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Abstract 

Approximate and exact calculations of apparent emissivities were made for a 
variety of gray, uniform, isothermal, and Lambertian cavities. Some of these cavi- 
ties are used in radiometers at the Jet Propulsion Laboratory. For a surface emis- 
sivity of 0.95, the cavity emissivity varied from 0.9820 for a simple cone of apex 
half-angle equal to 11.75 deg, to 0.9963 for a three-section cavity that was roughly 
semispherical in shape. An error analysis showed that the estimated error in the 
calculations was four parts in 100,000. 

A perturbation method showed that in the cone cavity the surface was not 
actually isothermal but had a temperature variation of 0.5OC. The effect of this 
non-isothermality on the apparent cavity emissivity was to change it from 0.9820 
to 0.9809, for a surface emissivity of 0.95. Corresponding figures for one of the 
three-section cavities studied were 0.13OC for the temperature variation and a 
change from 0.9909 to 0.9923 for the cavity emissivity. 

When the surface emissivity was assumed to have a particular dependence on 
wavelength, the cavity emissivity was shown to vary from 0.9676 at 250°K to 
0.9698 at 500°K as a result of the shift in the peak of the blackbody function. 
Corresponding figures for a three-section cavity were from 0.9848 at 250°K to 
0.9858 at 500°K. For comparison, a flat plate with the same assumed wavelength 
dependence of emissivity was shown to vary from an effective emissivity of 0.9127 
at 250°K to 0.9183 at 500°K. 
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A Numerical Study of 
Cavity Radiometer Emissivities 

I. Introduction 

Extensive experimental and theoretical work has been 
done at the Jet Propulsion Laboratory (JPL) on cavity 
radiometers during the past few years (Refs. 1-6). Part 
of tl~is work has consisted of performing calculations that 
better establish the emissive properties of cavities. This 
report presents some of those calculations. 

I t  is well established that the apparent emissivity of a 
cavity aperture is greater than the emissivity of the inner 
surface of the cavity. Planck, for example, in Ref. 7, dis- 
cusses the fact that an isothermal cavity with a small aper- 
ture appears essentially black. Various authors have made 
calculations of the enhancement in emissivity caused by 
the cavity. Approximate calculations have been made, for 
example, in Refs. 8 and 9 and exact analytical or numerical 
calculations in Refs. 10-13. In this report both approxi- 
mate and exact methods are used where appropriate. 

For the purposes of this report the calculations were 
made of the apparent emissivity, although the absorp- 
tivity could have been calculated instead. An isothermal 
cavity at  temperature T will radiate with an emissivity 
E,, and if this cavity receives hemispherical black body 
radiation at its aperture from surroundings at  the same 
temperature T, the apparent absorptivity a, will be 
equal to E,. 

For many of the applications of this report, therefore, 
we can take the apparent absorptivity to be equal to the 
apparent emissivity. 

Under some circumstances, however, a , + € , ;  for ex- 
ample, when the temperature T ,  of incoming blackbody 
radiation is much different from the temperature T, of 
the cavity. Then the c, for T ,  may be different from E, 

for T,, as shown in Section VI, and thus a,+ E,. 
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I!. Approximate Determination of the 
Emissivity of isothermal Cavities 

A. Methods 

For purposes of design, it was desired to find the ap- 
proximate apparent emissivity of cavities having a variety 
of configurations. The assumptions adopted for this sec- 
tion are that the cavities are: 

(1) Isothermal. 

(2) Gray (no wavelength dependence of properties). 

(3) Uniform. 

(4) Lambertian (emit, reflect, and absorb diffusely). 

It was assumed initially and later verified that the ap- 
proximate method of Treuenfels, Ref. S, was adequate for 
this purpose. This method assumes that the fractions of 
the exitance emerging from a point x after one reflection, 
two reflections, etc. decrease in a constant ratio p. For 
full details see Treuenfels' paper. The results to be used 
here are that if f = 1 - /I, then we have the apparent 
emissivity E,  is given by 

where 

and x is a running variable in the cavity (Fig. 1). Note 
that x may run from the apex to the aperture or vice- 
versa, whichever is more convenient. F,-, is the view fac- 
tor from x to the aperture; da (x) is the element of area 
in the cavity. A full discussion of the meaning of view 
factors or angle factors is given in Ref. 14. Briefly, the 
view factor F,-, is thefraction of blackbody power leav- 
ing surface 1 that arrives at surface 2. 

The cavities studied are shown in Figs. 2-6. The appro; 
priate view factors (Flo, F,,, and F,,) are given in the 
appendix. These were obtained by the method of view 
factor or angle factor algebra discussed, for example, in 
Ref. 14. The same view factors are used for cavities 11-V 
as are used for cavity I, if the dimensions are defined 
appropriately. The variables used in the view factors are 
defined in the appendix and in Fig. 2. 

After the view factors were obtained a computer pro- 
gram was written in FORTRAN I1 for the IBM 1620. Its 
purpose was to calculate the flatness f and the apparent 
cavity emissivity E,  for a range of surface emissivities E. 

The dimensions of the cavity are inputs in the program, 

APEX 

Fig. 1. Cavity geometry 

Fig. 2. Cavity l 

Fig. 3. Cavity l l  
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Fig. 4. Cavity Ill therefore many different cavities may be studied provid- 
ing they conform to any of the basic shapes of cavities I-V. 
The integration was performed using Simpson's ruIe, with 
100 intervals of integration. 

I \ B. Results 
The results of the approximate calculations are pre- 

sented in Table 1 and Table 2. Table 1 shows the dimen- 
sions of the various cavities studied and also the computed 
value of f for each of these cavities. There are five cavities 
having the general configuration of the cavity shown in 
Fig. 2, but with slightly different dimensions. These are 
identified in Table 1 as cavities Ia-Ie. Table 2 gives the 
apparent emissivity E,  of each of these cavities over a 
range of surface emissivities E.  These values of E, were 
computed using Eq. (1). The results are given to only three 
decimal places for reasons to be explained in Section IV. 
Cavities Ia, Ie, and I1 were subjected to further study. 
The results of this further study are presented in suc- 

Fig. 5. Cavity I V  ceeding portions of this report. 

