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FOREWORD

NASA experience has indicated a need for uniform design criteria for space vehicles.

Accordingly, criteria are being developed in the following areas of technology:

Environment

Structures

Guidance and Control

Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as they

are completed. This document, Spacecraft Gravitational Torques, is one such monograph. A

list of all monographs in this series issued prior to this one can be found on the last page of
this document.

These monographs are to be regarded as guides to design and not as NASA requirements,

except as may be specified in formal project specifications. It is expected, however, that the

criteria sections of these documents, revised as experience may indicate to be desirable,

eventually will be uniformly applied to the design of NASA space vehicles.

This monograph was prepared under the cognizance of the NASA Electronics Research

Center. Principal contributors were Mark Harris and Robert Lyle of Exotech, Inc.
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Stanford University
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nology
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SPACECRAFT GRAVITATIONAL TORQUES

1. INTRODUCTION

In the design of spacecraft attitude control systems, all torques that tend to disturb the

attitude of a spacecraft must be considered. One of these torques is the gravitational or
gravity gradient torque which results from the variation in the gravitational force over the

distributed mass of the spacecraft.

Determination of the gravitational torque requires knowledge of the gravitational field and

the mass distribution properties of the spacecraft. This torque decreases with the cube of

the orbital radius. At any orbital altitude the gravitational torque may be minimized by

designing the spacecraft to be as nearly isoinertial, i.e., having equal principal moments of
inertia, as practical. The gravitational disturbance torque is most likely to be a significant

factor in the design of large spacecraft in low altitude orbits.

The gravitational disturbance torque is one of the factors that must be considered in the

determination of spacecraft attitude motion, control actuator sizing, and expendable fuel

requirements. Control or minimization of gravitational disturbance torques requires that
attention be given to the arrangement of spacecraft equipment or that provision be made for

adjustable balance masses. Rearrangement of the spacecraft is difficult and expensive after

the configuration is established; therefore an accurate determination of the gravitational

torque should be made during initial design and updated during development of the
spacecraft.

Gravitational torques may be employed for spacecraft stabilization. When this is the design
objective, mass properties are controlled to increase rather than decrease the differences

between principal moments of inertia. Additional factors, such as variations in gravitational

torque caused by orbit eccentricity and the oblateness of the Earth, become significant and

must be considered. This monograph is primarily concerned with the disturbance torques

that affect attitude control systems of vehicles stabilized by means other than gravity. The

equations given may also be used to estimate first-order effects of the gravity field on
gravity-stabilized vehicles.

The scope of this document has been limited to those gravitational torque effects that are
independent of the spacecraft dynamics. Stability problems that involve the internal angular

momentum, coupling between the libration and orbital periods of the spacecraft, and
spacecraft flexibility are not covered.



2. STATE OF THE ART

2.1 General

Failure to consider the effects of gravitational disturbance torques during spacecraft design

has caused mission degradation or failure in several instances. Where these torques have been

considered, the correlation between calculated and observed behavior of the spacecraft has

generally been quite good, except in instances where the inertial properties of the spacecraft

were not completely known. The limiting factor in the assessment of gravitational

disturbance torques is the difficulty of accurately determining the spacecraft inertial dyadic.

1

2.2 Historical Background

The study of torques on a rigid body in a gravitational field is based on Newton's laws of
motion and universal gravitation (1687). In 1749 the problem of an axially symmetric

ellipsoid in an inverse square field was analyzed by d'Alembert (ref. 1) and Euler (ref. 2) in
connection with the precession of the equinoxes produced by the torque on the Earth

caused by the solar gravitational field. In 1754 d'Alembert expanded and generalized his
work and this became a basis for the first treatment of the librations of the Moon (ref. 3). In

1764 Lagrange took up the problem of the librations of the Moon as the prize problem for

the Royal Academy of Sciences and in 1780 published the first definitive treatment (ref. 4).

The torque expression, essentially in its modern form, appears in the works of LaPlace (ref.

5) and Tisserand (ref. 6).

During the period after World War II, when the first artificial satellites were being designed

and developed, the subject of gravitational torques was reexamined and their equations
restated in modern matrix and vector notation. Expressions for the torque on a rigid

asymmetrical body in an inverse square field are given by Roberson (refs. 7 and 8), Nidey

(ref. 9), Hultquist (ref. 10), and Lur'e (ref. 11).

Because many of the satellites first placed in orbit were spin stabilized, the problem of

predicting the motion of the spin axis due to gravitational disturbance torques has been
extensively investigated (refs. 12, 13, 14, and 15). The major impetus for the detailed

investigation of gravitational torques and their influence on the dynamics of an orbiting

body was undoubtedly provided by continuing interest in the exploitation of this torque for

passive stabilization of Earth-oriented satellites (sec. 2.3).

1 R. E. Roberson: "Dynamics and Control of Rotating Bodies" (to be published).

2
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Digital computermethodsareextensivelyusedfor thecomputationof gravitationaltorques
asa part of multibody dynamicsimulation.Programscapableof handlingmultiple-hinge,
n-body problems exist in several forms (refs. 16 and 17), and more complex programs,

which include the distributed characteristics of very long booms, have been developed (refs.
18 and 19).

2.3 Flight Experience

The earliest observations of the effects of gravitational torque on man made satellites related

to the precession of the spin axis of spin-stabilized spacecraft. A detailed analysis of the

various disturbance torques that acted on Sputnik 3 has shown that the gravitational torque

was the major disturbance torque and exceeded the next largest disturbance, i.e., magnetic

torque, by a factor of 6 (ref. 14). In this satellite one of the primary attitude sensors was a
self-orienting magnetometer, and the low magnetic moment was presumably a requirement.

For the Explorer 11 the orientation of the angular momentum vector was determined from

analysis of radio signals (refs. 14 and 20) and its motion checked against that calculated

from consideration of the gravitational and magnetic disturbance torques acting on the
satellite. Excellent agreement between the observed and calculated motion was obtained.

The gravitational torque was slightly less than the magnetic torque.

In an early Agena flight, the gravitational torque was responsible for unexpected attitude

behavior. When the Agena was actively stabilized with gas jets, the gravitational torque

produced a negligible disturbance but when the spacecraft was coasting in a passive,

spin-stabilized mode, its nonspherical mass distribution resulted in an unpredicted

precession of the angular momentum vector. After the first observation of this phenom-

enon, a computer simulation that included the effects of gravitational torques was

developed to predict the behavior of the Agena's spin axis. Subsequently, gravitational
torques were advantageously used to orient similar spacecraft.

The first Canadian satellite, Alouette 1, was spin stabilized and employed four long antennas

to study ionospheric phenomena (fig. 1). The long antenna booms caused a large inertia

difference between the longitudinal and transverse axes of the satellite and, consequently,

the gravitational torque caused a comparatively rapid precession of the spin axis (ref. 21).
The motion of the Alouette 1 spin axis in terms of right ascension and declination as a
function of time is shown in figure 2.

Gravitational torques were expected to be the dominant disturbance on the three Pegasus
satellites, which deployed large wing panels for micrometeoroid detection. These satellites
were neither actively nor passively controlled in attitude but accurate determination of the

spacecraft orientation relative to a space-fixed coordinate system was a mission requirement.
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Spin axis

Figure l.-Alouette 1.

