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ON THE BENDING OF A RAY THROUGH A
SPHERICALLY SYMMETRIC ATMOSPHERE

Harvey G. Safren
Laboratory for Theoretical Studies

ABSTRACT

An equation is derived which explicitly gives the
path of a ray through a spherically symmetric atmos-
phere. The refraction of the ray is assumed to be gov-
erned by the laws of geometric optics. The equation in-
volves the arrival angle of the ray at the ground; this
angle is obtained by solving an auxiliary equation. The
latter equation is not explicitly solvable, but approximate
solution formulas are obtained and a numerical solution
method is described. Some of the approximate formulas
are shown to be accurate to better than one percent down
to elevation angles of ten degrees or less. The refrac-
tivity profile includes both the troposphere and ionosphere,
and is arbitrary within a very large class of functions.
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ON THE BENDING OF A RAY THROUGH A
SPHERICALLY SYMMETRIC ATMOSPHERE:

INTRODUCTION

To determine the orbit of a satellite with great precision it is necessary to
correct ground-based radar observations for the effects of refraction by the
atmosphere. In theory it is possible to compute these corrections very accurately,
but in practice it is not. The atmosphere is so complex, and its behavior so
variable, that one cannot hope to have a very complete description of it at the
time the radar observations are made. The best one can ordinarily hope to do is
to assume a model of the atmosphere which is greatly simplified, but still real-
istic enough so that the corrections computed from it can be regarded as
reasonably accurate. In this report the main simplifying assumption made is
that the atmosphere is spherically symmetric. It ik; also assumed that the track-
ing frequencies used are well above 100 megahertz, so that the effects of the
earth's magnetic field are not too important, and that the variation of refractive
index with height is gradual enough so that the laws of geometric optics can be
assumed to hold. With these assumptions the problem of computing the arrival
angle becomes manageable. (The computation of range and range-rate errors
will be treated in a later report.) It is not necessary to assume any specific
law for the variation of the refractive index with altitude.

The mathematical formulation of the problem follows the method outlined
in Ref. 1 (pp. 120-122), but the derivation given here is more complete. The
basic idea is to make use of the differential equation for a ray path. This equa-
tion dons not give the ray path explicitly, because it uses the path length along
the ray as the independent variable, but it is easily integrated for a spherically
symmetric medium. The result is the formula known as Bouguer's Law, or the
spherical form of Snell's Law: nR sin 0 = constant, where n is the index of
refraction at the distance R from the center of the earth, and 0 is the angle be-
tween the ray path and the radius vector R . This relation also does not explicitly
give the ray path in cartesian or polar coordinates, but it is easy to deduce from
it, by geometrical reasoning, a first-order differential equation for the ray path
in terms of R and the central angle ^, (see Fig. 1). This equation can be im-
mediately integrated, but the integrated equation still contains the unknown con-
stant in Bouguer's law. To find the constant we impose the condition that the ray
path must join the satellite to the ground stat^:on. This gives an equation for 3
the elevation angle error (i.e., the angle bet, . n the ray path and the slant path
at the ground station). Unfortunately b 9 appears in a definite integral and it
doesn't seem possible to explicitly solve for it. ' But it is possible to deduce a
considerable amount of information about b as a function of the altitude and
elevation angle of the satellite, and to obtain good approximations for it.
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Because it seems to be impossible to get an explicit solution for the eleva-
tion angle error b & , a computer program (which will be documented in a com-
panion report) was designed to obtain accurate numerical solutions. This
program can also evaluate any approximate formula for b., and may be used to
test the accuracy of such formulas. The approximate formula must be coded in
a standard form and added to the main deck. The refractivity profile (i.e., the
variation of the index of refraction with altitude) is arbitrary; it also is coded
in a standard form and added to the main deck. The program - as used to test
the accuracy of the various approximations obtai:Led for b g , and some of them
were found to be quite accurate.

The work presented in this report was inspired by the writer's desire to
have a mathematically rigorous, systematic and detailed treatment of the prob-
lem of the refraction of a ray through a spherically symmetric atmosphere. It
is felt that the treatment of the problem given below satisfies those require-
ments reasonably well. Many of the results appear elsewhere in the literature,
and seine are well-known. Some of the results, however, are believed to be new:
e.g., the simple upper bound for the elevation angle error given by the inequality
(30), the very general approximate formula for the same quantity given by Equa-
tion (61), and the inequality (23), which gives a necessary and sufficient condition
for the existence of a ray path joining a satellite to a ground station, in terms of
the satellite's position and the refractivity profile. Even though some of the re-
sults obtained are well-known, the writer feels that the very completeness of the
mathematical treatment given in this report is valuable in itself, because it
brings to light questions (such as the existence of ray paths and their general
behavior) which are usually not considertul.

BACKGROUND MATERIAL

The material in this section is not necessary for the mathematical discussion
which follows. It is inserted here to provide some background information and
to motivate the various assumptions made in the mathematical treatment.

Tropospheric Index of Refraction

In most regions of the electromagnetic spectrum the troposphere is es-
sentially non-dispersive; i.e., the index of refraction does not change appreciably
with frequency. The index of refraction n of a medium is defined by n = e/v,
where c is the velocity of light in vacuum and v is the velocity of light in the
medium. Because the value of n is nearly unity throughout the atmosphere (in-
cluding the ionosphere), it is customary to use a related quantity called the
"refractivity," defined by N = (n - 1) x 10 6 . The following empirical formula
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for the radio refractivity of the troposphere is in widespread use by radio
scientists (see Ref. 2, p. 7):

N 77.5 \P + 48110 e 1	 (1)

where T is the temperature it, degrees Kelvin, P is the total atmospheric pres-
sure in millibars and a is the partial pressure of water vapor in millibars. This
formula is considered to be accurate to 0.5%G for radio frequencies up to 30,000
megahertz, for normally encountered ranges of pressure, temperature and
humidity. The fact that the formula does not involve the frequency shows how
nearly frequency-independent the refractivity is in this region of the spectrum.

The ratio e/P is about 0.01 at ground level for 60`Ir relative humidity, and
decreases rapidly with altitude (Ref. 2, p. 11). It follows that the second term
in Equation (1) is at least an order of magnitude smaller than the first term.
Since the pressure P (which is the dominant term) normally decreases expo-
nentially with height, and since the variation of T with height is not great, it
would seem that an exponential decrease of N with height might be a good ap-
proximation to the actual refractivity profile. In Ref. 2 it is shown that an ex-
ponential radio refractivity profile is in fact a quite accurate model for the
troposphere.

For optical frequencies the index of refraction of air is also very weakly
frequency-dependent. The refractive bending of violet light differs from that of
red light by only about one percent. The dependence of N on pressure and tem-
perature, for visible light, is given in Ref. 3 (p. 62) by the formula

N-82T,	 (2)

where N, P and T are as defined above (the units used in Ref. 3 have been
changed to the units used here). This formula is almost the same as formula
(1) , with the second term deleted. It thus appears that the tropospheric refrac-
tivity profile for visible light should also be closely approximated by an ex-
ponential model.
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Ionospheric Index of Refraction

The refractive behavior of the ionosphere is very different from that of the
troposphere. The density of air above 40 kilometers is too small to cause any
appreciable refractive effects; the refractive behavior of the ionosphere is due
primarily to the rarified electron gas arising from ionization by solar ultra-
violet and X-radiation. (For a recent review of what is known about the forma-
tion and composition of the ionosphere, see Ref. 4.) A discussion of the propa-
gation of electromagnetic waves in such a medium is given in Ref. 5. The follow-
ing formula is derived there (p. 329) for the index of refraction n of an electron
gas in the presence of a static magnetic field (the earth's field):

Mee
me

n2 = 1 -	
o	 (3)

W2 t 
e µo Ho co

M

where M is the number of electrons per unit volume, a is the electronic charge,
m is the electronic mass, e o is the permittivity of free space, µo is the per-
meability of free space, H o is the intensity of the component of the magnetic field
in the direction of propagation of the wave and co is the circular frequency of the
wave. All quantities are in the rationalized m.k.s. system. This formula shows
that the ionosphere has some remarkable refractive properties. Perhaps the
most striking thing about the formula is the presence of the f sign; this means
that there are two modes of propagation with two distinct velocities. In fact it
can be shown that a linearly polarized wave entering the medium is resolved
into right- and left-circularly polarized components; thus a rarified electron
atmosphere with a static magnetic field imposed on it acts like an anisotropic,
doubly-refracting crystal. Further, it is apparent from Equation (3) that for a
certain frequency the index of refraction of one of the waves becomes infinite,
and that for another frequency the index of refraction of the other wave becomes
zero. This behavior accounts for many of the remarkable properties of the
Kennelly-Heaviside layers at radio frequencies.

The effect of the earth's magnetic field becomes less important for higher
frequencies, as can be seen from Equation (3). In fact, if we use the values
e = 1.602 x 10-19 coulomb, e/m = 1.759 x 10 11 coulombs/kilogram, µo = 47T x
10 - 7 henry/meter and 

e 0 
= 8.854 x 10 -12 farad/meter, and if we take the maxi-

mum value of H o to be about 0.4 gauss, then we see that the ratio of the two
terms involving w in Equation (3) is



where f = w /Z •rr is the frequency in cycles per second. Hence for f > 100 mega-
hertz, which is about the lowest frequency likely to be used for satellite track-
ing, the above ratio is less than 1.4 x 10 -4 . We may therefore neglect the effect
of the earth's magnetic field and represent the ionospheric index of refraction
by the simpler formula

t12 
= 1 - Me

2
	 (4)

mEO a;2

This simplified formula still has some interesting properties. For the critical
frequency co = w7 _ ( Me 2 /ME 0) 1: 2 the index of refraction becomes zero. Physi-
cally this means that a wave entering the medium is totally reflected. More
generally, if M is increasing monotonically along the direction of propagation, a
wave of frequency co will be totally reflected when it reaches the region where
M = ME  w2 /e 2 . This phenomenon is used to measure the electron density pro-
file of the ionosphere by beaming radio pulses vertically upward and measuring
the time between transmission and reception of the pulses. As the transmitter
frequency is increased, higher regions of the ionosphere are probed. Only that
part of the ionosphere below the F2 ma dmum (which lies between 200 and 400
kilometers) can be probed by this method, however, because the electron density
above that point decreases again. To measure the top part of the ionosphere it
is necessary to use satellites to beam radio pulses downward.

If we use the values given above for e, m and c o , and if we assume that the
largest value of M in the ionosphere is about 10 12 electrons per cubic meter (a
realistic assumption, corresponding io the F 2 maximum), we find that f C = cv0 /
27r = 8.98 megahertz. This is far below our lower bound of 100 megahertz; we
therefore do not need to concern ourselves with the possibility of total reflection.

There is an interesting property of the above formulas for n which we have
not yet mentioned: the value of n is less than unity. This means that a wave of
any frequency greater than f ,• is propagated in a rarified electron gas with a
velocity greater than the 	 of light in free space. This of course does not
contradict relativity theory. In the derivation of Equation (3) it is implicitly as-
sumed that a sinusoidal plane wave of frequency f, of infinite extent, is being
propagated through a rarified electron gas which is also of infinite extent. But
every physical wave is limited in space and time, and has a frequency spectrum
of finit:; (i.e., non-zero) width. Such a waveform can be represented mathemati-
cally y a Fourier integral, which may be regarded intuitively as the sum of an
(uncountably) infinite number of sinusoids of infinitesimal amplitude, each sinu-
soid being of infinite extent. Each of these hypothetical sinusoidal waves is
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propagated with a velocity greater than c, the velocity of light in free space; but
their sum, the actual physical waveform, is propagated with a "velocity" less
than c. The reason for using quotation marks is the impossibility of precisely
and unambiguously defining the velocity of the physical wave. Each of the com-
ponent sinusoids is propagated with a different velocity, because the index of
refraction varies with frequency (i.e., the medium is "dispersive'). Therefore
their phases are constantly varying relative to each other, and the shape of their
sum is constantly changing. The physical waveform is thus continuously deformed
as it moves through the medium, and it is not possible to uniquely define its
velocity. However, it is possible to define velocities which are useful under cer-
tain circumstances. The one most commonly used is the group velocity; it is
meaningful only for waveforms whose frequency spectrum is confined to a very
narrow band. If this band lies in a region where the dispersion of the medium is
normal and moderate (e.g., away from absorption bands), the group velocity is
approximately the velocity of energy propagation. In Ref. 5 the following expres-
sion is derived for the group velocity:

1_

Vgroup _ dk
da,

where k is the wave number (k = 2n/k, where X is the wavelength in the medium),
and the derivative is evaluated at w o , the center of the narrow frequency band.
If we use the relation k = co/v 	 (w), where vphase (w) is the velocity (in thephase

medium) of the component sinusoid of circular frequency co, we obtain a relation
between the group index of refraction ngroup (= c/vgroup ) and the phase index
nphase (= C/Vphase ):

Cv

re	 n	

d nphase	
(5)group !phase	 +

nphase	
dC^

1 
	

)

The phase velocity is so called because it is the rate at which surfaces of
constant phase, of a pure sinusoidal plane wave of infinite extent, are propagated
through the medium. If the medium is non -dispersive (as the troposphere is, for
example), the derivative is zero and the group velocity is the same as the phase
velocity (which is then independent of frequency).

