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VARIATION OF PARAMETERS AND THE LONG-TERM

BEHAVIOR OF PLANETARY ORBITERS

B. Kaufman

ABSTRACT

In this volume, the first of two, is contained the theory
developed to determine the behavior of planetary orbiters
under the perturbative influences of the oblateness of the
central body, the presence of the Sun and atmospheric drag.
'rhe significant contribution of thts study is' the treatment of
the third body which includes the medJum-period as well as
the long-period terms of the disturbing function in a system
of singly-averaged equations. The variation of the elements
is then' expressed along with the effects of drag and oblate-
ness in a ret of equations to yield a time history of the
orbit. These equations are easily adapted to an electronic
computer. In test runs this program has been shown to be
extremely fast and accurate to within short-period terms
when compared with a complete numerical integration of the
equations of motion.
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VARIATION OF PARAMETERS AND THE LONG-TERM

BEHAVIOR OF PLANETARY ORBITERS

By

B. Kaufman
Goddard Space Flight Center

INTRODUCUDN

This investigation is done in two parts. The theory of the orbital evolution appears in this
document along with several sample cases. The detailed study of a parametric nature appears in
Volume II.

The design of any mission to place a satellite in orbit about ,a planet must include a detailed
investigation of the possible types of orbits that would be useful. These orbits will to a large ex-
tent be determined by the type of scientific investigations to be carried out in the vicinity of the
planet. Of particular importance will be the distance of closest approach (periapsis) and the fur-
thest distance reached (apoapsis). If periapsis is very low, then it is likely that - the orbit will be
affected by the atmosphere as well as the oblateness of the planet. When the apr^ipsis becomes
large, then perturbations caused by other bodies can become significant. As one can early see it
is possible for the orbital motion to become highly complex when one considers the effects of oblate-
ness, drag and other bodies and the possibilities of coupling between them.

It is precisely because of this complexity that a time history of the size, shape and orientation
of the orbit should be obtained in order to gain the maximum scientific data from the satellite Such
a history should include not only lifetime predictions but also a reasonably accurate history of all
of the orbital parameters for a variety of initial conditions. Because such a variety of conditions
will be used, it also becomes essential that the model chosen to produce the time history be not
only accurate but very fast. Any good n-body precision integration program of the Cowell or Encke
type is capable of meeting the first of these criteria but certainly not the second. It was to meet
both of the above criteria that the present investigation was undertaken.

THE SOLAR POTENTIAL: R^

The first problem to be considered here is that of third-body perturbations. In the context used
here this means the influence of the Sun on a satellite in orbit about a planet. Although this study
does not include the Earth, the theory presented here can be used by including both the Sun and the
Moon as disturbing bodies. To determine the exact effec is of third-body perturbations, it is necessary
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SATELLITE

PLANET

Figure I —Sun-planet-satellite geometry.

to solve the three-body problem. This would normally require numerical integration of the equa-
tions of motion which, as pointed out earlier, becomes very time consuming when applied over
;periods of years for each orbit. Previous experience with such integrations has shown that in
many cases the amplitudes of the short-term variations in the orbital elements are very small
when compared with the values of the elements themselves. This means that one may "average'
the disturbing function over the period of the satellite thereby eliminating all short-perooa terms.
Thic^ averaging may be accoa ;plished by several means such as appear in References 1 and a. It
is also possible to average this result once again over one revolution of the central body about the
disturbing body (the Sun it uur case). Thib arocess thus eliminates all "medium ' I-period terms
leaving only the long-period perturbations for consideration. This doubly-averaged system was
used in References 2, S, and 4. As pointed out in Reference 4, however, this double-averaging tech-
nique has some severe limitations, especially for Mars where the interactions of obbtteness and
third-body effects become very complex. Therefore, the model used in this report is one of a set
of singly -averaged equations which have been developed in a form which makes them readily adap-
able to efficient programming.

The development of the solar disturbing function can be found in Reference 5, which was the
preliminary investigation that motivated the present more detailed model. Because of the im-
p ,ortance of this function in deriving the variational equations in a most useful form, the develop-
ment will be repeated here.

With reference to Figure 1 we may write the solar disturbing function as follows:

1_c'c
Re'	 µao ; _r ,  a

where

Y	 M - ~, rr	 r.

Taking note that

Ag -	r^ -r	 (r' -r)	 (r' -r)

r' 2 + r2 - 2rr' cos S''

z	 ;
r , g (1 + _

L2g- T rtes S^

we may rewrite Equation l as

µe 1 +	 - ?; cos S -i 3 g _ r cos S
r'	 r	 r	 r

2

(1)



For, the cases that we will be considering,we note that r/r' << 1 and therefore we may expand the
square root term in Equation 2 and neglect WJ terms of order ( r,tr' ) a and higher. This yields

}
R'^; 1 -	

a
22 -^ cos ss^ + (4r^ Cos 	 r, Coss

r	 `r	 r	 `r	 r

II

blN	 1 r 2
	

3 r 2

71 -TT-2
  +T72 cos y S

r	 r 

(31

or

LOP 	
r23 r^	

(3)

