analysis removing these restrictions would be of interest.
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Figure 7. - Normalized autocovariance of wall heat fiux
for the constant wall temperature case, vy - 0.9.
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