If we apply Equ,,:ion (5) to the expression for nphase given by Equation (4),
we obtain the following expression for the group index of refraction of the iono-
sphere (neglecting the earth ' s :magnetic field):

6



Mee	 - 1 2

re group - 	1	 (6)
M E 0 G;2

It is apparent from Equation (6) that v 	 < c, as it should be, if the group
velocity represents the rate at which ener is propagatedty p	 energy p pagated through the medium.
It is also worth pointing out that vgroup . vphase y c2

The problem of the propagation of electromagnetic signals through a dis-
persive medium is a very complex one. A very illuminating discussion of this
problem is given in Ref. 5; it is based on an investigation conducted by Sommer-
feld and Brillouin in 1914 (Ref. 6) The results of this investigation show that the
time t of arrival of a signal at a given point in a dispersive (homogeneous and
isotropic) medium can never be less than d/c, where d is the distance of the
given point from the signal source, which is assumed to begin emitting the sig-
nal at time t = 0.

It is important to note that the phase index must be used to compute the
bending of a radio wave through the ionosphere, but the group index must be used
to compute the travel time of the signal. To see why this is so, consider a signal
which has a narrow frequency spectrum, in the sense that it has a small ratio of
spectral width to carrier frequency. (A modulated radio signal will ordinarily
have a narrow spectrum in this sense, and even a radar pulse consists of so many
cycles that its spectrum is fairly narrow.) Each (hypothetical) component wave
of frequency f suffers refraction, the degree of which depends on its index of re-
fraction n(f), which we have called the phase index. Because of the narrowness
of the spectrum, the variation (throughout the spectral width) in the amount of
refraction is small. In other words, the angular dispersion of the signal in space
is small. Thus the curved path followed by the physical wave is essentially the
same as that followed by any one of its hypothetical components, for the calcula-
tion of which the phase index must naturally be used.

On the other hand, if the travel time is to be computed the velocities of the
hypothetical component waves are not of interest. It is the velocity of the re-
sultant physical wave that matters; and this, as we have seen, is given by the
group index of refraction.

Good approximations for the phase and group refractive indices may be
derived from equations (4) and (6) by using the binomial approximation (1 - a) ±1 /2
1 T a/2, with a = M e 2 /m ea W2 . If we use the values for the constants given
previously, and if we again take 1012 electrons per cubic meter as the maxi-
mum value of M and 108 cycles per second as the minimum value of f, we see
that the maximum value of a is about 0.00806. The binomial approximation is

7



thus quite accurate. If we use it, and if we insert the values of the constants,
equations (4) and (6) become

nphase — 1 -40.3 M	 (7)72

and

n	 = 1 + 40. 3 M	 (8)group	 f2

where M is the electron density in electrons per cubic meter and f is the carrier
frequency in cycles per second. In terms of the refractivity N = (n - 1) x 106
these equations become

	

Nphase — — 40.3 x 106 M
	 (9)

f2
and

Ngroup = 40.3 x 106 M	 (10)
f2

From these formulas it is clear that both the phase and group refractivity pro-
files in the ionosphere are proportional to the electron density profile, for a
given frequency, and that they decrease rapidly with increasing frequency. For
radio frequencies of a few hundred megahertz the ionospheric contribution to
refraction is important. For frequencies of thousands of megahertz it becomes
very small, and for optical frequencies it is infinitesimal compared to the ef-
fects of the troposphere.

The Approximation of Geometric Optics

In many published papers dealing with ionospheric refraction the analysis
is based on the laws of geometric optics, with no comment as to the validity of
these laws in the ionosphere. It is not difficult to derive the laws of geometric
optics from Maxwell's equations, for the case of dielectric media; such a deriva-
tion is given in chapter 3 of Ref. 1. The derivation is more complicated for a
plasma such as the ionosphere. It turns out that the laws of geometric optics do

8



hold for the ionosphere, provided the spatial variation of electron density is suf-
ficiently gradual; just as for dielectrics, these laws will hold provided the prop-
erties of the medium do not change much over a distance of one wavelength of
the radiation. Fortunately this condition is usually satisfied for radio waves in
the ionosphere. Very detailed analyses of the ap plicability of geometric optics
to ionospheric propagation are given in References 7 and 8.

The main result from geometric optics that will be used in the ensu t)^;
analysis is the spherical form of Snell's law, sometimes called Bouglier's Law.
It applies to a spherically symmetric medium, and states that

nR sin 0= cons tant,

where n is the index of refraction at the distance R from the center of symmetry
(in our case, the center of the earth), and B is the angle between the ray path
and the radius vector (from the center of symmetry) at distance R from the
center. This law is the spherical analogue of the more commonly used planar
form of Snell's law. It should be mentioned that the index of .refraction n is the
phase index, for the frequency of the radiation being used.

FORMULATION AND SOLUTION OF THE PROBLEM
OF FINDING RAY PATHS

Formulation of Problem

Brief Statement of Problem — We want to solve the following problem:
Given a point source of radio or radar waves in or above the earth's atmosphere,
and given a station on the ground, does there exist a ray path joining the source
to the ground station? If so, how can we compute the path? In particular, how
can we find the apparent elevation of the source as seen from the ground? The
ray path will of course deviate from the slant path, and the measured elevation
angle will differ from the true elevation angle, because of atmospheric refrac-
tion of the radio waves.

Simplifying Assumptions — To make the mathematical analysis tractable
we make the following assumptions:

• The atmosphere is spherically symmetric; i.e., the index of refraction
depends only on height (above a spherical earth).

• The effects of the earth's magnetic field are negligible.

9



• The propagation of radio waves through the atmosphere can be adequately
described by the laws of geometric optics (i.e., by ray-tracing methods).

Tha second and third assumptions will generally be valid for radio frequencies
above 100 megahertz. The first assumption is only a rough approximation, since
the ionospheric refractivity profile varies considerably with latitude.

Bouguer's Law as the Characterizing Property of Ray Paths — With the
above assumptions we can briefly state our problem as follows: Find a curve
(the ray path) joining the source to the ground station, which has the property
that it satisfies the spherical form of Snell's law (Bouguer's law),

n R x s = constant,
	 (11)

at every point along the curve. (See Chapter III of Ref. 1 for a derivation of this
relation.) In particular, find the arrival angle; i.e., the angle between the ray
path and the horizontal at the ground station. Figure 1 illustrates the geometry.
In equation (11) and Figure 1, R is the radius vector from the center of the earthN
to any point on the ray path, R is the magnitude of R, n is the phase index of re-
fraction (for the radio frequency being used) at distance R from the center of the
earth and s is a unit vector tangent to the ray path, directed outward along the
path (i.e., away from the ground station). The arrival angle is denoted by as ,
and the true elevation angle of the satellite by a t . The angle q is the central
angle, as shown in Figure 1. The other quantities are defined below. It is shown
in Ref :rences 7 and 8 that the derivative do/dR must be continuous, and in fact
slowly varying, in order for geometric optics to be applicable. We will there-
fore assume that n is a continuously differentiable function of R, from R e (the
radius of the earth) to infinity, and we will look for ray paths which are continu-
ously differentiable curves.

Planarity of the Ray Path — It follows from Equation (11) that any ray path
(i.e., any curve which satisfies Equation (11)), lies entirely in a plane containing
the earth's center. To see this, consider any point p along the curve, and let
PP be the plane determined by the vectors R P and s at the point p. Now let q be
any other point along the curve, and let P be the pane determined by R and
sQ . It is clear from Equation (11) that the normals to PP and P are parallel;
since both planes must pass through the center of the earth, it follows that they
must be identical. Since p and q are arbitrary points, it is clear that the entire
curve must lie in one plane.

10
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nR sin 0=c, (12)

CENTER OF EARTH

Figure 1—The Ray Path

Bouguer's Law in Scalar Form — If there exists a ray path which joins the
satellite to the ground station, then of course it lies in the plane determined by
those two points and the earth's center. The equation of such a ray path can
therefore be written as a single scalar equation. Probably the most natural way
of deriving a scalar equation from Equation (11) is to take the magnitude of each
side; if we take account of algebraic signs, the result can be written in the form

11	 1	 1



where_6 is the angle between R and s , taken positive in the clockwise sense
from R toward Z, with -- n < 9 !: 7r, and c is a constant. Equation (12) applies to
any ray path, whether or not it passes through the ground station or the satellite.
If we explicitly require that the ray path terminate at the ground station by evalu-
ating the constant c at that point, Equation (12) becomes

n R sin d = n g Re sin O g =n g  Re cos a. 1	 (13)

where n , R 
e 

(the radius of the earth) and 8
9
 are the values of n, R and 5 , re-

spectively, at the ground station and ae = 7r72 - B . Note that Equation (13) is
merely a condition that a ray path must satisfy; it does not explicitly give the
ray path in any coordinate system. In fact, Equation (13) is really a differential
equation for the ray path, because the angle 6 is clearly related to the slope of
the curve.

The Epsilon Function — It is convenient to introduce a quantity E, related to
the index of refraction n, and defined by the relation

n
(14)

n

Since n differs only slightly from unity, it follows that E is a small quantity;
further, E (Re ) 0, since n(R e) = n g . It is also worth noting that the condition
0 < n (R) < co (for all R ? R e ) implies that - 1 < E (R) < cc (for all R > R e ); this
condition will certainly hold in the earth's atmosphere, including the ionosphere,
for frequencies above 100 megahertz. In terms of E, Equation (13) becomes

sin B = (1 + E) 

Re
	 cos ae .	 (15)

R

Equation (15) is the relation which must be satisfied by a ray path emanating
from the ground station at the angle aH .

Condition for the Existence of a Complete Set of Ray Paths — It is important
to note that there may not be any curve which satisfies Equation (15), for a given

12



value of a. . For such a curve to exist, it is obviously necessary that the right-
hand side of Equation ( 15) be less than or equal to unity for every value of R in
some interval starting at Re . If we want to ensure the existence of a "complete
set" of ray paths, i.e., a ray path of infinite extent (emanating from the ground
station) for every value of ae in the interval 0 ^ aA 7r/2, it is necessary to is-

•	 sums that the condition

R
•	 (1 1 

F) 
R _< 1

is satisfied for every value of R in the interval R e ^ R < w. If we solve this in-
equality for E , it becomes

F (R) < R - Re
Re

for all R ? R e . It turns out that this condition is not sufficient for the existence
of a complete set of ray paths, but it will be shown that the slightly stronger
condition

R - R

	

- 1 <E (R) S 
(,_a)
	

e	

(16)
Re

for all R ? Re , where 0 < a < 1 and equality holds only for R = R e , is sufficient.
(The fact that <_ > - 1 is obvious from the definition of e.)

The Class ` of Epsilon Functions — For convenience we will denote by
the set of E -functions which have the following properties:

• E (R) is continuously differentiable for all R ^ Re;

• E (R) satisfies condition (16) for some value of v in the interval (0,1).

It is worth noting that it is not clear whether the condition (16) is necessary for
the ex i stence of a complete set of ray paths, and it seems possible that it night
ever ^, unduly restrictive. It turns out that it is not too restrictive, at least in
the sense that any physically realistic profile n(R) will probably satisfy the
condition (see the appendix for an example).

13



Derivation of an Explicit Equation for Ray Paths

We will now show that, for any E-funct ! ou in the class F , equation ( 15) can
be written as a differential equation in the variables R and 0, for any .E[0, 77/2),
and that th' s equation can be integrated to yield an explicit equation for the ray
paths (with as as a parameter).

Some General Properties of Ray Paths — We will begin the proof by showing
that, for any ae E (0, n/2), the ray path (assuming it exists) will have the property
that R is a single-valued and strictly monotonically increasing function of ^ . It
is clear that such a path will never dip below the earth's surface and that it will
never "double back" on itself across any given radius vector.

The case as = v12 must be treated separately. It is clear that in this case
the ray path will just be a vertical straight line, whether or not condition (16) is
satisfied, because such a line satisfies Equation (15). No other path can be a ray
path in this case, since such a path (which necessarily would be initially vertical
and would later deviate from the vertical) would have to intersect some non-
vertical line from the center of the earth; at the point of intersection, sin 0 would
not be zero. (It is also clear from the symmetry of the situation that the ray
path must be a vertical straight line.)

We now return to the general case where ag < 7T/2. We first show that each
ray path has the property that R is a single-valued function of 41, whether or not
condition ( 16) is satisfied. From Equation ( 15) it is clear that, for any ae E (0, 7T/2),
sin 0 > 0 at every point along the associated ray path, assuming one exists.
Since -n < 0 ^ + 7T (by definition), it follows that 0 < 0 < n at every point along
the path. It is therefore clear that the ray path cannot double back across any
given radius vector; in other words, for each value of 0 there is at most one
value of R.

We next show that, for each as E (0, n/ 2), the associated ray path (if it
exists) has the property that R is a strictly monotonically increasing function
of 45,  if condition ( 16) is satisfied. If we use the inequality ( 16), it follows from
Equation ( 15) that

R
sin0	 1-.Q I—	 •cos as1 Cos a

-R )

for all R ? R e , with equality holding only for R = Re . It follows that sin 0 < 1
at all points of every ray path, except that sin 0 = 1 at the single point R = Re

for the ray path for which as = 0. We recall that we are looking for ray paths

14
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which are continuously differentiable curves, and are therefore continuous; for
such a ray path it follows from the above condition on sin B that 6 < 77/2 at every
point, except of course that 0 = n /2 at the ground station for the ray path for
which as = 0. It follows that for each such ra • ; ath R increases strictly mono-
tonically with q .

Transformation of Bouguer's Law to a Differential Equation in Polar Co-
ordinates — We are now ready to write Equation (15) as a differential equation.
This will be accomplished by deriving a relation between the angle 0 and the
derivative WdR; the desired relation can be easily found with the help of
Figure 2.