The motion of any satellite under the sole influence of a third body can be completely described

by

r - AR - Ar	 (4)
r

where r is the radius vector from the central body to the satellite, a is the disturbing function and
,.r
V is the gradient operator. This gradient is with respect to the state of the satellite but the first
term of Equation %; contains only elements of the Bun. It is obvious then that

r

and we can drop this term and write

^.	 ^® r g	 r r /. 2	 1

Rep 	
2r' 3 	 C rr' 	 - 1J

or alternatively	 (5)

.	 A, r2



Letting r«* n'24 03 where n' is the mean motion of the &w and m' is the se:nimajor axis, we may
write Equation 5 as

Now

r•r	
^•o Cos a -	 r	 r

rr'

and

r ° w P cot e  Q sin d	 (8)

where 6; is the true anomaly and

cos f2 cos w - s in SI s in w cox i

P `-	 sin S2 cos w + cos fl s in w cos i	 (g)

sin i sinw

COS Q sin  - sin S2cos woos i

Q - - sin!Q sin w + cos n cos woos i	 (ld)

sin i Cos w

r

P is a unit vector in the satellite's orbit plane from the center of the planet to pericenter, Q is a
unit vek for in the orbit plane perpendicular to P and in the direction of satellite motion, and i is the
orbital inclination. 'For completeness and because we shall need it later, we define the :third unit
vector R as the cross product of P and Q

sin S2 sin i

R	 P x Q = - cos 0 sin	 (11) r
COS

It is important to observe that P, Q and Are independent of ®. Also that	 .
i

cos S2' Cos'

r ° =	 sin S1' Ctrs q5'	
(^^)	 1

s in ¢6'

t

(6)

(7)



where 0' is the right ascension of the Sun and ar' is the latitude of the Shin measured from the
equator of the planet. Figure 2 shores the geometry involved in the above. equations and the trans-
formations to the equators of Venus and tears appear in Appendix A.
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Figure 2 —Planet-centered gsometry.

Equation 7 may now be written as

cot S = (F • r' ^ cos ,9 + rQ . r' °) sin B

and denoting

P c' o	 a

Q T' ° = a

	 ^13)

we have	 I

cos S = a cot 8+ 6 sin 8	 (14).

where once again we point out that a and 6 are iruiecndent of 6. Substituting this into &quaU n 6
we have

Re' 	 C3 /a2 cosg ) + 2r)6 sin 0 cos a + k2 ain2 0) -11

s.
5 „



Observing that

I + cos 29
—''—'--= = cus s d

1 - cos 26?
sine 0

and

sin 2d = 2 sin O cos O

we may write the terms in the brackets as

3 (0.2  1 *	 +aA sin 2@+'32 1 -c 291-1

- ( 7 a^ + T e2 - 1^ + T (a2 -,82) cos 29 + 3a D sin 29

e
and after substituting this, we then have

(
R^	 '_' ^ ^, ^^2 a2 + 82 1) + -^ (0 -,81 cos 28 +	 & an 29	 (15)Cr	 L	 .i

As explained earlier, Equation 15 will now be averaged over the period of the satellite,
thereby eliminating any dependence of the disturbing function on the mean anomaly m. This not

only simplifies the equations apt modon but also eliminates all short- term_ variations over the orbital
period. We consider therefore only those terms in Equation 15 dependent on a and find that we
need to Wtegrate three term 's ovee the period. The three integrals are as follows:

1g ciAl	 (16)1 ra)
4

}

g-w

1)' cos 20 dM	 (17)
0

9w

0 
1^} sin 28 dM .	 (1$)
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In evaluating these integrals, we will make use of the following relationships

r
W (? ^v Cos E)

M	 E - e sin E

dM	 dF,(I-e cos E)

where E is the eccentric anomaly.

Using these equations, we may write Equation 16 as

f7y	 2 dM	 2N

TV- 
fo	

e cos E) 3 dE

I
 f

2w	

3e COS; E — e 3 COS3 E + 3e 2 CO52 E) dE
0,

21r

coo 2E

	

[I +3e	 2	 dE

Evaluating this integral, we obtain

27r

 C$)

dM = I+ 30
27T'I 
	 T e2

a result valid for 
all 

e.

The integration of Equation 17 is much more complex

Zr /r\2	
27,	

2

 
Cos

2 0 - sin2 e] dM
o
ra ) Cos 20 dM	 Tff 

f ^^`

TI-T

	

2w	

r cos ' 0)2 	 r sin 8)2 ] 
dM

	

fo	
a	

- (

(22)

.' 	 A
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f '
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2	

2

	

^^	
5

cos 2B dM = 
2

0

again a result valid for all e

8

2
e	 ' 2+^

2 r 	 cos 20 dM =	 J	 1(cos E — e) 2 — (1 — e 2 ) sin g E1 dM
0	 0

1

a

[COS2

21r
	 E- 2e cos E+ e2 - (1 - e2) sir, 2 EI clad

L f

2^n 
1 ± cos 2E	 1— e2!