Rightascension

_Observed ....... Calculated

Figure 2.-Spin axis motion of Alouette 1 as a function of time in

days (ref. 21).
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The spacecraft contained a combination of solar sensors and Earth sensors to obtain the

necessary attitude data (ref. 22). Although originally designed to have negligible angular
momentum, all three satellites developed spin rates in the range of 7 to 10 deg/sec because

of a venting problem. Considerable difficulty was encountered in obtaining agreement

between the computed and observed attitude motions of these spacecraft. This flight
experience exemplifies problems associated with the prediction of attitude motion when

spacecraft dynamics, i.e., gyroscopic effects, are significant. Reference 23 shows that the

observed motion can be attributed to gravitational torque provided that proper consider-

ation is given to precession of the orbit plane.

The Lunar Orbiter furnishes an example of gravitational torque caused by a central body

other than the Earth and, further, illustrates the importance of using the entire inertial

dyadic in the computation of gravitational torques. The Lunar Orbiter employed active
three-axis stabilization, and the spacecraft's geometric axes were not coincident with the

principal inertia axes. In the lunar orbit the torque caused by the Moon's gravitational field

was the only significant disturbance. Using the complete inertial dyadic, the average torque

over an orbit was calculated as 9.75 × 10 -6 N-m (Newton-meters). This value is about 40

percent larger than the value of 6.84 × 10-6 N-m which was computed on the basis of the

moments along the spacecraft's geometric axes and neglecting product of inertial terms (ref.
24).

The effect of gravitational torque on mission requirements other than spacecraft orientation
can also be important. The Radio Astronomy Explorer (RAE) uses four, 750-foot extension

antennas for the dual purpose of obtaining gravitational stabilization and receiving radio

signals at frequencies that are absorbed by the Earth's atmosphere (ref. 25). RAE's two

pairs of V-shaped antennas attached to a comparatively small, rigid satellite body are neither

parallel nor perpendicular to the local vertical. Consequently, each antenna is subjected to a

gravitational torque that tends to bend it inward toward the local vertical as shown in figure
3. At the orbital altitude of 6000 kilometers, gravitational torque acting on the antennas

causes the tips to deflect inward by 150 feet. During the design study, the possibility of

using 1000-foot antennas was considered and rejected because, for antennas of this length,

the deflection caused by gravitational torque is so large that the antenna pattern is adversely
affected.

The RAE also furnished the impetus for the development of the equations and simulation of

the dynamics of a flexible gravitationally stabilized body. Correlation between actual flight

data and the results of the dynamics simulation (refs. 18, 19, and 26) has been excellent. An

interesting feature of the RAE simulator system is the incorporation of a corrector module
that adjusts parameters in the simulator to minimize deviations between measured and

predicted spacecraft performance.

The determination of gravitational torques and the knowledge obtained from flight
experience have been significantly advanced through the design, development, and flight of

spacecraft in which gravitational torque is used to perform a desired flmction, e.g.,
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stabilization of spacecraft attitude, unloading of momentum wheels, etc. The proceedings of

the two recent symposia on gravitational stabilization (refs. 27 and 28) present an excellent
summary of the state of the art and much information directly applicable to the

determination of gravitational torque. A general survey of recent developments in the field

together with a bibliography of more than 90 references is given in reference 29.

\
\

\
\

/
I

/
/

Localvertical

I/
I 750'

I

!

\

Antenna

Frontview

_--- Orbit

Antennaplane -

Damperboom

Figure 3.-Gravitational torque deflection of radio astronomy
explorer antennas.

2.4 Gravitational Field of the Earth

The classical mathematical foundation of the theory of gravitational attraction was

established during the 18th and 19th centuries. Todhunter (ref. 30) gives an excellent survey
of early work in the field; Caputo (ref. 31) and Kaula (ref. 32) include both classical and

modem developments. With the advent of close Earth satellites, there has been a

considerable advance in the accurate determination of the Earth's gravitational field (refs.

33, 34, and 35). The current knowledge regarding the Earth's gravitational field has

advanced far beyond the requirements for the determination of the gravitational torque

IF]I:_



acting on a spacecraft. In all known cases, adequate accuracy is obtained with the

assumption of a central inverse square field, i.e.,

F=-mkR (I)
R 2

where

F = vector force acting on a mass particle in the field, newtons

m = mass of particle, kilograms

k = gravitational constant of the attracting body
= 3.986032 X 1014 N_m 2/kg for Earth

R = distance from the particle to the mass center of the attracting body, meters

R = unit vector in the direction of the line joining the mass center of the attracting

body and the particle, dimensionless

2.5 Gravitational Torque Equation

The vector torque equation for a rigid body is derived by determining the gravitational

force F acting on each infinitesimal mass element dm, forming the vector cross product

of this force with the vector to the body mass center, and integrating over all mass

elements of the body (app. A). When a central inverse square field with gravitational

constant k is assumed and the inertial dyadic I is used to describe the mass properties of

the spacecraft, the simplified equation for gravitational torque, Lg, in newton-meters (N-m),
can be written as follows:

If the orbit is eccentric, then (ref. 32)

k 2 (1 +e c°s ¢%t/3/

(2)

(3)

where
¢o = mean orbital angular velocity, rad/sec

O

2 k/a3 (rad/sec)2
W.DO

a = semimajor axis, meters

e = orbit eccentricity, dimensionless

t = time measured from perigee, seconds

2
If the satellite is in a circular orbit, the quantity k/R 3 is a constant equal to ¢oo.

7
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The simplifications used to develop equation (2) are (1) oblateness and higher order terms
of the planetary gravitational field are ignored, (2) higher order inertial integrals of the

orbiting body are ignored, and (3) the mass of the satellite is assumed to be negligible with

respect to the mass of the Earth. DeBra (ref. 36) gives an expression for the gravitational

torque that includes the oblateness term and neglects higher order inertial integrals.

Meirovitch (ref. 37) has investigated the effect of the higher order inertial integrals for

circular orbits about a spherically symmetric Earth.

Even for low altitude orbits the torque computed using equation (2) will provide adequate

accuracy, i.e., ignoring oblateness and higher order terms will not change the result by more

than a few tenths of 1 percent. In most cases the major sources of inaccuracy in the

determination of gravitational torque will result from uncertainties in the determination of

the inertial dyadic and the exact orientation of the spacecraft relative to local vertical.

2.6 Inertial Dyadic

To calculate the torque on a satellite, using equation (2), a coordinate frame must be

established and I and R must be expressed in this frame. Since ! is constant when expressed

in a body-fixed frame _ (for a rigid body with nonmovable appendages), this frame is most

commonly used. If the body-fixed frame is defined as a right-handed, orthogonal coordinate

frame (x, y, z) with origin at the mass center, the nine components of I, arranged in a matrix

form, are:

p

lxx =fro am(y2 +z2)

Iyx:fm dm yx

Izx =-fro am zx
B

lxy = -fro dm xy

[.vy =fm dm (z2 +x 2)

l y =-f,,, dmzy

Ix z =-fro dm xz

Iyz =-fro am yz

1= =fro dm(x2 +y2)
m

(4)

Because the inertial dyadic is symmetric, i.e.,/xy =/yx and so forth, it is always possible to
find a body-fixed frame in which only the diagonal components, Ixx , I y, and Izz, have

• • Y

nonzero values. This particular frame is called the principal axes of the body and the three

nonzero components of the inertial dyadic are called the principal moments of inertia.

For control system purposes it is often most convenient to select a body-fixed coordinate
frame that coincides with the orientation of one or more of the hardware elements, e.g.,

sensor optical axis, torque axis, gyro input axis, etc., the axes thus selected will not

necessarily coincide with the body's principal axes. In this case the diagonal elements, lxx,

IU U U U U U 1.1 K hi It U _ L_ _ t1 M U L L
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Iyy, and lzz, are not the principal moments of inertia and the inadvertent use of this term
may create confusion.

