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Abstract

Approximate and exact calculations of apparent emissivities were made for a
variety of gray, uniform, isothermal, and Lambertian cavities. Some of these cavi-
ties are used in radiometers at the Jet Propulsion Laboratory. For a surface emis-
sivity of 0.95, the cavity emissivity varied from 0.9820 for a simple cone of apex
half-angle equal to 11.75 deg, to 0.9963 for a three-section cavity that was roughly
semispherical in shape. An error analysis showed that the estimated error in the
calculations was four parts in 100,000.

A perturbation method showed that in the cone cavity the surface was not
actually isothermal but had a temperature variation of 0.5°C. The effect of this
non-isothermality on the apparent cavity emissivity was to change it from 0.9820
to 0.9809, for a surface emissivity of 0.95. Corresponding figures for one of the
three-section cavities studied were 0.13°C for the temperature variation and a
change from 0.9909 to 0.9923 for the cavity emissivity.

When the surface emissivity was assumed to have a particular dependence on
wavelength, the cavity emissivity was shown to vary from 0.9676 at 250°K to
0.9698 at 500°K as a result of the shift in the peak of the blackbody function.
Corresponding figures for a three-section cavity were from 0.9848 at 250°K to
0.9858 at 500°K. For comparison, a flat plate with the same assumed wavelength
dependence of emissivity was shown to vary from an effective emissivity of 0.9127
at 250°K to 0.9183 at 500°K.
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A Numerical Study of
Cavity Radiometer Emissivities

{. Introduction

Extensive experimental and theoretical work has been
done at the Jet Propulsion Laboratory (JPL) on cavity
radiometers during the past few years (Refs. 1-6). Part
of this work has consisted of performing calculations that
better establish the emissive properties of cavities. This
report presents some of those calculations.

It is well established that the apparent emissivity of a
cavity aperture is greater than the emissivity of the inner
surface of the cavity. Planck, for example, in Ref. 7, dis-
cusses the fact that an isothermal cavity with a small aper-
ture appears essentially black. Various authors have made
calculations of the enhancement in emissivity caused by
the cavity. Approximate calculations have been made, for
example, in Refs. 8 and 9 and exact analytical or numerical
calculations in Refs, 10-13. In this report both approxi-
mate and exact methods are used where appropriate.
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For the purposes of this report the calculations were
made of the apparent emissivity, although the absorp-
tivity could have been calculated instead. An isothermal
cavity at temperature T will radiate with an emissivity
€,, and if this cavity receives hemispherical black body
radiation at its aperture from surroundings at the same
temperature T, the apparent absorptivity «, will be
equal to e,.

For many of the applications of this report, therefore,
we can take the apparent absorptivity to be equal to the
apparent emissivity.

Under some circumstances, however, a,+¢€,; for ex-
ample, when the temperature T of incoming blackbody
radiation is much different from the temperature T, of
the cavity, Then the ¢, for T, may be different from e,
for T,, as shown in Section VI, and thus «, 54 €,.




Il. Approximate Determination of the
Emissivity of Isothermal Cavities

A. Methods

For purposes of design, it was desired to find the ap-
proximate apparent emissivity of cavities having a variety
of configurations. The assumptions adopted for this sec-
tion are that the cavities are:

(1) Isothermal.

(2) Gray (no wavelength dependence of properties).
(3) Uniform.

(4) Lambertian (emit, reflect, and absorb diffusely).

It was assumed initially and later verified that the ap-
proximate method of Treuenfels, Ref. 8, was adequate for
this purpose. This method assumes that the fractions of
the exitance emerging from a point x after one reflection,
two reflections, etc. decrease in a constant ratio 8. For
full details see Treuenfels’ paper. The results to be used
here are that if f =1 — 3, then we have the apparent
emissivity €, is given by

€
“Teri-9 W
where
/ (Fo.o)* da (x)
et (@)

/ Fooda (%)
&

and x is a running variable in the cavity (Fig. 1). Note
that ¥ may run from the apex to the aperture or vice-
versa, whichever is more convenient. F,_, is the view fac-
tor from x to the aperture; da (x) is the element of area
in the cavity. A full discussion of the meaning of view
factors or angle factors is given in Ref. 14. Briefly, the
view factor F,_, is the fraction of blackbody power leav-
ing surface 1 that arrives at surface 2.

The cavities studied are shown in Figs. 2-6. The appro-
priate view factors (Fyo, Fao, and F,) are given in the
appendix. These were obtained by the method of view
factor or angle factor algebra discussed, for example, in
Ref. 14. The same view factors are used for cavities II-V
as are used for cavity I, if the dimensions are defined
appropriately. The variables used in the view factors are
defined in the appendix and in Fig. 2.

After the view factors were obtained a computer pro-
gram was written in FORTRAN II for the IBM 1620, Its
purpose was to calculate the flatness f and the apparent
cavity emissivity €, for a range of surface emissivities e.
The dimensions of the cavity are inputs in the program,
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Fig. 4. Cavity Il

Fig. 5. Cavity IV

Fig. 6. Cavity V

therefore many different cavities may be studied provid-
ing they conform to any of the basic shapes of cavities I-V,
The integration was performed using Simpson’s rule, with
100 intervals of integration.

B. Resulis

The results of the approximate calculations are pre-
sented in Table 1 and Table 2. Table 1 shows the dimen-
sions of the various cavities studied and also the computed
value of f for each of these cavities. There are five cavities
having the general configuration of the cavity shown in
Fig. 2, but with slightly different dimensions. These are
identified in Table 1 as cavities Ia-Ie. Table 2 gives the
apparent emissivity €, of each of these cavities over a
range of surface emissivities e. These values of ¢, were
computed using Eq. (1). The results are given to only three
decimal places for reasons to be explained in Section IV,
Cavities Ia, Ie, and II were subjected to further study.
The results of this further study are presented in suc-
ceeding portions of this report.

