ANALYTIC DETERMINATION OF CAMERA OPERABILITY STATUS CONSIDERING DYNAMIC SOLAR CONFLICT FOR THE RADIO ASTRONOMY EXPLORER SATELLITE

by Harvey Walden

Goddard Space Flight Center
Greenbelt, Md.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1970
16. Abstract
An analytic method is formulated capable of predicting times unsuitable for useful vidicon camera operation for the Radio Astronomy Explorer satellite due to solar inclusion within the cameras' conical fields of view. The vidicons, mounted within the central hub of the gravity-gradient-stabilized spacecraft, measure the 750-foot cruciform antenna boom tip positions. A computational algorithm is developed which calculates, for each time point, the angle between the sun line referenced to the spacecraft hub center and the camera field of view axis for each of the two upper boom vidicons directed toward the galactic sphere. The analysis leading to the prediction of the camera operability status includes the effects of the skewed libration damper rod but does not consider possible dynamic attitude coupling with antenna boom flexural deformations. Numerical results from the computational algorithm show that the sun line-camera axis angles display regular oscillatory variations with approximately the same period as that of the satellite orbital anomalous period. Over the course of many orbital periods, the camera operability constant-status time intervals change markedly due to the slowly-varying shift in the sun line orientation relative to the satellite orbital plane.
ANALYTIC DETERMINATION OF CAMERA OPERABILITY STATUS
CONSIDERING DYNAMIC SOLAR CONFLICT
FOR THE RADIO ASTRONOMY EXPLORER SATELLITE

by
Harvey Walden
Goddard Space Flight Center

STATEMENT OF THE PROBLEM

Measurements of antenna boom tip positions for the Radio Astronomy Explorer (RAE-A) satellite are obtained from photographs taken by cameras mounted within the rigid central core (the "hub") of the spacecraft. Because of their great length and flexibility, the 750-foot antenna booms are deflected from their unperturbed positions by various disturbing forces such as solar pressure, thermal bending, and spacecraft hub libration. The boom tip positions as a function of time are of interest in determining the shape and pointing direction of the Vee-antenna patterns to enable reduction of the experimental radio astronomy data received by the directive antennas. The magnitude, direction, and frequency of the boom tip deflections about the unperturbed positions are also important for dynamics studies. In order to take usable photographs of the boom tip positions, commands from earth-based tracking stations to operate the camera shutters must be transmitted at times when the appropriate camera's field of view does not include the sun. The cameras are protected by a sun-sensing device which inhibits opening of the shutters when the sun is included in the field of view. This feature prevents the camera from suffering a solar burn and possible permanent damage to the optical sensitivity of the system. The purpose of this paper is to determine the analytical dynamic conditions necessary for inclusion of the sun within a camera field of view so that predictions of times unsuitable for useful camera operation may be made.

SPACECRAFT CONFIGURATION

The scientific objective of the RAE-A satellite (Reference 1) is to investigate and measure low frequency radio emissions from solar, galactic, and extragalactic sources as a function of intensity, frequency, source direction, and time. The satellite is meant to provide (at frequencies normally below those intercepted by the earth's ionosphere) the first radio signal map of our galaxy.

The RAE-A satellite (also designated Explorer 38), managed by the NASA Goddard Space Flight Center, was launched from the Western Test Range on July 4, 1968 and is expected to have a minimum
operational lifetime of one year. The satellite has assumed a near-circular (eccentricity of approximately 0.001) orbit at a 59-degree inclination, retrograde, at an altitude of approximately 5850 kilometers with an anomalistic period of 224 minutes. The nonspinning spacecraft is passively stabilized by the gravity-gradient method of three-axes control.