Misunderstanding or lack of communication between control system engineers and the

group supplying data on the inertial properties of the spacecraft have led to incorrect

determination of gravitational torques. The tlaree major sources of difficulty have been (1)
the use of left-handed coordinate frames in inertial determination, (2) the use of a station

rather than a mass centered location of the origin in the inertial determination, and (3)

confusion regarding the sign of the product of inertial term I is defined as -fro dm xy." xy

Because the integral itself (without the minus sign prefixed) can have either positive or

negative value for a particular configuration, it is often difficult to ascertain from a table

listing the inertial properties of the spacecraft whether the prefixed minus sign was included

in the original calculation.

2.7 Gyroscopic Terms

The inclusion of inertial or gyroscopic terms in the gravitational torque equations has caused

confusion. In the development of the equations for the attitude motion of a rigid body

subject to gravitational torque, application of Newton's second law yields:

dH
--= L (5)
dt g

where H = !. _ is the angular momentum of the satellite. Because | is expressed in a

body-fixed frame, equation (5) becomes:

8H

8t --_× H+Lg=-_X l._+Lg (6)

8H
where all vectors are expressed in a frame attached to the body and _'-indicates that the
derivative is relative to the body frame. The similarity between the ca X 1 • ca term in

equation (6) and the R X l • R term in equation (2) indicates that in the equations defining

the components of torque, inertial and gravitational torques will have the same form and
could, therefore, be combined. Combining these terms entails the risk of including the

inertial torque twice when the dynamic equations are written in full, or, for an inertially

stabilized spacecraft, including torques that do not exist. The separation of gravitational and

gyroscopic torques is particularly important when consideration must be given to the
momentum change produced by the torque as, for example, in determining impulse storage

requirements for a momentum wheel-gas jet control system. In this case the integrated

effect of the torque must be computed with respect to inertial space and the gyroscopic
terms do not appear. Further discussion of torque impulse and the integrated effect of

gravitational torque will be found in section 4.1.7 and appendix B of this document, and in
reference 38.

9
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2.8 Mass Distribution

2.8.1 Determination

Computer tabulation of mass properties is almost universal in the aerospace industry. The

inputs to the computer programs are mass and location of small assemblies, and mass,
inertias, and center-of-mass location for major structures. Some programs approximate

distributed structure by numerous small parallelepipeds, cylinders, etc. Program outputs

include spacecraft weight, coordinates of the mass center, axial and cross products of inertia

relative to a set of normally body-fixed axes (plan axes) plus the principal axes, principal

moments, and angles between the principal axes and the body-fixed set.

Programs for the evaluation of mass properties typically use coordinate axes whose origin

and orientation are plan determined; these may not coincide with the origin and orientation

that would normally be chosen for control system analysis. The inertia cross products are

frequently tabulated without the minus sign that appears in the defining equations (see

equation (4)). Before using a computed tabulation of spacecraft inertial properties for the
determination of gravitational torques, the designer should ascertain that the coordinate

axes, mass center, and sign conventions are properly chosen.

2.8.2 Verification

Measurement of spacecraft moments of inertia is generally confined to compact structures

or the rigid portion of the spacecraft having extendable booms, antennas, solar arrays, etc.

For spin-stabilized satellites and some dual-spin satellites where portions of the satellite spin,

the alinement of the spin axis relative to one of the principal axes is important. Spin

balancing machines have been designed to locate the principal axis of inertia. Several such
machines, manufactured in this country and abroad, are now available. Spin balancing is also

required when the satellite is attached to a spinning stage of the launch vehicle even though

the satellite itself may be despun after injection into orbit. In addition to locating a

principal axis, spin balancing equipment can be used to measure the inertia about that axis

but this is not the most commonly used technique for inertial determination.

The method most widely used for measuring the moment of inertia about a spacecraft body
axis employs a torsion pendulum. The body is suspended so that it is subjected to a

restoring torque porportional to the angular deflection (for small angle deflections) and the

period of oscillation T (in seconds), is measured. If the spring constant K is known, the
inertia J about the symmetry axis is J = KT 2/4rr 2. A common practice for a torsional

pendulum with an unknown K is to calibrate the suspension using an object whose inertia is

known or easily determined, e.g., a cylinder of uniform density. The spacecraft's inertia is

then J =Jr [(T/Tr)2" 1] where Jr and Tr refer to the reference object used. When bifilar

10
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and trifilar suspensions are used, precision is required to cOrrectly locate the axis about

which the measurement is made. More detailed descriptions of these test techniques are in
reference 39.

2.9 Summary

The state of knowledge of gravitational disturbance torques is generally adequate for the

formulation of suitable design criteria. Recent flight experience indicates that the effects of

gravitational torque on spacecraft control systems can be accurately predicted in most

instances. For a few configurations, e.g., extremely long flexible booms, the analytical

techniques are still being refined. Otherwise the analytical methods and knowledge of the

gravitational field are sufficient for spacecraft design purposes.

Accurate determination of the inertial dyadic of the spacecraft is the limiting factor in the

accuracy of the gravitational torque determination. In most cases the inertial dyadic for the
spacecraft in its orbital configuration cannot be measured and must be determined

analytically. The designer should check on the origin and orientation of the coordinate

frame used and ascertain that the products of inertia are properly defined.

The analysis described in this section is sufficient for most preliminary design applications

and for detailed calculations on compact spacecraft. For cases where the equations must be

developed with more generality, gravitational torque expressions that include multiple,
hinge-connected bodies, damping terms and other external disturbances, and fields other

than the central inverse square field, are given in references 17 and 40 through 44.

3. CRITERIA

Disturbance torque arising from the gravitational field acting on the distributed mass of the

spacecraft shall be considered in the design of attitude control systems. It shall be

demonstrated that gravitational torques acting in combination with all other disturbance

torques do not degrade the performance of the attitude control system.

Where it has been determined that the gravitational disturbance torque is an important

factor in the attitude control system design, procedures for the control of the spacecraft

mass properties shall be initiated and followed during spacecraft design, development,
fabrication, and test.

11
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3.1 Gravitational Torque Analysis

Analytical studies should be conducted to determine the gravitational torque that will act

on a spacecraft. The following data will be required; their accuracy should be consistent

with the phase of the development program and the sensitivity of the attitude control

system to gravitational disturbances.

3.1.1 Gravitational Field Model

The complexity of the field model should be consistent with the accuracy of the orbital and

the spacecraft inertial data.

3.1.2 Radius Vector

The radius vector should be determined from the orbital parameters. Variations from
nominal values should be considered.

3.1.3 Mass Distribution of the Spacecraft

For a single rigid body or for several rigid bodies whose positions relative to one another are

essentially fixed, the mass distribution properties should be characterized by the inertial

dyadic (that is, the three axial moments of inertia plus the three cross products of inertia)
referred to fixed body axes with origin at the mass center. When the spacecraft consists of

multiple bodies whose orientations and]or positions relative to one another are not fixed,

the representation of mass distributions should account for this variation. Where applicable,

in-flight variation of the spacecraft inertial properties due to equipment motion,

deployment and jettison of equipment, propellant depletion, flexing of extended booms,

etc., should be evaluated.