Table 1. Dimensions of cavities used in calculations

Cavity XLy, XLz, XLs, Sk, SLy, SLs, Ry, Rz, 84, 8, f
wm cm cm cm wm cm cm cm deg deg
la 0.6 1.8 3.3 0.83 1.45 1.9 0.54 0.95 42.0 300 0.06823
b 0.219 1.437 2,312 0.875 1.219 1.219 0.58 0.844 45.0 45.0 0.11149
lc 0.6 1.825 3.15 1.825 245 1.5 0.625 0.85 19.5 34.0 0.13342
Id 0.6 1.3 2.625 1.825 2.45 1.5 0.625 0.85 19.5 34.0 0.14248
le 0.475 1.269 2,142 1.943 2.44 1.129 0.568 0.714 17.021 39.293 0.15900
1 — — — — —_ 2.77 — 0.576 — 1.75 0.34502
" 0.6 0.6 1.93 1.825 2.45 1.5 0.625 0.85 19.5 34.0 0.18634
v 0.0 0.7 2.03 - — 1.5 0.625 0.85 —_ 340 0.16267
\'% 0.0 1.225 2,55 — —_ 1.5 — 0.85 — 34.0 0.26555
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Table 2. Approximaie cavily emissivity ¢, for cavities used in caleulations

Surface Cavity, ¢
emissivity, e a b Ie id e i Tt v v
0.85 0.988 0.981 0.977 0.975 0.973 0.943 0.968 0.972 0.955
0.86 0.989 0.982 0.979 0.977 0.975 0.947 0.971 0.974 0.959
0.87 0.990 0.984 0.980 0.979 0.977 0.951 0.973 0.976 0.962
0.88 0.991 0.985 0.982 0.981 0.979 0.955 0.975 0.978 0.965
0.89 0.992 0.986 0.984 0.983 0.981 0.959 0.977 0.980 0.968
0.90 0.992 0.988 0.985 0.984 0.983 0.963 0.980 0.982 0.971
0.91 0.993 0.989 0.987 0.986 0.985 0.967 0.982 0.984 0.974
0.92 0.994 0.990 0.989 0.988 0.986 0.571 0.984 0.986 0.977
0.93 0.995 0.992 0.990 0.989 0.988 0.975 0.986 0.988 0.980
0.94 0.996 0.993 0.992 0.991 0.990 0.978 0.988 0.990 0.983
0.95 . 0.996 0.994 0.993 0.993 0.992 0.982 0.990 0.992 0.986
0.96 0.997 0.995 0.994 0.994 0.993 0.986 0.992 0.993 0.989
0.97 0.998 0.997 0.996 0.996 0.995 0.989 0.994 0.995 0.992
0.98 0.999 0.998 0.997 0.997 0.997 0.993 0.996 0.997 0.995
0.99 0.999 0.999 0.999 0.999 0.998 0.997 0.998 0.998 0.997
1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

lll. Exact Numerical Calculations of the
Emissivity of Isothermal Cavities

A. Solution of the Integral Equation for Cavity Emissivity
by the Method of Successive Approximations,
Using Direct lteration

In this section it is assumed again that the cavities to be
discussed are:

(1) Isothermal.
(2) Gray.
(3) Uniform.
(4)

4) Lambertian.

Under these conditions, the apparent emissivity € (x) at
a point x on the inner surface of the cavity is given exactly
by the integral equation.

d@=vw/amew@ 3)

Here € is again the surface emissivity, p is the reflec-
tivity, and K (x,y) dy = dF,., is the view factor from area
element da(x) to area element da(y) (see Fig. 1). The
derivation of this equation is given several places in the
literature and will not be repeated here. The clearest deri-
vation seems to be that given in Ref. 10. According to
Ref. 14, this equation has been solved analytically for only
two cavity configurations, the spherical cavity and the
cylindrical arc cavity (Ref. 12 and Ref. 13). For most
cavities the equation must be solved numerically. A com-
mon approach is to apply numerically the method of

successive approximations. A set of values € (y) is assumed
at a finite number of values of y and the integral

/dwK@w@ ()

y

is evaluated numerically for each x and upon substitu-
tion in Eq. (3), a set of values of e(x) is obtained. This
set is used as a second guess and is itself substituted in
the integral, producing a new set of € (x) on the left side
of Eq. (3). This process is continued until convergence
is achieved. The usual criterion for convergence is that
successive sets of values of € (x) must differ by a negligible
amount.

Once the set of values e¢(x) has been obtained, it is
desired to find ¢,, the apparent emissivity of the cavity.
One way to do this is as follows.

First, consider the definition of e,.

_9Q
"o ®

€

where Q is the radiant flux passing out the aperture and
Q; is the blackbody flux that would be emitted from a
surface of area A stretched over the aperture. Then

Q= oT*A (6)

The total radiant flux from a zone of area da(x) is
€(x) ¢T*da (x). The fraction of this flux which reaches
the aperture is F,,, where F,_, is the view factor from x
to the aperture or opening. The flux reaching the aperture
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from da (x) is then € (x) oT* da (x) F,-,. Therefore, the total
fux reaching the aperture is

Q= /e (x) oT* F,pda(x) (7)
and
/e (x) oT* Fyp da (x)
€= ) oT*A (8)
/e (x) Fypda (x)
€=y ©)

The integral Equation (3) was solved by the direct
iteration process just discussed for three of the cavities
(Ia, Ie, and II) given in Table 1. The necessary view fac-
tors are given in the appendix. For cavities Ia and II, a sur-
face emissivity of 0.95 was used, but for cavity e a surface
emissivity of 0.945 was used. The results of these calcula-
tions are summarized in Table 3, where €, has been com-
puted from Eq. (9).

It should be emphasized here that “exact” means the
result of solving the integral Eq. (3) numerically, rather
than using the approximate approach developed by
Treuenfels and used in Section I, and does not mean
using an analytical solution.

A question arising when these calculations are per-
formed is the one of accuracy. This question is discussed
in Section IV, but the results of that section are taken into
cognizance in the retained significant figures given in
this section.

Table 3. Exact cavity emissivity for several cavities

Cavity Surface emissivity, € Cavity emissivity, ¢,
fa
(three-section cavity) 0.95 0.9963
le 0.945 0.9909
(three-section cavity) : '
" 0.95 0.9820
{cone)

B. Derivation of Series Representation of Solution of
Integral Equation

After most of the calculations discussed in this report
were performed, a better method than the direct iteration
method was found to solve the integral Eq. (3). This
method has been presented in Ref. 6. Most of the material
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from this reference is repeated in this report in a some-
what different form and is reproduced by permission of
the Journal of the Optical Society of America. Instead of
performing the successive approximations by direct itera-
tion, as done previously, an equivalent series is developed.

To develop the series, let us examine the iterative
method more closely. It can be shown (Ref. 15) that if the
series solution for the integral Eq. (3) obtained by suc-
cessive approximations converges to a solution, then this
solution does not depend on the first guess. For the pres-
ent purposes, however, it is desirable to use as a first
guess simply the surface emissivity e. We obtain from
the first iteration, € (x):

€ (x) = e+ pe/K(x, y) dy (10)

For the second iteration we have
€ (z) =€+ p€/ K (z,x) dx

+ﬁ/mmw@nK@mm1 (11)

Continuing this process we arrive at the formula

€(x) = €[1 - pgy (x) + p*¢: ()
+o T g () + ] (12)

where

@@z/me@ (13)
and

¢M@=/me¢mwm% n=23 -

(14)

The series, Eq. (12), is called the Neumann series for

Eq. (3) and represents the solution to Eq. (3) if it con-

verges (Ref. 16). One way to prove convergence is to use

a physical argument. Multiply each term of the series by

oT*. This does not affect convergence. Now the terms
of the series

R = €T + peaT* ¢y (x) + - - -
+ p €T s (x) + 0 (15)

have the following meaning. The first term is the emitted
exitance at x. The second term represents that portion of
the exitance at x which has arrived at x after being emitted
in the rest of cavity and is then reflected at x. The third




and succeeding terms represent reflected exitance at x
that has undergone one previous reflection, two previous
reflections, etc. Therefore, the series must represent the
total exitance at x and therefore converges to €(x)oT™.
Thus the original series, Eq. (12), also converges and rep-
resents the solution to Eq. (3).