The RAE-A satellite consists of a rigid cylindrical hub with truncated conical sections at each end, a rigid single-degree-of-freedom skewed libration damper (Reference 2), and four identical 750-foot flexible booms of one-half-inch diameter hollow tubular cross section. The Vee-antennas are arranged in a cruciform configuration (forming a large "X" with the spacecraft hub at the center) with one Vee-antenna directed toward the earth and the other toward the galactic sphere. The antenna booms forming each Vee-configuration are nominally spaced 60 degrees apart. The rigid single-degree-of-freedom damper rod is effectively hinged at the spacecraft hub and spring-restrained to provide inertial coupling, thus permitting the attitude motions about all three axes to be damped. Damper booms extend from each side of the libration damper mechanism, which is housed in the spacecraft hub at an angle of approximately 65 degrees from the plane of the double-Vee-antenna. These booms extend 315 feet from the center of the spacecraft.

The mechanism for observing the antenna boom positions consists* of a slow-scan television system of two camera head assemblies—one for the upper booms (i.e., directed toward the galactic sphere) and another for the lower booms. Each camera assembly contains, in one integrated camera housing, two half-inch electromagnetic vidicons, each equipped with a lens, a sun sensor, and a shutter. Each vidicon-lens combination can view the angular positions of small sun-illuminated targets located at the tips of the 750-foot antenna booms. Each of the four vidicons has a 60-degree field of view whose conical axis coincides with the unperturbed position of its corresponding antenna boom.† The camera housing is designed to maintain this preset pointing angle to within ±0.1 degree with respect to the mounting surface. The television system is able to measure the angular positions of the boom tips to within 0.5 degree.

It is possible to select which of the upper and lower camera assemblies is to be activated, but once operation is initiated, the camera electronics provide automatic sequencing between the two vidicons within a camera assembly. The camera shutters open if the sun is not in the field of view of the sun sensor (provided as a protective feature for each vidicon-lens assembly). The field of view of the sun sensor is slightly larger than the nominal 60-degree circular field of the vidicon in order to protect against possible reflections of the sun off the solar paddles or other portions of the spacecraft configuration. If the sun does enter the sensor field of view, shutter opening is inhibited.

MATHEMATICAL MODEL

The composite RAE satellite is shown in Figure 1. It consists of a rigid hub which may be represented (Reference 3) mathematically as a "point inertia" (i.e., a mass having infinitesimal

dimensions but well-defined principal axes and moments of inertia), a rigid single-degree-of-freedom damper rod hinged at its center of mass, and four identical flexible booms cantilevered to the hub. In Figure 1, the dashed lines represent the undeformed straight-line boom positions nominally forming $\alpha = 30^\circ$ angles with the vertical axis. The solid curved lines represent symmetric deflections of the antenna booms toward the vertical caused by the gravity gradient. In practice, there will be other (generally asymmetric) deflections in the booms caused by thermal effects, possible warpage, etc. The axes of the fields of view of the respective vidicon cameras are aligned along the dashed lines. Note the nomenclature introduced for the four booms: the upper booms are those pointing toward the celestial sphere and the leading booms are those pointing in the direction of orbital motion.

Define an orthogonal unit set of body-fixed axes, x_H, y_H, z_H (as in Figure 1), aligned along the principal inertia axes of the hub, and whose origin is at the center of mass of the hub. The $x_H - z_H$ plane coincides with the plane of the undeformed main booms, the positive z_H-axis bisecting the upper 2/π Vee-angle and the positive x_H-axis pointing in the direction of the leading booms. The libration damper rod is constrained to move in a plane containing the z_H-axis and is fixed relative to the hub at an angle α_D from the $x_H - z_H$ plane. It is spring-restrained with a rest position in the $x_H - y_H$ plane. Define b_1 and b_2 to be unit vectors aligned along the undeformed upper trailing antenna boom and the undeformed upper leading antenna boom, respectively, as indicated in Figure 1.