2n 	 —2---- — 2e cos is + e 2 — -- 2	 (1 — cos 29) dM
0

f

2w	
2	 s

(^ + e 2 -	 ^ - 2e cosE + C'2 + 1 2	 cos 2E dM

r2,7

2n J --^" -- 2e cos E + (1 - 2) co.^ 2E dM
a

21+
2	 2

J 32 -2e cosE+(1-^cos2E (1-ecosE)dE.
0

Dropping all periodic terms which will go to zero, we have

.J
cos 26 dM

2^r 	 2	 2+7	
2= z f [.3 

e
+ 2e 2 cos t E dF;

Jo

1 2 
3e 21_	 C 2 + e 2] dE

a L	 J

which yields

.,

i

i

i

a	 't'



For the last integral, Equation 18, we write the integrand in the following manner:

(701 sin 20	
2

(2 sin 0 con

2
r
 sin 0 r .0.

Ry	 )(0	 0)]

Z' 2(1-02)1<'2sinEcosE-2(1-e2)1,-,2t-,sinE.

We then have

-e 1, ; 2	 e-h	
2 Tr

i)—

IT 	 sinEcos EdM 	sinEdM
jxo

1) 1,2
(sin Ecos E - e sin E CO52 ECIE

0

2) 1/2.	 2n

Tr	 (si.i E- e sin E cos E) dE
fo

and conveniently all terms go to zero, leaving

TT f

2	 2
sin 20 clad	 0.

o 

We now define the solar disturbing function as

- I

(24)

2w

E®	
f

27r	
RO'dM0

and substituting into this the results of evaluating the integrals, we finally obtain

a2 n
- - Cr'/

3	 3	 3e2 (	 '83	 3	 Sex
Re	3[(T a2 + '8 2	 1 +	 +	 a2	 2

a result that is considerably simpler to use than was Equation 15.



VARIATION OF PARAMETERS

We shall here merely write clown the equations for the variations in the Keplerian elements.

The derivation of these equations may be found in any textbook on celestial mechanics (Reference 6)

da2 OR
Tt	 Ta- "N (26)

de	 1-	 OR	
-e2) 1,!2e ^	 OR

dt (27)
en; 2'	 d M	 ens 2	 aw

d!Q	 1	 OR
dt	 2 ( 1 	 2 ) 1 /2 na	 - e	 sin i

(28)
Ifg

di	 C5C i	 [I R	 aR
CTt	 nay (1 - es )72	

cos (29)

dw	 2)1/2 OR	 cos i	 OR
(30)dt	 2	 Te-	 2	 e2 ) 1/2ena	 na	 s in i

dM	 2 OR	 I -e 2 OR
Jt—	 na aa	 nea 2	de

where in the present case R 	 R

Equation 26 yields immediately a very important result. Since we have averaged out all de-

penclence of R® on M, we have

da
9 T	 0 (32)

which means that there are nolong-term or secular variations in the semimajor axis due to the

presence of a third body.

From Equation 27 we can derive the variation in eccentricity as follows: we first note thst

as above

OR 0

and therefore

2	 1/2de	 (I - @ 2

 0 Co
r1a

10



Referring to Equation 85 we have

OR40	 ORO as ORO 0,8
7 a'^7 +

4

a = P . r^o

therefore

Oa	 ap 	 ^,, o
Tw = —e • r

and from Equation 9 it is easily seen that

aP
d = Q.

Thus	 •

Therefore

Now

aa
Q ° I ' 0 -

= Q r'0

as	 aQ_

	

r,o _ - P	 -400
 - -a .

a% - OROa-
a.	 ^^)

ORO	 3a2 n,3 ar1 3

3a = —^-- 
,1 

all + 4e2)r
(34)

axm	 3a2n o2	 1 3	

_

57-
	 ( g,

r'/ ^^1 -^^

11



and substituting these into Equation 33 and then:

de	 (1. -e2)1.2 3 0 2 n, 2

dt _
	 neat	 `_'2

	

ne	 2	 r'

Into the equation for e , we have

s/	
[a'G'(1 +4e 2 ) --a,3(1 -c2)J

/3
C5a^2)

or

	

de	 is 2) 112 
n̂ 2^`3

-

	

dt	 2 (1 e	 n e

For Equation 28 for the node, we have

	

df2 _	 1	 a$4 as a$m d/3

- n& 2 (1 - e 2 ) 1/2 sin i as ai + -07 71

where all we need now is ac//a i and a/ala i. Now

Oa _ OP 
-+r 0

ai	 ai r

and

sinf2sinwsini
aP

-	 - cos ft s in w s in i

cos i sin w

(35)

(36)

anti using Equation 11 we have

In a similar manner we find

18
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(41)

Combining Equations 34, 37 and 38 and substituting into Equation 36, we have

to

at	 na2(1-e2)12 sin i 	r 3a (1+4e2/ (R • C^o) sin w

+ 
a

'; 3(1 — ^ 2 ) (x • r o ) COs
i r

3n'2 /a,\3-so)(  

	
[a(Irro)n(1 R_- r ''sin 1 	

+4e2) sines+ a(1 - e 2 ) Cos ^

and letting

yR •	 °	 (39)

we have finally

M	 3	 n' 2(a# )3

dt - 2 n(1- e 2 ) 1 ' 2 sin 	 r'
	