The series representation, Eq. (12), has several impor-
tant advantages not apparent when the solution is ob-
tained numerically by direct iteration, although, of course,
the methods are equivalent since the series is obtained by
means of iteration.

(1) An error bound p¥** can be obtained, as discussed
in Section 1V,

(2) The result of N iterations is the algebraic form

€(x) = e[l + pps (x) + pP () + - -+ pVox (3)]
(16)

Once the ¢; terms are obtained numerically by itera-
tion, using Eqs. (13) and (14), the set € (x) and therefore €,
can be calculated simply by evaluating the form (16) for
each € and p, without having to do the iteration over
again for each € and p. This is a considerable saving in
computer time.

Although this method was developed after most of the
desired calculations had been made, a program was writ-
ten to try out the method with the cone, cavity II. The
resulting €, for € in the range 0.84 to 1.00 is shown in
Table 4.

Table 4. Exact cavity emissivity €, for cone, cavity 1,
for surface emissivity € in range 0.84 to 1.00

Surface emissivity, ¢ Cavity emissivity, ¢,
0.84 0.939
0.85 0.943
0.86 0.947
0.87 0.9512
0.88 0.9552
0.89 0.9592
0.90 0.9631
0.91 0.9670
0.92 0.9708
0.93 0.9746
0.94 0.9783
0.95 0.9820
0.96 0.9857
0.97 0.9893
0.98 0.9929
0.99 0.9965
1.00 1.0000

V. Error Analysis of Emissivity Calculations

A. Errors to be Discussed

If the results of emissivity calculations are to be applied
to actual radiometers, the accuracy of the calculations is
of interest. Errors can arise from two sources:

(1) Use of incorrect or incomplete assumptions about
the properties and behavior of the cavities.

(2) Use of numerical methods.

The errors arising from the first source are by far the
most difficult to treat. An attempt to estimate the effects
of some of these errors is made in Sections V and VI, but
the concern here is primarily with estimating the accu-
racy of the numerical calculations, and thus estimating
the error in the numerical results used in Sections II
and ITI, under the assumptions used there.

B. Errors in €, from Solution of Integral Equation

Errors in the values of €, calculated from the solution
of the integral Eq. (3) and the use of Eq. (9) are of several

types:
(1) Errors due to ending the iteration after a finite
number of steps (truncation error).

(2) Error due to use of a finite number of integration
steps (integration errors).

(3) Errors due to using finite arithmetic (chopping
errors).

Irregularities in the functions occurring in the calculations
cause particular difficulties in the evaluation of types (2)
and (3) errors. Truncation errors are easy to treat, how-
ever, and a completely rigorous bound can be given for
these errors (Ref. 6).

Suppose for now that the integrations indicated in
Eqgs. (13) and (14) for the evaluation of the ¢; terms can
be performed as accurately as desired. Then the error of
interest arises from using only a finite number of terms
of the series, Eq. (12).

Let us rewrite the series

e(x) = ey (x) + E (x) a7

where

ev(x) = €[l + pgy (x) + - -+ + p¥oy (x)] (18)
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and

E(x)= e ¢y () + -+ p" gy (x) + 00 ]
(19)

The term ey (x) is the value used for €(x) as the result of
N iterations, that is, as the result of using N + 1 terms of
the series, Eq. (12), and E (x) is the error in € (x) resulting
from dropping the remaining terms. Note that E (x) is a
series of positive terms, so there is some doubt about the
accuracy of ey (x) as an estimate of € (x). We can see that
the requirement that differences between successive terms
become small is not completely adequate justification for
stopping the iteration, since an infinite sum of even very
small terms may add to any desired number, even though
we can see that Eq. (19) converges, since Eq. (12) con-
verges.

To establish a bound on E (x), let us first suppose, with-
out loss of generality, that x ranges from 0 to 1. This is
simply a convenience. Now we can show by induction on
n that for all x in (0, 1) and for all n,

O=¢,(x)=1 (20)
First,

0=p )= [ Ky =1 (21)

follows from the identity

‘/K@mMy+ﬂw:1 (22)

where as before F,_, is the view factor from x to the aper-
ture. This identity expresses the fact that the fractions of
exitance from a surface must sum to 1. We have used also
the fact that since F,., represents a fraction of exitance,

O=F,,=1 (23)
Next, by the hypothesis O=¢,(y)=1, and since
K(x,y)=0, as a result of its definition, we have

O =K (x,5) ¢ (5) =K (x,) and so
0= gs (1) = / K (x,9) ¢ (4) dy
= /K(x, ydy=1 (24)

by the comparison test for integrals.

Therefore
p" == phh; (%) (25)
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for any i and n, so

T:1+P+P2+ .+Pn+1+... (26)
dominates the series
S=¢ya(x)+ -+ Thyax)+ - (27)

Thus E (x) = €S converges, which we already knew, but
furthermore since

enN+1
S=r7--—1_ E(x) =2
1=, 1—p
Using € = 1 — p we have
E(x)=p™ (28)

Therefore the truncation error in each ey (x) is less than
or equal to p¥*', Now we want to find an error bound on
€, resulting from the bound on the error in the calculated
€(x). To do this, recall Eq. (9):

&= [ e Froda () (29)
From Egs. (17) and (28) we have

€ = 4/6\ (x)F,oda(x) + Zi/‘E(x) F,,da(x)

N

(30)
or
€, (true) = €, (numerical) + E (31)
where
———/ %) Fooda (x) = i/p“'“Ff-udd(x) (32)
since
E(x)=p™ (33)

If we suppose for the moment that the surface is black,
then €(x) =€, = 1, and from Eq. (29) we have

lz%ﬁFMM@) (34)

This identity is an expression of the fact that terms of
the form (area x projected angle), which are discussed in




Ref. 17 and which have been called “throughput,” for
example, in Ref. 18, must be constant for any surface
bounded by the edge of the aperture. This is to say,
the throughput for the inner swrface of the cavity,
{ Fop da (x), must equal the throughput for the aperture,
A (area) X 1 hemisphere (projected solid angle).

Now applying Eq. (34) to Eq. (33) we have
E = PN+1 (35)

Thus we have the result that the truncation error in ¢,
is less than p¥+,

This error bound is rigorous, but the treatment of inte-
gration errors is not. There is somewhat more than the
usual problem with performing the integrations neces-
sary to evaluate the terms ¢; (x). This difficulty is caused
by the fact that for both cavities I and II, the kernel of
the integral equation K(x,y), has a slope discontinuity
at x = y. This is shown, for example, in Fig. 7, where
K,; (x,y)dy = dF,,(x,y) is given in the appendix. For
this plot, y ranges over 31 equispaced values y; ranging
from 0 to 0.794 and x = y,, = 0.2382.