An equilibrium state for the entire spacecraft configuration is defined as including the strain arising from the gradient of the earth's gravitational field and the orbital motion of the satellite. With all booms in their strained equilibrium state and the damper at its reference position, the principal inertia axes of the composite satellite will be denoted by a unit orthogonal triad, v_1, v_2, v_3, representing the roll, pitch, and yaw axes, respectively. It is well known that a satellite having unequal principal moments of inertia has gravity-gradient torques acting on it which tend to align the axis of least moment of inertia with the geocentric radius vector (i.e., the local vertical). Gyroscopic torques caused by orbital motion determine an orientation about the local vertical such that the principal axis of the greatest moment of inertia is aligned with the normal to the orbital plane. Thus, the intermediate principal axis is aligned with the velocity vector for an unperturbed circular orbit. For the RAE satellite, in a virtually circular orbit under passive three-axes gravity-gradient stabilization, the equilibrium state represents an alignment of the v_1, v_2, and v_3 principal axes along the velocity vector, the orbit normal, and the local vertical, respectively. The
in-plane deformations of the main antenna booms would be as shown in Figure 1. However, it will be seen that equilibrium conditions also include deflections out of the plane of orbital motion. These out-of-plane deflections tend to bend both leading booms toward the orbit normal and both trailing booms away from the orbit normal.

DYNAMICAL CONSIDERATIONS

Define an inertial earth-fixed orthogonal system of coordinates, \(x, y, z \), whose origin is at the center of mass of the earth; the \(x-y \) plane is the equatorial plane, the positive \(x \)-axis points toward the vernal equinox (\(\Gamma \)) of date, and the positive \(z \)-axis is the north polar axis of rotation of date. Let the unit vector triad corresponding to this system be \(i, j, k \). It is assumed that the position \(\mathbf{R}(x_R, y_R, z_R) \) and velocity \(\mathbf{V}(\dot{x}_R, \dot{y}_R, \dot{z}_R) \) of the hub center of mass of the RAE satellite are known at time \(t \), where the "dots" denote time derivatives. Also assume that the position of the center of mass of the sun \(\mathbf{S}(x_s, y_s, z_s) \) is also known at time \(t \), with all coordinates given in the \(x, y, z \) inertial system. As indicated in Figure 2, a unit vector from the hub center in the direction of the sun center is given by

\[
\mathbf{s} = \frac{\mathbf{S} - \mathbf{R}}{|\mathbf{S} - \mathbf{R}|} = i s_1 + j s_2 + k s_3 \tag{1}
\]

Figure 2—Inertial earth-fixed coordinate system with positions of RAE spacecraft hub center and sun center indicated.

The components of \(\mathbf{s} \) are

\[
s_1 = \frac{(x_s - x_R)}{|\mathbf{S} - \mathbf{R}|} \tag{2a}
\]

\[
s_2 = \frac{(y_s - y_R)}{|\mathbf{S} - \mathbf{R}|} \tag{2b}
\]

and

\[
s_3 = \frac{(z_s - z_R)}{|\mathbf{S} - \mathbf{R}|} \tag{2c}
\]

where

\[
|\mathbf{S} - \mathbf{R}| = \sqrt{(x_s - x_R)^2 + (y_s - y_R)^2 + (z_s - z_R)^2} \geq 0 \tag{3}
\]
With the definitions of b_1 and b_2 given earlier, it is of interest to determine the angles a_1 and a_2, where

$$b_1 \cdot s = \cos a_1 \quad (4a)$$

and

$$b_2 \cdot s = \cos a_2 \quad (4b)$$

The three vectors involved in (4) are all of unit magnitude, so a_1 and a_2 are the angles between the sun line (with respect to the hub center) and the axes of the fields of view for the upper trailing and the upper leading cameras, respectively. The criteria for the sun to be positioned exterior to the fields of view are that

$$a_1 > 30^\circ \text{ for the upper trailing camera} \quad (5a)$$

and

$$a_2 > 30^\circ \text{ for the upper leading camera} \quad (5b)$$

If the arccosine function is restricted to the principal range of $[-180^\circ, 180^\circ]$ then the Inequalities (5) are equivalent to

$$30 < \arccos (b_1 \cdot s) < 180 \quad (6a)$$

and

$$30 < \arccos (b_2 \cdot s) < 180 \quad (6b)$$

The absolute value signs are required to eliminate the double-valued property of the arccosine function in the sense that if $b \cdot s = \cos \theta$, then $\arccos (b \cdot s) = \pm \theta$, where $-180 \leq \theta \leq 180$.