Table 1. Dimensions of cavities used in calculations 
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Table 2. Approximate cavity. emissivity E ,  for cavities used in caleuleticsns 

Ill. Exact Numerical Calculations of the 
Emissivity of Isothermal Cavities 

A. Solution of the Integral Equation for Cavity Emissivity 
by the Method of Successive Approximations, 
Using Direct Iteration 

In this section it is assumed again that the cavities to be 
discussed are: 

(1) Isothermal. 

(2) Gray. 

(3) Uniform. 

Under these conditions, the apparent emissivity E (x) at 
a point x on the inner surface of the cavity is given exactly 
by the integral equation. 

Here E is again the surface emissivity, p is the reflec- 
tivity, and K (x, y) dy = dl?,-, is the view factor from area 
element du (x) to area element da (y) (see Fig. 1). The 
derivation of this equation is given several places in the 
literature and will not be repeated here. The clearest deri- 
vation seems to be that given in Ref. 10. According to 
Ref. 14, this equation has been solved analytically for only 
two cavity configurations, the spherical cavity and the 
cylindrical arc cavity (Ref. 12 and Ref. 13). For most 
cavities the equation must be solved numerically. A com- 
mon approach is to apply numerically the method of 

successive approximations. A set of values E (y) is assumed 
at a finite number of values of y and the integral 

is evaluated numerically for each x and upon substitu- 
tion in Eq. (3), a set of values of E (x) is obtained. This 
set is used as a second guess and is itself substituted in 
the integral, producing a new set of E (x) on the left side 
of Eq. (3). This process is continued until convergence 
is achieved. The usual criterion for convergence is that 
successive sets of values of E (x) must differ by a negligible 
amount. 

Once the set of values E(X) has been obtained, it is 
desired to find E,, the apparent emissivity of the cavity. 
One way to do this is as follows. 

First, consider the definition of E,. 

where Q is the radiant flux passing out the aperture and 
Qb is the blackbody flux that would be emitted from a 
surface of area A stretched over the aperture. Then 

The total radiant flux from a zone of area da (x) is 
E (x) oT4 du (x). The fraction of this flux which reaches 
the aperture is F,-,, where F,-, is the view factor from x 
to the aperture or opening. The flux reaching the aperture 
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from dir ( x )  is then E ( x )  aT" da ((x) lip_,. Therefore, the total 
flux reaching the aperture is 

Q = /,, e ( x )  UP Fz-o c1a ( x )  (7) 

and 

/$ E ( x )  uT4 Fz-o do ( x )  
En = 

uT4 A (8) 

The integral Equation ( 3 )  was solved by the direct 
iteration process just discussed for three of the cavities 
(Ia, Ie, and 11) given in Table 1. The necessary view fac- 
tors are given in the appendix. For cavities Ia and 11, a sur- 
face emissivity of 0.95 was used, but for cavity Ie a surface 
emissivity of 0.945 was used. The results of these calcula- 
tions are summarized in Table 3, where E, has been com- 
puted from Eq. (9). 

It  should be emphasized here that "exact" means the 
result of solving the integral Eq. ( 3 )  numerically, rather 
than using the approximate approach developed by 
Treuenfels and used in Section I, and does not mean 
using an analytical solution. 

A question arising when these calculations are per- 
formed is the one of accuracy. This question is discussed 
in Section IV, but the results of that section are taken into 
cognizance 'in the retained significant figures given in 
this section. 

Table 3. Exact cavity emissivity for several cavities 

Cavity 

le I (three-section cavity) 
I 0.945 1 0.9909 I 

la 
(three-section cavity) 

B. Derivation of Series Representation of Solution of 
Integral Equation 

Surface emissivity, r 

from this reference is repeated in this report in a some- 
what different form and is reproduced by permission of 
the Journal of the Optical Society of America. Instead of 
performing the successive approxin~ations by direct itera- 
tion, as done previously, an equivalent series is developed. 

Cavity emissivity, 6, 

0.95 

To develop the series, let us examine the iterative 
method more closely. It  can be shown (Ref. 15) that if the 
series solution for the integral Eq. ( 3 )  obtained by suc- 
cessive approximations converges to a solution, then this 
solution does not depend on the first guess. For the pres- 
ent purposes, however, it is desirable to use as a first 
guess simply the surface enlissivity E. We obtain from 
the first iteration, el ( x ) :  

0.9963 

E, ( x )  = E + p~ K ( x ,  y) d y  S (10) 

For the second iteration we have 

+ $6 [ K  (x, g) d y ]  [ K  (2,  x) d x ]  J (11) 

Continuing this process we arrive at the formula 

E ( x )  = E [ 1  -t- prp, ( x )  + p2+2 ( x )  

+ . . . + pn-' I$,,-, ( x )  + . . ' ] (12) 

where 

rpl ( x )  = /" K (x ,  y) d y  (13) 

and 

9. (x) = /" K (xi  8 )  911-1 (ll) d ~  , n = 2 , 3 , .  . . 

(149 

The series, Eq. (12),  is called the Neumann series for 
Eq. ( 3 )  and represents the solution to Eq. ( 3 )  if it con- 
verges (Ref. 16). One way to prove convergence is to use 
a physical argument. Multiply each term of the series by 
oT4. This does not affect convergence. Now the terms 
of the series 

After most of the calculations discussed in this report have the following meaning. The first term is the emitted 
were performed, a better method than the direct iteration exitance at x. The second term represents that portion of 
method was found to solve the integral Eq. (3 ) .  This the exitance at x  which has arrived at x  after being emitted 
method has been presented in Ref. 6.  Most of the material in the rest of cavity and is then reflected at  x. The third 

JPL TECHNICAL REPORT 32- 1463 5 



and srreceeding terms represent reflected exitance at x 
that has undergone one previous reflection, tu7o previous 
reflections, etc. Therefore, the series must represent the 
total exitance at x and therefore converges to ~ ( x )  oT4. 
Thus the original series, Eq. (12), also converges and rep- 
resents the solution to Eq. (3). 