A possible problem with this slope discontinuity is that
errors may occur if Simpson’s rule is used. To see this,

recall that Simpson’s rule requires the use of an odd
number of points N in the range of integration, including
the end points, defining an even number of intervals
M = N — 1. Simpson’s rule fits a parabola through suc-
cessive sets of three points. Now in K (x,y), suppose that
integration takes place with respect to y and that x is a
parameter. If x is coincident with one of the odd points
in the mesh, Fig. 8 shows the curve fit, but if x is an even
point, Fig. 9 is appropriate. The fit in Fig. 9 is not
reasonable.

This problem has been treated several different ways
in the literature. For example, Sparrow and Jonsson
(Ref. 10) performed the integration separately on each
side of the slope discontinuity. Peavy (Ref. 11) used a
substitution technique which made the integrand equal
to 0 at the slope discontinuity and close to 0 near it.

The method adopted for the calculations reported here
was to use Simpson’s rule when x was an odd point, but
when x was an even point, Simpson’s rule was used for
all but the point x and the two points on each side of it.
For these points the trapezoid rule was used, as shown
in Fig. 10.

This method of integration was applied to cavities 1a,
Ie, and II, using direct iteration, with the results shown

0.70 /\
’;_
S 0.50 ™
X
o~
o~
pv4
0.40 \\
0.30
0 4 8 12 16 20 24 28 32

Fig. 7. Slope discontinuity as shown by plot of cavity le view factor
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Fig. 8. Parabolic curve fit, odd point

in Table 3. For the cone, cavity II, 100 intervals of inte-
gration were used, and for cavities Ta and Ie, 93 intervals
(31 in each section). Essentially the same method was
applied to non-isothermal cavities, discussed in Section V.

The accuracy of these calculations is believed to be
comparable to that of the results previously reported in
the literature of numerical solutions of the integral equa-
tion. Indeed, when the method of Peavy (Ref. 11) was
applied to cavity II, using 100 intervals of integration
and double precision on the IBM 7094, the result obtained
was

€, = 0.98203316 (36)
whereas the result of the method given here was
€, = 0.98201881 (37)

This was obtained using 100 intervals of integration and
a fHloating point precision (fpp) equal to 12 digits.

These answers are the same within two parts per
100,000, a reasonable agreement. However, the results of
these calculations showed somewhat erratic behavior of
€ (x) for positions near the apex. Table 5 presents € (x) vs
station number, with the stations numbered from apex to
aperture. Note that there are some values of € (x) near the
apex which are even greater than 1.

These irregular values of € (x) near the apex arise from
two sources:

(1) The effect of finite intervals on the integration be-
comes more important for intervals near the apex.

(2) K(x,y) for the cone is given in the appendix, where
the dimensions are as in Fig. 1. Study of this func-
tion shows that there is a singularity at x = 0. When
using finite arithmetic the effect of this singularity
is felt even for small but nonzero values of x, that
is, chopping errors are important.

JPL TECHNICAL REPORT 32-1463
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Fig. 9. Parabolic curve fit, even point
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Fig. 10. Trapezoidal curve fit, even point

These effects have been mentioned already as possible
general sources of error; we see now that they are espe-
cially important near the apex.,

To alleviate this problem we can:

(1) Substitute an algebraic formula for at least some of
the integrals.

(2) Decrease the interval size.

(3) Increase the precision of the numbers used in the
calculation.

Consider first the substitution of an algebraic expres-
sion for the integrals. This is essentially what Peavy has
done in Ref. 11. He has developed an algebraic formula
for the integral appearing in the first iteration. Since the
errors mentioned are errors in K {x,y) and [ K (x,y) dy, it
can be seen that substituting an algebraic expression for
the first integration should be effective in reducing error,
since an algebraic expression which has no singularities
should be easier to evaluate accurately than either K (x, y)
or [ K(x,y)dy.

Since Peavy’s method gave essentially the same €, (and
incidentally still produced one €(x) > 1 near the apex) it
was apparent that either the result obtained here was
accurate or that both this result and the result from
Peavy’s method were inaccurate. To try to get a cross
check on both methods a different approach was used.
The basis of this was the algebraic form used in Eq. (16).
Here we use four iterations, With € = 0.95, p = 0.05 and
o> = 3 X 107, which is negligible. Indeed, this number
of iterations was used throughout this repont.




Table 5. Emissivity of cone by direct iteration

(M = 100, fpp = 12, ¢ = 0.95)

Station No. € (x) Station No. € {x}
1 0.99955572 52 0.99704454
2 0.12760062 53 0.99690493
3 0.94642189 54 0.99675791
4 1.0158988 55 0.99660251
5 1.0095168 56 0.99643873
6 1.0013271 57 0.99626563
7 1.0037116 58 0.99608308
8 0.99992495 59 0.99589016
9 1.0017504 60 0.99568663
10 0.99959561 61 0.99547115
11 1.0008548 62 0.99524459
12 0.99946321 63 0.99500479
13 1.0003536 64 0.99475172
14 0.99938218 65 0.99448441
15 1.0000325 66 0.99420234
16 0.99931666 67 0.99390450
17 0.99969051 68 0.99359030
18 0.99925518 69 0.99325873
19 0.99921505 70 0.99290910
20 0.99919425 71 0.99254041
21 0.99915704 72 0.99215192
22 0.99913157 73 0.99174263
23 0.99909450 74 0.99131177
24 0.99906482 75 0.99085834
25 0.99902647 76 0.99038159
26 0.99899271 77 0.98988057
27 0.99895213 78 0.98935455
28 0.99891423 79 0.98880266
29 0.99887067 80 0.98822422
30 0.99882843 81 0.98761848
31 0.99878125 82 0.98698488
32 0.99873435 83 0.98632279
33 0.99868293 84 0.98563181
34 0.99863097 85 0.98491149
35 0.99857469 86 0.98416162
36 0.99851716 87 0.98338197
37 0.99845536 88 0.98257252
38 0.99839168 89 0.98173331
39 0.99832364 90 0.98086456
40 0.99825312 1 0.97996655
41 0.99817807 92 0.97903976
42 0.99809992 93 0.97808473
43 0.99801697 94 0.97710220
44 0.99793033 95 0.97609296
45 0.99783851 96 0.97505798
46 0.99774236 97 0.97399826
47 0.99764058 98 0.97291500
48 0.99753379 99 0.97180938
49 0.99742082 100 0.97068276
50 0.99730212 101 0.96953647
51 0.99717659

Recall Eq. (13) and Eq. (22):
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$1 (%) =

/IK(x,wdy

and
/ Kxy)dy + F,o=1 (39)

From these we obtain
¢1(x) =1 — Fasp (40)

F,., is a well behaved function and is given in the
appendix. It is also plotted versus x in Fig. 11. The only
irregularity is at x = 1 and the value there can be ob-
tained by quadratic extrapolation. Alternatively, we can
construct F,_, for finite zones in the cavity by the method
of angle-factor algebra mentioned earlier.