3.1.4 Orientation of the Spacecraft

The orientation of the spacecraft body axes relative to the radius vector (local vertical)

should be determined for all predicted orientations of the spacecraft. Where the orientation

cannot be accurately established, the orientation that produces the greatest demands on the

control system should be used.

12
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3.2 Evaluation of Disturbance Torque Effects

The evaluation of the effects of gravitational disturbance torques on the attitude control

system for spinning and nonspinning spacecraft should include, where applicable, the

following:

(1) Control system actuator requirements; viz. peak torque, momentum storage,
momentum transfer

(2) Deformation of extended structures

(3) Dynamic interactions and resonances caused by torque variations on spacecraft and

appendages

(4) Precession and nutation of the spin axis

(5) Perturbation of spin rate

3.3 Gravity Torque Control

Whenever the gravitational torques are found to be important or dominant compared to

other disturbance torques, measures for reducing the gravitational torque through vehicle
reorientation, orbital altitude increase, or mass redistribution should be investigated. If such

measures are not practicable, the control system should be designed to accomodate these

torques, and procedures should be instituted for the accurate assessment and control of

spacecraft mass and inertial properties throughout the spacecraft design, development,
fabrication, and checkout. Spacecraft moment of inertia determinations should be based on

calculated or measured mass properties. For compact spacecraft, critical moments of inertia

and, if applicable, alinement of geometrical and principal moment axes should be verified by

measurement of the entire spacecraft assembly.

4. RECOMMENDED PRACTICE

Analysis of the gravitational disturbance torques should be accomplished in the early design

phase of spacecraft development. This will require close coordination between the control
system and structural design groups to evaluate the effects of changes in configuration and

hardware. Estimation of the inertial dyadic at this stage will be based on the gross mass

properties of the spacecraft.

13
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When the analysis indicates gravitational disturbance torque to be a dominant or

significantly contributing disturbance to the attitude stabilization of the spacecraft, greater

accuracy in the estimation of the inertial dyadic will be necessary and a continuing program
for the determination and, if necessary, control of spacecraft mass properties will be

required.

Experience has shown that the inertial data generated by the group responsible for

determining the mass properties of the spacecraft will not always be in a form that is useful

to the control system engineer. Particular attention should, therefore, be given to obtaining

the necessary data in the proper form each time the mass properties are updated.

4.1 Recommended Practice for Torque Analysis

4.1.1 General Procedure

Analytical studies of the disturbance torques that act on a proposed spacecraft

configuration are necessary in the very preliminary phase of design, prior to the final

selection of a configuration, to obtain (1) a reasonable approximation of the magnitude of

the disturbance torques for a given configuration, (2) identification of the dominant torque

(or torques), and (3) determination of the design constraints that may be required to
control the magnitude of a specific disturbance torque.

Determination of the gravitational torque at this stage will most likely be based on the
estimated values of the principal moments of inertia, using approximation techniques to

ascertain the maximum torque and, if required, the maximum angular impulse added per

orbit. When the analysis indicates that the gravitational torque is of consequence in the
design, further analytical studies of a more detailed nature should be initiated. At this time,

the pertinent parameters should be determined more accurately and the probable extent of

variations from nominal values ascertained. Computer simulation using numerical techniques

will be essential except where the configuration is compact and rigid and the attitude

history of the spacecraft with respect to local vertical easily determined.
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4.1.2 Gravitational Field Model

Because the Earth is not a homogeneous sphere, an accurate model of the gravitational field

involves a spherical harmonic expansion and a large number of harmonic coefficients.

Although the higher ha_0niCs of the gravitational field can cause significant perturbation

of the satellite's orbit, they have negligible effect on the magnitude and direction of the

gravitational torque. Ignoring the higher order terms in the harmonic expansion of the

Earth's gravitational potential introduces a maximum magnitude error in the gravitational

torque of less than 0.5 percent and an angular error of less than 0.1 °. In determining the

gravitational torque on a spacecraft, adequate accuracy is obtained using the inverse square
field as in equation (1).

Values of the gravitational constant and mass ratio for the Sun, the planets of the solar sys-
tem, and the Earth's Moon are given in table I.

Table I.-Gravitational Constants and Mass Ratios of Planets, Sun,

and Moon

Body

Sun

Mercury
Venus

Earth and Moon

Mars

Jupiter
Saturn

Uranus

Neptune
Pluto

Earth

Moon

Mass Ratio,

M Sun/Mplanet

1

5 983 000 -+25 000
408 522 ± 3

328 900.1 ± 0.3

3 098 700 -+100
1047.3908 -+0.0074

3499.2 -+0.4

22 930 ± 6

19 260 ± 100

1 812000±40000

332 945.6

Gravitational constant,

m3/sec 2

1.327 125 0 X 10 20

2.218 159 X 1013

3.248 60 X 10 TM

4.035 040 X 10 TM

4.28284 X 1013

1.267 076 X 1017

3.792 651 X 1016
5.787 722 X 1015

6.890 574 X 1015

7.324 088 X 10 TM

3.986 012 X 1014
4.902 78 X 1012
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4.1.3 Radius Vector

The radius vector (magnitude and direction of the line joining the mass center of the body
that sets up the gravitational field and the mass center of the spacecraft) is determined from

the orbital parameters. Any consistent set of parameters can be used. Orbit inclination, orbit

eccentricity, and the radius vector at periapses are typical for elliptical orbits. For circular

orbits the vector to the ascending node is commonly used as the principal direction.

The trajectory data will generally provide values that are more accurate than required for

gravitational torque analysis, where directional accuracy of greater than 0.1 ° and a

magnitude accuracy exceeding 0.1 percent are unwarranted (sec. 4. 1.4). In the evaluation of

the effects of variations in orbit parameters, deviations that lower the periapsis or increase

eccentricity will tend to increase the gravitational torque or associated angular impulse.

4.1.4 Spacecraft Mass Properties

Determination of the spacecraft inertial dyadic to an accuracy of better than 1 percent will

rarely be possible. The difficulties associated with the accurate determination of mass,
location, and moments of inertia of individual assemblies and similar properties for the

mechanical structure preclude greater accuracy for even compact spacecraft. When

deployable structures and flexible appendages are present, accuracy in the determination of

spacecraft inertial dyadic is dependent on the accuracy to which the deflected shape of the
appendage can be determined. In this case the achievement of accuracies of better than 10

percent is seldom practical. Because the accuracy of the torque calculation will always be

dominated by the limitations in the knowledge of the inertial dyadic, it is unnecessary to
obtain highly accurate values for the radius vector, field model, etc.

When the spacecraft contains assemblies that are free to move relative to one another, e.g., a

gimbaled antenna, or a deployable boom, one of two different approaches may be employed
in the analysis: either (1) the components of the inertia dyadic for the composite vehicle
are varied to account for the motion (refs. 45 and 46), or (2) the two or more bodies are

considered independently and interactions between the bodies are accomodated using

suitable constraints and external torques at the hinge (refs. 16, 17, and 47). Approach (1) is
frequently used when the purpose of the analysis is the determination of upper limits on

torque or accumulated angular impulse. This approach is especially suitable when it is
possible to determine the particular orientation or orientations of movable bodies that

maximize the inertial components that are of primary concern (see app. B). Approach (2) is

usually preferred when the relative motion between the bodies is large. Either approach is
suitable for machine computation.
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4.1.5 Spacecraft Orientation

During preliminary design, gravitational torque can be computed assuming a nominal

orientation of the spacecraft. The orientation selected will depend on the mission, the
nature of the control system, accuracy of control, etc. The assumed orientation should be

based on conditions that tend to maximize the torque but, at the same time, are realizable

when the control system is functioning normally. On an Earth-pointing spacecraft, for
example, the assumption that one of the principal axes is maintained coaxial with the radius

vector is unreasonable because any condition that caused a small deviation from the

assumed orientation would increase the torque. Thus variations arising from unavoidable
errors in sensor mounting or alinement, shifts in the spacecraft mass center, or offset errors in

the control system would not be properly accounted for. Conversely, when the spacecraft is

stellar or solar oriented, the angles between principal axes and local vertical are large, and

small angle variations introduced by the attitude control system will be of little
consequence.