The series representation, Eq. (12), has several impor- 
tant advantages not apparent when the solution is ob- 
tained numerically by direct iteration, although, of course, 
the methods are equivalent since the series is obtained by 
means of iteration. 

(1) An error bound pX+' can be obtained, as discussed 
in Section IV. 

(2) The result of N iterations is the algebraic form 

E (2) zz E [1 + (x) + p2+2 (x) + . . . + pH+# (x)] 

(16) 

Once the +i terms are obtained numerically by itera- 
tion, using Eqs. (13) and (14), the set E (x) and therefore E,  

can be calculated simply by evaluating the form (16) for 
each E and p, without having to do the iteration over 
again for each E and p. This is a considerable saving in 
computer time. 

Although this method was developed after most of the 
desired calculations had been made, a program was writ- 
ten to try out the method with the cone, cavity 11. The 
resulting E,  for E in the range 0.84 to 1.00 is shown in 
Table 4. 

Table 4. Exact cavity emissivity E, for cone, cavity 11, 
for surface emissivity E in range 0.84 to 1 .OO 

IV. Error Analysis of Emissivily Calculafions 

A. Errors to be Discussed 

If the results of einissivity calculations are to be applied 
to actual radiometers, the accuracy of the calculations is 
of interest. Errors can arise from two sources: 

(1) Use of incorrect or incomplete assumptions about 
the properties and behavior of the cavities. 

(2) Use of numerical methods. 

The errors arising from the first source are by far the 
most difficult to treat. An attempt to estimate the effects 
of some of these errors is made in Sections V and VI, but 
the concern here is primarily with estimating the accu- 
racy of the numerical calculations, and thus estimating 
the error in the numerical results used in Sections I1 
and 111, under the assumptions used there. 

6. Errors in E, from Solution of Integral Equation 

Errors in the values of E,  calculated from the solution 
of the integral Eq. (3) and the use of Eq. (9) are of several 
types: 

(1) Errors due to ending the iteration after a finite 
number of steps (truncation error). 

(2) Error due to use of a finite number of integration 
steps (integration errors). 

(3) Errors due to using finite arithmetic (chopping 
errors). 

Irregularities in the functions occurring in the calculations 
cause particular difficulties in the evaluation of types (2) 
and (3) errors. Truncation errors are easy to treat, how- 
ever, and a con~pletely rigorous bound can be given for 
these errors (Ref. 6). 

Suppose for now that the integrations indicated in 
Eqs. (13) and (14) for the evaluation of the +i, terms can 
be performed as accurately as desired. Then the error of 
interest arises from using only a finite number of terms 
of the series, Eq. (12). 

Let us rewrite the series 

E (x) = E X  (x) + E (x) (17) 

where 
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and for any i and 11,  SO 

The term es (x) is the value used for E (x) as the result of 
N iterations, that is, as the result of using N + 1 terms of 
the series, Eq. (12), and E (x) is the error in E (x) resulting 
from dropping the remaining terms. Note that E (x) is a 
series of positive terms, so there is some doubt about the 
accuracy of EN (x) as an estimate of E (x). We can see that 
the requirement that differences between successive terms 
become small is not completely adequate justification for 
stopping the iteration, since an infinite sum of even very 
small terms may add to any desired number, even though 
we can see that Eq. (19) converges, since Eq. (12) con- 
verges. 

To establish a bound on E (x), let us first suppose, with- 
out loss of generality, that x ranges from 0 to 1. This is 
simply a convenience. Now we can show by induction on 
n that for all x in (0, l )  and for all n, 

0 L+,, (x) L 1 (20) 
First, 

follo~vs from the identity 

lo K (x, y) d!, + F,." = 1 (22) 

where as before F,_, is the view factor from x to the aper- 
ture. This identity expresses the fact that the fractions of 
esitance from a surface must sum to 1. We have used also 
the fact that since F,?., represents a fraction of exitance, 

Nest, by the hypothesis 0 (g )  L 1, and since 
K (x, y) h 0, as a result of its definition, we have 
0 L K (x, y) +,, (y) 4 K (x, y) and so 

by the con~parison test for integrals. 

Therefore 
p" I p"+i (x) (25) 

dominates the series 

Thus E (x) = ES converges, which we already knew, but 
furthermore since 

Using E = 1 - p we have 

Therefore the truncation error in each EN ( x )  is less than 
or equal to pX+l .  Now we want to find an error bound on 
E ,  resulting from the bound on the error in the calculated 
~ ( x ) .  TO do this, recall Eq. (9): 

From Eqs. (17) and (28) we have 

(true) = E,  (numerical) + E (31) 

where 

E (x) F,_, da (x) - p3'+l Fr-o da (x) (32) 

since 

E (x) 4 pN+' (33) 

If we suppose for the moment that the surface is black, 
then E (x) = = 1, and from Eq. (29) we have 

This identity is an expression of the fact that terms of 
the form (area x projected angle), which are discussed in 
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Ref. 17 and which have been called "througllput," for 
exai~~ple, in Ref. 18, must be consta~lt for any surface 
hounded 'ty the edge of the aperture. This is to say, 
tile tl~roughput for the inner surface of the cavity, 
J F , - ,  da (x), must equal the throughput for the aperture, 
A (area) X 1 hemisphere (projected solid angle). 

Now applying Eq. (34) to Eq. (33) we have 

Thus we have the result that the truncation error in E,  

is less than p N + l .  