Thus, by use of Eq. (40), we avoid one use of K(x,y),
with its attendant chopping errors, and also one integra-
tion, with its integration errors, and instead evaluate the
straightforward form F,_,.

It is worthwhile, examining F,_, a little closer, to see if
F.., really gives more accurate values of ¢, (x) than

Eq. (38).

From Eq. (34)
L= %/ Foda(z) =1 (41)

If we actually perform this integration numerically, using
M = 100 intervals of integration and fpp = 12, we obtain

1, = 1.0000007680 (42).

From Eq. (39) we have

Foo=1— / "K(yy)dy (43)

SO

12:%£ [1-[K<x,y)dy}da(x):1 (44)

If we evaluate I, numerically, recognizing that [da(x) =
surface area, we obtain

I, = 0.98940017672 (45)

We can see that in the sense of some sort of mean-over-
area that F,, can be evaluated more accurately than

JK(x,y)dy.
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It does not follow, however, that the use of [ K (x,y) dy
in the evaluation of €, leads to results as inaccurate as
might be supposed from Eq. (45). The greater accuracy
of €, results from the fact that when the direct integra-
tion method is employed we use Eq. (29) directly to evalu-
ate €, and when we employ the series, Eq. (16), the use
of Eq. (29) requires the evaluation of

+ / ¢ (1) P da (2) (46)

Equations (29) and (46) involve multiplying by F-,da (x)
and integrating. Notice that Eq. (41) requires multiplica-
tion by da (x) only. F,_, increases rapidly from the apex to
the aperture, however, so the resultin Eq. (29) is to weight
the more accurate values of € (x), those near the aperture,
more heavily than those near the apex, and a similar effect
applies to Eq. (46).

To see this effect on Eq. (46), recall Eq. (22),
/ K{x,y) + Fopo =1 (47)
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We should have then

I, = %f U K(x,y)dy + F] Fyoda(x) = 1(48)

If we perform this integration with M =100 and
fpp = 12, we obtain

I, = 1.00002696287 (49)

One problem here is that we do not know the contri-
bution to the error in I; from the integral

I, = %/ Fz ,da(x) (50)

If we make the reasonable guess that the errors in I,
are insignificant compared to the errors in Is;

[ [kt | aat

(51)
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then we have the result that the error in I is 0.000027
and hence the effect of this error on €, is much less than
would be expected from Eq. (45).

Returning now to the representation of ¢, (x) as 1—F,_,;
so far this method is equivalent to Peavy’s evaluation
(Ref. 11) of the first iterative integral. However, let us
extend it further. Recall

o (2) = / o () K (5,9) dy (52)
= ] (1— F,0)K (x,y) dy (53)
- / K (x,4) — / F,.K@mydy — (54)

=1—Fpp— f F,oK(x,y)dy (55)

Similarly, if we let

0= [FrKm)dy (56)
and
0n(3) = [ 001 (@) K () 1)
then we have
¢z (x) = 1 (x) — 01 (x) (58)
bs (x) = ¢ (x) — 0. (%) (59)
and in general
P (X) = dno1 (%) — O (%) (60)

Using these equations to evaluate the ¢; terms, we get
some increase in the error in each ¢, due to the propaga-
tion into ¢, (x) of the error in previous ¢,’s, but the error
in 6, (x) is less than produced by performing the inte-
grations

€ (x) =€+ p/E,,“l (x) K(x,y) dy (61)

or

12

The error grows larger in those integrations because
¢$uer (x) and €, (x) are both large near the apex and
smaller near the aperture, and this causes an effective
multiplication of the largest ervors in K (x, y) and of those
occurring because of finite interval size. By contrast, be-
cause of the behavior of F,., previously pointed out, the
integration for the evaluation of the ¢; terms tends to
minimize the errors arising from chopping and integration
errors near the apex.

Using Eqs. 56-60, € (x) was recalculated for the cone
again using M = 100 and fpp = 12. The results are shown
in Table 6. Not only are all of the values of €(x) less
than 1, but, except for the second value, they decrease
monotonically, a feature missing in Table 5. The resulting
apparent emissivity for the cavity from these values of
€(x) is

€, = 0.98201494 (63)

We still have agreement to four decimal places with
the previous values, and this increases our confidence in
this result.

Next, we wished to check the result of decreasing the
interval size near the apex. One way to do this is to use
an interval that is small near the apex and increases grad-
ually in size away from the apex. This is the best method
and has been used successfully by J. A. Plamondon and
W. Bunton of the Jet Propulsion Laboratory, However,
the method used here was to make all of the intervals one-
half of the previous size. This was done by increasing
M to 200. The resulting value was

€, = 0.98199332 (64)

This result and the preceding values all agree within
four parts per 100,000. We can explore the implications
of this a little further using Richardson’s extrapolation
formula for Simpson’s rule (Ref. 20). According to this
formula, if I is the result of integration using Simpson’s
rule with M intervals and I,y is the result using 2M intex-
vals, the extrapolated “true” value of I is

1
I=1,+ 5 (Ioyr — L) (65)

This formula is not exactly applicable to our case be-
cause not all of the evaluations were made using Simpson’s
rule, but in any case I can only be estimated so Eq. (65)
will furnish an acceptable estimate. Also, we will apply
Eq. (65) to ¢, rather than to individual values of € (x).
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Table 6. Emissivity of cone (from series)

M =100, fpp = 12, € = 0.95

Station No. € {x} Station No. € {x}
1 0.99999969 52 0.99704439
2 0.99950498 53 0.99690493
3 0.99952651 54 0.99675778
4 0.99951039 55 0.99660251
5 0.99949935 56 0.99643862
6 0.99948284 57 0.99626562
7 0.99946753 58 0.99608298
8 0.99945046 59 0.99589016
9 0.99943323 60 0.99568654
10 0.99941495 61 0.99547155
1 0.99939610 62 0.99524452
12 0.99937632 63 0.99500479
13 0.99935581 64 0.99475166
14 0.99933434 65 0.99448442
15 0.99931201 66 0.99420228
16 0.99928867 67 0.99390450
17 0.99926435 68 0.99359025
18 0.99923893 69 0.99325873
19 0.99921242 70 0.99290906
20 0.99918470 71 0.99254041
21 0.99915575 72 0.99215189
22 0.99912547 73 0.99174263
23 0.99909383 74 0.99131173
24 0.99906073 75 0.99085834
25 0.99902610 76 0.99038156
26 0.99898985 77 0.98988058
27 0.99895191 78 0.98935453
28 0.99891216 79 0.98880266
29 0.99887053 80 0.98822420
30 0.99882689 81 0.98761848
31 0.99878115 82 0.98698486
32 0.99871338 83 0.98632279
33 0.99868287 84 0.98563179
34 0.99863007 85 0.98491150
35 0.99857464 86 0.98416161
36 0.99851645 87 0.98338197
37 0.99845533 88 0.98257251
38 0.99839111 89 0.98173331
39 0.99832362 90 0.98086455
40 0.99825266 91 0.97996655
41 0.99817805 92 0.97903975
42 0.99809955 93 0.97808473
43 0.99801696 94 0.97710219
44 0.99793002 95 0.97609297
45 0.99783850 96 0.97505797
46 0.99774210 97 0.97399827
47 0.99764057 98 0.97291499
48 0.99753357 99 0.97180938
49 0.99742081 100 0.97068275
50 0.99730194 101 0.96953510
51 0.99717659