[ay (1 + 4e 2) sin es +py(1 - e 2) cos 
all

Next for di/dt,we note that the only term not derived is aR0/1n.

aRO	 dRe as^ a$® as
TTas  + —07

where

(40)

^Y

as	 a 	 ,o
07 - afi • r

- sinRcosw-cosf)sinwcos iH
Op

=	 cos iZ cos a s in Q s in w cos i

0

py

pX

0

and

f

I

13	 I

	
I

•



pAt	 d5t	 C#°

9

14

Therefore

p

3a	
y

	

p,	 P

0

(4a)

Similarly

and

s in Q s in w- cos n cos w cos iN
=aQ - - cos Q sin es -'sin Ocos woos i

0

Then

_ Qy

3p

	

Qx	 r' °	 (43)

0

Substituting Equations 34, 42 and 43 into Equation 41 and then alarms with Equation 33, the equation
for inclination becomes

—p° )

di _ _	 csc i	 a2 n'2 s ^ s

na2(1- es11/2 '2`C r ^	 3a(1+4e2)	 pz	 Tro
/

0

Qr
a 2 

n#
2 a 

+ —•	 3g (1 -	 Qx	 r o

0

I

a ^ 3^ n ag a ,^

-cosi --^r ^ 3a^1+4e^	

^	 .

^^+-- r ^) 311-eg^(-a^



di	 3 n2 Csr. 1	 a' 3
`Pr

T - 2n(1 - 4, 2 1 *2 r'	
all +4e 2 )	 P,,	 r'°

0

E

r

t

F

- QY

+ $(1 - e 2 )	 Qx rr' @ a s ( 1 + 2 ^ ces i + aA(I - e 2 ) cou x

Q

or

Py

di	 3n' 2	 a' 3	 1	 .»

 (

W 	 _ 2n(1 _ e2i 	sin ii 	 1 +"^ x^ 	 0 	 rrt^

o

- 

Qy

+ Cl _ e 2)	 Q.	 1 4 - 5aQ e 2 COX i	 ('^' )

0) 

r

For dw/dt, we need only to find a-N/'ae. Since ,a and p are independent of e, then from Equation 25
for R. we have

aRo	 a2 n#2 a ► 3	 3	 3	 3	 3	 1

	

= 
	 [3e (T 

a2 "T '82 - 11 + 5e (3- a2 _ 7 '62

R 2 n r 2 a' 3
-	 2	 r , 	 [12ea2-3e,82-3e]

or

axa	 a2 n*2 a' 2
- --^- 

r ^.

	
[3e (4a2 - ^2 - 1)]	 (45)

w

and since aR./a i has already been evaluated, we have

dta3_	 1 _ @ 2)1/2 a2 W218 * 3	 cos i	 a2 n it a'Wt	
ena2—(r'	

[3e (4a2 -/32 -1^] - _nag 1 _ e2 i/2 sin i — 
r+l 3a (1 +^#e2^

-^	 a2 n + 2 $ 0 3	 /
x ($ • r'^^ sin ce + --- 

c
^	 3,x(1 - e s) 1$' '

o ^ cos w

15



Ur	 -7 (1 - e') 1a 2 
nnZ ^

	 (4a2 -/32
r

(1 - e 2 ) 1.2 sin (ir-o,
)a [a(I *4C2) nux+t3 (1 ..2 Cox

k

.inaliy

dw.	3 nit /80\3	 Co sti	 -	 (1 -e2)fi2	 (4u2.,,82 -1^ - y (1 - e a ) sini [a (1 *402) $inw

i 8(1-02)  COS	 (46)

FoIhe last equation dM/dt, we can .* adily calculate the only needed term as

OR*3^2 m'^ [(,3 2	 3	 .»	
3e2 )r^

	

(7 a= - ^ p2)	
_	

a®	 (47)

Substituting Equations 45 and 47 into Equation 51, we have

am	 3  	 21

	

3	
5n 

2n` 2

n 1
a'

^^
	 [(.3, a2 " 3-1 ^2 _ i

t 
ri F ..3c2T- + (12 Q2 _ .^ 821 2 It

-C 2)^2 n r2 a 0\3 
[3e (4a2 - ,62 1	 (48)

r

f

i	 j
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For convenience the six equations, are written below:

^Ldt}3 - 4

is (1 -,2)1 1 n' 2 	 (LY

(310-0
3 	 n#2	 m' 3

,^^ in i 
r ,) [o* , (I +4e2)	 - e 2) COS

'd i	 n' 2	 /@' 3	 _ P
y 	 ^ 

Q^y

t)	 ..2
	

,	
/^+40'3)	 Px 

* ^^4 + ^t1„02)	 Qx	 p^0_5+^,%2COS i
3

	

n' (1 — )	 s in i C r	 \	 t	 (49)
0	 0/

dc^	 3 n' 2 (2')
3(1 ^e2)1'2	 ^4a2 ..,82 ..1)	

CO S.»` i 	a 1 +4	 ffiInr^3 1 _ a 2 ) CO
^3	

n r̂̂	 [	
Oil{1 — e*) Sin

(cIM)	 _ 2n' 2 ^'	 [(12	 3	
1-2	

3	 3 ) S ys.2	 82 -1) (1 +n 	 + (2

1 ^e2)
nee+	 'fir rt

)' [3e (40,2

where the subscript means third-body variations only.