This error bound is rigorous, but the treatment of inte- 
gration errors is not. There is somewhat more than the 
usual problem with performing the integrations neces- 
sary to evaluate the terms +i (x). This difficulty is caused 
by the fact that for both cavities I and 11, the kernel of 
the integral equation K(x, y), has a slope discontinuity 
at x = y. This is shown, for example, in Fig. 7, where 
K,, (x, y) dy = dF,, (x, y) is given in the appendix. For 
this plot, y ranges over 31 equispaced values yi ranging 
from 0 to 0.794 and x = y,, = 0.2382. 

A possible problem with this slope discontinuity is that 
errors may occur if Simpson's rule is used. To see this, 

recall that Sirllpson's rule requiles the rrsc of an odd 
number of points N in the range of integration, including 
the end points, defining an even number of intervals 
A1 = N - 1. Simpson's rule fits a parabola througli suc- 
cessive sets of three points. Now in K (x, y), suppose that 
integration takes place with respect to y and that x is a 
parameter. If x is coincident with one of the odd points 
in the mesh, Fig. 8 sllows the curve fit, but if x is an even 
point, Fig. 9 is appropriate. The fit in Fig. 9 is not 
reasonable. 

This problem has been treated several different ways 
in the literature. For example, Sparrow and Jonsson 
(Ref. 10) performed the integration separately on each 
side of the slope discontinuity. Peavy (Ref. 11) used a 
substitution technique which made the integrand equal 
to 0 at  the slope discontinuity and close to 0 near it. 

The method adopted for the calculations reported here 
was to use Simpson's rule when x was an odd point, but 
when x was an even point, Simpson's rule was used for 
all but the point x and the two points on each side of it. 
For these points the trapezoid rule was used, as shown 
in Fig. 10. 

This method of integration was applied to cavities Ia, 
Ie, and 11, using direct iteration, with the results shown 

Fig. 7. Slope discontinuity as shown by plot of cavity le view factor 
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---- FITTED PARABOLA 

Fig. 8. Parabolic curve fit, odd point 

in Table 3. For the cone, cavity 11, 100 inten~als of inte- 
gration were used, and for cavities Ia and Ie, 93 intervals 
(31 in each section). Essentially the same method was 
applied to non-isothermal cavities, discussed in Section V. 

The accuracy of these calculations is believed to be 
comparable to that of the results previously reported in 
the literature of nuillerical solutions of the integral equa- 
tion. Indeed, when the method of Peavy (Ref. 11) was 
applied to cavity 11, using 100 intervals of integration 
and double precision on the IBM 7094, the result obtained 
was 

whereas the result of the method given here was 

This was obtained using 100 intervals of integration and 
a floating point precision (fpp) equal to 12 digits. 

These answers are the same within two parts per 
100,000, a reasonable agreement. However, the results of 
these calculations showed somewhat erratic behavior of 
E (x) for positions near the apex. Table 5 presents E (x) vs 
station number, with the stations numbered from apex to 
aperture. Note that there are some values of E (x) near the 
apes which are even greater than 1. 

These irregular values of E (x) near the apex arise from 
two sources: 

(1) The effect of finite intervals on the integration be- 
comes more important for intervals near the apex. 

(2) K (x, y) for the cone is given in the appendix, where 
the dimensions are as in Fig. 1. Study of this func- 
tion sl~o\vs that there is a singularity at x = 0. When 
using finite arithmetic the effect of this singularity 
is felt even for small but nonzero values of x, that 
is, chopping errors are important. 

Fig. 9. Parabolic curve fit, even point 

Y 
---- TRAPEZOIDAL CURVE FIT 

TRUE CURVE 

Fig. 10. Trapezoidal curve fit, even point 

These effects have been mentioned already as possible 
general sources of error; we see now that they are espe- 
cially important near the apex. 

To alleviate this problem we can: 

(1) Substitute an algebraic formula for at  least some of 
the integrals. 

(2) Decrease the interval size. 

(3) Increase the precision of the numbers used in the 
calculation. 

Consider first the substitution of an algebraic expres- 
sion for the integrals. This is essentially what Peavy has 
done in Ref. 11. He has developed an algebraic formula 
for the integral appearing in the first iteration. Since the 
errors mentioned are errors in K (x, y) and 1 K (x, y) dy, it 
can be seen that substituting an algebraic expression for 
the first integration should be effective in reducing error, 
since an algebraic expression ~ v l ~ i c h  has no singularities 
should be easier to evaluate accurately than either K (x, y) 
or J K (x, ! I )  dy. 

Since Peavy's method gave essentially the same E, (and 
incidentally still produced one E (x) > 1 near the apex) it 
was apparent that either the result obtained here was 
accurate or that both this result and the result from 
Peavy's inethod were inaccurate. To try to get a cross 
check on both methods a different approach was used. 
The basis of this was the algebraic form used in Eq. (16). 
Here \ye use four iterations. With 6 = 0.95, p = 0.05 and 
P5 = 3 X which is negligible. Indeed, this number 
of iterations was used throughout this report. 
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Table 5 .  Emissivify sf cone by direct iteration 
(M = 100, Fpp = 12, E -- 0.95) 

Recall Eq. (13) and Eq. (22): 

s1 (x) = /' K (N, 8 )  dy 
0 

and 

From these we obtain 

(x) = 1 - Fr-, (40) 

F.-, is a well behaved function and is given in the 
appendix. It  is also plotted versus x in Fig. 11. The only 
irregularity is at x = 1 and the value there can be ob- 
tained by quadratic extrapolation. Alternatively, we can 
construct F,-, for finite zones in the cavity by the method 
of angle-factor algebra mentioned earlier. 

Thus, by use of Eq. (40), we avoid one use of K (x ,  y), 
with its attendant chopping errors, and also one integra- 
tion, with its integration errors, and instead evaluate the 
straightforward form F,-,. 

It  is worthwhile, examining F,-, a little closer, to see if 
F,-, really gives more accurate values of +, (x) than 
Eq. (38). 