Then if we use I; = 0.98201494 and I, = 0.98199332, we

obtain

€ = I = 0.98199188
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(66)

Comparing this estimate to all previous values still
shows agreement within four parts per 100,000.

Finally, we increased the precision from fpp = 12 to
fpp = 24. The approach was roughly that suggested in
Ref. 21: double the precision and compare the results. The
leading digits that do not change are probably accurate.

The result of this calculation was
€, = 0.98201449 (67)

All of the results obtained agree within four parts per
100,000, and we conclude therefore that the correct
value is

€, = 0.9820 (68)

and furthermore that four significant figures can be re-
tained except in those cases where p° is large enough to
limit the accuracy to three significant figures. This limit
occurs for € =< 0.86, so Table 4, for example, shows values
of €, to three decimal places for € ==0.86.

It should be emphasized that, unlike the treatment of
truncation errors, the preceding treatment of integration
and chopping errors is not rigorous, so only an estimate
of the accuracy is obtained, not a rigorous bound on the
er701S8.

Since we have now an estimate of the accuracy of the
calculations for the cone, we can by analogy assume that
the calculations for the other cavities Ia and Ie are of
comparable accuracy. The integration errors should be
essentially the same for these cavities. Because of the
complexities of the view factor formulas for cavities Ia
and Te, greater chopping errors may occur. However, the
results with 12 and 24 digit precision for the cone differed
by only five digits in the seventh place, so the assumption
of four place accuracy is considered conservative, even
for cavities Ia and Ie. There is one additional point that
should be mentioned concerning the emissivity at the
apex, € (0). Peavy (Ref. 11) has obtained the liimting value
of €(0) using I'Hopital’s rule, and this value was used
in computing the e(x) shown in Table 5. However, it
was not used for succeeding calculations for two reasons:

(1) The value of € (0) does not effect the value of € (y)
for y > 0. We can see this by substituting x =0,
y =0 into K(x,y) for the cone. (K(x,y) is given
in the appendix.)

(2) €(0) has no effect on ¢,, when Eq. (9) is used, since
F,,da(x) =0 for x = 0. (F,_, is also given in the
appendix.)
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C. Accuracy of Approximate Calculations

By direct comparison of the values of €, in Tables 3
and 4 with the raw computer results of the approximate
determination of e, discussed in Section II, it was deter-
mined that the approximate values were accurate to three
decimal places for cavities Ia, Ie and II. It was assumed
that the accuracy for the other cavities was the same, so
three places were retained in Table 2 throughout.

V. Non-Isothermal Cavities
A. Temperature Calculations

It was considered desirable after the calculations de-
scribed in the previous sections were performed to deter-
mine the departure from isothermality in the cavities and
the effects of this non-isothermality on the apparent emis-
sivity €,. The best way to do this would have been to solve
a heat transfer equation for the entire cavity, taking ac-
count of all conduction, radiation, and convection. This
would be extremely difficult to do. However, it was pos-
sible to carry out a perturbation method developed by
J. M. Kendall, Sr. of the Jet Propulsion Laboratory to
find an approximate solution.

The method starts with the usual assumptions that the
cavity is:

(1) Isothermal.
(2) Gray.

(3) Uniform.
(4) Lambertian.

Under these conditions we compute €(x) and ¢, as de-
scribed in Section III. Now the total heat flux out the
aperture is

Q=¢,0T*A (69)

The nominal operating condition for the cavity is
O = 0.1 W. Substitution in Eq. (69) allows us to evalu-
ate T. Then we calculate the net heat flux q (x) per unit
area for each zone, using the formula

oT e[l — e(x)]

1—e¢ (70)

q(x) =

(See Ref. 10 for derivation of this equation.) Multiplying
Eq. (70) by da(x), we have the net heat flux from each
area zone da (x).
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We supply heat to the cavity by means of coils that
apply heat uniformly to the surface over which they are
wound. For the cone, this is the entire surface and for
cavity Te it is the center section. At equilibrium, this heat
supplied must equal 0.1 W, in the absence of other radi-
ative, conductive, or convective effects.

Now we perform the perturbation. We assume that
conduction in the cavity shell causes an equilibrium tem-
perature distribution to be established. Consider, for ex-
ample, the portion of a conical cavity from the apex to a
point described by a slant height x. See Fig. 12, where
for simplicity the coordinates are the same as in Fig. 1.
The net heat flux from this portion of the cone due to
radiation is

L%mww

The heat supplied by the coils is

/odea(x)

where H is the heat supplied per unit area. At equilibrium
the heat entering the segment must equal the heat leaving
it, so that the conductive flow, dQ/d¢, must be given by

4Q
dt

q(x) da(x)

Fig. 12. Cavity heat transfer
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dQ

de / Hda (x) — /oﬂ q (x)da(x) (71)

Now to find the temperature distribution we must solve
the heat conduction equation for the cavity shell. Since
only approximate answers were desired and the perturba-
tion method is approximate in any case, it was decided
to use the heat conduction equation in the form applying
to linear flow,

dQ dr
o - KA

(72)
where K is the thermal conductivity of the cavity material
and A is now the area of the cavity shell perpendicular to
the direction of flow. For the cone of Fig. 12, for example,
A = 2zxd sin §.

Equation (72) was integrated numerically for the cavi-
ties previously studied, Ie (three-section cavity) and II
(cone). The material of the cavity was taken to be silver,
with K = 4.18 W per second cm deg C. For cavity Ie, the
thickness d used was 0.010 in. = 0.0254 cm, and heat was
assumed to be applied only to the center section. For
cavity II, d = 0.005 in. = 0.0127 cm. The results are
plotted in Figs. 13 and 14 for cavity Ie and II respectively.
The abscissa y is the distance from the aperture. The ordi-
nate is AT =T — T, where T is the temperature at y
and T, is the temperature at the aperture.