This completes the development of the variational equations for third-body perturbations only.

DRAG

r

For the variations dues to the presence od an atmosphere, it will be convenient to tranpf ,) m
Rquatis 26 through 81 to a slightly different form in which the perturbing force may be written
in the following component form

F -, SU r + TU® + WU A 	(610)

Where s is the component sly thr- wt, radius vector U r ; T is the eomponat along the normal U® to
rr, in the orbital plane and such th^^ it,' Aakes an .angle less than 900 with the velocity vscbor; and s is .
the component alaoeg the perpendic 'uia ba the orbit plane where 6. = u r .UO . It Cali be Shown from

1
S

VJ



`0equations, 10 and 11 and the above definitions that U.' U8 Uand 'A have the foilowing representations

cos Ocos u- sine sin u cos i

Ur	
sin 0cos u + cos 0 sinu cos i

sin U It'n 1

cos 0 sin u - sin s1cos, u coo i

Us	 sin C4 sin u + cos i1 cos u cos 1	 (52)

cos u sin i

sin!n sin i

U 
A 

z	 cos C1 sin i	 (53)

cos

where u	 0. From Equation 4 we see that the partial derivatives aRlax, OR10y, OR/Ox are the
components of the acceleration due to the disturbing function R. That is

OR	 ax	 OR
VR	 -j—x L + - Fi- i +-j-x-k.

)h the development of the variation of parameters, it can be shown that if C, represents any one of
the six elements then

where

OR a7
W	 V R -Zruj-	 6)

-
r	

+ X
X1 + y j	 k

(54)



in terms of S, T and W and then use these partials of R in Equations 26 through 31. We will derive
here only IJR da and the derivations of the other partials may be found in Reference 7. From
Equation 8 we may write

II

r	 r cos V P + r s , n 00 Q- .; P 4, n Q	 (56)

Thus

ar- ae -aw - Pwa +Q.F..

7

Then Equation 55 yields

OR	 "' a 	 "'
F P+F Q^a

Now we can write Equation 56 above as

r = a(cos E- e)P i a (1 -es) 1^4 sin EQ

where

= r cos	 a( cos E - e)

71 = rsinO = a(1-e2)1/2sinE.

Then

= cosE -e = s

d- (1-e 2 ) 1i2 sinE _ a

also

Ur,	 P cosO + Q sin B

U® =- P s in B+ Q cos 6

Then

F PS(Ur ' P^ + T(Us_ P) + NV(U„ ' P^

(57)

(58)



or

ti H

F • P	 Scoot)  - T sine •

Similarly

(62)

or

aa
F . Q = a sin to + T cos 8

	
(63)

and from Equations 09 we have

F P =	 (86 -T77) r

and

r

Substituting Equation 60 and 64 into Equation 57, we have

r(86-T77)$+r (s77+TOa

1 (8#2 -Ts^r1) + 1 (577 1 + Te77)ra	 ra

S(
r	

E

or:
}



	

dR	 Sea sin e	 Tae 1 _ t,2 1;2

	

cam► 	 (1-02NI 2	 r	 (67)

,OR

	

dT 	 Tr cos i - Wr sin i cos (to +c!)	 (6g)

OR
Tr	 (6s)

OR
W r sin (o + tr) ,	 (70)

Substituting Equations 66 through 70 into Equations 26 through 31, we have

da	 2	 a (1 - e`)
Wt	 e2 ) 1 ° 2 

(Se

s in N + ---r Tn 
(1_

(71)

de	 -e2)1 2

7 =	
1 

n	 [S s in 0 + T( cos E + cos 0 ) 1	 (72)

CIO	 r sin (w+ 6)CH 
_ na2 (1 -eI)1,r2 sin i W	

(?3)

di	 r cos (w+ 0)
T _= na 2 (1 - e2)1 °{2 

W	 (74)

dw	 cos 0(1- e2)1/2	 sin9(1 -e2)1/2	 r
dt	 -	 a ne	 +	 a ne	 1 + 2 - e2 

T

r sin (w+8) cot i
a2 n(1 -
 e2)1/2  	 (75)

CIA	 (1 -e 2 ) cos B	 2r	 (1- e 2) s in B	 r
= n +	 a ne	 - n$2 S -	 a n^	 1 + all - e 21] T	 (76)

where E is the eccentric anomaly.