From Eq. (34) 

I - - Fr-, & (x) = 1 ' -  A -  / 
If we actually perform this integration numerically, using 
M = 100 intervals of integration and fpp = 12, we obtain 

From Eq. (39) we have 

F,-, = 1 - 1' K (x, y) dy (43) 

If we evaluate I, numerically, recognizing that Sda(x) = 
surface area, we obtain 

We can see that in the sense of some sort of mean-over- 
area that F,-, can be evaluated more accurately than 

(38) 
$ K (r, 9) dzj. 
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RELATIVE DISTANCE x FROM APEX 

Fig. 11 .  F,-, vs relative distance from apex 

I t  does not follow, however, that the use of j' K (x, y) dy We should have then 
in the evaluation of E,  leads to results as inaccurate as 
might be supposed from Eq. (45). The greater accuracy 

I ,  = [11 K (x, y) dy + F,-. F,-, dn (x) = 1 
of E, results from the fact that when the direct integra- 
tion n~ethod is employed we use Eq. (29) directly to evalu- 

I 
(48) 

ate E,, and when we einploy the series, Eq. (16), the use 
of Eq. (29) requires the evaluation of If we perform this integration with M = 100 and 

1 r fpp = 12, we obtain h/ +. (x) F p ,  dn (x) 

Equations (29) and (46) involve multiplying by F,-, da (x) 
and integrating. Notice that Eq. (41) requires multi~lica- One problem here is that we do not know the contri- 

tion by da (x) only. F,-. increases rapidly from the apex to bution to the error in I ,  from the integral 
the aperture, however, so the result in Eq. (29) is to weight 
the more accurate values of E (x), those near the aperture, 
more heavily than those near the apex, and a similar effect " A  (50) 

applies to Eq. (46). 
If we make the reasonable guess that the errors in I ,  

To see this effect on Eq. (46), recall Eq. (22), are insignificant compared to the errors in I,; 

K (x, y) d y  F,-, da (s)  1,=+1[/ I (51) 
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then we have the result that the error in 1, is 0.000027 
and hence the effect of this error on E ,  is much Iess than 
would be expected from Eq. (45). 

Returning now to the representation of +, ( x )  as 1 - F,-,; 
so far this method is equivalent to Peavy's evaluation 
(Ref. 11) of the first iterative integral. However, let us 
extend it further. Recall 

= I -  F , - , - / F , , - . K ( x , ~ ) ~ ~  (55) 

Similarly, if we let 

and 

then we have 

and in general 

+,, ( x )  = +,&-I (4 - 09,-1 ( x )  (60) 

IJsing these equations to evaluate the +i  terms, we get 
some increase in the error in each +,, due to the propaga- 
tion into +,, ( x )  of the error in previous +i's, but the error 
in 8, ( x )  is less than produced by performing the inte- 
grations 

The error grows larger in those integrations Irecause 
(x) and €,,-I (s)  are both large near the apex and 

smaller near the aperture, and this causes an effective 
multiplication of the largest errors in K (x, y) and of those 
occurring because of finite interval size. By contrast, be- 
cause of the behavior of F,.-, previously pointed out, the 
integration for the evaluation of the Oi terms tends to 
minimize the errors arising from chopping and integration 
errors near the apex. 

Using Eqs. 56-60, E ( N )  was recalculated for the cone 
again using A4 = 100 and fpp = 12. The results are shown 
in Table 6, Not only are all of the values of ~ ( x )  less 
than 1, but, except for the second value, they decrease 
monotonically, a feature missing in Table 5. The resulting 
apparent emissivity for the cavity from these values of 
E ( x )  is 

We still have agreement to four decimal places with 
the previous values, and this increases our confidence in 
this result. 

Next, we wished to check the result of decreasing the 
interval size near the apex. One way to do this is to use 
an interval that is small near the apex and increases grad- 
ually in size away from the apex. This is the best method 
and has been used successfully by J. A. Plamondon and 
W. Bunton of the Jet Propulsion Laboratory. However, 
the method used here was to make all of the intervals one- 
half of the previous size. This was done by increasing 
A4 to 200. The resulting value was 

This result and the preceding values all agree within 
four parts per 100,000. We can explore the implications 
of this a little further using Richardson's extrapolation 
formula for Simpson's rule (Ref. 20). According to this 
formula, if In[ is the result of integration using Simpson's 
rule with M intervals and Isni is the result using 2M inter- 
vals, the extrapolated "true" value of I is 

This formula is not exactly applicable to our case be- 
cause not all of the evaluations were made using Simpson's 
rule, but in any case I can only be estimated so Eq. (65) 
will furnish an acceptable estimate. Also, we will apply 
Eq. (65) to e, rather than to individual values of e (x ) .  
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Table 6. EmissiviPy of cone (from series) Comparing this estimate to all previor~s values still 
M = 9 00, fpp = 12, E = 0.95 shows agreement within four parts per 100,000. 

Finally, we increased the precision from fpp = 12 to 
fpp = 24. The approach was roughly that suggested in 
Ref. 21: double the precision and compare the results. The 
leading digits that do not change are probably accurate. 

The result of this calculation was 

All of the results obtained agree within four parts per 
100,000, and we conclude therefore that the correct 
value is 

E, = 0.9820 (68) 

and furthermore that four significant figures can be re- 
tained except in those cases where P5 is large enough to 
limit the accuracy to three significant figures. This limit 
occurs for E 4 0.86, so Table 4, for example, shows values 
of E,  to three decimal places for E 4 0.86. 

It  should be emphasized that, unlike the treatment of 
truncation errors, the preceding treatment of integration 
and chopping errors is not rigorous, so only an estimate 
of the accuracy is obtained, not a rigorous bound on the 
errors. 