B. Emissivity Calculations

The equation to be solved when the cavity is not iso-
thermal is

B(x) = eoT* (x) -+ p/B (x) K(x,y) dy (73)

where B (x) is the exitance at x. See Ref. 14, for a general-
ized form of this equation, where slightly different nomen-
clature is used.

To compare the solution of this equation with previous
results, it is reasonable to define an emissivity € (x);

€(x) = ](3’%)

(74)

Here T, is some average temperature in the cavity, Mak-
ing the substitution Eq. (74), Eq. (73) takes the form

€<x) _ E(rj;fx)

T, / e () K (x, 5) dy (75)
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This equation can be solved by direct iteration. How-
ever, there are two problems. The results of the tempera-
ture calculations give only AT, the temperature referred
to the temperature at the aperture. Also it is not clear
which T, should be used.

For the cone, the following steps were used:

(1) Determine T, from

01=0T:A (76)
0.20
0.16
END OF SECOND SECTION
END OF FIRST SECTION
0.12 »
¥ \
0.08
APERTURE
0.04
0
0 0.4 0.8 1.2 1.6 2.0 2.4
y = DISTANCE FROM APERTURE IN CM
Fig. 13. Relative temperature in three-section cavity
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Fig. 14. Relative temperature in cone
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where A in this case is again the aperture area.
The result was T, = 364.8°K. Of course other T,
values could have been used, but this was thought
satisfactory for a trial.

(2) Determine AT,, from
1
AT,, = §/ AT (x)da (77)
s

where S is the surface area of the cone and da is
an element of area on the cone. Thus, AT,, repre-
sents the average temperature over the surface of
the cone. AT is as given in Fig. 11. '

(3) Let
T (x) = AT — AT, + T4 (78)
The result of using this Ty, AT,,, and T (x) was
€, = 0.9809 (79)

which should be compared with the isothermal
value

€ = 0.9820 (80)

It can be seen that the non-isothermality causes a small
but significant change, 0.0011, in €,.

The method was applied to cavity Ie where now we
used

1 XLy

m . AT(x) dx (81)

AT,, =

AT,, in this case represents the average temperature
over the center section of the cavity, which is the only
section where heat is applied and temperature is sensed.
The value T, = 364.8°K was still used. The result was

€. = 0.99226326 (82)
which rounds off to
€, = 0.9923 (83)
Recall that the isothermal emissivity was

€2 = 0.9909 (84)

Again there is a small but significant change.
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To see the effect of a change in T, €, was recomputed
for cavity Ie, using

0.1 = 0.9909 oT* A (85)
which gave T, = 363.7°K and
€ = 0.99226915 (86)
which rounds off to
€ = 0.9923 (87)

That is, this small temperature change produces no change
in €, within the accuracy of the calculations.

V1. Non-Gray Cavities

In this section, the assumption is dropped that the
cavity is gray. We still assume that it is:

(1) Isothermal.
(2) Uniform.
(3) Lambertian.

If € is a function of wavelength A,
e=¢(\) (88)
then the following equations replace Egs. (3) and (25)

c(ha) =€) + ,,@)/f@,x)qu,y) dy
(89)

& (1) = % / e(\x)F,_,da(x) (90)

These equations are solved in exactly the same way as
before, but they must now be solved for each A in the
range of interest.

Once we have obtained the set of €,(A), we can define
an apparent emissivity for the cavity for the wavelength
interval (A;,A.) by the equation

Az
/ €, ()\) ep d)
Q= (01

A
f Epr dx
A
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In this equation e is the Planck black-body function
(Ref. 14):

C,
C,
nEA® (exp T 1

where the constants in this equation are as follows, in cgs
units:

(92)

Epr —

C; = 3.74 X 10° erg cm?/s
C, = 14387 cm°K

n = index of refraction of surrounding medium

I

absolute temperature in °K

Equation (91) gives €, as the ratio of the power emitted
by the cavity to the power emitted by a black body of
area equal to the aperture area of the cavity. Notice that
€, depends not only on the wavelength interval under
consideration but also on the temperature through ep.

If €()) is available, and it is desired to solve Eq. (89)
and use Eq. (90) for an appropriate set of A, Eq. (16) can
be used to evaluate the large number of ¢, (A) needed in
Eq. (91), since solving Eq. (89) reduces to solving Eq. (3)
at a specified set of emissivities €. However, within the
accuracy of the approximate solution, the values obtained
by Treuenfels’ method and given in Table 2 are also ac-
ceptable. These values are used here. Use is also made
of values of € (1) for Parsons’ black lacquer excerpted from
data obtained in experiments at the U, S. Naval Weapons
Center, Corona, California (personal communication from
Dr. D. L. Stierwalt). The values used are shown graphi-
cally in Fig. 15 and are reproduced by permission of
Dr. D. L. Stierwalt. The term “emittance” is used in this
curve instead of the term “emissivity” used in the remain-
der of this report.

In Table 7, €, is presented for the cone, cavity II, for
the three-section cavity, le, and for a flat plate, for abso-
lute temperature T in the range 250°K to 500°K and for
wavelength in the range 2-25 microns, More significant
figures are retained than justified by the discussion in
Section IV so that the change in ¢, with temperature can
be studied. Also, since these temperatures differ widely
from the temperature T = 180°C at which the € (A) data
were obtained, some slight inaccuracy can be expected
due to the change in €(\) with temperature. However,
the significance of Table 7 is still clear: the wavelength
dependence of € does cause a small change in €, with
temperature,
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Fig. 15. Emittance vs wavelength of Parsons’ black
lacquer at 180°C (Excerpted from data obtained by
Dr. D. L. Stierwalt of the U.S. Naval Weapons Center,
Corona, California)

Table 7. Apparent emissivity €, for a range of cavity
temperature, where surface emissivity € has a
specific wavelength dependence

Apparent emissivity, ¢,
T, °K
Cavity 1 Cavity le Flat plate
250 0.96765725 0.98477142 0.91269510
260 0.96793739 0.98490519 0.91341870
270 0.96821137 0.98503565 0.91412673
280 0.96847472 0.98516137 0.91480689
290 0.96872358 0.98527973 0.91544976
300 0.96895307 0.98538926 0.91604345
310 0.96916301 0.98548997 0.91658462
320 0.96935198 0.98557994 0.91707106
330 0.96951785 0.98565893 0.91750081
340 0.96966178 0.98572835 0.91787217
350 0.96978409 0.98578616 0.91818699
360 0.96988539 0.98583446 0.91844875
370 0.96996591 0.98587298 0.91865692
380 0.97002806 0.985%90270 0.91881655
390 0.97007250 0.98592413 0.91893110
400 0.97010124 0.98593748 0.91900386
410 0.97011445 0.98594391 0.91903872
420 0.97011596 0.98594511 0.91904069
430 0.97010531 0.98593983 0.91901249
440 0.97008478 0.98593012 0.91895884
450 0.97005550 0.98591637 0.91888316
460 0.97001993 0.98589932 0.91878913
470 0.96997843 0.98587966 0.91868055
480 0.96993244 0.98585786 0.91856017
490 0.96988413 0.98583549 0.91843234
500 0.96983322 0.98581042 0.91830076
17




Appendix

View Factor Formulas

The view factors for cavity I (Fig. 2) are given below.
Section No. 1 is nearest the aperture, section No. 2 is the
cylindrical center section, and section No. 3 is the back
cone. The aperture is designated by 0. Therefore, the
view factor from the center section to the aperture is Fy,,
from the center to the back cone dF,;, etc. View factors
between sections are differentials because they are be-
tween differentials of area. View factors from the cavity
to the aperture are finite because they are from differen-
tial areas to finite areas. A full discussion of these differ-
ences is given in Ref. 14.