The problem of determining the angles a_1 and a_2 then reduces to finding the components of b_1 and b_2 in the inertial frame X, Y, Z. To do so, introduce the variables α and β (as in Reference 2) as measures of the angular orientation of the damper rod and of the principal axis, x_H, of the satellite hub to the orbital plane, respectively. Equivalently, α measures the angle between the x_H-axis and the principal axis of the composite satellite aligned along the direction of satellite motion, v_1 (Figure 3). Of course, the angles α and β must satisfy the constraint on the damper rod motion
relative to the hub, which is simply

$$\theta_D = \phi + \gamma.$$ \hfill (7)

In effect, the fact that the damper rod is skewed relative to the principal inertia axes of the spacecraft hub causes a static yaw bias of the hub attitude about the local vertical axis \(v_3\). It is readily seen that the relations between the hub-fixed principal axes and the composite satellite principal axes are given by

\[
x_H = v_1 \cos \phi - v_2 \sin \phi,
\]
\[
y_H = v_1 \sin \phi + v_2 \cos \phi,
\]

and

\[
z_H = v_3.
\]

Since \(b_1\) and \(b_2\) lie in the \(x_H - z_H\) plane, their decomposition is simply

\[
b_1 = x_H \sin \gamma + z_H \cos \gamma,
\]

and

\[
b_2 = x_H \sin \gamma - z_H \cos \gamma.
\]

where \(\gamma\) is the semi-Vee angle of the main antenna booms. Substituting from (8) into (9) yields

\[
b_1 = -v_1 \sin \phi \cos \phi + v_2 \sin \phi \sin \phi + v_3 \cos \phi,
\]

and

\[
b_2 = v_1 \sin \cos \phi - v_2 \sin \sin \phi - v_3 \cos \phi.
\]

Now \(v_1\), \(v_2\), and \(v_3\) must be determined in terms of \(R\) and \(V\) at time \(t\). Since \(v_3\) is a unit vector in the direction of the local vertical,

$$v_3 = \frac{R}{|R|} = \frac{X_R}{R} + \frac{Y_R}{R} + \frac{Z_R}{R}.$$ \hfill (11)
where

\[R \equiv |R| = \sqrt{X_R^2 + Y_R^2 + Z_R^2} > 0 . \] (12)

Now \(v_2 \) is the unit orbit normal, so that

\[v_2 = \frac{R \times V}{|R \times V|} = \frac{1}{|R \times V|} \begin{vmatrix} i & j & k \\ X_R & Y_R & Z_R \\ \dot{X}_R & \dot{Y}_R & \dot{Z}_R \end{vmatrix} . \] (13)

writing the vector cross product in its usual determinant form. Expanding (13),

\[v_2 = \frac{1}{R \times V} \left[i(Y_R \dot{Z}_R - Z_R \dot{Y}_R) + j(Z_R \dot{X}_R - X_R \dot{Z}_R) + k(X_R \dot{Y}_R - Y_R \dot{X}_R) \right] \] (14)

or

\[v_2 = \frac{N_1}{N} i + \frac{N_2}{N} j + \frac{N_3}{N} k . \] (15)

where

\[\begin{aligned} N_1 & = Y_R \dot{Z}_R - Z_R \dot{Y}_R . \\
N_2 & = Z_R \dot{X}_R - X_R \dot{Z}_R . \\
N_3 & = X_R \dot{Y}_R - Y_R \dot{X}_R . \end{aligned} \] (16a, b, c)

and

\[N = \sqrt{N_1^2 + N_2^2 + N_3^2} > 0 . \] (17)