Since we have now an estimate of the accuracy of the 
calculations for the cone, we can by analogy assume that 
the calculations for the other cavities Ia and Ie are of 
comparable accuracy. The integration errors should be 
essentially the same for these cavities. Because of the 
complexities of the view factor formulas for cavities Ia 
and Ie, greater chopping errors may occur. However, the 
results with 12 and 24 digit precision for the cone differed 
by only five digits in the seventh place, so the assunlption 
of four place accuracy is considered conservative, even 
for cavities Ia and Ie. There is one additional point that 
should be mentioned concerning the emissivity at the 
apex, E (0).  Peavy (Ref. 11) has obtained the liimting value 
of E ( 0 )  using L'HGpital's rule, and this value was used 
in computing the E ( X )  shown in Table 5. However, it 
was not used for succeeding calculations for two reasons: 

( 1 )  The value of E (0 )  does not effect the value of E (y) 
for y > 0. We can see this by substituting x f 0 ,  
y = 0 into K (x ,  y) for the cone. (K ( x ,  y)  is given 
in the appendix.) 

Then if we use I,,, = 0.98201494 and I,, = 0.98199332, we 
obtain (2)  E ( 0 )  has no effect on E,,, when Eq. ( 9 )  is used, since 

F,,-, cla ( x )  = 0 for x = 0.  (F,, , is also given in the 
E ,  = I = 0.98199188 (66) appendix.) 
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C. Accuracy of Appmxximate CrrlesrloC-ions 

By direct comparison of the values of 6, in Tables 3 
and 4 with the raw coinputer results of the approximate 
determination of E ,  discussed in Section 11, it was deter- 
mined that the approximate values were accurate to three 
decimal places for cavities Ia, Ie and 11. It was assumed 
that the accuracy for the other cavities was the same, so 
three places were retained in Table 2 throughout. 

V. Non-Isothermal Cavities 

A. Temperature Calculations 

I t  was considered desirable after the calculations de- 
scribed in the previous sections were performed to deter- 
mine the departure from isothermality in the cavities and 
the effects of this non-isother~nality on the apparent emis- 
sivity E,. The best way to do this would have been to solve 
a heat transfer equation for the entire cavity, taking ac- 
count of all conduction, radiation, and convection. This 
would be extremely difficult to do. However, it was pos- 
sible to carry out a perturbation method developed by 
J. M. Kendall, Sr. of the Jet Propulsion Laboratory to 
find an approximate solution. 

The method starts with the usual assumptions that the 
cavity is: 

(1) Isothermal. 

(2)  Gray. 

(3) Uniform. 

(4) Lambertian. 

Under these conditions we compute E (x) and E, as de- 
scribed in Section 111. Now the total heat flux out the 
aperture is 

The nominal operating condition for the cavity is 
Q = 0.1 W. Substitution in Eq. (69) allows us to evalu- 
ate T. Then we calculate the net heat flux q (x) per unit 
area for each zone, using the formula 

(See Ref. 10 for derivation of this equation.) Multiplying 
Eq. (70) by da(x), we have the net heat flux from each 
area zone cEa (N). 

We supply heat to the cavity by means of coils that 
apply heat uniformly to the surface over which they are 
wound. For the cone, this is the entire surface and for 
cavity Ie it is the center section. At equilibrium, this heat 
supplied must equal 0.1 W, in the absence of other radi- 
ative, conductive, or convective effects. 

Now we perform the perturbation. We assume that 
conduction in the cavity shell causes an equilibrium tem- 
perature distribution to be established. Consider, for ex- 
ample, the portion of a conical cavity from the apex to a 
point described by a slant height x. See Fig. 12, where 
for simplicity the coordinates are the same as in Fig. 1. 
The net heat flux from this portion of the cone due to 
radiation is 

The heat supplied by the coils is 

where H is the heat supplied per unit area. At equilibrium 
the heat entering the segment must equal the heat leaving 
it, so that the conductive flow, dQ/dt,  must be given by 

Fig. 12. Cavity heat transfer 
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' H r b  ( r )  - q (i) ria ( r )  i," This equation can be solved by direct iteration. How- 
(") ever, there are two problems. The results of the tempera- 

ture calculations give only AT, the temperature referred 
Now to find the temperature distribution we must solve to the temperature at  the aperture. Also i t  is not clear 

the heat conduction equation for the cavity shell. Since which TI should be used. 
only approximate answers were desired and the perturba- 
tion method is approximate in any case, i t  was decided For the cone, the following steps were used: 
to use the heat conduction equation in the form applying 
to linear flow, (1) Determine T I  from 

where K is the thermal conductivity of the cavity material 0.20 

and A is now the area of the cavity shell perpendicular to 
the direction of flow. For the cone of Fig. 12, for example, 

0.16 A = 2~x.rcl sin 6. 

Equation (72) was integrated numerically for the cavi- 
ties previously studied, Ie (three-section cavity) and I1 0.12 

(cone). The material of the cavity was taken to be silver, 
with K = 4.18 W per second cm deg C. For cavity Ie, the 4 

thickness d used was 0.010 in. = 0.0254 cm, and heat was 0.08 

assumed to be applied only to the center section. For 
cavity 11, d = 0.005 in. = 0.0127 cm. The results are 
plotted in Figs. 13 and 14 for cavity Ie and I1 respectively. 0.04 

The abscissa y is the distance from the aperture. The ordi- 
nate is AT = T - To where T is the temperature at y 
and To is the temperature at the aperture. 0 

0 0.4 0.8 1.2 1.6 2.0 2.4 

y = DISTANCE FROM APERTURE I N  CM 

B. Emissivity Calculations Fig. 13. Relative temperature in three-section cavity 

The equation to be solved when the cavity is not iso- 
thermal is 

0.5 

B(x) = 6aT4(x) f p B (x)K(x,y)drj / (73) 
0.4 

where B (x) is the exitance at x. See Ref. 14, for a general- 
ized form of this equation, where slightly different nomen- 
clature is used. 0.3 

u 

To compare the solution of this equation with previous $ 
results, it is reasonable to define an emissivity 6 (x); 0.2 

B (x) 
6 (4 = , (74) 

0.1 

Here T I  is some average temperature in the cavity. Mak- 
ing the substitution Eq. (74), Eq. (73) takes the form o 

0 0.5 1 .O 1.5 2.0 2.5 3.0 

E V T ~ X )  
E (x) = ---- 

T: 
(75) 

y = DISTANCE FROM APERTURE I N  CM 

Fig. 14. Relative temperature in cone 
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where A in this case ~s again the aperture area. 
The result was TI = 364.s0K. Of course other T, 
values could have been used, but this was thought 
satisfactory for a trial. 