Determination of the spacecraft orientation is often dependent on the authority of the

control system. If the disturbance torques are inconsequential compared to the actuator

capability, the orientation will depend primarily on the characteristics of the control

system, i.e., sensor errors, servo errors, drifts, etc., and the primary purpose of the
disturbance torque analysis will be the evaluation of accumulated effects. When the control

is passive or the torque capability of the system is of the same order of magnitude as the
disturbances, it is necessary to choose an initial orientation and simulate the rotational

motion to determine the attitude behavior. Facilities and programs capable of executing
large scale simulations of this nature will invariably include the routines for the
determination of gravitational torques.

4.1.6 Instantaneous Torque

When a central inverse square field is assumed, the gravitational torque expression is given
by equation (2), repeated here for convenience

%=_ xl. (7)

To compute the components of torque, a coordinate system must be established and scalar

equations derived. For composite spacecraft, where the time-varying components of the

inertial dyadic are available, or for a compact spacecraft equation (7) readily yields the
components of gravitational torque in body coordinates. If the coordinate frame (x, y, z) is

right handed, orthogonal, and fixed in the spacecraft with origin at the mass center, the
components of gravitational torque along the x, y, and z axes are
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3k

3k + (a2x - 2)+]zyazax_izxazay 1

(8a)

(8b)

(8c)

where

k is the gravitational constant

R is the distance from the planet mass center to the spacecraft mass center

//j with i, j = x, y, z are the components of the inertial dyadic (sec. 2.4)

and

ai with i = x, y, z are the direction cosines of R with respect to thex, y, z coordinate
frame (fig. 4).

Z
8

laz

"\\ I /a/
\_ x

Figure 4.-Direction cosines.

When the attitude of the spacecraft relative to local vertical is not fixed, the direction

cosines vary with time. In those cases where the control system maintains one of the body

axes alined to the center of the Earth, say the x-axis, then ax = 1 and ay = az = 0. Equations
(Sa), (8b), and (8c) then reduce to
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Lgx = 0 (9a)

_ 3k
Lgy - R----3 (-Izx) (9b)

3k
Lgz - R3 ([xy) (9c)

When these equations are applicable, relative motions of various portions of the spacecraft can

be examined to find those orientations that maximize the two inertial cross products. The

restrictive assumption with respect to the spacecraft attitude, i.e., perfect alinement between
the x-axis and local vertical, must be examined to insure that the torque components are not

highly sensitive to small angular deviations away from this orientation.

When the x, y, and z body coordinates coincide with the principal axes, the products of the

inertial terms are all zero and only the first terms on the right-hand side of equations (8a),

(8b), and (8c) remain. In this form the expressions can be used to establish an upper bound

on the gravitational torque. The torque is determined at perigee (minimum R) using the
difference between the maximum and the minimum moment of inertia multiplied by 1/2

(the maximum value attainable by axa z, etc.):

3k /I Imp)Lg(max)- - _3 max-
2( m) k

(10)

For preliminary design, estimation of the gravitational torques can be obtained by

considering an elementary satellite in a circular orbit. As illustrated in figure 5, the satellite

is composed of six point masses separated by three massless rods of unequal length (ref. 48).

If this satellite is displaced only in the orbit (pitch) plane, or only in the cross orbit (roll)

plane, the gravitational torques are given by the pitch and roll expressions in the second
column of table II. As indicated by the blank Opposite yaw in the second column, no

gravitational torque results from the displacement of the x-axis out of the orbit plane.

When the spacecraft is stabilized in space, the roll and pitch angles (and hence the
gravitational torque) will vary as the spacecraft moves in its orbit. When the spacecraft is

stabilized with respect to the orbital coordinates, the gravitational torque may appear

constant in the body-fixed frame but inertial or gyroscopic torques arise because of rotation

of the spacecraft and these are listed in the third column of table II. From table II it can be

observed that the 4/2 term that occasionally appears in the literature as the coefficient for
the roll torque is the result of combining the gravitational with the inertial torque.
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z

Axisfordisplacementin _//

crossorbit or roll x__plane _.,

Orbit _
J

/Axis for displacement/11_0/ [_ °cal

ertical

in orbitorpitchplane
y/

Axisfor displacementin
horizontaloryawplane

Figure 5.-Angular displacements for a three-axis gravitational-stabilized satellite.

Table 11.-Gravitational and gyroscopic torque expressions

Displacement
axis

Pitch (0)

Roll (_o)

Yaw (_)

Gravitational
torque

-(3/2) _2o (IR -IF) sin 2 0

2
-(3/2) ¢oo (I p -Iv) sin 2 _o

Inertial or

gyroscopic torque

-(1/2)¢Oo 2 (Ip -Iy) sin 2¢

-(1/2) ¢oo2 (Ip - IR ) sin 24J

IR

I t .

0

_o

%

= moment of inertia about the satellite roll (x) axis, kg-m 2

= moment of inertia about the satellite pitch (y) axis, kg-m 2

= moment of inertia about the satellite yaw (z) axis, kg-m 2

= angular displacement of the satellite z-axis off the local

vertical direction in the orbit (pitch) plane, radians

= angular displacement of the satellite z-axis off the local
vertical direction in the cross-orbit (roll) plane, radians

= angular displacement of the satellite x-axis from the orbit

plane (a yaw displacement), radians

= angular rate for a circular orbit, rad/sec
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4.1.7 Torque Impulse

When determining the gas storage requirements for a spacecraft that uses gas jets to dump

accumulated angular momentum, the average torque or torque-impulse over one orbit is of

concern. The change in angular momentum must be computed using an inertially fixed
coordinate system. For example, the set of equations (9) indicate that, for an

Earth-oriented spacecraft, the gravitational torque components as seen in the body-fixed

frame are constant for a circular orbit (R = constant). The angular momentum accumulated

over an orbit is, however, not equal to the product of the constant torque components and
the orbital period. When the torque components given by equations (9) are transformed

into an inertial frame and integrated over an orbit, the result is (ref. 38)

Elliptical orbit Circular orbit

/L/t/x per orbit 0 0

ZLHy per orbit 3k enlx z 0
ph

3k 2nlxy 6n_ olxyZkHz per orbit

where

P
h

e

¢.oo

= semilatus rectum of the orbit

= magnitude of orbital angular momentum per unit spacecraft mass
= eccentricity

= orbital angular velocity (circular orbit)

When the satellite is solar or stellar oriented, the body frame is an inertial frame and the
torque equations can be integrated directly. Different formulations of the problem are found

in references 10, 28, and 38. When the inertial coordinate system of figure 6 is used and

orbital precession neglected, the angular moment accumulated over an orbit is
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Elliptical orbit Circular orbit

3k

per orbit _--_lr Iy z 3rr _o°/yz

AHy per orbit 3k_-_,_/x, -3-_o/x_

/x//z per orbit 0 0

When the body axes do not coincide with the reference flame shown in figure 6, the

components of the inertial dyadic in the reference frame can be determined by means of a

similarity transformation (app. B). The cyclical terms of the angular momentum H average

to zero over an orbit. For the cases of Earth and inertially oriented spacecraft these terms
can be found in appendix B.