Figure 2— Diagram for the Calculation of dR /dye

15
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From the figure we see that

d^.R

and

tan 0= 0
dR

The second equation is invalid only for the point R = R e along the ray path (if it
exists) for which a9 = 0. With this one exception, it follows that

	

dR	 R
d^ tan 6

The presence of tan 6 in the denominator causes no difficulty; as we have shown
above, 0 < 0 < -a/2 along every ray path, and therefore 0 < tan 6 < oo (except that
tan 0 is infinite at the one point mentioned above). It follows that 0 < dR/dpi < CO

except that dR/d^ = 0 at the one exceptional point. Because of the strict mono-
tonicity of R(V) we know that the inverse function 0 (R) exists; from the above
condition on the derivative of R(^) we have 0 < dq/dR < oo , except that d4 , /dR = 00

at the exceptional point. We may therefore write

dpi , 1	 tan 0	 (17)
dR dR	 R

aY

From Equation (15) we see that

R
(1 + e) • = • cos ae

tan 8=	
sin 	 _	 R	 (18)

+ ^	 R \2
1 - (1 + E)2 (T ^ cos 2 ae
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The plus sign is included to explicitly show that cos d > 0, since 6 is known to
be in the first quadrant; this equation is therefore completely equivalent to
Equation (15). From Equations (17) and (18) it follows that

R
(1 + E)

d	 ( R2 )
e • Cos a8

= 	 ('- 9)
•	 dR	 R

1 —(1 + E)2 ^Re 
2 

• Cos t a9

This is a differential equation for the ray path, for any given angle a e . The
quantity under the square-root sign will always be greater than zero, except at
the one exceptional point, where it is zero. (It should be noted that this may fail
to be true if condition (16) does not hold.)

The Explicit Equation of a Ray Path — We have shown that, for any E e F, the
defining equation for a ray path may be written in the form of the differential
equation (19). It must now be asked whether this equation has solutions; if it
does, then of course those solutions are the ray paths we are looking for, and
they have all the properties described above (such as monotonicity). To find
out whether Equation (19) has solutions for all a s we integrate it formally to
obtain the relation

R
R	 [1 + E (S)] 

a 
COs a8

le	

S2	 (20)d s ,
(R1 — [1 + E (S)]2	 2`	 COS2 as

S

which is the equation of a ray path in the polar coordinates ^, and R, provided the
integral exists. For as # 0 the quantity in the denominator is greater than zero
for all s ? Re , and the integral therefore exists. The case a s = 0 requires a
special proof of the existence of the integral, since the integrand becomes in-
finite at R = R e . The proof makes use of the inequality (16) to obtain a majorant
function for the integrand; the integral obtained by replacing the original inte-
grand by this majorant function is then shown to exist. If the condition (16) is
assumed to hold, then a simple calculation shows that

17



1 2 R )	 R
1-(1+`) 2 ^Re J >a 1- —t	 2-^ ^1--.L

S //ll	

/	

S	 \	 S

_Rel

?0

for all s ? R e , with equality holding only for s = R e . It also follows from (16)
that

JS 2	 \	 s	 s

	

< 1-0+1 • Re 	 1

Re ) /R-^ - /s-

2

for all s Z Re . With these inequalities we may form the majorant function M(s):

R
(1 + E) e

2

1 — (1 + E)2
(Re 	 e	 e)

 ( S )

for all s > Re, . As s -• R e , both functions become infinite. It is easy to show that
the integral exists with this majorant function as the integrand; the substitution
x = s - Re yields

fR	 e
e

f'

18



which is finite for all R ? 1^ . It follows that the integral exists even when
a, = 0. (It is not difficult to show that if we were to allow o- to be zero the inte-
gral would diverge for aH = 0.) We conclude that, for any E e , a complete set
of ray paths exists; they are given explicitly by Equation (20).

The Existence of a Ray Path Connecting a Given
Satellite Position to the Ground Station

We will now investigate more closely the character of this bundle of ray
paths. First, we note that no two ray paths can intersect. To see this, it is
sufficient to note that the integral in Equation (20) is a strictly monotonically
increasing function of cos ae ; it therefore cannot take the same value (for a
given value of R) for two different values of ae . Because no two paths intersect
it is clear that the ray path (if it exists) joining a given point to the ground sta-
tion is unique.

The second property worth noting about the bundle of ray paths is that the
paths change continuously with as . A rigorous statement of this property would
require that the set of ray paths be made into a normed space, perhaps with the
"sup norm;" but the property can be seen intuitively by noting the fact that the
integral in Equation (20) is a continuous function of ae , for any given value of R.

The third and most important property of the set of ray paths concerns the
region of space which is "covered" by the paths; i.e., the set of points which lie
on some ray path. To investigate this question will be our next task.

General Condition for the Existence of a Ray Path — Suppose we are given a
point (a t , R $ ), where a t is the (true) elevation angle of a satellite (taken positive
upwards), and R. is its distance from the earth's center. We can determine
whether this point lies on one of our ray paths by setting ^ = kk , (the value of
corresponding to a t and R,) and R = R, in Equation (20); if there exists a value
of ae in the interval ( 0, 77/2) which satisfies the resulting relation, then the point
lies on the ray path corresponding to that value of as

To write the relation explicitly we must express 4, in terms of at and R.;
this is easily done by applying the law of sines to the triangle formed by the
earth's center, the ground station and the satellite, as shown in Figure 3. The
law of sines states that

cos a t _ sin y
Ra	 Re
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Figure 3-17;ogram for the Calculation of q5

or

Re
sin g= R cos at

s

This expression for sin y is easily seen to be valid for Rs > Re and a t a (-„/2,

712); i.e., for any point outside the earth and to the right of the ground station.
It is clear that sin y < 1 everywhere in this region; since y is clearly a continu-
ous function of a t and R s in this region, and since it is obvious that •y < 7r/2

for some points, it follows that y < 77/2 at every point of the region. We may
therefore write

Re
y - sin" 1 

R 
cos a t ,

s
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where the value of the are sin is taken in the first quadrant. It follows that

kPS 77 (2 + a

7T
R
e

1
= 2 - a t -sin - ^ R cos at

s

or

(!
.-Cos' 1

R
 COs at - at ,	 (2?)

	

R
S	 )

where the value of the are cos is taken in the first quadrant; this expression for
45S is valid for R S > Re and at e (_ 77/2, 7T/2).

We can now state that the point (a t , R S ) will lie on some ray path if and only
if the relation

R
r

Rs	 (1 + E) R2 cos ae dR

J	 =Cos'1 
( Re

 
Cos at - a t	 (22)

R	 2	 1!2	 RS

Re	 1 - (1 + E)2 ^
Re	

Cost as

is satisfied for some value of as a [0, 7r/2).Since the integral decreases mono-
tonically as as increases, we see that Equation (22) will have a (unique) solution
if and only if

R
Rs	(1 + E) a dR

	 ( LCOS
J 	

R2	
? Cos'1 	 at/- at.(23)

	

R \ 2 1/2	 RS
Re	 1 -(1+E)2 ^R

•	 In other words, given any E -function in the class F and any point (a t , R,) a (-7T/2,
7r /2) x (R e ,a), there will exist a ray path connecting that point to the ground
stat.*on if and only if condition (23) is satisfied.

We have now answered the question posed earlier concerning the region of
space covered by the complete set of ray paths (which is guaranteed to exist for
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any E -function in F ); we have shown that, for any given E-function in S, the points
which lie on some ray path are just those points which satisfy condition (23). As
it stands, this condition is not very transparent; to get explicit results we must
consider some special cases.

The Existence of Ray Paths in Some Special Cases — One special case is
suggested by the practical requirement that the satellite be on or above the
horizon; we might therefore be interested in values of a t greater than zero.
Since the expression on the right-hand side of (23), considered as a function of
a t , decreases (strictly) monotonically for a t E [-„/% „/ 21, we see that (23) will
hold for all a t E A n% 21 if and only if

R

f
R,	 (1 +E) _dR

J	
R2	

2	
> Cos -i 

(e\ R81R	 /1 - (1 + E) 2 I 
R 

e	

1 2

\R

If we note that

Rs 	 (1 + E) 

Re 
dR	 Rs	 R° dR

J	 R2 ]1/2>	

R2

C

(24)R	 (!2 2 	 R	 R J 2 1/2
1- ( 1 +E) 2 `R	 1 ( R 

=COS-1 \ 
R'8)

for any E -function in 2 which has the property that E (R) ' ? 0 for all R, we see
that condition (23) does in fact hold for all a t a [0, 7r/ 21 and for all R. , for any
such a -function. In other words, if E (R) is everywhere non-negative, then the
entire region in and above the horizontal plane and to the right of the ground
station is covered by the complete set of ray paths. Of course the condition E (R)

0 is merely sufficient, not necessary, for this region to be covered. Also, for
a given non-negative E -function the total region covered will be even larger,
unless a (R) = 0.
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To see the truth of this last statement, suppose that E (R) ? 0 for all R, but
E (R) # 0; then (24) becomes a strict inequality. From the fact that the right-
hand side of (23) decreases monotonically with a t for -7r/2 ^ a t ^ 7T/2 , it then
follows that, for each value of R s , there exists 8 e [-7T/2, 0) such that

R

f

(1 + E) °dR

 
R2	

- cos -i R. cos at ' at

R	
R l2 1/2	 Re

1 - (1+E)2 (R {

for all at ? Q , for the given value of R a . Comparison of this relation with (23)
shows that for any non-negative E -function which is not identically zero, and for
any value of Rs , there is an angle / < 0 such that every point ( a t , R . ) for which
at > p is connected to the ground station by a ray path. If, in addition, it happens
that

,8m=sup {9 (R.) : R. >Re) <0,

then the entire region

{(a t , Rs ) : /3m ^ at < 7T/2 and R. > Re )

is covered by ray paths.

The condition E (R) > 0 will actually be satisfied by a realistic refractivity
profile, provided that unusual conditions, such as temperature inversions near
the ground, do not occur. To see this, one might note that the tropospheric re-
fractivity is commonly assumed to decrease exponentially with altitude; thus
n< n , and therefore E = n / n - 1 > 0, for all R > R . In the ionosphere n < 1
and therefore (since n g > 1) we again have E > 0.

As another special case, suppose we ask what happens if E (R) ^i 0 for all R,
but E (R) 0 0. One thing at lent is easy to see in this case: no point on the
horizontal plane lies on a ray path. To see this we just note that for such a point
to lie on a ray path the condition
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R
f R &	 (1 + e) °dR

 

R2	
? cos-1 R°

^
R.
	 1 _ (1 + E)2 

C 

e 1
2 1!2	 R,
R 

must be satisfied; but for a (R) s 0 and not identically zero this is impossible,
because for such an a -function

r	 2	 r	 2	 R

J
R	 < J	 R	 = cos- 1	 °

R	 R 2 1 /2	
R 	

2Rs

°+ E)2
R 	 °	 1	 R(

R

.)

Since no ray path passes through or even touches the horizontal plane, it follows
that all ray paths lie completely above that plane for any non-positive (and non-
zero) a -function.

More detailed results on the existence of ray paths could be derived, but for
our purposes we do not need to go any further with this analysis.

Recapitulation

Summary of Results — Before continuing with our analysis we will recapitu-
late what we have found so far. We showed that any ray path ;!." ping a satellite
to a ground station through a spherically symmetric atmosphere must lie entirely
in the plane determined by the satellite, the ground station and the center of the
earth. Since there may not be a y ray path joining a given satellite position to
the ground station, it seemed most logical to focus our attention on the bundle of
ray paths emanating from the ground station, rather than on the satellite position;
we may limit this bundle to a plane, because of symmetry, and may parametrize
it by the variable a° , the elevation angle of a ray path at the ground station. We
stated a condition on the refractivity profile (condition (16)) which we claimed is
sufficient to ensure the existence of a complete set of ray paths; i.e., a ray path
of infinite extent for every value of as in the interval 10, n /21. (This condition
is actually satisfied by realistic refractivity profiles; see the appendix for an
example.) On the assumption that condition (16) holds, we then actually proved
that a complete set of ray paths exists; we derived an explicit equation for them
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(Equation (20)), with ae as a parameter, and we showed that they have certain
properties. Among these properties are a single-valued dependence of R on 4 , ,
with R increasing strictly monotonically with 4, (for aH < 77/2). We also showed
that no two ray paths intersect, which is equivalent to saying that the ray path
Joining a satellite position to the ground station is unique, if it exists at all. We
next investigated the question of the region covered by the bundle of ray paths.
We derived a condition (condition (23)) which is both necessary and sufficient
for the existence of a ray path joining a given satellite position to the ground
station, for a given refractivity profile. We then investigated some special cases;
the most important of these, and the one we will be exclusively concerned with
in the rest of this report, is the case where the E -function is non-negative for
all R. In this case we showed that any point above the horizontal plane is joined
to the ground station by a ray path. This fact, together with the fact that real-
istic refractivity profiles actually have the property that E (R) >_ 0 for all R,
justifies concentrating our attention on this type of profile.

Procedure for Calculating a Ray Path — We can now outline the procedure
for finding a ray path. Suppose we are given an E -function (in the class F) and a
satellite position; to determine whether a ray path exists, we test to see whether
these satisfy the inequality (23). If the inequality is not satisfied, there is no ray
path; if it is satisfied, there is a unique ray path joining the satellite position to
the ground station. If E (R) >_ 0 for all R and the satellite position is above the
horizon, we know that the inequality will be satisfied. To find the ray path, if it
exists, we must first solve equation (22) for ag ; this value of aA can then be put
into equation (20) to obtain the equation of the ray path in the polar coordinates
R and w. The only step in this procedure which offers any difficulty is the solu-
tion of Equation (22); unfortunately this equation cannot be explicitly solved for
as , and we must rasort to a numerical solution or to approximate formulas for
ae in terms of a t and R s (which describe the satellite position). The rest of
this report will be mainly devoted to finding such approximate solutions and
numerical solution methods; we will also try to deduce, directly from Equation
(22), as much information as possible concerning the properties of the function
a8 (a t , Rd.