(2) Determine AT,, from 

1 
AT,, = Sl A T @ ) &  

where S is the surface area of the cone and du is 
an element of area on the cone. Thus, AT,, repre- 
sents the average temperature over the surface of 
the cone. AT is as given in Fig. 11. 

(3) Let 

The result of using this T I ,  AT,,., and T (x) was 

which should be compared with the isothermal 
value 

I t  can be seen that the non-isothermality causes a small 
but significant change, 0.0011, in E,. 

The method was applied to cavity Ie where now we 
used 

1 XL* 

= (XL,  - XL,) S,, AT (x)  dx (81) 

AT,, in this case represents the average temperature 
over the center section of the cavity, which is the only 
section where heat is applied and temperature is sensed. 
The value T ,  = 364.a°K was still used. The result was 

which rounds off to 

Recall that the isothermal emissivity was 

Again there is a small but significant change. 

To see the effect of a change in T,, 6, was recomputed 
for cavity Ie, using 

0.1 0.9909 nT% (85) 

which gave T ,  = 363.T°K and 

which rounds off to 

That is, this small temperature change produces no change 
in E, within the accuracy of the calculations. 

VI. Non-Gray Cavities 

In this section, the assumption is dropped that the 
cavity is gray. We still assume that it is: 

(1) Isothermal. 

(2) Uniform. 

(3) Lambertian. 

If E is a function of wavelength .A, 

then the following equations replace Eqs. (3) and (25) 

E (A, X )  = E ( A )  + p ( A )  E (A, x )  K (x, y) dy 

(89) 

E (A, x) F,._, da (r)  
A (90) 

These equations are solved in exactly the same way as 
before, but they must now be solved for each .A in the 
range of interest. 

Once we have obtained the set of E, (A), we can define 
an apparent emissivity for the cavity for the wavelength 
interval (A,, A,) by the equation 
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In this equation e b ~  is the Ylanck black-body function 
(Ref. 14): 

where the constants in this equation are as follows, in cgs 
units: 

C ,  = 3.74 X erg cmZ/s 

n = index of refraction of surrounding medium 

T = absolute temperature in O K  

WAVELENGTH, MICRONS 
Equation (91) gives E, as the ratio of the power emitted 

by the cavity to the power emitted by a black body of 
area equal to the aperture area of the cavity. Notice that 
E, depends not only on the wavelength interval under 
consideration but also on the temperature through eax. 

If E (A) is available, and it is desired to solve Eq. (89) 
and use Eq. (90) for an appropriate set of A, Eq. (16) can 
be used to evaluate the large number of E, (A) needed in 
Eq. (91), since solving Eq. (89) reduces to solving Eq. (3) 
at a specified set of emissivities E. However, within the 
accuracy of the approximate solution, the values obtained 
by Treuenfels' method and given in Table 2 are also ac- 
ceptable. These values are used here. Use is also made 
of values of E (.A) for Parsons' black lacquer excerpted from 
data obtained in experiments at the U. S. Naval Weapons 
Center, Corona, California (personal communication from 
Dr. D. L. Stierwalt). The values used are shown graphi- 
cally in Fig. 15 and are reproduced by permission of 
Dr. D. L. Stierwalt. The term "emittance" is used in this 
curve instead of the term "emissivity" used in the remain- 
der of this report. 

In Table 7, E ,  is presented for the cone, cavity 11, for 
the three-section cavity, Ie, and for a flat plate, for abso- 
lute temperature T in the range 250°K to 500°K and for 
wavelength in the range 2-25 microns. More significant 
figures are retained than justified by the discussion in 
Section IV so that the change in E, with temperature can 
be studied. Also, since these temperatures differ widely 
from the temperature T = 180°C at which the E (A) data 
were obtained, some slight inaccuracy can be expected 
due to the change in € ( A )  with temperature. However, 
the significance of Table 7 is still clear: the wavelength 
dependence of 6 does cause a small change in 6, with 
temperature. 

Fig. 15. Emittance vs wavelength of Parsons' black 
lacquer at  180°C (Excerpted from data obtained by 
Dr. D. 1. Stierwalt of the U. S. Naval Weapons Center, 
Corona, California) 

Table 7. Apparent emissivity E, for a range of cavity 
temperature, where surface emissivity E has a 

specific wavelength dependence 
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T ,  O K  

250 
260 
270 
280 
290 
300 
310 
3 20 
330 
340 
350 
360 
370 
380 
390 

Apparent emissivity, r ,  

Flat plate 

0.91 269510 
0.91 341 870 
0.9141 2673 
0.9 1480689 
0.91 544976 
0.91 604345 
0.91658462 
0.91707106 
0.91750081 
0.91787217 
0.91 81 8699 
0.91 844875 
0.91 865692 
0.91 88 1655 
0.91 8931 10 

. 
Cavity I1 

0.96765725 
0.96793739 
0.96821 137 
0.96847472 
0.96872358 
0.96895307 
0.96916301 
0.969351 98 
0.9695 1785 
0.969661 78 
0.96978409 
0.96988539 
0.96996591 
0.97002806 
0.97007250 

Cavity le 

0.984771 42 
0.984905 19 
0.98503565 
0.98516137 
0.98527973 
0.98538926 
0.98548997 
0.98557994 
0.98565893 
0.98572835 
0.985786 16 
0.98583446 
0.98587298 
0.98590270 
0.985924 13 



Appendix 

View Factor FsrmuCcrs 

The view factors for cavity I (Fig. 2) are given below. 
Section No. 1 is nearest the aperture, section No. 2 is the 
cylindrical center section, and section No. 3 is the back 
cone. The aperture is designated by 0. Therefore, the 
view factor from the center section to the aperture is F,,, 
from the center to the back cone dF,,, etc. View factors 
between sections are differentials because they are be- 
tween differentials of area. View factors from the cavity 
to the aperture are finite because they are from differen- 
tial areas to finite areas. A full discussion of these differ- 
ences is given in Ref. 14. 