Earth

Spacecraftorbit

X= positivein thedirectionofperigee

Y = completesright-handedset

Z= normalto orbitplanepositivein the
directionofpositiveorbitalangu-
larmomentum

Figure 6.-Inertial coordinates used to determine accumulated angular momentum.

4.2 Control of Gravitational Torques

Examination of the gravitational torque equation (2) or (8)indicates the three possible

ways in which the gravitational disturbance torque can be reduced: (1) increasing the
orbital altitude, (2) maintaining close alinement between local vertical and one of the

principal axes of the vehicle, and (3) minimizing the difference between the moments of

inertia along the principal axes.
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Generallyboth the orbital altitude and the orientation of the spacecraft are determined by
the mission requirements, and the only remaining option is to maintain moments of inertia

by the principal axes as close to equal as possible within the configuration restraints. This is

accomplished by careful arrangement of equipment and, to the extent permitted by weight
restraints, the inclusion of adjustable balance masses.

4.2.1 Spin-Stabilized Satellites

The effect of gravitational torque on a spin-stabilized satellite is to produce a precession of

the spin axis about the orbit normal (ref. 49). Where the spin axis is desired to be normal to
the orbit plane, gravitational torque is beneficial and minimization is not indicated. In all

other cases minimization of gravitational torque is required to keep the spin axis from
precessing away from its desired orientation.

When the spacecraft consists of a single rigid body, symmetrical about the principal axes,
stability considerations require that the spin axis be the axis of maximum moment of iner-
tia, and minimization of gravitational torques imposes the constraint that the difference be-

tween the spin moment of inertia I s and the transverse moment of inertia I t be made as small
as possible

Another factor that must be taken into consideration in specifying the ratio of spin axis to

transverse axis moments of inertia is the wobble or torque free precession frequency of the

spacecraft. The concern here is for the effectiveness of the wobble damper which must
damp out the small residual motion of the spin axis after an operation of the attitude

control system that changes the orientation of the spin axis, e.g., the firing of a jet. The

effectiveness of the wobble damper in dissipating energy is highly dependent on the wobble

frequency. As the inertial difference becomes small, the wobble frequency decreases and the
damping time constant becomes inordinately long.

To reduce the disturbance effect of gravitational torques while retaining spin stability about

the spacecraft's spin axis, the ratio of 1s to I t should be as small as practical. A
recommended range for this ratio is

1.03 >_ 1.07 (11)

A ratio of at least 1.02 is required to obtain reasonable effectiveness for a wobble damper.

Because of the difficulty of measuring moments of inertia with an accuracy of better than 1

percent, a lower limit of 1.03 is recommended. Unless the spin axis is normal to the orbit,
the ratio should not exceed 1.07.
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The spin axis precession caused by the gravitational torques will be inversely proportional to

the spin angular momentum H. Thus, attitude disturbances are reduced by increasing the
satellite's spin rate to the limit that can be tolerated by mission and other attitude control

requirements. One method for increasing H without increasing the spin rate of the main

spacecraft body is to spin only a portion of the body or install an angular momentum

flywheel. With this arrangement, called a gyrostat, the spinning portion provides essentially
all of the total angular momentum of the combined bodies.

In a gyrostat the gravitational torque can be completely eliminated while still retaining the

desirable characteristics of spin stabilization. The spinning section of the satellite can be

designed for a high ls/I t ratio such as 1.4 to 1.7 (the ratio for an infinitely thin disk is 2.0)

while the ls/I t ratio for the entire satellite (main body plus spinning sections) can be made

as close to 1.0 as practical. Damping of the wobble motion is best accomplished by

mounting the wobble damper on the despun section. This is generally also required by
stability considerations (ref. 50).

A gyrostat is recommended when the mission requires ultra-low spin rates for the main

section of the satellite, as was the case for the Orbiting Solar Observatory satellites (ref. 51)

and the Small Astronomy Satellites. The Small Astronomy Satellite (SAS-A) scheduled for

launch in mid-1970 employs a small, high-speed wheel to provide the angular momentum

necessary to spin stabilize the satellite and, at the same time, allow for an extremely low

rotation rate of the outer body. In the event of failure of the high speed wheel, provision is
made for maintenance of 0.25 rpm vehicle spin rate and removal of the angular momentum

that would otherwise be transferred to the outer body. In this circumstance (i.e., the

"fall-back" mode) gravitational torque becomes a significant factor in determining the
attitude behavior of the satellite. Figure 7 shows the results of a digital simulation to

determine the motion of the spin axis at the low spin rate where the gravitational torque
causes a considerable precession of the spin axis.

As previously noted, the most favorable orientation of the spin axis from the standpoint of

reducing the effects of gravitational torque is normal to the orbit plane. For missions
requiring Earth observations, this orientation of the spin axis is favorable from a number of

other considerations as well. The most recent TIROS and ESSA satellites and the Intelsat
series are examples of the above.

Spinning spacecraft with unequal moments about the two transverse axes can exhibit

irregularity in spin rate because of gravitational torque. This irregularity will generally be
insignificant for spin rates that are greater than 10 times the orbital rate. Where small

variations in spin rate cannot be tolerated it will be necessary to insure equality of the two

transverse moments by proper arrangements of internal equipment or the addition of
balance masses.
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Rightascension,deg

Figure 7.-Effects of gravity gradient torque on SASoA spin axis attitude.

4.2.2 Three-Axis Actively Stabilized Spacecraft

Gravitational torques can be eliminated by (1) equalizing the three principal moments of

inertia, (2) alining the symmetry axis of an axially symmetric spacecraft normal to the orbit

plane, or (3) alining the principal axes of an asymmetric Earth-oriented spacecraft to the

orbit axes. However, the designer does not normally have any of these prerogatives at his

disposal and therefore must design the spacecraft control system to accommodate the
gravitational torque.

For orientations that are relatively fixed with respect to an inertial frame, the gravitational

torques will vary at twice orbital frequency and will usually have a nonzero average value

over an orbit (app. B). The cyclical fluctuations will generally be controlled by some type of

momentum storage device, e.g., reaction wheels or control moment gyros, that require only
electric power for their operation. However, the average or secular torque will produce a

continuously increasing component of angular momentum which would saturate any

momentum storage device. Therefore, the control system must periodically react with the

external environment to remove the excess angular momentum. Gas expulsion and magnetic
torquing are commonly used.
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When expendables are employed to counteract momentum accumulation, the average value
of the gravitational torque should be carefully considered because it may be a major factor

in determining the total stored impulse. The average torque depends on (1) orbit
parameters, (2) spacecraft orientation, and (3) spacecraft inertia properties; the designer has

generally no control over (1) and only limited control over (2) and (3).

It is often possible to reduce one component of the average torque to zero by making the
spacecraft axially symmetrical. Reduction of the difference between the axial and transverse

moments of inertia, however, is often limited by other considerations (viz, equipment

length, shroud dimensions, etc). A feasible solution when deviations from the required

orientation can be tolerated over certain portions of the orbit, for example, when the Sun is
eclipsed by the Earth, is to reorient the spacecraft to a new position where the gravitational

torque will tend to decrease the excess angular momentum. For further details see reference
52.