INVESTIGATION OF THE ELEVATION ANGLE ERROR AS A FUNCTION OF
SATELLITE POSITION, FOR A SPECIAL, CLASS OF REFRACTIVITY PROFILES

The Class F + of Epsilon Functions

As was mentioned above, we will limit our attention in the rest of this re-
port to E -functions which are non-negative, and to satellite positions on or above
the horizon (at ? 0).
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For convenience we will denote the class of non-negative, bounded E -functions
by F+

C, + s (c ( E e ^' , E (R) >_ 0 f or al l R 1 and E (R) is bounded on [Re , ^) }

(Note that F' C F .) In other words, an E -function is in the class F ' if and only if
it has the following properties:

• E (R) is continuously differentiable for all R ^ Re

• E (R) 2 0 for all R? Re;

• There exist a number a e (0,1) and a positive number B such that

R-R
F (R) f Min ( 1 —a)	 R ` , B	 (25)

e

for all R ? R..

We will also denote ky D the region of the a t - R. plane in which we are
interested:

D= {(a t , R.) 10^a t <7r/2 and Rs >Re}

= [0, 7n/2) x (Re , cO) .

A point (a t . R. in the a t - R. plane will sometimes be denoted by p, for brevity.

The Equation for the Elevation Angle Error

For at ? 0 it is possible to write Equation (22) in ^ more transparent form,
by expressing the right-hand side as an integral st-I .ilar hi -,rin to the integral
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on the left-hand side. We only need to note that, for E (R) - 0, the ray path will
be a straight line and as = a t ; we can therefore use Equation (21) and Equati ,--
(20), with E (s) = 0, as = a t and R = R. , to write

rRs

^s = JRe

R
`cos at dR
R2

2(^ e 
	 CoS 2 at

= Cos - 1 
Re 

Cos at) - at
s	 /

The correctness of this expression can be easily checked by direct evaluation of
the integral, using the substitution (Re /R) cos at = cos x. Thus, for a t ? 0,
Equation (22) takes the form

R
Rs	 (1 + E) 

a 
COS (at + S 8 ) dR	 R,

R2

f 	 2	 1/2	 f
Re	 1 — (1 + E)2 (je_) COS 2 (at +88)	 Re

Ro
Cos a t dR

R2 - - - -

1 — ( R
e )2 

COS 2 at 
1/2

= Cos -1 Re Cos at 1
! — at,
	 (26)

Rs 	 /

where we have written as = at + S . The quantity S is the "elevation angle
error;" i.e., it is the difference between the satelliteSs true elevation angle at
and its apparent elevation angle a e (the arrival angle) as viewed from the ground
station. Equation (26) is the equation for the elevation angle error; the rest of
this report will be concerned with solving this equation, and with finding prop-
erties of the function 8 9 (a t . RS ) implicitly defined by it.

It should be stressed that all the operations indicated in Equation (26) can be
carried out, at least in theory. From our previous analysis we know that, for
any E -function in the class ° + and for any point ( at , R 8 ) E D, the following
things are true:

;1 - (1 + E j2 (Re /R)2 eos 2 aa ) ? 0 for all ae a (0, 7T /21 and for all R ? Re,
with equality holding only for a8 = 0 and R = R e .
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• The integral on the left-hand side of Equation (26) exists for all a  e [0, 7r/21.

Equation (26) has a unique solution for a8 , which lies in the interval
[0, 77/2); equivalently, it has a unique solution for 6 g , which lies in the
interval [-a t , 7r%2 - a t ] .

We therefore do not need to worry about whether the square root is real, or
whether the integral converges, and we know that the function 8 g (a t , R.) is de-
fined at every point of the region D in the at - Rg plane. Practical difficulties
in computation will arise, however, for values of a t close to zero, because of the
fact that the integrand (on the left-hand side of Equation (26)) becomes infinite
as R-• R e, , for as = 0. (For realistic refractivity profiles a g will be very small,
so that a8 will differ only slightly from a t .)

It will be convenient to write Equation (26) in an abbreviated notation. To
this end we define the functions

gEP	 [- a t , 7T/ 2 - a t ] -• R

by

R
R s	 (1 + E) = cos (a t +,8) dR

gE , P 68)_
J	 R2 2	 1/2

+ E ) 2Re	 1 - (1	
Re	

Cos 2 (a t + Q)C 

for each E e E + and each p ED; the g-functions corresponding to E (R) = 0 will be
0 rooted by go , P . (The symbol denotes the real number system.) With this
notation we can write Equation (26) as

ge,P 
(S 9 ) ` go" (0).	 (27)
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We note that:

1. gE P (9) decreases (strictly) monotonically to the value zero at g = 7T /2
a t ; since at < ,r /2, it follows that g o P (0) > 0.

2. If E I (R) ? E 2 (R) for all R, with equality not always holding, then g f l P (i3)
> 8E

Z.P 
(8) for all S. a [-at, 7T/2 - at).

3. g P (0) ? g o P (0), with equality holding only for E (R) = 0.

All three of these properties hold for any E -function in F + and for any point p
in D. The third property can either be derived from the second, if we note that
E _> 0 for all R, or it can be deduced from the first property and the fact (which
we already know) that Equation (27) has a unique solution.

Some Properties of the Solution

Positivity — We are now ready to derive some properties of the function
8 g (at , R s ). We already know that this function is uniquely defined on the region
D. We will now show that it is everywhere positive: for every E -function in the
class +, except the function E (R) = 0,

0<8g< _at
	 (28)

for all p  D. (Clearly, for a t = .7T /2, S g = 0.) This follows from properties 1
and 3 of the g-functions; it is obvious from Figure 4. Since we now know that
8 > 0, we can limit the domain of definition of the g-functions to the interval
( 0

s
, 1T/2  - at ) .

An Upper Bound — The quantity (7r /2 - a t ) in (28) is an upper bound for the
8 g -function; it is a very crude bound, however, and we will now derive a sharper
one. If we "solve" Equation (26) for the 8

9 in the numerator and delete the 8
inside the square root, it Follows from the positivity of 8

g 
tho'
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R

f 
R	 = dR

J s

	
R2

R 2	 i/2
Re	

1 - e 
COS2 at

0 < 8 9 < Cos' 1	 R	 Cos a t 	 - at

R s 	 (1 + E) a dR
R2

(
R 2	 lit

Re	
L1 - (1 +E)2 l R / 

COS2 

at

= Bl (a t , R.)	 (29)

for any E E F + which is not identically zero and for all p ED. (Note that the ratio
of the two integrals is less than unity, since E (R) ? 0, and therefore B 1 > 0.) Un-
fortunately the bound B 1 is not too useful, because it requires the computation of



an integral and because it is not very sharp, although it is much sharper than the
bound (7r /2 -a t ). A computer program (which will be described in a subsequent
report) was used to evaluate the bound B 1 for the fairly realistic refractivity
profile described in the appendix; this profile will be referred to as the "Sperry
profile," because it was taken from a report of the Sperry Gyroscope Company.
The results indicate that B 1 is quite sharp for large values of a : , but becomes
progressively worse as at decreases; for small values of at it is very crude.
For the Sperry profile, and for a signal frequency of 140 megahertz, B 1 exceeds

•	 the true value of Sg by only a few percent for at > 75 0 ; for at = 40° the er-
ror is already about : 00%, and for a t = 10° B 1 is about ten times larger than the
true value of S g . (T};e calculations were done for a satellite height of 1,000
kilometers.) An attempt was made to make B 1 more useful by replacing E (R)
by a simple majorant function consisting of straight-line segments (of the form
given by Equation (25)) and explicitly evaluating the integral. The attempt failed
on two counts: the resulting formula was undesirably complex (although the
majorant function consisted only of two line segments, an initial sloped line fol-
lowed by a horizontal line), and the sharpness of the bound was severely de-
graded, the new upper bound being almost 200% in error even for a t = 87°. For
the Sperry profile, which is a fairly realistic one, the true value of S g varies
from 3.9 milliradians at at = 5" to 0.026 milliradians at 87°, for a satellite
height of 1,000 kilometers and a signal frequency of 140 megahertz. As in all
the other calculations made with the computer program, it was found that Sg
decreases monotonically with at .

Another Upper Bound — A different upper bound for S g can be easily de-
duced from Equation (26); it is rather crude, but it has the 

can
 of great

simplicity. To find it we just note that, formally, the left-hand integrand in
Equation (26) differs from the right-hand integrand in only one way: the appear-
ance of the quantity Q = (1 + E) cos (at + S g ) in place of cos a t . Since the left-
hand integrand increases with increasing Q, for any value of R, it is clear that
Equation (26) cannot possibly hold if the minimum value of Q is greater than cos
at or the maximum value of Q is less than cos a t . In other words we must have

( 1 + min E S ) cos ( at + S g ) < cos at

and

(1 + max E s )	 cos ( at + S g ) > cos at
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for any f- -function which is not identically zero on the interval [R r , R S ) , where
min F S and max E S are the infimum and supremum, respectively, of E (R)
on the interval [ R 

e ,
 R . I . Since min FS = 0, the first inequality just implies

that
P. 

0, which we already know. If we solve the second inequality for c g ,
taking into account the fact that a t + S < „ /2 (see Equation (28)), we obtain the
upper bound	 e

cos at
b < cos -1 	— a

B	 1+ max E s	 t

where the are cosine is taken in the first quadrant. This bound holds for any
point ( a t , R s ) a D, and for any E E F + which is not identically zero on the interval
[ Re , R a ) . We can get rid of the dependence on R s , at the cost of weakening the
bound slightly, by replacing max 

E a 
by the possibly larger number e m , the su-

premum of E (R) on the interval [ R e ,w). We then have

cos at
0 < S g < cos -1 	— at	 (30)

1 + Em

= B2 (a t , R.) ,

for any E -function in F + which is not identically zero on [R a co, ), and for any
point p E D.

The bound B 2 was tested numerically for the Sperry profile. The results
indicate that the ratio of B 2 to the true value of 5  is remarkably constant over
a large range of elevation angles; for the profile used, and for a signal frequency
of 140 megahertz, this ratio remained between 1.79 and 1.83 for at between 200
and 87 0 , for a satellite height of 1,000 kilometers. For at < 20° the ratio in-
creased; at 5 0 it was 2.75. It would appear from these results that B 2 is useful
as an easily computed estimate of B . . Further, the relative constancy of the
ratio B 2 /S indicates that B 2 might be used to form approximate formulas for
a by multiplying B by a polynomial of low degree in at (and possibly R , also);
sucha 	 formula might be very useful over a given range of elevation angles, for
a specific refractivity profile. For the profile used in the tests, it would be suffi-
cient to divide B 2 by 1.81 to obtain a formula accurate to about 1% over the entire
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Table 1
Computed Values of Elevation Angle Error, in Milliradians

Ele-
vation
Angle
(deg)

Height
(km)

100 200 300 400 500 1,000 5,000 10,000k ' 000 1,000,000

1 8.00
2 6.33
3 5.23
4 4.46
5 3.89 3.89 3.84 3.83

10 2.42
15 1.88 1.74 1.55 1.51
20 1.33
25 1.21 1.06 0.863 0.830
30 0.856
35 0.845 0.706 0.548 0.524
40 0.588
45 0.290 0.301 0.435 0.599 0.604 0.492 0.385 0.370 0.356 0.354
50 0.412
55 0.428 0.343 0.253 0.242
60 0.283
65 0.287 0.228 0.166 0.159
70 0.178
75 0.165 0.131 0.0947 0.0906
80 0.0860
85 0.0540 0.0427 0.0308 0.0295
86 0.0341
87 0.0256
88 0.0170
89 0.0085

range at = 20° to 87°, for the satellite height of 1,000 kilometers and the given
signal frequency. It would not be difficult to account for the variation of 8 9 with
R s , since S. varies much more strongly with a t than with R S . To illustrate
this, table 1 shows the values of S g (obtained with the computer program) for a
range of values of elevation angle (a t ) and height (R S - Re ), for the Sperry re-
fractivity profile and a signal frequency of 140 megahertz. Some of the data in
table 1 are plotted in Figure 5. (Many of the positions in the table are blank be-
cause those values of S g were not computed in the test runs.)
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A Lower Bound - So far we have shown that a > 0 and we have derived
a

upper bounds for it. It is of some interest to also derive a lower bound, other
than zero. To accomplish this we start again with Equation (26), and rewrite it
in the form

R
 =cos at dRfR8

R2

R 1 2 	cos2 a
1 	 cos° 	a-= f	 2 t +	

t	
- 1

R /	 (1 + E) 2 cost (a t + bg)

R
R^	 a cos a t dRf	 R2

R

R!- 

z	 1 '2

1	 ; os 2 a t

Since (a t + S a ) < 77/2 and a t < n /2 for all points peD, we see that neither of the
cosines is zero; the above equation, whose left-hand integrand was derived from
that of Equation (26) mainly by multiplying and dividing by the two cosines, is
therefore equivalent to Equation (26). We now apply the mean-value theorem to
the function x-1 /2 to obtain

R ^	 cos2 a	 - 1; 2

1 - —° cos2 a +	 t	 - 1
R	 t	 (1 + E) 2 COS 2 (a t + 89)

R 2	 -1/2

1 - R / cos 2 at

1	 cos2 at

2 (1 +E) 2 cos 2 (a t + 89)