The direction and initial points of the running variables
in each section are indicated in Fig. 2 by designation of
the variables as x, y, z, but in the formulas, for consist-
ency, only two variables are used, x and & Recall that
F;; can be defined as the fraction of blackbody power
emitted by area i that is received by area j. Then in the
following formulas x always refers to the position of the
area element from which power is emitted and ¢ the posi-
tion of the element which receives power. Thus in the
formula for dF,,, x refers to an area element in section 1,
£ to an area element in section 2. In dF,,, x and ¢ refer

1
2xA

Fio= ————-{hB + xA? —

where
y, = h® + R? + 2?A°

y. = (* + RE + x?A%)2 — 4R2 x2A*?

to different area elements in section 1, the x element radi-
ating and the £ element receiving. Fi,, Fzo, Fso all have
just one variable, x, that is the position of a radiating
element in sections 1, 2, and 3 respectively.

Other quantities appearing in these formulas are as
follows:

A =sin g,
B = cos 3,
A, = sin$,
B, = co0s 8,

Of the two remaining formulas given here, one is for
K (x,y), the kernel of the integral Eq. (3) for the cone.
The variables are as shown in Fig. 1. The other is F,,,
the view factor from x to the aperture for the cone. Again
the variables are shown in Fig. 1. Both of these quantities
could be derived from the other view factors, but are
given in this form for convenience.

[y, (hB + xA?) — 2R2xA3]

Y }

2

_ (= By +2xhA* — 21¢B) | [y, (~hB + xA?) — 2R:xA"] (2y:h)

h=(x—SL,)B
_B (= %) + 66xA?]
A, = 2xA {1 €~ =] [(£ —x)? + 4&xA%] %
1
dF,, = —m{— B o

18
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where

yy = h* + R + 12
y. = (h* + R3 + 13)® — 4R2r}

h=¢+ (SL, —x)B

7, = xA
1 {[2hB, — 2(SL, — £) A3] (—Bh + xA?) — y, B, B + 4x (SL, — £) A? A3}
dF,;=——{ —B,B —
2xA y]éﬁ
n [y: (—Bh + xA?) — 2(SL, — £)?xA? A2] {y, [2hB, — 2 (SL, — §) A3] + 4« (SL, — £) A® A%}) de
y¥
where
Yy, = h? + 13+ 13
y. = (h? + 1} + 1§)2 — 41313
7, = (SL, — £) A,
7, = xA
F _ 1 h— h(h? + R: + R3)
*7  9R, [(h? + R? + R3)* — 4R: R3] ¥
where
h = XL1 + X
_ 14y (—By, — 2h* B + 2h£ A?)  2hy, [h, (—hB + £A%) — 2£A% R3]
dF,, = 2R2{ B % + 7 }d$
where

Yy, = h? + 12+ R}
y. = (h* -+ 12 + R3)? — 42 R3
h=x-+(SL,— §B

= EA

1 1[(3h +2R)  2(h° + 2Ry
dF:. =~ 9p, {“1 7 [(hz TaRy4 (W + dRE) ] } d

JPL TECHNICAL REPORT 32-1463

19




where

h=|x—¢|
_ 14 [Bsy, + h(2hB, — 2r1 A))] by, [y, (2B. h — 21, A;) + 41, REA,]
szg — 232 { B2 + 12/5 i yazlé }dé
where
y, = h? + 13 + R3
y. = (h* + 3 + R3)* — 4% R3
h - XI.42 -— XL1 + fBg
= (SL, — § A,
Fo= =~ 56, 94, {h32 2 Az [(h + R: + 132 — 4R213] % }
where
h = XL, + xB,
1 {—y. BB, + [hB, — (SL, — x) A3] (—2hB -+ 2£A?) + 4A3 A*(SL, — x) £}
dF31 - - E;— '_'BBZ - 145
n {y, [hBB — (SL, — x) A2] + 2A3(SL, — x) £2A?} [y, (—2hB + 2¢£A?) — 4¢A? (SL, — x)? A%]) d
y¥
where

ys = h®+ i+ 13

y. = (h* + 1% + 13)? — 41313

7 = £A

1y — (SLQ - x) A2

_ 1 _ [B.yy + 2h (hB, — 1. A,)] _ 2hy; [y (hB, — 15 Ap) + 2213 A,
R rer R L z v pa
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where
4 = h? + 13+ 13
y, = (b + 1} + 1%) — 41393
h = XL, — XL, + «B,
= R,

7‘2 = (SLZ - x) A2

(§ —x)* + 6(SL; — £) (SL. — x) A]

- B} el
Wy = oL, — D A {1 |« g'[(g—x)z+4<SL2—g)(SLz—x)Ag]%} d
_ cos*8 i (y — x)? + 6yx sin®
K(xy) = 2xsin$ {1 ly = =] [(y — x)? + 4yx sin? §] %}
Fw—a - 9xsind {x — XL cos?§ —

Nomenclature

A area of cavity aperture, surface area of cavity,
or sin 8

B (x) exitance at point x in a cavity
E truncation error in €,
E (x) truncation error in € (x)
ey Planck blackbody function
F, ; F;; view factor from surface { to surface j

f fatness, from Treuenfels’ formula (formula 2)

fpp floating point precision (number of digits
carried in a computer calculation)

K thermal conductivity

K(x,y) kernel of integral equation (defined by

K (x,y)dy = dF,.,, where dF,_, is a view factor)

M npumber of integration intervals

JPL TECHNICAL REPORT 32-1463

[XL?(3 — 4sin28) x — 3XL cos? § x* + x® — XL?cos? 8]
[(XL2 + x* — 2xXL cos? §)* — 4x* XL?sin* 8] %

number of integrations used in solving
integral equation, or number of points
used in integration

radiant flux

temperature, °K

surface absorptivity of cavity

apparent absorptivity of cavity

surface emissivity

apparent emissivity of cavity

apparent emissivity at a point x in a cavity
reflectivity of a surface

Stefan-Boltzmann constant

iterative function in solution of integral
equation
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