Finally, for the third member of the unit triad,

\[v_1 = v_2 \times v_3 = \begin{vmatrix} i & j & k \\ N_1/N & N_2/N & N_3/N \\ X_R/R & Y_R/R & Z_R/R \end{vmatrix} \] (18)
For nearly circular orbits (such as that of the RAE-A satellite), v_1 is approximately equal to the unit velocity vector, i.e.,

$$v_1 \approx \frac{V}{|V|} = i \frac{\dot{X}_R}{V} + j \frac{\dot{Y}_R}{V} + k \frac{\dot{Z}_R}{V}.$$ \hspace{1cm} (20)

where

$$V = \sqrt{\dot{X}_R^2 + \dot{Y}_R^2 + \dot{Z}_R^2} > 0.$$ \hspace{1cm} (21)

Now b_1 and b_2 can be written in terms of components in the inertial earth-fixed frame of coordinates by substitution of (11), (15), and (19) into (10) as follows:

$$b_1 = i \left[\sin \psi \cos \gamma \left(\frac{N_2 Z_R - N_3 Y_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_1}{N} \right) \cos \left(\frac{X_R}{R} \right) \right]$$

$$+ j \left[\sin \psi \cos \gamma \left(\frac{N_3 X_R - N_1 Z_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_2}{N} \right) \cos \left(\frac{Y_R}{R} \right) \right]$$

$$+ k \left[\sin \psi \cos \gamma \left(\frac{N_1 Y_R - N_2 X_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_3}{N} \right) \cos \left(\frac{Z_R}{R} \right) \right].$$ \hspace{1cm} (22a)

and

$$b_2 = i \left[\sin \psi \cos \gamma \left(\frac{N_2 Z_R - N_3 Y_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_1}{N} \right) \cos \left(\frac{X_R}{R} \right) \right]$$

$$+ j \left[\sin \psi \cos \gamma \left(\frac{N_3 X_R - N_1 Z_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_2}{N} \right) \cos \left(\frac{Y_R}{R} \right) \right]$$

$$+ k \left[\sin \psi \cos \gamma \left(\frac{N_1 Y_R - N_2 X_R}{NR} \right) - \sin \psi \sin \gamma \left(\frac{N_3}{N} \right) \cos \left(\frac{Z_R}{R} \right) \right].$$ \hspace{1cm} (22b)
If B_i and C_i are defined as

\begin{align}
B_1 &= \frac{\sin \theta \cos \gamma}{NR}, \\
B_2 &= \frac{\sin \theta \sin \gamma}{N}, \\
B_3 &= \frac{\cos \theta}{R},
\end{align}

and

\begin{align}
C_1 &= N_2 Z_R - N_3 Y_R, \\
C_2 &= N_3 X_R - N_1 Z_R, \\
C_3 &= N_1 Y_R - N_2 X_R.
\end{align}

then the following simpler form for (22) results:

\begin{align}
b_1 &= i \left(-B_1 C_1 + B_2 N_1 + B_3 X_R \right) \\
&+ j \left(-B_1 C_2 + B_2 N_2 + B_3 Y_R \right) \\
&+ k \left(-B_1 C_3 + B_2 N_3 + B_3 Z_R \right), \\
\text{and}

b_2 &= i \left(B_1 C_1 + B_2 N_1 + B_3 X_R \right) \\
&+ j \left(B_1 C_2 + B_2 N_2 + B_3 Y_R \right) \\
&+ k \left(B_1 C_3 + B_2 N_3 + B_3 Z_R \right). \\
\end{align}

The scalar dot products $b_1 \cdot s$ and $b_2 \cdot s$ are now readily evaluated as

\begin{align}
b_1 \cdot s &= b_{1x}s_1 + b_{1y}s_2 + b_{1z}s_3 = \cos \alpha_1, \\
\text{and}

b_2 \cdot s &= b_{2x}s_1 + b_{2y}s_2 + b_{2z}s_3 = \cos \alpha_2.
\end{align}
where

\[b_{1x} = -B_1 C_1 + B_2 N_1 + B_3 X_R, \]
\[b_{1y} = -B_1 C_2 + B_2 N_2 + B_3 Y_R, \]
\[b_{1z} = -B_1 C_3 + B_2 N_3 + B_3 Z_R, \]

and

\[b_{2x} = B_1 C_1 - B_2 N_1 + B_3 X_R, \]
\[b_{2y} = B_1 C_2 - B_2 N_2 + B_3 Y_R, \]
\[b_{2z} = B_1 C_3 - B_2 N_3 + B_3 Z_R. \]

Finally, the criteria for the sun to be positioned exterior to the fields of view of the upper trailing and the upper leading cameras are given in (6).