' Re
	 cos2 a	 3/2

1-	
a	

COS2 a t + 8	 t	 - 1
R	 (1 + 02 cos 2 (at + a9)

where 0 < 8 < 1 and 8 depends on R. This is valid only for a t > 0; if at = 0,
the quantity [ 1 - (Re /R) 2 cos 2 at ] becomes zero for R = Re . If we substitute
this into our re,hTitten equation and simplify, we are left with the equation
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Re	
COS2 at

R	 --cos r	 _ 1 dR
'	 R2 	 t E)2 COS 2 (a t + S )	

-g	 °0.
R	

R 2	 rl	 Cus2 a	 I 3i 2

c	 -	 R	 2	 L(1 + 6)1 COS2 (at + b^)	
JJ

We will denote the bracketed quantity in the numerator by Q, for convenience.
From the relation (30) it follows that

COS 2 at	 (1 + Em)2

(1 + E) 2 Cos t (at + 69)
	

(1 + E)2

Since the right-hand side of this inequality is unity for any value of R for which
takes its maximum value, we see that the left-hand side is sometimes less

than unity, whence Q < 0. On the other hand, for any value of R for which E = 0,
for example for R = R e , the left-hand side is clearly greater than unity (since
S g > 0), whence Q > 0. In other words, Q is sometimes positive and sometimes
negative. Now suppose we set 0 (R) ° 0; clearly, the integrand will then become
larger in magnitude for those values of R for which Q is positive, and it will be-
-tome smaller in magnitude for those values of R for which Q is negative. It
follows that

Re	 r	 Cost at
—Cos a	 - 1 dR,its 
R2	 t	 (1 + E) 2 COS2 (a t + 8K)

>0.
2	 3l2

ge	 1 — (Re	 COS2 at
\R

If we solve this inequality for ^. we get our lower bound:

cos at
S^ > cos -1 	' at

(31)

L (at Rs) > 0
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where

f	
dR

R

	 R	 3 2
R^ 

R 2	 I -	 a	
COS2 rt.t
R 

R

dR
2	 3'2

R° R2 (1 + E)2 1 - ( R
	

cost at j

It is clear that A > 0, and therefore L > 0. This bound holds for any E -function
in F + which is not identically zero on the interval [R e , R . ] and for any point
p e D for which a t > 0. It was tested numerically with the computer program;
the results indicate that it is quite accurate. For the Sperry profile, at a signal
frequency of 140 megahertz and a satellite height of 1,000 kilometers, the lower
bound L differs from the true value of 6. by only about 0.71 at a t = 5 0 . For
larger values of a t the error steadily decreases. At at = 15° it is 0.2%, at 25°
only 0.1%, and for a t > 45 0 it is less than 0.06%. It thus would appear that the
lower bound L, as given by Equation (31), is a rather accurate approximation for
the elevation angle error S g .

Partial Derivatives — "o far we have proved that the solution function	 =
S ¢ (a t , R. ) is uniquely defined on the region

D	 ((a t , Rs) 10 ^ a t < 77/2 and R. > Re } - (0, 7T'1) v (Re, CO)

of the a t - R. plane, for any a -function in the class F , and we have derived
some upper and lower bounds for it. We will now try to get more detailed in-
formation about the behavior of the solution function. Some informP .tion can be
obtained with the help of the implicit function theorem of analysis. Suppose we
write Equation (26) in the form

F ( b a ; a t , Rs ) = 0

V itting all terms on the left -hand side of the equation. The function F, which
maps a region E of the 3-dimensional a d - a t - R. space into the reds, is
given by
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z
2

C1tT
2

R
R^	 (1 + E) =cos (a t + 6 g ) • d 

	

r	 R2F c^; Q ;a t , Rs ) = 

J
(R 

)

2 ^i'2
^°	 1 - (1 + E) 2 R	 co s t (a t + 6 Q ) I

R
Rs	 a cos at • dR

	

- fR	 R2
(	

2
e	 1 - 1 	f COS H at 

1/2

R

for ( 8 g , a t , Rs ) F E. The region E is given by:

E =-. {(8 g , a t , R^) a 3 at , (0, n!2) and Rs E (R,, A) and 8 a a [0, w/2 - at)),

For easy visualization this region is shown in Figure 6; it is a semi-infinite
prism, with a cross-section in the form of an isosceles right triangle. The

Figure 6-The Region E
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region E does not include the entire surface of the prism; it includes only the
interiors of the vertical and horizontal faces plus that part of the R e -axis for
which R > R . The base of the prism (i.e., the horizontal face) is just the
region D. Weewill denote the interiors of E and D by E and D, respectively. It
is clear from our previous results that the graph of the solution function
8 (at , R .) is a surface which lies in E for any E -function in F + which is not
identically

,
	zero. (If e = 0. the surface just becomes the region D itself, since

a 0 for all points of D in this case.) We could have defined the function F at
all points of the slab ( 0, 7r/2) x (R e , oD) x (- oo , co); but then F would be periodic in
8 g . Since we already know that the solution surface lies in the region E, there
is no point in complicating the problem by defining F over a larger domain.

We are now in a position to apply the implicit function theorem; we will
state this theorem as it applies to our particular case. Suppose the following
hypotheses are satisfied:

1. The partial derivatives a F/'3 8 g , aF/a a t, '3F/'6R, exist and are continu-
ous on the domain E.

O
2. There exists a point ( 8 0 9 ao , RO ) e E for which F (809 a o , R O) = 0.

3. a b I	 ^ 0.
g soIaoIRo

The theorem then states that there exists an open neighborhood W C D of the
Point (aO , R 0 ) e D and a unique function h: W R, such that:

1. h(aO,N)=80.

2, F(` .. t , R, ), a t , R$ ) = 0 for all points (a t , Rs ) a W.

3. a h a h exi st and are continuous on W.
Da t ' aRs

aF

ah	 a atI(h(atIRs).at.R$)

4.Ta t (a t , R,)	 2F
'38 9  I (at . Rs ), at , R,)
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and

_ aF I

ah	
aRS ( h (at , Rs) ,

at
, Rs )

aRsl(at,Rg)	 aF
aSg

l(h (a t IR z ), _.tIR,)

for all points (a t , Rs ) e W.

In other words the theorem states that, if we know a point (S o , ac , R o ) for which
the equation F (S g , a t , R s ) = 0 is satisfied, then this equation can be uniquely
solved for 8  in terms of a t and R S for all points (a t , RS ) sufficiently close to
(ao , Ro ). It is important to note that the theorem guarantees the existence of a
continuously differentiable and unique solution function only locally; even if hypo-
theses 2 and 3 are satisfied for every point in D, it does not follow that there
exists a global solution unique on D, although there exist locally unique solutions
about each point of D. However, we know from our previous work that, for each
point (a t , R s ) e D, there exists a unique S such that F (S , a t , R.) = 0. With
this additional information we can conclude that the solution function h, or 8 9
If(a t , R S ) ,is defined uniquely everywhere on D and has continuous partial deriva-
tives on D. It remains only to show that hypotheses 1 and 3 are satisfied. It is
easily seen that the three partial derivatives exist and are continuous on E; they
are given by the following formulas:

fRs

aF _ _ sin (at + Sg) 
a S g	 R

e

R3

aF V _ sin (at + Sg) • r
aat	 JRe

R
(1+E) a dR

R2

(R 2	 sit
1 - (1+ E) 2 l R	 cos t (at + Sg)

R
(1 + e) a dR

R2

^ 3!2

1 - (1 + E) 2 
(

R
R I

2 
COS 2 (at + Fg)

R

f	
R

R	 e dR

J	

R2
+ sin at 2

Re	

1— ^R ) COS
2 at

3i2
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Re
—cos at
R2

_	 g

1
 - (

R	 2	 1/2

	

Re
	 cos 2 at

R
(1 + E) ° dR

R2 -

1/2

	

[1 + E (Rs)] 
Re 

cos (a t + b )	 Re Cos at

a F	 R2	
g	 R2

	

R2	 s

a Rs	 R	 2	 1:' 2 R	 2	21/2

1 - [1 + E (RS ) ] 2	 e	
cos 2 (a t + 8 g )	 1 -	

e	
cos 2 at

	R S	 \ RS

It is clear from the formula for a F/aS g that this derivative is non-zero On fact,
it is negative) at all points of A. We are therefore assured that the solution
function 6 9 (a t , RS ), which we already know exists and is unique, has continuous
partial derivatives on B; by conclusion 4 of the theorem, these partials are given
by the following formulas:

^R s 

	dR

R	 2	 3;'2

-66	 sin at	 R° R2 1 - ^ R ^ cos 2 at

g=aa t 	1 + silt (at +
6 9 
	 Rs	

(32)

(1 + E) dR

	

f	
2	 3/2

Re R2 1 - (1 + E) 2 I R I Cos t (a t + Sg)

R
[1+ E (Rs )] —e cos (a t +Sg)

R2
S

fR 2

aS	
1 - [ 1 + E (RS ) ] 2 

I Re	
cos 2 (a t + Sg)

g	 \ s

aR
S

f 
R$

sin (at + og)	
JRe

(' R `\ 2	 1 3/2

1 _ (1 + E) 2 I R I cos 2 (at +8 9)

(33)

In these formulas, the value of 8  must be taken as 
8  

( a t , R S ), the actual solu-
tion value of S at the point ( at, R. ), in order to evaluate the partials at the
point (at , R S ) g Although we know that the solution for S exists and is unique,
we do not kow what 	 it is. In this sense the above formulas are incomplete; to
render them complete we would have to kiow the solution function. In spite of
this, we can still get some information fr. ,)m these formulas, if we use what we
know about the solution function.
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It should be pointed out that much more information is obtainable from the
implicit function theorem than we have stated above. For example, it is easy to
see that the function F is differentiable any number of times; i.e., the partial
derivatives of all orders exist and are continuous. The theorem (in its more
cum,.plete form) then allows us to conclude that the solution function 8 9 (a t , Rs)
has continuous partial derivatives of all orders. We will only use the first-order
paa.t Uals, however, because enough information is obtainable from them to get a
general idea of the behavior of the solution function and because the higher-order
partials are given by excessively complicated formulas.

We will examine the partial a8 9 /DR, first, since it turns out to be the easier
of the two to handle. If we look closely at the two terms in the numerator, we
notice that the first term differs from the second in only one way: the quantity
Q = U + E (Rs ) ] • cos (a t + 5 g ) appears in place of cos a t ; furthermore, the
first term increases monotonically with Q. It follows that the algebraic sign of
a6 9 / aRs is just the sign of Q - cos a t ; i.e.,

sign (M g 'aRs ) = sign { [1 + E (R.)] • Cos [a t + 8  (a t , Rs )] - cosat)

sign k,, 
c

From the upper bound for 8 g given by the inequality (30) it follows that

(1 + E m ) • COS (at + 8 g ) - COS at > 0;

from the definition of Em as the supre mum of E (R) on the interval ( R e , oo) and
from the continuity of E and 8 9 as functions of R S it follows that, for any given
value of at , there exists at least one point in (R, , co), and an open interval con-
taining that point, such that the function k(R, ) is positive in that interval. In
other words,

a8

DR 

g >0 for R. FR+,	 (34)
s

where f^ + is some open set ,;ontained in the interval (R e 1 00 ). (Note that the set
Q + depends on the angle a t .) We will now show that f2 + / (R e ,co). To see this,
we just recall that E (Re ) = 0; since S . > 0, it follows that kat (Rp ) < 0 for all
a t . It follows from the continuity of the k-function that k at (R s ) is negative in
some open neighborhood of the point R e, , and possibly on other open intervals
as well. In other wards,

a8

aR 
g< 0 f or RS ^: f2 - ,	 (35)
g
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where Q - is some open set containing a neighborhood of the point R e Intl con-
tained in (Re ,00 ); note that s2' depends on a t . From all this we see that, for
each a t e(0, Tr /2), the partial derivative 36 9 /^R. is sometimes positive and
sometimes negative, and therefore also sometimes zero. This behavior is
evident in the data shown in table 1; the table also indicates another property,
which is clear from Equation (33):

a6g
6Rg -' 0 e s !ZS -• ac

for any a t a (0, 7T /2) .

We now turn to the partial a S g / aa t . From values of obtained with the
computer program it is seen that, for the Sperry profile, Eg decreases monotoni-
cally with a t for any given value of R S (e.g., see Figure 5). Since there is noth-
ing very special about the Sperry profile, it seems reasonable to suppose that
this monotonicity might hold more generally. We will investigate this question.

It is evident from Equation (32) that a sufficient , _ not necessary) condition
for the derivative to be negative is that the ratio of the two integrals be less than
unity:

R2	 Ra

f	 (1 + E) dR	 f	 dR

JR 2	 3;' 2	 J	 / R 2	 3; 2

R° R 	 1 - ( 1 + e)z 
R 

J cos z (at + b g )	 Re R 	 1 - I R I cost at J

/	 R	 \	 /
e

R sin at

1	 1 _	 s	 (37)
Re sin at2

(R
1-I Re

)
Cos znt

^(at).

(Tho _ntegral was evaluated by using the substitution (R e /R) cos at = cos e.) We
can get rid of the unknown S and at the same time construct conditions which
imply (37) by replacing S g in (37) by any of its upper bounds. Our crudest and

e	 3
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simplest upper bound for a g is the one given by (28): 6  < 77 /2 - at . The cor-
responding condition is

f R s	 Rs	 .