The direction and initial points of the running variables 
in each section are indicated in Fig. 2 by designation of 
the variables as x, y, z, but in the formulas, for consist- 
ency, only two variables are used, x and f .  Recall that 
Fij can be defined as the fraction of blackbody power 
emitted by area i that is received by area j .  Then in the 
following formulas x always refers to the position of the 
area element from which power is emitted and f the posi- 
tion of the element which receives power. Thus in the 
formula for dF12, x refers to an area element in section 1, 
[ to an area element in section 2. In dl?,,, x and [ refer 

to different area elements in section 1, the x element radi- 
ating and the [ element receiving. F,,, F,,, F,, all have 
just one variable, x, that is the position of a radiating 
element in sections 1, 2, and 3 respectively. 

Other quantities appearing in these formulas are as 
follows: 

A = sin 6, 

B = cos a2 

A, = sin 6, 

Of the two remaining formulas given here, one is for 
K (x, y), the kernel of the integral Eq. (3) for the cone. 
The variables are as shown in Fig. 1. The other is F,-,, 
the view factor from x to the aperture for the cone. Again 
the variables are shown in Fig. 1. Both of these quantities 
could be derived from the other view factors, but are 
given in this form for convenience. 

where 
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where 

y, = h2 + R: + rji 

[yl ( - Bh + xA" - 2 (SL, - [ ) 2  xA2 Af]  {y,  [2hB2 - 2 (SL, - t) A f ]  + 4x2 (SL2 - [)'A2 A;) + 
?IF 

where 

y, = h2 + r: + rE 
y2 = (h2 + rR: + T ; ) ~  - 4rqr; 

h = (SL, - x) B + XL, - XL, + fB2 

TI = (SL2 - t )  A2 

r2 = XA 

where 

d~ 21- 
I {  - B -  ( -By l  - 2h2 B + 2hfA2) 2hyl [hl (-hB + tA2) - 2tA2 Rf] 

2Rz 
+ YF YF 

where 

y, = h" rR: + Rg 
y, = (h2 + 1': + R;)2 - 4r: Rf 

h =  x + (SL, - f)B 

r ,  = [ A  
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where 

[ B z  Y ,  + h (2hB2 - 2r, A,)] - hy, [ y ,  (2B, h - 2r, A,) + 4r, R: A,] 
Y P  YY 

where 

hB, -r,A,- 
[(h2 + R4+ r;) (hB2 - r2 A,) + 2R4 r, A,] 

[(h" R4 + r$)2 - 4R4 r;] 

where 

h = XL, + xB, 

{ - y ,  BB, + [hB2 - (SL, - X )  A:] (-2hB + 2[A2) + 4AgA2(SL2 - x) 6 )  
Y P  

+ {yl [ ~ B B  - (SL, - x) A;] + 2A; (SL, - x) ['A2) [y l  (-2hB + 2.$A2) - 4.$A2 (SL2 - x ) ~  A:] 

Y? 

where 

y, = h2 + 119 + r; 

y,  = (h2 + r: + r$)2 - 4r:r; 

h = (SL, - [) B + XL, - XL, + xB, 

r, = [A 

r2 = (SL, - X) A, 

dF3, = - 
[Bz Y I  + 2h (hB2 - rz A,)] - 2hyl [ y ,  (hB, - r, A,) + 21.: r; A,] 

2 (SL, - x )  A, Y? YP 

JPL TECHNICAL REPORT 32- 1463 



where 

y, = h2 + r; + r; 

y, = (h2 + rf + T;)~  - 4 ~ 1  T E  

h = XL, - XL, + xB, 

r1 = Rz 

r, = (SL, - x)Az 

B f [(t - x)" 6 (SLz A t) (SL2 - x )  Ail 
dF33 "= 2 (SL, - x) A, { 1 ~ x - t l [ ( p - x ) ~ + 4 ( S L , - ~ ( S L , - x ) A : l ~ } d '  

(y - x), + 6yx sin2 8 
[(y - x), + 4yx sin2 61 

[XL2 (3 - 4 sin2 $6) x - 3XL cos2 6 x2 + x3 - XL3 COS' S] 
F,-, = ---- X-XLcos26 - 

2x sin .6 [(XLZ + x2 - 2xXL cos2 - 4x2 XL2 sin4 61 % 

Nomenclature 

area of cavity aperture, surface area of cavity, 
or sin 6 

exitance at point x in a cavity 

truncation error in E ,  

truncation error in E (x) 

Planck blackbody function 

view factor from surface i to surface j 

flatness, from Treuenfels' formula (formula 2) 

floating point precision (number of digits 
carried in a computer calculation) 

thermal conductivity 

kernel of integral equation (defined by 
K (x, y) d y  = d F  ,-,, where dF,-, is a view factor) 

number of integration intervals 

number of integrations used in solving 
integral equation, or number of points 
used in integration 

radiant flux 

temperature, OK 

surface absorptivity of cavity 

apparent absorptivity of cavity 

surface emissivity 

apparent emissivity of cavity 

apparent emissivity at a point x in a cavity 

reflectivity of a surface 

Stefan-Boltzmann constant 

iterative function in solution of integral 
equation 
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