The above form of the variational equations is known as Gauss's form. In the previous equa-
tions the variations of the elements were expressed in terms of the partial derivatives of the dis-
turbing function with respect to the elements. In the Gaussian form we have the variations expressed
in terms of the disturbing; acceleration components. We can further resolve the acceleration ih a
different manner which is useful for the inclusion of atmospheric drag. We introduce components
of the acceleration defined as follows

T' component tangential to the orbit

N component normal to T' and positive toward the central body and

W same as before.`

i



As shown in Reference 8, we then have

1+ e cos 0	 ^	 e s in ,9
T _ 1—+ e-2 +-2e cos d 1 2 T + (1 + e + 2e cos 8) 1  

-2 ^(

e sin 0	 , _	 1 + e cos 0	 (77)

(1+e2+2e COS t)	 T	 (1 + e 2 	 cosEi)1 '2 N

W	 W

In the present study we consider no lift forces to be present and the drag force acting as a
negative tangential component (opposite to the velocity vector). We then have

1 + e cos 0
T _ (l + e 2 + 2e cos 0 )1/2 T

e sinO	 (78)
S = (1+e 2 +2e cos O)112 T

W = N a 0.

The drag force is the force der unit mass m of magnitude F and

+	
CD A p 

V2	

T

I	

(79)2m 

♦ 	 I

where v is the speed,

CD is the aerodynamic drag coefficient, A is the cross-sectional area of the satellite and p is
the density. Utilizing Equations 73, 74 and 78, we see immediately:

at -	 o •	 (80)

For the other equations we obtain after substituting Equations 78

da	 D A	 pV2

M n (1 _ @ 2)1/2 (1 +e2 +2e cos 0)112	 ($1)

de _	 C D A pv2 l -e2)1 2 ( cos h+e)_ 
m	 na 1 + e 2 + 2e cos 0) 1/2	 (82)

2



tl,^,	 C'RA	 ,,V2 ( 1 -x,2)1,2 sin,-,
(It	 - m n ne (1 I e 2 + 2e cos 0) 2	 (89)

dM	 CAA oV 2 ( 1 -e 2) sin t)	 1+ e2 +e Cos to
i	 cTt' = n	 m nne	 oit3+e e) 	 (1 4 e. 2 ,+2e Cos 0 ) 1 ' ° 2 	 (84)

a'

The presence of s in o in Equations 83 and 84 implies that d dt and ciWdt are periodic with small
amplitudes because of the coefficient CD A jL^/`m and therefore will be neglected in this treatment.
However a and a change secularly and must be included. We now make use of the fact that

r2 dt-	
I r X VI	 = [,ua(1- e21/2
 J

and obtain

dt	 (1 - e 2 )8"2

.	 n(1 + e cos 0)2	
(85)

also using

all- e2)r	 + e cos

and substituting into

V2 - T2 + r 2 B2

we have

rr2 a2

V2	 s (1 + e 2 + 2e cos 9)_1 e

Making use of Equations 85 and 88 in Equations 81 and 82 we have

da	 CD  pat V8 (1—e2)8/2
^	 m µ(1 +e cos 6)2

_ de	 _ CD  	(1-e 2 ), 3/2 pV(e+Cos 0)
CTIT	 m	 + cos 0)2

(86)

(87)

(88)
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where

^ - n2^

We now average the above equations over the orbit and letting A and a represent the perturbations
i

in a and (, over the orbit, we have

CDAA2(1^ e2)3' 	
FV3

rr M/1	
^;., (1 + e COS t4)2

CD A ( 1 - e2 )3 2	 tV(e + COS 0) 
dd	 //9U'TM	

— J- ( 1 + e COS t!)2	 l

The integration is done using Gaussian quadratures, which is very fast and reasonably accurate.
The use of quadratures was suggested by Uphoff in Reference 4. The density p is taken from
several models and is calculated as a function of altitude.

- These models can be found in Refer-
ences 9 and 10.

It is to be stressed that we here have considered a nonrotating atmosphere, otherwise da,dt
and di/dt would be nonzero,. We have also bypassed the complexities of assuming an exponential
density profile by averaging the effects over one revolution of the satellite.

OBLATENESS

In this section we will merely list the variational equations due to the oblateness of the central
body. The equations in J 2 and J22 are derived in detail in Reference 11 and those in J3 and J 4 were
taken from Reference 12.

Equations in J2, J2

(s
d
at)O 	 (91)

'J2

(,

d,e	 45n J 2 R	 14
t) O'J	

' 32	 P4	 a (1 - e 2 ) s ic^ 2 i sin 2 ^15	 sin it	 (92)
2

dQ	 3n J 2 Reg	 9n j2 $!4	
5	 1	 5

`it)O'J	
ZP2cos i - 4P4cos i [21 - - sin 2 i+	 + _N sin 2 i) e2

2

+ t 2 - T sin 2 it e2 COS 21J (93)
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eii	 135J2 R^	 14
kdt)o	 144	 P4	 nr2 sin 2i sin 2ue C15 - sin 2 i) (94)J 

z

^1^-A	 n J 2 R3

-dt)o.J	 2	 C2
I'2

5	 z R,,4	23	 5S- z sin 2 i)	 9 n j
- 4	 2 -	 sin 2 i + 1i sin4

2
P4

,z

+ 4 C7 - 2 sin 2 i+ 4 sir1	 i

cos 2w
+	 4	 C7 - 2 sin 1 i) sin 2 i + c' 2 	7 + 5 sin 2 i -	 sin4 i) (95)

where

R¢ is the equatorial radius of the planet

P = a (1 - e 2 ) is the semilatus rectum and the subscripts o, J 2 mean oblateness and J 2 terms
only.