	(1 + E) dR > f	 dR	 = d'(a t ).	 (38)
R	 R2	 R	 R 2	 3/2

e	 e R2 	1 -	 eCOS2 at
^R /

It is evident that (D is a monotonically decreasing function of a t . Further, (D(at)
becomes infinite as a t 0, and

R	 R

	

(D 7T 	 dR < f s ( 1 + e) dR

	

( i	 R R2	 R	 R2
e	 e

We conclude that, for any E -function in + , there exists a value of a t for each
value of R s , say a- (R. ), such that aS / Sa t < 0 in the interval (a- ( R. ), 77/2)
(and probably in a larger interval), wterea - (RS ) is the value of a t for which (38)
becomes an equality.

The value of a- given by Equation (38) would probably be close to 90 0 ; we
can get a smaller value of a- by using a sharper upper bound for S g . If we use
the bound B 2 given by Equation (30), we get the condition

IOR

 (1 + E) dR	 > (D(at)	 (39) 2	 R 2	 3/2
Re R2 1 _ (1 + E) 2

 (R 	
Cos t at

( 1 + Em)

We reach the same conclusion as before concerning the existence of a - , because
the left side of (39), evaluated at a t = 7r/2, is clearly greater than 0(7x/2). The
value of a- computed from (39) will in general be smaller than that computed
from (38).

More detailed results can be obtained, but they are probably not worth the
considerable effort required to find them. For example, after a very lengthy
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calculation (which will not be given here), the writer found that a- (R,) — 0 as
R 9 —co , however, all attempts to prove that (R s ) = 0 (i.e., that the derivative
3 

q 
/ 3a t e 0 for all at and all R S ) failed.

We will now go on to a different topic - the transformation of Equation (26) to
a form which is more convenient for numerical calculation.

•	 A Transformed Version of the Elevation Angle Error Equation

Earlier we wrote Equation (26) in the abbreviated form (27), by using the
functions gE P (3). It would be useful to know something about the derivatives
of these functions. We find by direct calculation that

R

	

f

gE (9)_- Re Sin (at +^?)	
(1 +F) dR

.P 

	

R 
1

2 	 312
Re 

R2	 1 — (1 + E)2	 e I COS 2 (a t + (^)

and	 ` R /

f

R

	

ge,P (Q) _ - Re cos (a t +a) 
	

s	
(1 + F) dR

R 2	 3!2
Re 

R2	 1 - (1 + e)2	
R 

I cos t (a t + ^)
L	 (

f R 
s

+ 3R  cos (a t + f3)	 sin e (at + `
Rp

R 2
	(1+e)3 

^R	
dR

R	 2	 5:^ 2

R 	 1 - (1 + =)2	 R / cos
t (a t +)

The first derivative is clearly negative, but the behavior of the second derivative
is not very clear. Higher derivatives will be even more complicated and diffi-
cult to analyze. It seems that the functions gE p (;3) show undesirably complex
behavior. Fortunately, it is possible to avoid this difficulty by making an appropri-
ate transformation of the dependent variable in Equation (26). To this end we de-
fine the functions

q)Q . [0, -7/2 - at) -•11, W)
t
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by

cOS2 a t

cos t (a t +)

for any value of a t in the interval ( 0, 7 j2). In terms of the variable , we can
define the functions

fE
P 	-
. (1, 00) 	 R

by

R
fR s	 (1 + E) —° dR

R2
fE, P 

M =	
z 

COS
2
 a 

t ]1/2

It is convenient also to change the variable of integration to p, where

R
p = R •	 (40)

If we define the function E (p) by

E (p ) = E (R) = E (R. /p),	 (41)

46



i

we can write the f-functions in the form

i

fe,P G) _	
d 

p
1 2

fS	 - p 2 cos 2 at
[71 + E)2

where ps = R e /R. . Clearly ps e (0, 1) .

We can now write Equation (26) in the form

	

fdp

	

fdp

	

 2	 2	 1 / 2 	 1 - P 2 costa ] 1/2
S	 — p cos at	 t

(1 + E)2

COS-1 (ps cos a t ) — at

cos at

Gr

fe,P(0 = f o ,P (1) ,

where fo P is the f-function corresponding to E (R) = 0 and

cos t at

cos t (at + 89)

We also write the inverse relation for reference:

cos at
S g = cos"^	 1 - at .

el 2 )

(42)

(43)

(44)

(45)

(46)
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To avoid confusion, it should be noted that Equation (45) defines r, not as a
function of o £ , but as a function of a t and R. (since S g depends on at and R s ).
However, from the fact that `D^t is a monotonically increasing function, it is
clear that any upper (or lower) bound for b g generates an upper (or lower) bound
for s , and vice versa. For example, the bounds for e, corresponding to the
bounds for b g given by (30), are

1 <f <(1 +E . ) z .	 (47)

These bounds can also be read off from Equation (43) by inspection, if we recall
that 'E" (p) > 0 for all p. (Note that this upper bound does not depend on a t .)

From (47) we conclude that the quantity E /(I + E (p)] 2 is less than unity
for some values of p and greater than unity for other values of p. To see this
we note first that, for any value of p for which ?(p) = 0 (e.g., for p = 1),

^	 =5 > 1.
L1 + E (p)^z	 1

Secondly, we note that for any value of p for which 2(p) = Em ,

s	 =	 y	 <1.
L1 + E (p)] 2 	(1 + E.)2

Of course it is also evident from Inspection of Equation (43) that this must be
so; if the above quantity were either always less than or always greater than
unity Equation (43) could not be satisfied.

Equation (43) is our new form for the elevation angle error equation. We
will now show that it has more convenient properties than does Equation (26). If
we look at the derivatives of the f-functions, we easily find that the n-th deriva-
tive is given by the simple formula

(48)
1

dp
r	 n+l/2

p^ (1 + E)2n	 — p 2 COS 2 R

(1 + E)2	
t

• (2n -1)

2n
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for n = 1, 2, 3, • • • • • • . This very clear formula contrasts sharply with the ob-
scure behavior of the derivatives of the g-functions. In particular, we note that
the first derivative is always negative and the second derivative is always posi-
tive. We will use this fact later, when we describe how to solve equation (43)
numerically by the Newton-Raphson method.

If we denote the integral on the right-hand side of Equation (48) by I ( 7 ),
where n = 0, 1, 2, 3, • • • , it is easy to see that for any E -function in' + .

•

C(
1 	

)2
^ - p2 CO S 2 a t ]

	

7? 0 for all a t a [0, 	2) ,

all r 4 [ 1, ,T)and all p ^ 1, with equality holding only for at = 0,
s- 1 and p =1;

• f,P (^) (= I0 Q))exists (i.e., is finite) for all *. [1, x),for any point p 	 ;

• I, (% and therefore also f (np (), exists (i.e., is finite) for all ^ F [ 1, a)
and for n = 1, 2, 3, ' • • , for any point pe ;

• I " (1), and therefore also f"n (1), where n = 1, 2, 3, ' ' ' , does not exist
(i.e., is infinite) for 2t = 0.

The first three properties follow directly from our previous results (see the dis-
cussion following Equation (26)). To see that the fourth property holds, we
proceed as follows:

1

In (1) -	
dp	

,+1^z

	

ti	 1f (1 + F)2n	 - 2 Cos 2 at
(1 + E)2

1
1	 p dp

(1 + Em )2n	 p f [1 — p 2 COS2 atI1 +1'2

_	 1	 r 1	 -	 1
( 1 + Em)2n COS 2 a t I Sin a t	12 at
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Clearly, the last expression becomes infinite as a t -- 0. The fact that the
derivatives become infinite (at ^ = 1) as a t — 0 causes difficulty in the numeri-
cal solution of Equation (43), for small values of a t .

it is clear that Equation (43) is equivalent to Equation (26), for all E -functions
in E + and for all points p ED; thus the solution of one of these equations can be
obtained directly from the solution of the other by using Equation (45) or Equa-
tion (46). From this point on we will use either Equation (43) or Equation (26),
-Yhiehever happens to be convenient at the time.

A Method for Solving the Transformed Equation Numerically

In terms of the f-funct ions (defined by Equation (42)), the transformed ele-
vation angle error equation is given by Equation (44); we will write that equation
in the simplified fora,

f(^)=f0	 (49)

for convenience. A plot of this equation will have the general appearance shown
in Figure 7.

trr.

Figure 7—Graph of Equation (49)
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t	 f^_1)-fo(
S n = Sn-1 +

(50)

f

Of the various methods available for solving such an equation, we will
describe only one: the Newton-Raphson method. The reason for this choice is
the fact that r (^ ) < 0 and f- Q ) > 0, for all CY e (1, oo); this guarantees that the
Newton-Raphson process will converge monotonically upwards to the solution
value f , provided that the starting point is smaller than e. We will now describe
the process in detail.

The Newton-Raphson method uses a succession of approximating tangents to
the curve y = f(Q. The first step is to pass a tangent line through the point
(60 , f(60)), where 60 < ; the equation of this line is

Y = f ` (eo) . (^ - eo) + f (eo)

The value of ^ for which this line crosses the horizontal line y = fo gives us the
first iterate, ^1 ; ,re calculate 61 by setting the above expression equal to f,^
and solving for t. The result ib

f (^o ) - f o
1	 o +

- f ` (fo)

To get the second iterate, ^z , we pass a tangent line through the point { 1 , f (;1))
and calculate its intersection with the line y = fo ; we find that

f(61)-fo

	

62 = !f1 +	 _

- ' %'S11

Clearly we have the general recut Fjive relation

- f. (' Ĉn -1)

for n = 1, 2, 3, - • .

To start the computation we need a value for eo which is less than the true
solution 6. The simplest choice is to take eo = 1; this will always work in
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principle, except when a t = 0. In practice, computational difficulties will arise
even when a t is just close to zero, because of the boundless growth (as a t - 0)
of C(l) and of the integrand of f(1) at p = 1. Somewhat better results can be
obtained by taking o to be a lower bound for ^f, other than unity. For example
the computer program (which will be described in a companion report) takes 60
to be the lower bound for corresponding to the lower bound for e g given by
(31).

The iterative process is stopped when some convergence criterion is satis-
fied. Instead of putting a condition on the iterates Sn , the computer program puts
a condition directly on the corresponding values of 8 g , which we will denote by 8n
because a g is the quantity we are really interested in. The criterion used is
that the relative error (8 n + 1 — e n) /b n + ; ue less than a preset value; when this
condition is first satisfied the iterative process stops.

In general, the Newton-Raphson method converges rapidly after the iterates
get close to the true solution. But during the first few iterations some other
process, such as the secant method, may be more efficient, and it may be ad-
vantageous to use such a method to start the computation. In our case, however,
the iterates converge monotonically upwards toward Vie solution, and it seetr:a
simpler to start _fight off with the Newton-Raphson meti^od (which is what is none
in the computer program).

To complete this discussion of the numerical solution of Equation (49) we will
prove by induction that the iterates	 do in fact converge monotonically upward
to the solution r , and we will show that a sufficient condition for this to happen
is that V(t) < 0 and f" (^) > 0 for all ^ .

Suppose then that s 
n 

^ 1 < s , and let s 
n 

be given by Equation (50). If we
could prove that

then fie could conclude that the sequence (fin ) is monotonically increasing and is
bounded above by 6. (The induction is started by nrAing that 60 < e, so that the
premise is in fact true for n = 1.) To prove the first inequality in (51) we use
the fact that f() is monotonically decreasing. From our premise that fn- 1 <
it then follows that f( n_ 1 ) > f(sl^) _	 With this result we can conclude directly
from Equation (50) that en > 6, _ 1, if we also use the fact that f'(e n -1) < 0. To
prove the second inequality in (51} we use Taylor's Theorem to write

(51)
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f (gin ) = f (en_1) + C (S„_ 1 ) (^q —s ue^ 1) + 2 fu (5 ^)	 (Sn — ^n_1)2

where _ 1 <' < }n . If we use Equation (50) to replace the first two terms on
the right by fo we obtain the relation

It follows that f(^n ) > fo = f(^), because f'(; `) > 0. From the monotonicity of
f(^) we conclude that ^n < f , which proves (51).

There is one last thing to prove - we must show that en - ^ . We have just
shown that the sequence (en ) is monotonically increasing and is bounded above
by s ; the sequence must therefore converge to some number °	 To show
that e° _ we observe that, since (en ) is convergent, (;n - 6,- 1) — 0. F: om
Equation (50) we then conclude that f(' -- fo . Since it is clear that the inverse
function f - 1 (which exists by virtue of the monotonicity of f) is continuous, we
conclude that n f'1(fo)

Some General Formulas Giving Approximate Solutions to
_	 the Elevation Angle Error Equation

General Form - We approach the problem of finding approximate solutions
in the following way. First we obtain, by any means available, an approximation
to the solution of Equation (43) in the form

e ti 1 + Z^ ,	 (52)

where 0 < p << 1. The fact that A is small follows from the bound given by (47)
for 6, namely e < (1 + E m Q ; since Em will be small (of the order of 5 x 10' 3 ) for
a realistic refractivity profile, we see that

0 ~^- 1 <2E m .}Em« 1
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Next we write the corresponding approximation for S. by using Equation (46):

cos a
b	 cos' 1 	t	 - a	 (53)

If at is not close to zero we can simplify this formula by using a differential
approximation. We regard the expression on the right as a function of A, say
A(A), and consider a, as a parameter, ignoring the fact that A actually depends
on a t . By using Taylor's theorem we can write

A (A) = A ( 0) + A' ( 7]) • A

12 cos at

LOS  a	 (	 x)3/21 -	 t

	

1 + 	 1 +
^

where 0 < 71 < II. If a t is not too small we can neglect 77 without affecting the
last expression too much, because 71 is small; in that case we may write

1 cos ats g -	 •v.
2 sin at

We can get some feeling for the range of validity of this approximation by writing

cos t a
1 -	

t ti 
	 7]) cos t at = s in 2 at + 77 cos t at

1 + 77

so that
1

A(	
cos a t 	 O

	

^
)^ 2 sin at	

1+77COt2at .