REMARKS ON THE METHOD PRESENTED

Of the three vectors involved in the final result for \(\cos a_1 \) and \(\cos a_2 \) in (26), note that the components of \(s \) depend on the coordinates of the sun \((x_s, y_s, z_s)\) and of the satellite hub center \((x_h, y_h, z_h)\) in the inertial earth-fixed frame, while the components of \(b_1 \) and \(b_2 \) depend on the coordinates \((x_h, y_h, z_h)\) and velocities \((\dot{x}_h, \dot{y}_h, \dot{z}_h)\) of the hub center in the inertial frame and trigonometric functions of spacecraft parameters \(\gamma \) and \(\phi \). Values for the semi-Vee angle \(\beta \) of the main antenna booms and for the equilibrium yaw bias \(\gamma \) (equivalently, the angle of separation between the principal axes of the composite spacecraft and the hub principal axes) will be discussed at greater length below.

It should be noted that the method of analysis presented above does not consider possible dynamic attitude librations caused by coupling with the antenna boom flexural deformations. Other simplifying assumptions made in this analysis include the idealization of the solar disc to a point source and of the rigid central hub of the spacecraft to a point inertia. The effects of these assumptions upon the final results are deemed to be negligible. There is, further, the possibility of chance solar reflections off some portion of the spacecraft configuration entering the field of view of one of the cameras, an occurrence which cannot readily be predicted. However, the chances of such a random solar reflection are minimized as the angles \(a_1 \) and \(a_2 \) (between the sun line referenced to the satellite hub center and the camera field of view axes) approach 180 degrees.
Attainment of this maximum 180-degree angular separation is equivalent to a condition of anti-parallelism between the sun line and camera axis.

COMPUTATIONAL ALGORITHM

Given the semi-Vee angle θ of the main antenna booms, the equilibrium yaw bias angle γ, the sun center position (x_s, y_s, z_s), and the spacecraft hub center position (x_R, y_R, z_R) and velocity $(\dot{x}_R, \dot{y}_R, \dot{z}_R)$, all at time t, the criteria for the sun to be positioned exterior to the fields of view of the upper cameras are determined by the following calculations:

1. A by (3)
2. s_1, s_2, s_3 by (2)
3. N_1, N_2, N_3 by (16)
4. N by (17)
5. R by (12)
6. B_1, B_2, B_3 by (23)
7. C_1, C_2, C_3 by (24)
8. b_{1x}, b_{1y}, b_{1z} by (27)
9. b_{2x}, b_{2y}, b_{2z} by (28)
10. $\cos \alpha_1, \cos \alpha_2$ by (26)

Then the required criteria are provided by the Inequalities (5), or equivalently, by those of the Inequalities (6).

NUMERICAL RESULTS

For the RAE satellite, the semi-Vee angle θ of the main antenna booms is nominally 30 degrees. According to the best available numerical data (Reference 4), the value for the semi-Vee angle of the upper leading main boom is 28 degrees and that of the upper trailing boom is 27.5 degrees. The equilibrium yaw bias angle γ is calculated (Reference 3) on the basis of standard spacecraft parameters to be 0.127 radian (7.3 degrees). However, processing of the attitude sensor data returned from the spacecraft seems to indicate a mean value for the yaw hub attitude angle of approximately 14 degrees.* The reason for this discrepancy between calculated and observed values for γ is not known and is currently under investigation.