Equations in J 3

Cd) 
o'J3

1
-	 2P tan i (di,

1q''
(95)

J3

(de

t ) O '

3 nRp3 J3	
( 1 - e 2 ) cos w sin i ( 5 cos t i ^ 1)8	 1 (97)

`	 J3
P 3

tdQ
.

\at)o J a

3 n R@ J 3
=	 a sin wcot i (15 cos t i - 11) (98)

8P3

Cdidt
3 n R@3 J3 

@ cos w cos i (5 COS 2 i - 1)
-

(99)o.J3 $P3

cko (	 )
Cd- )o.

3 n Re 3 
J$	 1 +40 2	d^2

8P3	
a	 sin w sin i (5 cos z i - 1) - _ Cdti )o 	cos i (100)

J 3
J 

3

where

+ 2ae 
t )

'da
l

00J3

(de

 o .J3

^dt) o J	 (1 -e2).
4

(101)
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Ni

Equations in J4

it)	 a' 2P kin i 
I
dt )	 (102)

	0.14 	o'J4

RQ
C	

.. -- 
15n	 J4	

(1..^^ in 2, , r, 	 i ('7 cos t i - 1)	 (103)
Wt 0. J 4 	32F4

15itR4(do )o
 J	

w	
32P4 .J+ 

cos i f2(7COr 2j -3) + e2 [7 cos t i - 1 + 4 sin
2 W(7 CO$ 2 i -4)1

)
	 (104)

4

15n R4

^ t/o,14 -
	

64P4 
4 0 2 sin 2wsin 2i (7 005 2 i - 1)	 (105)

15nR^ J4
$ - 28 sin 2 i * 21 sin 4 i - sin 2 sin 2 i (7 cos t i - 1)rdt

	

0,14	 16F4

+ 0 2 6 - 14 sin 2 i + 8 ain 4 i + siri l w 6 -35 sin 2 i + ^ sin 4 i
C	

)]^  (106)

,
where a definition identical to Equation 101 holds with the proper change in the subscripts.

THE TOTAL VARIATIONAL EQUATIONS

As shown in Reference 3, if a doubly-averaged solar disturbing function is used, then the re-
sulting set of equations separates into two uncoupled systems of 3 equations each. This set of un-
coupled equations was used in Reference 13 along with the variation in eccentricity obtained with a
singly-averaged disturbing function. Howevgr that study included only third-body effects. Using
these uncoupled equations, one can obtain initial conditions for various types of behavior due to
third-body effects. Williams and Lorell in Reference 3 give a mathematical description of the
motion and Uphoff in Reference 4 gives a very good description of the interactions of the various
perturbations. Using the doubly-averaged third-body disturbing function and superimposing medium
period terms, Uphoff defines the regions in which the doubly-averaged equations yield very accurate
reIalts and then' defines those regions where one must resort to the singly-averaged dguationns. A
simple analysis of long-term third body effects may also be obtained by merely loo ping at theme
doubly-averaged terms. A value of 135° or 315° in w will result in long-period third-body perturba-
tions that will raise periapsis; co = 45 0 or 225° will lower periapsis and no change is obtained for
W 0°, 80° or 180°. As Uphoff points out, the long periodic variations in eccentricity are more
prominent at high inclinations, while at low inclinations the medium -period terms are dominant.
Also the medium -period variations increase as the eccentricity grows under the influ ence of the
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long-period perturbations. it is unfortunate that when one goes to the singly-averaged equations
the ability to obtain this type of information analytically is lost.

For the purposes of determining the total variations, the equations may now be written in the
following manner.

r
t

`^	 _ + Wt l 4 -, (107)
o.J3 0, Jq

de
Ut-

tde\
^a—t )	 + e

det)o 2 3

dt Cdt )+3 `d I O ' J +
+Cdt /o.

(109)
Vd ̂ AO 'J2 3

J A

di1 (di

*\^ 3

di di

`7)oiJ3

di

+
(110)

\dt /o'J2 O'JA

dw
it

1&,N

`^^3
(
\^

1	 +
/o, J

I&A

`^/aJ3
+ (dw

\dt)oiJA
(x:11)

2

dM
u

d
)3

(1,12)

k	 ,
t

^i

In these equations one may include or not include any of the indicated terms in order to determine
the effects of each. However with the exception of Equation 118 (which is included only for com-
pleteness), the above system yields an accurate description of the average motion of the orbit. As
discussed earlier one of the principal advantages of this system is that the interaction of the medium
and long-period terms is treated in a more realistic manner. This becomes particularly important
in the case of Mars, where oblateness and third-body effects can combine to cause very complex
behavior.

