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STABILITY OF A FLOWING SYSTEM USING INFORMATION THEORY 

by N. Stankiewicz 

Lewis Research Center 

SUMMARY 

The principle of maximum entropy (disorder) is extended to the nonequilibrium 
situation of viscous flow and a condition for  "thermodynamic" stability is found. Vio- 
lation of this condition coincides with boundary layer separation in a Newtonian fluid. 

I NTROD UCTl ON 

The concept of maximum entropy is well known in classical thermodynamics, where 
it is used as the definition of the stable equilibrium condition. However, information 
theory with its assumption that the disorder of a statistical system is a measure of its 
entropy can provide a way of extending the maximum entropy (maximum disorder) con- 
cept to nonequilibrium situtations. 

translational degrees of freedom leads to a thermodynamic description of an ideal, 
classical gas. 

For a compound gas including internal degrees of freedom, the method lends itself 
easily, for example, to the nonequilibrium phenomenon of the two temperature behavior 
of a plasma (electron heating). In reference 1 this approach is applied to a plasma 
where the electrons, ions, and neutrals (with internal energy levels) are treated as 
reacting species. For the case of a quiescent plasma, the Saha equation at the electron 
temperature holds as expected; however, for the case of a current-carrying plasma, a 
departure from "Saha equilibrium" occurs. This effect is negligible at ordinary 
currents but might be important in high-density are= or in some shock phenomena. 

The variational method used in information theory directly yields the most probable 
distribution function consistent with the constraints imposed on the system. In applying 
the technique to a flowing system, the constraints are the various flow moments of the 
distribution function. This is in contrast to equilibrium systems where only static con- 
straints are used. The constraints are not numerical constants but may vary from 

The application of information theory to a system of particles having only continuous 



point to point as determined from the hierarchy of flow equations. These flow equations 
are derived by taking moments of the Boltzmann collision equation. Unfortunately this 
gives an open set in which each equation involves the next higher flow moment. 

reference 2 the relation between the most probable velocity distribution function 
and the flow equations is investigated for a specific case in which the system constraints 
are mass density, momentum density, and stress energy density. Because the form of 
the distribution function is known from maximizing the entropy, all the required mo- 
ments can be calculated, thus closing the set d flow equations. For the special case of 
one-dimensional channel flow, the equations give Newton's law of viscosity and a para- 
bolic flow profile. The distribution function (the ellipsoidal velocity distribution func- 
tion) is therefore shown to be consistent with a system undergoing viscous flow. 

The stability of a system is a natural consideration in equilibrium thermodynamics 
and also in the study of flowing systems. In equilibrium ttiermodynamics there is a set 
of stability conditions (see e. g. , Callen, ref. 3) which is derivable from a minimum 
energy principle. A violation of these conditions indicates that the system is undergoing 
a phase transition. That is, the system separates into two or more subsystems. Such 
a breakup is suggestive of the onset d boundary layer separation in a flowing system. 

the variational principle of maximum entropy and to determine whether a violation of 
these conditions coincides with a physically recognizable event. 

ellipsoidal velocity distribution function. This case is consistent with a flowing system 
undergoing viscous dissipation. 

This study was undertaken to find the stability conditions for a flowing system using 

The analysis will be limited to the special case of a system whose particles have an 
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ANALY S I S 

The variational equation which gives the ellipsoidal distribution function is 

where 52, p and I?.. are Lagrange multipliers. The entropy is defined as (ref. 1) 
i' 11 

S = - o ( F r J f ( h  f - 1) dv3 

and the constraints are 

n(vi) = w(f) '1 fvi dv 3 

n(vivj) = u ( - r J f v . v .  dv 3 
1 1  

(4) 

(5) 

The integrals are carried out over all velocities from -00 to +a. 

substitution of equations (2) to (5), this yields the ellipsoidal distribution function 
The variation 6 in equation (1) operates on the distribution function f .  With the 
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The relation between f and the density F in phase space 

F=w(?) 3 f 

is 

(7) 

3 The maximum density in phase space is w(m/h) 
for which case f = 1. 

order variation must be negative, that is, 

for the completely degenerate gas, 

Because S is a maximum consistent with the constraints of the system, its second 

62s < 0 

This condition must be satisfied for stability. However, it is convenient mathematically 
to work out the stability conditions using a Legendre transformation of the entropy, 
namely, 

Then 

It is a property of Legendre transformations (see ref. 4) to preserve the variational 
principle. Thus the function @ is also an extrema1 but minimized, that is, 

(1 1) 2 6 @ = O  

It can be shown, using equations (2) to (6) and the transformation of equation (9) that 

4 



Therefore, from equation (10) 

These relations can be verified by carrying out the partial derivatives on equation (3) 
and using the distribution function in equation (6). 

The second order variation of n(=Q) is then (ref. 3) 

-. 
i, j#i 

1 

The coefficients of the variations in equation (14) form a 10 by 10 matrix. (There 
are 10 independent Lagrange multipliers: 0, three components of the vector p, and 
six elements of the symmetric tensor I?.) The quadratic form of equation (14) is 
greater than zero (see eq. (l l)) ,  if the determinant of the matrix is positive definite. 
A necessary and sufficient condition for positive definiteness requires that the leading 
principal minors are positive (see e. g . ,  ref. 5). 

Because the matrix is of order 10, there will be 10 independent conditions for 
stability that can be found. However, the rows and columns of the matrix can be 
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arranged in many ways without disturbing the value of its determinant. As.a conse- 
quence, only the principal minors of order one and two need be considered; all other 
minors will give redundant conditions. 

The 10 basic stability conditions are then found to be 

2 a n  - > o  
an2 

2 ->>; a n  i =  1,2,3 
2 aPi 

(h)( a2n ) - (A)(+) anapi anap > 0; i#j = 1,2,3 
302 a ~ i a ~ j  

Using the definition of n in equation (3) and the distribution function from equation (6) 
and carrying out the partial derivatives, the stability conditions then are 

n > O  (154 

Equations (15a) and (16a) are trivial and are always satisfied. Equation (17a) is a 
condition that the mean random energy for each direction be positive. This is equiv- 
alent to the condition that the temperature be positive and is consistent with the ideal 
gas assumption. For real gases the analogous condition should be that the temperature 
be greater than a temperature at which a change of phase occurs. 

The shear stress is defined in kinetic theory as mn ({V.V.) - (vi) (vj)) and must be 
1 3  
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positive according to equation (18a) if the flow is to remain stable. For Newtonian 
fluids the shear stress at the wall is proportional to the velocity gradient and a violation 
of equation (18a) will occur whenever the gradient vanishes or  changes sign. The 
vanishing of the velocity gradient at the wall is recognized in fluid dynamics as the onset 
of boundary layer separation. 
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