4.2.3 Spacecraft With Extended Structures

If the spacecraft has extended booms or has several sections connected together by long
rods, gravitational torques can cause significant bending moments in these structures (refs.
26 and 53). If compatible with mission requirements, the longest axis of the spacecraft
should be oriented as close to one of the orbital axes as practical. This orientation will mini-
mize the gravitational torque on at least one axis and possibly on all three. Except for plac-
ing the spacecraft in a higher orbit, the only other alternative is to provide sufficient struc-
tural rigidity to resist the bending caused by the gravitational torques.
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Appendix A

DERIVATION OF THE GRAVITATIONAL TORQUE

EQUATION FOR A RIGID BODY

The vector torque equation is derived by determining the gravitational force F acting on each

infinitesimal mass element dm; forming the vector cross product of this force with the

vector to the body mass center; and integrating over all mass elements of the body. When a

central inverse square field with gravitational constant k is assumed, the torque Lg is (ref.
9)

Lg=fmP×dF=fmP×-kdmR,_ -kIR,[-------_ X R'dm (A-l)

where

P

R'

and

L

= the vector distance from the mass center of the spacecraft to the mass element
dm

= the vector distance from the mass center of the planet to the mass element drn

= indicates integration over all mass elements of the spacecraft

Let R be the radius vector from the mass center of the planet to the mass center of the
spacecraft. Then

R' =R + p (A-2)

and

IR'1-3 = (R' • R') -3/2 = R "3 1 + 2 +

Neglecting terms of the order (p/R) 2 and higher, equation (A-3) becomes

(A-3)

He n ce:

=_3_d_R
Lg RJ\RXfmPpdm.R)

(A-4)

(A-5)
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Equation (A-5) is simplified by substituting the unit vector in the vertical direction R for

R/R, and observing that the inertial dyadic | can be used to replace the term fro pp dm.The
inertial dyadic is defined as

I =fro dm (p2 g _ pp) (A-6)

where E is the unit dyadic or idemfactor (ref. 54). Because R X t • R = R × R = 0, the

inertial dyadic can be substituted for the integral term in equation (A-5) to obtain

=_ (n x I o R) (A-7)L,
R o
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Appendix B

TORQUE AND ANGULAR IMPULSE DETERMINATION

Coordinate Systems

For the determination of gravitational torques, a number of coordinate systems are used.

Each is a right-handed orthogonal frame related to the others by a rotation about one or
more of the axes.

To simplify the notation the three base vectors of a coordinate frame will be identified by

the subscripts 1, 2, and 3. The progression from one frame to the next is indicated by a
specified rotation iA (a), meaning a rotation about the ith axis through an angle a.

The coordinate frames are as follows:

A celestial inertial frame (c) (fig. B-l)

(c) = c 1 , c 2 , C3

C1 = fh'st point of Aries

c 3 = north celestial pole

c 2 = completes a right-handed set (= ca XC 1 )

Orbital inertial frame (i)

(i) =
(i) =

i =

_2 =

i I =

i3 =

i 2 =

(fig. B-l)

il, i2, i3
3A(w) 1A(i) 3A(I2) (c)

argument of perigee

inclination (angle between orbit normal and north celestial pole)

angle between ascending node and cl
direction of perigee

orbit pole, i.e., normal to the orbit in the direction of the orbital angular
momentum

i3 × i I

Local orbital (1)

1 = I1,12,13
= 3A(A) i

A = true anomaly (angle from perigee to point in orbit)

11 = direction of local vertical

(fig. B-l)
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Local body axes (b)

(b) = bl,b2, b3
(b) IAO, ) 2A(_) 3A(O)(I)

(b 1) = a control axis of the body (not necessarily a principal axis)

Principal body axis

(P) = Pl, P2, P3

(P) = _A(/_) 2A(x) 3A(¢)(b)

(P)

Schematically, this can also be represented as follows:

Axis .. Angle

3c _2

1c' i

3 C" ¢D

3i A /
it 3 Euler

angles

ib 3 Euler
angles

Celestial
(c) inertial

(c')

(C')

Orbit
(i) inertial

Local
(/) orbit

Local

(b) body

Local

(P) principal

The transformation of a vector from one coordinate frame to another

schematically as:

V z = Tt/i Vi

or in terms of the components of the vectors

is

(fig. B-2)

(fig. B-2)

written

Vl2 = t21 t22 t23 Vi2

30

il Ii li LI 11 ill 1,I tI I1 U 11 ._ii /a 11 tl It II _: E



i 3, 13

Point in orbit\

c 3

Perigee

i 1

\1
\

/ _ c2

I z equator

cz" Ascendingnode
Orbittrack

Orbit

Figure B-1 .-Coordinate geometry.

The inverse transformation is written

where

V i = Zi/I V l

Ti/1 = (Tl/i)'l

When the transformation involves only rotations, i.e., Tj/k is an orthonormal
transformation, then

(Tjlk)'_ = rk#
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For example:

EtllLcoiAsinA [il1l2 = si A cos A i2

l3 0 i 3

and

EllicosAsin  Ellli2 = sin A cos A l2

i3 0 0 l3

Transformation of the inertial dyadic from one coordinate frame to another is accomplished

by means of a similarity transformation, i.e.,

It,= rb/p " ]p " (Tb/p)-_ = rb/p t_, rp/_

Gravitational Torque and Angular Impulse

Per Orbit for Earth-Oriented Spacecraft

The inertial dyadic is written in local body coordinates. Because R = !1, the components of
torque in body coordinates are

Lb =_3 Rx I'R = IL E!0 [ill1 13]E!lLb2 I = 0 - 121 I22 123
/

Lb 3J 1 131 132 133
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r,13 [0t
LLb3_] I21

Transforming the torques into the orbital inertial frame:

r j[ 1
Lil cos A -sin A 0 0

=3A

ILi21 R3 _si_A cosA 0 -/31LL,d ' o 1 121

1i_,q.3 31cosA
L_,d z2,

To compute the increment to angular momentum the integral of the torque is required:

where

foAH Ltdt =f tL: dA A 3___kk
_0 "-A "= R 3 I13 sin A) i /

"3

1 1

-131 cosA) i21/ dA,_l

L (12 1) i3 J

,4=d__A
dt

The integration is performed using the following relation

_: (_.•(-_)--_
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where

h = magnitude of orbital angular momentum (constant) (the angular momentum of a

unit mass traveling in the spacecraft orbit)

P = the semilatus rectum = a (1-e 2)
e = eccentricity

A = true anomaly

Thus

AH 1 ] 0 1 13
AH 2 = p_ +

_r/3J I21A ]

1 (l-c°sA)+/3T( 1-c°s 2A)

I31e
-131 sin A + _ sin 2A

I21e sin A

The first term is the secular portion of the angular momentum (i.e., the part that does not

have a zero average value over a complete orbit) and the second term is the cyclical

component. The values given in section 4. 1.6 are obtained using A = 27r; i.e., a complete
orbit.

The above equations can be used to determine the angular impulse caused by gravitational

torque that results when there is a misalinement between the control (or sensor) axis and

the principal axis of the spacecraft. The situation is illustrated in figure B-2.

b=2A(_)p

b 2

3,

0

0

0
sinl[a]l
cos P3

Using the similarity transformation:

if T T /b
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I1 = bl Pl

12= I}2 = P2 _ Spacecraft_ _._.__.._.fOrbitpath

.,_/ ._.._,. 13= b3

P3

Figure B-2.-Earth-pointing geometry.