(54)
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The neglect of 77 will be justified if 7) cot2 a t << 1; in this case we can write

1 cos a t
A(1

^
)	 2 • sina . Cl - 12

'7cot 2 a t I d.

c

From this expression we see that Equation (54) will be accurate to about 10 1/',,o or
better if we have 1/2 71 cot2 a t < 0.1. From the comments following (52) we see
that this last condition will be satisfied if E m cote a t < 0.1. Since E m '! 5 x 10 - 3

for a realistic refractivity profile, the condition becomes tan a t > 3" 5 • 10 -', or
roughly a t > 12 0 . In other words, the value of 5. given by Equation (54) will
differ from that given by Equation (53) by no more than 10% or so, for a t > 12 0 .

Before we go on to obtain explicit expressions for A, some comments should
be made about the problem of determining the accuracy of the corresponding
formulas for S.. When the various formulas were first derived, error terms
were included and attempts were made to use them to evaluate the accuracy of
the formulas. This approach turned out to be intractable. The trouble is that
the error terms are quite complex, involving complicated definite integrals.
Attempts to simplify them by using estimates or bounds invariably result in ex-
pressions which give far too crude an estimate of the error. The original error
terms could of course be evaluated aumerically, but it is simpler and more
direct just to compare the approximate formulas with accurate numerical solu-
tions of the elevation angle error equation, and this is the course we will follow.

First Newton-Raphson Iterate — Perhaps the most obvious candidate for an
approximate general formula is the first iterate in the Newton-Raphson numeri-
cal solution scheme which was described earlier. If we take ^ O = 1, it is seen
from Equation (50) that the first iterate is given by

^1 =1 + f (1)-f°- f (1)

i
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in other words,

f(!) -fo
G-

- V (1)

	

f

1

	

	 (1 + E) d p	 1	 d p	 (55)

	

S
+ E) 2 p 2Costa ]1/2 	 [1p2 Cost a ]l/Z
 t	 P,	 t	 .

1	

dp

2 

f l

 ^E-)
 2	 1	 2	 2	 3/2

: (1 + 	 - p cos a

	

(1 + E)2	
t^

It is not practicable to go further than the first iterate; higher iterates would in-
volve integrals within integrals.

A Differential Approximation — Aside from using the first Newton-Raphson
iterate (or the first iterates in other numerical schemes), the most obvious way
of obtaining approximate formulas is to use differential approximations. To
proceed in a systematic way, we use the notation of Equation (49):

fi

	

f J
d p	 ii 2	 (56)

P +	 - - P2 COs' at1
(
1+ E ) 2	 J

We also consider the integrand as a function of ; :

1
r (5) =	 i iz	 (57)

p 2 Cos t at 1
(1 + E)2	 J
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The elevation angle error equation can then be written as

.

(' 1

	

f M	 J r (e) dp= fo.
P^

The various posPibilities for differential approximations are now apparent.
The most obvious are the first-order Taylor expansions of f(f) and r(f) about
the point e = 1:

f(e)tif(1)+f'(1)	 1)

and

r (f) ~ r ( 1 ) + r' ( 1 ) ' (f- 1).

It is easy to see that if either of these expressions is put into Equation (58) and
the resulting equation is solved for 6: ,  we just get back the first Newton-Raphson
iterate. (It is also geometrically obvious that this is trr.e.)

Another possibility is to write y =e /(1 +^E- ?  , and to regard r as a function
of y, ignoring the fact that y actually depends on p. Since we know (from the
bounds for given by (47)) that y is close to unity, we can expand r to the first
order in y about the point y = 1; it follows that

	

p2 Cos2 at )1/2	 2	 (1 - p 2 Cost at)3/2

If we put this expression for r(f) into Equation (58) and solve for A(~ 	 1), we
obtain

	

1	
d

	

f	 P
P2 cOS2 at ]3/Z

dp

p^ (1 + E) 2 [ 1 - p2 Cost at ] 
3/ 2

(58)

©- -1.	 (59)
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It is interesting to note that this is precisely the lower bound given by (31). The
smallness of A can be better displayed by writing the expression as a simple
fraction:

E ^ E2	 s
f i

 (1 + E) 2 [1 - p 2 COS 2 at]3/2

fi
J

1	
d p

a$ ^i +c7 2 [1- p2COS2 at]3/2

Another Differential Approximation — We can obtain yet another approximate
formula by regarding r as a function of the two variables ^ and E, ignoring the
fact that F depends on p. Since is close to unity and E is small, we can expand
r to the first order in 5 and E about the point e = 1, E = 0; it follows that

L=

r (C,-	 1	 -
[1 - p 2 COS 2 at]1/2

2 (^-1)

(1 - p 2 COS2 at]3/2

IN,
E

(1 - p f Cos2 a t]3/2

This approximation should be fairly accurate (for all p ) if a t is not close to
zero (if at = 0 and p = 1, the square root vanishes). If we put this expression
for r(f ) into Equation (58) and solve for A( '-:' ;- 1), we obtain

	

2 ^	 E dp

(1 - 2 COS2 a ]3/2

t	 (60)
i

	

f	 dp

p^ (1 - p2 COS 2 at)3/2

2 sin at

p. sin at
1 -

3 1 - p.2 COS2 at

1	 ^, dfP. [1 - p 2 CO5 2 at]3/2
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cos at	 t
SQ	

ps sirs at	
J1 -	 p,

cos' at_

Edp	 (61)[l - p ' Cost at]312

where the integral was evaluated by using the substitution p cos at = cos 0.

Note that this formula is not valid if a t is close to zero. In fact, for a t = 0
formula (60) gives d = 0. We know that this is wrong, because it implies that
^ = 1 for a t = 0, which is impossible by virtue of the inequality (47).

A Simple Formula for the Elevation Angle Error — Any one of the three ex-
pressions for L given by Equations (55, (59) or (60) could be used together with
Equation (53) or Equation (54) to obtain an approximate formula for S.. It is
evident, however, that the simplest of the three expressions for Z^ is given by
Equation (60). Further, the other twoexpressions ford can be reduced to it by
using approximations based on the smallness of E (p). Fo: these reasons it
would seem that this formula might be the best one to use. If we combine it with
Equation (54) the factors sin a t cancel each other and we obtain the follo-tying
formula for S. :

In spite of the fact that neither Equation (60) nor Equati: ►n (54) is valid for
at close to zero, numerical comparisons with the correct solution show that the
formula given by (61) is remarkably accurate down to small angles. (This is
probably due in part to the fact that the sin at factors cancelled out.) Table 2
shows the percentage error of formula (61) for various elevation angles, for the
Sperry profile and for an altitude of 1,000 kilometers and a signal frequency of
140 megahertz. The % nrror is defined by

value of S computed from (61) -correct value of S
% error = 

	

	 x 180.
correct value of Sa

The data in table 2 show that formula. (61) gives slightly high values for S , at
cast for this particular case. The formula is seen to be accurat-a to wiUJn 1%

do-^n to elevation angles of less than 10°; even for a t = 1 0 , it is only 8%G too
high. This accuracy is considerably better than one might have expected from
the way in which the formula was derived.
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Table 2
Accuracy of the Formula for S

Elevation Angle
(degrees) Error 

89 0.05

87 0.05

85 0.05
80 0.05

75 0.05

70 0.05
65 0.05
60 0.05
55 3.05
50 0.05
45 0.05
40 0.05
35 0.05
30 0.05
25 0.06
20 0.09

15 0.2

10 0.4
5 2.
4 2.
3 3.
2 5.
1 8.

Numerical tests were aloe run on formulary for S obtained by using the
other two formulas for L . The results show slightly greater accuracy, but not
enough (in the writer's opinion) to compensate for the greater complexity of
those formulas.

Before closing this section, we should show that the integral in formula (61)
always exists. We use the fut that a (R) a F% so that E (R) _< (1 -a) (R - R!)/
R. for all R ? R; , by the condition (25). In terms of the variable p = R 	 thit/R s
condition becomes E (p) ! (1 -a) (1/p - 1), for all p < 1. We use this condition
to obtain a bound for the integral:
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i	
E 

dp	 <0-0)

(1 - P 2  cos t at]3/2

1 0-1 dp
P

fs

 (1 —p2]3/2

for all a t a (0, 7T/2 I

= ( i - 0')
dp

fp. p ( 1 —p)1/2 (1 + p)3/2

i
<	 (1 -Q)	 dp

ps (1 + ps)3^2 f
S ( 1 — p)

1f2

ps)U2

- —ps (1 + ps)31 2

< ae .

That is, the integral is finite.

Some Comments on Methods of Finding Approximate
Solutions for Particular Cases

In the preceding section we were concerned with finding general formulas
which are approximate solutions of the elevation angle error equation. In this
section we will comment on the problem of finding simple approximate solutions
for specific refractivity profiles, with the aim of finding ways of minimizing the
amount of computation needed to find S g . Two possible approaches to this prob-
lem will be described briefly.

Numerical Approach — The basic idea is to solve the elevation angle error
equation for various values of a t and Rs (for some given signal frequency or
frequency band) and then to fit curves to the computed points. Since S. varies
less with R. than with a t , it would probably be feasible to obtain a number of
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simple formulas for b in terms of a t , for various values of R S . It might also
be feasible to fit a surface (i.e., a function of two variables) to the computed
points. In either case, the aim would be to obtain simple, easily evaluated
formulas for 59.

Analytic Approach — The idea here is to develop simple formulas for b
by using approximations for the integrals in general formulas such as formula
(61). For example, one might use the trapezoid rule, or Simpson's rule, to
evaluate the definite integral in formula (61). Alternatively, any one of the
functions E (p), E (R) or n(R) might be approximated by straight-line segments
or by parabolic arcs (the approximation of n(R) by straight-line segments vmuld
amount to assuming a spherically stratified atmosphere). In any case, the re-
sulting expression for b g would have the form of a sum of easily evaluated
terms. If the number of terms in such a formula is too large for eaav calcula-
tion, it might be feasible to approximate the refractivity profile (or zhe E -func-
tion) by expressions which are more complex than straight-line segments or
parabolic arcs, but which are still simple enough so that the resulting integrals
can be evaluated. In this way a formula might be developed which has a smaller
number of terms.

A word of caution is in order here. Before replacing the refractivity profiia
by simpler functions, one should make sure that the corresponding approximate
E -function is non-negative and satisfies condition (25). It is not hard to see that
the various integrals will exist for any piece-wise continuous E -function which
has these properties. (For example, the proof which was given for the existence
of the integral in formula (61) applies to any E -function which has these two
properties, even if it is not continuous.) It follows that these integrals can be
approximated by using such an approximate E -function, even though the laws of
geometric optics, and therefore our entire derivation, do not strictly hold (for
radio waves in the ionosphere) if the refractivity profile is discontinuous.

Quantities Related to the Arrival Angle

There are two quantities related to the arrival angle which are widely used:
the arrival angle at the satellite and the total bending angle.

The Arrival Angle at the Satellite — This angle can easily be computed by
using the spherical form of Snell's law, as given by Equation (13). To carry out
the calculation we refer to Figure 8, which should be compared with Figure 1.
In Figure 8 the vector ss is a unit vector tangent to the ray path at the satellite
and all angles are taken positive in the directions indicated. We want to compute
the angle a s between the slant path and the vector s$ . In general it seems that

5 s may be either positive or negative, but in either case we have 8 s = y + b s .
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Ss

Figure 8—Diagram for the Calculation of S.

Recall also that, for any refractivity profile in the class 8, 0 <6S < 7T/2  (see the
section entitled "Some General Properties of Ray Paths"); this fact is essential
for the following derivation.

From equation (13) it follows that

n e Rs sin 8s = ng Re cos (at + S g ) ,
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where n s is the value of the index of refraction n at the satellite. If we solve
this equation for S s (= 88 - y) we obtain

n R
S Q = sin-1	

6 
e COS (at + s g ) — y ,	 .

n.s s

where the are sine, which is the angle 0 . , is taken in the first quadrant. We can
find the angle y by using the law of sines; we see that

sin y _cos at
R	 R
e	 s

or

y = sin -1 Re • cos 
at)s

where the arc sine is again taken in the first quadrant, since it is clear that
0 < y < 77 /2. We thus obtain the following formula for 8S :

S S = sin-' n  R • cos (at + S g ) - sin - ' ^ Re cos a t	 (62)

	

s s	 s

where both arc sines are taken in the first quadrant. Since S g depends on the
satellite position and on the refractivity profile, we see that formula (62) gives
S S in terms of those same quantities. Note that S S - 0 as R S C^.

The Total Bending Angle - The total bending angle can be defined as the
angle through which the vector sg must be rotated to coincide with the vector
ss , with the angle taken positive in the clockwise direction. If we denote the
total bending angle by QS , it is easy to see from Figure 8 that

	

+6S -6	 }g

_ [7r-Y-(77/2+at)) +(y+Ss)-Qr/2-at-Sg),
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or

f3s -- g + ^ s	 (63)

Note that QS 8 g as R . x

A Formula for the Total Bending Angle in Terms of Satellite Altitude and
the Arrival Angle — Equations (62) and (63) give 8S and 8. in terms of R S (= Re
plus the satellite altitude), the arrival angle as (= at + b 9 ) and the true eleva-
tion angle a t . It is of some interest that we can derive a formula for 8 S which
depends only on R S and a.. If as could be accurately measured such a formula
would be very useful, since 8^ ti %3S for very distant satellites. Unfortunately
angular quantities cannot be measured very precisely by radar equipment, so the
formula would be useful mainly for visual observations. In fact the formula we
will derive will be specialized (in the next section) to the classical astronomical
formula for tropospheric bending. In contrast to the case for `3 . , it does not seem
possible to obtain formulas for 8 9 or S S which depend only on R S and as .