SAMPLE CASES

Figures 5 and 4 show a comparison between the variational method described here and an Encke
n-body numerical integration program. The slight differences noticed here are due to short-period
terms which are present in the n-body program and to differences in constants. The curve in Fig-
ure S produced by the n-body program took more than one hour of 36 ,0/9,6 time, while the variational
method took 30 seconds on the same machine and only half of this was spent in the computation step.

Figure 5 from Reference 4 shows a comparison with a Cowell n-body program. Again the
agreement between the two is excellent.
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Figures 6 and 7 show the importance of including the atmosphere of a Martian orbiter, partic-

ularly when a long lifetime is required.

These few sample cases illustrate the usefulness of the program outlined above. The extreme
speed and reasonable accuracy should prove the program to be a valuable aid in determining the
orbital behavior for a multitude of initial conditions.
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APPENDIX A

Mars and Venus Transformations

Mars Transformation

To calculate Mars-centered position of the Sun at time t in mean Mars equator of date (t).
Given the Earth-centered position in mean equinox and Earth equator of date.

1. Position of Mars' Pole at beginning of year t' .

a o' = 317.°793416667 + 0°6520833 x 10 -2 (t' - 1950.0)

8 0' = 54°6515 + 0°35 x 10 ` 2 (t' - 1950.0)

Secular variation

(Julian date) t - (Julian date)t+
T	 365-29

then

ao = ao-0..'001013T

s 0	 0 0.'000631 T

2. Determine fit: The longitude of the ascending node of the Mars orbit along the ecliptic from
the vernal equinox of the Earth.

(_Julian date) t - 2415020,0

Te 	 36525.0

f2 r 48°78644167 + 0°77099167 T e - 0°13888889 x 10-5 
Tea

3. Calculate is The inclinati m of th .: Martian orbit plane to the ecliptic plane.

i

1°830333333 - 0°675 x 10- 3 To + 0.12611111 x 10- 4 T@

4. ; Calculate e: The obliquity of the ecliptic.

e = 23°45229444 - 0°130125 x 10` 1 To - 0°16388889 x 10 ` 5 Tee + 0°50277778 x 10- 6 T.
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5. Calculate Unit Vector r along pole of Mars

r	 (cos 0 0 cos `'o' sin a. 0 cos 8 0 , sin 80

6. Calculate Unit Vector 0 perpendicular to orbit of Afars

0 - ( s in i sin 0, - s in i cos Sl. cos c - cos i sin . -- sin i cos 0 sin c + cos i cos t

7. Calculate 0 x e unit vector to ascending node of equator of Mars on the orbit of Mars
(autumnal. equinox).

8. Calculate EQ unit vector to the asA;ending node of the equator of Mars on the equator of
Earth.

EQ = (- sin a 0 , cos a o . 0)

9. Calculate wd : The are of the equator of Agars from its ascending node on the equator of
Earth to its ascending node on the orbit of Agars.

cos wd	 FQ° (0 x e)

sinwd 	JEQ' (Ox c)l

10. Calculate Sod; Longitude of the ascending node of the equator of Afars on the equator of the
Earth measured from Earth's vernal equinox.

St d = ao + v/2

11. Calculate i d : The inclination of the MartiN equator with respect to the Earth's equator.

i d = 7T/2 - S0

12. Calculate Rotation Matrix (P)

P11

Piz =

Pia —

P21 =

34

cos cad cos Std 	 sin wd sin Std cos 'd

Cos wd sin Std + sin coicos St d cos if

sinwd sin id

- sin wd cos Std - cos G'd sin old Cos i d



i

x.

{

tF

P2 2 = - F in w j s in Sid + COIF u.4' Cox Std cvs i d

P22 _ COS wd sin id

P31 = sin Qd sin id

P32 = — COs Sa d sin id

P33	 COB i d .

Let r®d be a vector from the Earth to bars in meal Earth equator and equinox of date (t : j. ? st
r, p be a. vector from the Earth to the Sun in mean Earth equator and equinox of date. Then

	

r	 rap — red .

Let 7 0 be the position of the Sun in Afars mean equator and equinox of date. Then

rd = (P) r

also

vd = (P) v .

x axis is now towards ascending node of equator of Afars on orbit of Mars.

r

EQUATOR OFd

ORBIT OF

ECLI PVC
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Venue Transformation ('taken from Reference 14).

Position of Pale

a = 96 - 0.0015551 (t - 1964.5) deg.

S = - 69 - 0.0007748 (t - 1964.5) deg.

t - 1964.5 in tropical years

1	 A = 180°075 (1964,5)

Let A be rotation matrix from mean Earth equator and equinox of 1952 to mean Earth equator and
equinox of date. Then

X - S3 S g S 1 AXI 950.0

where X is Venus equator and equinox of date

sin a	 cos a	 0

S 1 =	 - cos a	 - :, in a	 0

0	 0	 i
I

1	 0	 0

k	 Sz -	 0	 sin S q	cos so
ji

0	 -cos s o	 sin So	 i

ii

- cos A	 - sine 0
i

S3 = sin A	 - cs A	 0
0	 0	 1

,y
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