Or, in the matrix form:

F'',11rlc°i. -.:]E:'0 sin.ilI21 [22 I23 = S" _ COS_k 12 0 sill_ COS_k

Li,_ I32 I_3 o o I3_1L o o

Hence:

131 =0

121 = ( 12 - 11) cos ¢, sin

when @ is small, 121 = (I2 - 11 ) @and the angular impulse per orbit due to the misalinement is

6_r
AH 3=_(12-I 1) @

Gravitational Torque and Angular Impulse

Per Orbit for Inertially Oriented Spacecraft

The inertial dyadic is written in the orbital inertial frame. The tr_ansformation from the local
orbital frame to the orbital inertial frame is
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i][cosAsin i]E]i2 = sin A cos A l2

i3 0 0 3

Therefore, since R = _1

l_ Ii 0 sinA1 Flll Ij2 I131 IioiAl;21-R--+-+'+o -co+A11,2,1++,2,
kLid sinA cosA 0 _J Li3, I+2 /33.]

3k

2R 3
I32_i32 cos2A+i31sin2A 1-I31-131 cos 2A -132 sin 2A

[_{I32 -I11 } sin 2A + 2112 cos 2A

The components of angular momentum are determined as in the previous example and, after
separating secular and cyclical terms, the following is obtained"

_i ["'_l
Mj

+ 3k
4ph

132(-sin 2.,4 + e sin A _esin.3 3A_-I/3 ,[(cos 2A-I) + e (cosA - I) +-_(cos 3A - I)]

,,,(+++i._,+_.,°_+_)+[(oos__,)++0o+__,)+_0os_.,_,)]

For a complete orbit the secular terms are
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For a solar-oriented spacecraft, the transformation from an inertial I to a local orbital frame

is accomplished using five successive rotations (fig. B-3).

(1) " 3A(co) IA(i) 3A(_,) IA(e) 3A(I2)(s)

(t) = T_/c(s)

s 3

Line-of-sightto

s 1

Celestialpole

\

Orbitplane

,b-satellitepoint

11

Earthequatorialplane

ascendingnode

Ecliptic plane

..-Orbit-ecliptic node

ptic node

Figure B-3.--Coordinate geometry for solar orientations.

1In this analysis a quasi-inertial system s is employed

s_ = line of sight to the Sun

s3 = e3 = north celestial pole

s2 = e2 --- completes a right-handed set
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Note that an equivalent transformation can be accomplished using the angles _2', z_, and ¢0',
that is

I = 3A(w') 1A(i') 3A(_2') s = Til c s

where the relationship among the primed and unprimed variables is

_' =_2 +A_2

cos i' = cos e cos i - cos X sin i sin e

= sin ?, sin isinS2
sin i'

sin _o' = sin _, sin e
sin i'

If the control system maintains the alinement between one of the principal axes and the line
of sight to the Sun and, further, if this axis is the symmetry axis, that is,

12 = 13 and I 2 > I 1

then the angular impulse per orbit can be found using the similarity transformation to

determine I 32 and I31 in terms of 11 and 12. The transformation 3A (_') is not required,
hence:

I i = 1A(i') 3A(_2') Iv [3A(I2')I r [1A(i,)] r

and

3o isin2 sn2ilZXH2 2 (/2 11 ) sin 2s2' sin i'

0

The angle between the ecliptic and orbital planes f varies because of orbital precession. The
range of variation in i' depends on orbit inclination i decreasing with smaller values of i. For

equatorial orbits, i' equals the angle between the ecliptic and equatorial planes e, thus
assuming the constant value of 23.45 °. In the course of a year, [2' will vary from 0 to 27r.

An alternate approach to this problem is given in reference 10 together with graphs showing

the annual variation in AH 1 and AH 2 .
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Appendix C

SYMBOLS

A

a

b

C

e

F
H

h

I

i,
I.,
i

i

i'

l

J

J,
k

K
1

N-m

P
P
R

R

R'

t

T

V

0

true anomaly

time derivative of A, (dA/dt)

semimajor axis of elliptical orbit

Local body axes (b t , b 2, b 3 )

celestial inertial frame (c 1 , c2 , c3 )
orbit eccentricity
vector force acting on a mass particle in a central inverse square field

satellite's angular momentum

magnitude of orbital angular momentum
moment of inertia about the satellite roll axis

moment of inertia about the satellite pitch axis

spin moment of inertia
transverse moment of inertia

moment of inertia about the satellite yaw axis

orbital inertial frame 01 , i z, i 3 )
inclination angle from equatorial plane

inclination angle from ecliptic plane

inertial dyadic

spacecraft's inertia

inertia of reference object

gravitational constant of attracting body

spring constant

local orbital frame (ll, 12,13 )
gravitational torque

mass of particle
newton-meter
semilatus rectum

principal body axes
unit vector in the direction of R

vector distance from planet's mass center to satellite's mass center

vector distance from planet's mass center to mass element dm (R + p)

time measured from perigee

satellite's period of oscillation

period of oscillation of reference object

vector quantity
angle between the equatorial and the ecliptic plane

angular displacement of the satellite yaw axis off the local vertical direction in the

pitch plane
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p

_0

co

(*D o

t

a9

angle between the intersection of the ecliptic and equatorial plane and the ascending

node (measured on the equatorial plane)

vector distance from spacecraft's mass center to mass element dm

angular displacement of the satellite yaw axis off the local vertical direction in the roll
plane

angular displacement of the satellite roll axis from the orbital plane (a yaw displace-
ment

angle between the ascending node and the subsatellite point (measured on the orbital
plane)

mean orbital angular velocity

satellite's angular velocity about the spin axis

angle between the intersection of orbital and ecliptic plane and the subsatellite point

(measured on the orbital plane)
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NASA SPACE VEHICLE DESIGN CRITERIA

DOCUMENTS ISSUED TO DATE

SP-8001 (Structures)

SP-8002 (Structures)

SP-8003 (Structures)

SP-8004 (Structures)

SP-8005 (Environment)

SP-8006 (Structures)

SP-8007 (Structures)

SP-8008 (Structures)

SP-8009 (Structures)

SP-8010 (Environment)

SP-8011 (Environment)

SP-8012 (Structures)

SP-8013 (Environment)

SP-8014 (Structures)

SP-8015 (_Guidance and
Control)

SP-8016 (Guidance and

Control)

Buffeting During Launch and Exit, May 1964

Flight-Loads Measurements During Launch and Exit,

December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, May 1965

Solar Electromagnetic Radiation, June 1965

Local Steady Aerodynamic Loads During Launch and Exit,

May 1965

Buckling of Thin-Walled Circular Cylinders, revised August
1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model- 1969 (Near Earth to Lunar

Surface), March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles, November 1968

Effects of Structural Flexibility on Spacecraft Control

Systems, April 1969
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SP-8017 (Environment)

SP-8018 (Guidance and

Control)

SP-8019 (Structures)

SP-8020 (Environment)

SP-8021 (Environment)

SP-8023 (Environment)

SP-8029 (Structures)

SP-8031 (Structures)

SP-8032 (Structures)

Magnetic Fields-Earth and Extraterrestrial, March 1969

Spacecraft Magnetic Torques, March 1969

Buckling of Thin-Walled Truncated Cones, September 1968

Mars Surface Models (1969), May 1969

Models of Earth's Atmosphere (120 to 1000 km), May 1969

Lunar Surface Models, May 1969

Aerodynamic and Rocket-Exhaust Heating During Launch and

Ascent, May 1969

Slosh Suppression, May 1969

Buckling of Thin-Walled Doubly Curved Shells, August 1969
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