To derive the formula we first define the partial bending angle ^3 at a given
point along the ray path to be the angle through which the vector ; 9 must be ro-
tated to coincide with the vectors at the given point (see Equation (11) for the
definition of —S), with the angle taken positive in the clockwise direction. If the
given point is at the satellite positioAi, then of course ii is just ^3S . From Figure
1 we see that

Q = (4; + 0) - 69

From our analysis of the ray paths we know that R is a strictly monotonically
increasing function of - i, for a given ray path. It follows that the angles 8, ^
and 8 are (single-valued) functions of R, for a given ray path. We know also
that the ray path is differentiable; this can be seen from Equation (20), if we
recall that any a -function in the class F is differentiable and therefore continu-
ous. It follows that,8, of and 0 are differentiable functions of R. We may there-
fore differentiate the above equation with respect to R:

d,8 = cl 'b d 9

dR dR + dR
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We can obtain an expression for d0/dR by differentiating Equation (13):

d9	
ng Re cos as ^R 

dR 
+n

dR	
n z 	2	 1 ^z

n2 RZ 1
	 1 n 	R)/

 (Re	cos2 ae

If we insert this into the above equation for d,3/dR together with the expression
for d4j/dR given by Equation (19) some terms cancel out and we obtain the
simple formula

- n R cos a
d ,8	

g e	 e
dR

dR / n 2 ( Re 2 	 1/2
 )n2 R 1 - ` n 	•cos2 ae

(In using Equation (19) recall that 1 + e = n /n.) This formula gives d,8/dR ex-
plicitly as a function of R, since we assume that the function n(R) is known. If
we integrate it from R e to R S we obtain our formula for /Jg :

R3	 do 
dR

t3$ = - ng Re cos ae •	 dR	 (64)

n	 2 R 2	
1/2

R° n 2 R 1 -- n	 ( R cos 2 as

This formula depends explicitly on R . and a. 3 , but not on a t . It is valid for
any profile n(R) whose corresponding a -function is in the class E, for all
R > R and for 0 < a , < 77/2. For distant satellites the formula can be slightly
simplified by noting that do/dR = 0 above the sensible atmosphere. If we denote
the value of R at the altitude where the atmosphere may be considered to end by
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do dR

dR

n	 2	 R	 2	 1'2

n z R 1- ^n I	 R I cost aA I

fR T
ti= - ng R. COs as • 

Re

(65)

RT , then we may w w,ite to/dR = 0 for R > R T . If the satellite is extremely dis-
tant, 8  , ^3, and we may then write

This formula depends explicitly only on the arrival angle u . . It is valid for all
a8 and for all sufficiently large values of R . . If ae could be accurately measured
this formula would be a very useful and accurate approximation for S g , for large
satellite distances. (We could replace a s by at and use the resulting expression
as an approximation for b g , but it probably would not be very accurate except for
large elevation angles.) Since as cannot be measured accurately for radar waves,
however, formula (65) is useful mainly for visual observations. In this case it
can be written in a modified form.

The Classical Formula for the Tropospheric Bending Angle — For visible
light the ionospheric bending is completely negligible, because of the inverse
dependence of the refractivity on frequency (see Equation (9)), and we need only
consider the effect of the troposphere. We may assume that the tropospheric
refractivity decreases monotonically with altitude, if we disregard local effects
such as temperature inversions. In other words, we may assume that n(R) is a
strictly monotonically decreasing function of R throughout the troposphere (see
Equation (2) and the subsequent discussion). (It follows that R is a (single-
valued) function of n, and that R(n) also decreases strictly monotonically.) We
may therefore use n as the variable of integration in Equation (65); the equation
then takes the form

g
8 g ti,8, = n  Re cos as	

fn	
do	 (66)

1 	 z R z	 iia
n2 R 1- 

(

n
ng

^ C R I cos t ae

We have used the facts that n(R e ) = ng and n(R T ) ti 1, where RT is taken to be
the top of the troposphere. Equation (66) is the classical astronomical formula
for the atmospheric bending of visible light. It is valid for 0 ^ a s ^ 7T/2. For
astronomical objects R9 is of course extremely large, so that (66) is a very
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accurate formula for the elevation angle error b g . A simple derivation of this
formula is given in Reference 3 (pages 62-65). Note that an accurate measure-
ment of t o is all that is needed to compute 6 , assuming that the refractivity
profile is known. In practice, of course, the integral is approximated to obtain
siYn,. a formulas valid for objects not too close to the horizon; for objects near
the horizon, empirical tables are used (see Reference 3 for a discussion of
these approximations).
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APPENDIX

THE SPERRY REFRACTIVITY PROFILE

•	 The refractivity profile described in this appendix is referred to in this
report as the "Sperry profile" because it was used in a report written by the
Sperry Gyroscope Co. The profile assumes an exponentially decreasing tropo-
spheric refractivity and a nearly parabolic shape for the Fz layer of the iono-
sphere. The D and E layers of the ionosphere are neglected. The profile and
the a -function corresponding to it are merely piecewise continuous, but the
e-function satisfies condition (16) and can therefore be used in the various
integrals with assurance that they will exist.

Recall that the refractivity N is defined by

N = (n - 1) x 106 ,

where n is the index of refraction. The tropospheric profile is assumed to be
exponentially decreasing:

N = No e - h/H,	 (Al.)

where No (the refractivity at the earth's surface) = 313, h = height (in kilometers)
above the earth's surface and H (scale height) = 7 kilometers.

The ionospheric (phase) refractivity is assumed to be given by the formula

N=_4.03x 10-5 1 ,
f2

where f is the signal frequency in megahertz and M is the number of electrons
per cubic motor. Except for the units used for f, Equation (A2) is identical with

(M)
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Equation (9). Equation (A2) is considered to be valid for f > f r ,. i t i Ca I = 8.97 x
10 -6 M2'

ax 
megahertz, where M

ax is the maximum electron density in the F2

layer, in electrons per cubic rnatcr. if we take 10 1 electrons/meter 3 as the
largest likely value for M,,, ax we obtain 8.97 megahertz for f ef ; t ;,  , which is
well below any radar or even VHF frequencies.

The electron density M is assumed to be given by

14i = Mmax [1 - (1 - Y) 2 ]	 for 0 <	 l	 (A3)

and by

M = Mmax sech 1-7'4 - ( Y - 1)]	 for ti > 1 ,	 (A41

where

	

h--ho	 (R - Re ) - ho

	

hm .. ho	 hm - 
ho

N = height of the base of the F 2 layer and hm = height of the maximum electron
density in the F 2 layer. Note that

sech x-	 1	 -	
2	 2 e x

cosh x ex + e -x	 1 + e- 2x

the next to the last form is probably the most convenient for numerical calcu-
lation, while the last form clearly shows the decreasing exponential behavior
of sech x for large x.

The Sperry profile can now be precisely given as follows:

• For 0 < h _< 40 kilometers, (A 1) holds;

• For 40 km < h <_ ho, N = 0;

• For h o < h _< hm , (A3) holds;

• For h, <_ h <_ 2,000 km, (A4) holds;

• For h > 2,000 km, N = 0.
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Note that the ionospheric (i.e., F z -layer) N-profile is parabolic below h . ; above
hm it is nearly parabolic, but trails off to an exponential shape at great heights.
Note also that the tropospheric profile is fixed, while the ionospheric profile de-
pends (for a given frequency) on three parameters: h ° , h and Mm®x .fn

If, instead of N, we work with E , which we recall is defined by the relation

n	 1+10- 1N
e =	 a -1=	 ° _1,

n	 1+10-6N

it is clear that the E -funct± on corresponding to the Sperry N-profile is defined
as follows:

• For Re s R < (Re + 40) kilometers,

1+10-6N

1 + 10-6 No 
e ( it - R, ) / H

• For (Re + 40) km :S R < R + h°,

°(R)=10-6 N°;

• For R e + h° < R < Re +

1+10-6N

1-4.03x 10-11lk.. (1-(1- y)^l
f2

• For R e + h < R < (R^ + 2,000) km,

1+10-6N

1 - 4.03 x IT M' sech (77'4 ( y - 1)]
f2

72



• For R > (Re + 2,000) km,

E(R) = 10-6 No .

The corresponding function E(p) is easily obtained by using the transformation
P= R, /R. We note that the function E (R) is piecewise continuously differen-

tiable, but that it is discontinuous at R = Re + 40 and R = R e + 2,000. In other
words, it is discontinuous at the top of the troposphere and at the top of the
ionosphere. These discontinuities cause no difficulty, however, because E (R)
is clearly always positive (except that a (R^ ) = 0), and we will show that it satis-
fies condition (25). It is not hard to see that there must therefore exist functions
arbitrarily close to E (R), but continuously differentiable everywhere, so that they
are in the class F + . Our entire analysis is valid for any of these functions, and
the Sperrye -function may be regarded as a simple approximation to any of them.
All of the definite integrals in the various equations and formulas are therefore
guaranteed to exist if the Sperry profile is used.

It remains only to show that E (R) satisfies condition (25). To show that
E (R) is bounded is easy; we just note that the maximum value of E (R) occurs

at R = R e + hm , at which point y = 1, and therefore

1 + 10- 6 No
E (R) ^ E (Re + hm) _

	

	 - I
1 - 4.03 x 10- 11 max

f2

for all R. Further, if we assume that 100 megahertz is the smallest frequency
likely to be used (corresponding to VHF frequencies), and if we assume 1012
electrons/M 3 as the largest value of M

ax , 
we get the bound

B = 
L

E (Re + h.) ]max = -1 + 
1 + 0.000

1 - 0.0040
0

3 
3	 0.00436,

which holds for any realistic profile and for any signal frequency in the VHF
band or higher.

To show that a (R) -< (1 -a) (R - R. )/R, for some L-e (0,1) is more trouble-
some, but still not difficult. We must first look at the tropospheric profile. For
R e sR < (Re + 40) km we have
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E(R) = 1+a-1,1 + aE

d 	 -a(l+a).%
f. R	 X1(1 + ar)2

and

d2E	 _ all + a)E (1 - aE)
d R 2	 H2 (1+ aE)3

where we have written E = exp [ -(R - Re )/H ] and a = 16-6 No for brevity.
SinceE :^ 1 for R 2 Re ,we have 1-aE > 1-a=1-10 -6 x313> 0; thus the
second derivative is negative, and of course the first derivative is positive. It
follows that the maximum slope of E (R) occurs at R = Re , so that we may
write

	

dE	 aRe	 (R - Re)

	

E (R) < dR	 (R - Re) H(1+a)	 Re
R=R e

(R - Re)

	

^_•(1-0.715)	
F

e

L(Z) ,

n :	 t

where we have used the value R e = 6,378 km. This shows that the required con-
dition is satisfied by the tropospheric profile, with the value Q = 0.715.

Next we look at the region between the top of the troposphere and the bottom
of the ionosphere. We find that

We + 40) 0.00179 > E (Re + 40) = 0.000313;

thus the E-function is bounded above by L(R) throughout this region, and the
same is obviously also true of the region above the top of the ionosphere.
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Finally we will show that E (R) < L(R) throughout the part of the ionosphere
below the F2 maximum; the same will then be true of the rest of the ionosphere,
because E (R) decreases above the F2 maximum. For R e + ho _< R <_ R e + hm
we find that

E (R) _	 l+ a 	 -1
1-b[i-(1-y)2]

dE	 2b(1 + a)(1 - y)
dy	 f1-b[1-(1- y)2]}2

and

d2E	 2b (1 + a) [- 1 + b + 3b(1 - y)2]

dye	(1 - b[1 - ( 1 - y) 2 ] 13

where we have written a = 1076 No and b = 4.03 x 10-11 Mmax /f2 for brevity. If
we again take 1012 electrons/M3 and 100 megahertz as limiting values for Mmax
and f, respectively, we find that the largest possible value of b is given by b	 =
4.03 x 10-11 x 1012 /104 = 0.00403. It follows that [-1 + b + 3b (1 - y) 2] <- max +
4bmax < 0, so that the second derivative is negative. Of more interest for our
present purpose is the fact that the first derivative is positive. (Recall that
0 -< y _< 1 in the portion of the ionosphere below the F2 maximum). It follows that
it would be sufficient (but not necessary) to show that E (Re + h m ) < L (Re + ho).
This condition will be satisfied if (1 +a)/(1- bmax) - 1 < 0.285 h o/R (recall
that y = 1 for R = R e + hm); i.e., if h o > 98 kilometers. Since the F2 layer is
usually considered to begin at the considerably higher altitude of about 140
kilometers (see for example Reference 9), we may safely conclude that the
linear function L(R) is in fact a majorant for the Sperry profile, for any real-
istic values of the parameters h o , hm and Mmax .

In the computer program, which will be described in a companion report,
there is a subroutine which numerically tests the E-function to determine whether
it satisfies condition (25). The Sperry profile was tested by this routine and
was found to satisfy the condition for arbitrarily chosen, but realistic, values of
the parameters ho , hm and Mmax . Several sets of values for these parameters
were used in the computer runs, but representative values, used for most of the
runs, are: ho = 240 km, h m = 300 km and Mmax - 5.2 x 10 11 electrons per
cubic meter.
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