The computational algorithm provided above has been adapted in the form of a digital computer program which predicts time intervals unsuitable for useful camera operation for the RAE-A satellite. Two sets of ephemerides are provided to this computer program as input: one ephemeris contains the position of the sun in inertial earth-fixed coordinates at regular time points throughout a specified time period; the other ephemeris contains the position and velocity components of the spacecraft in inertial earth-fixed coordinates for the same set of time points. In actual practice, the time points are generally given at one-minute intervals for a period spanning approximately one week. In the numerical applications to be described, values of the spacecraft parameters chosen were $\theta = 28.0\,\text{degrees}$ and $\gamma = 14.0\,\text{degrees}$. The computer, on the basis of these input data, then calculates for each time point in the period the angles a_1 and a_2 between the sun line and the camera field of view axis for each of the two upper boom vidicons.

Figures 4 and 5 illustrate the variation of the angles a_1 and a_2, respectively, over a period of 8 hours and 20 minutes with the camera operability criterion indicated as an angle of 30 degrees or more. From Figure 4 it can be seen that the sun line-camera axis angle a_1 for the upper trailing vidicon varies between 21 degrees and 172 degrees for an amplitude width of 151 degrees. The period between successive minima or successive maxima is 3 hours and 51 minutes. Figure 5 indicates that the angle a_2 for the upper leading camera varies between 8 degrees and 159 degrees. Its amplitude width is also 151 degrees but the amplitudes have been depressed by 13 degrees relative to the variation of a_1. The period between successive like extrema is again 3 hours and 51 minutes. Investigation of the phase difference between a_1 and a_2 shows that the variation of a_2 leads that of a_1 by 35 minutes. Table 1 lists the camera operability conditions for a 24-hour period, the first 8 hours and 20 minutes of which (i.e., from 00:00 to 08:20) corresponds to the time period covered by Figures 4 and 5. For each time interval in the left column, the status of the upper cameras is given in the center column, and the duration of each "constant-status" time interval is
Table 1
Camera Operability Conditions (Date 1)

<table>
<thead>
<tr>
<th>Time Interval (Hours: Minutes)</th>
<th>Camera Status*</th>
<th>Duration of Interval (Hours: Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 - 00:54</td>
<td>Both</td>
<td>≥ 00:54</td>
</tr>
<tr>
<td>00:55 - 01:32</td>
<td>Trailing</td>
<td>00:37</td>
</tr>
<tr>
<td>01:33 - 01:34</td>
<td>Both</td>
<td>00:01</td>
</tr>
<tr>
<td>01:35 - 02:02</td>
<td>Leading</td>
<td>00:27</td>
</tr>
<tr>
<td>02:03 - 04:45</td>
<td>Both</td>
<td>02:42</td>
</tr>
<tr>
<td>04:46 - 05:23</td>
<td>Trailing</td>
<td>00:37</td>
</tr>
<tr>
<td>05:24 - 05:25</td>
<td>Both</td>
<td>00:01</td>
</tr>
<tr>
<td>05:26 - 05:52</td>
<td>Leading</td>
<td>00:26</td>
</tr>
<tr>
<td>05:53 - 08:35</td>
<td>Both</td>
<td>02:42</td>
</tr>
<tr>
<td>08:36 - 09:13</td>
<td>Trailing</td>
<td>00:37</td>
</tr>
<tr>
<td>09:14 - 09:15</td>
<td>Both</td>
<td>00:01</td>
</tr>
<tr>
<td>09:16 - 09:42</td>
<td>Leading</td>
<td>00:26</td>
</tr>
<tr>
<td>09:43 - 12:26</td>
<td>Both</td>
<td>02:43</td>
</tr>
<tr>
<td>12:27 - 13:03</td>
<td>Trailing</td>
<td>00:36</td>
</tr>
<tr>
<td>13:04 - 13:06</td>
<td>Both</td>
<td>00:02</td>
</tr>
<tr>
<td>13:07 - 13:32</td>
<td>Leading</td>
<td>00:25</td>
</tr>
<tr>
<td>13:33 - 16:16</td>
<td>Both</td>
<td>02:43</td>
</tr>
<tr>
<td>16:17 - 16:54</td>
<td>Trailing</td>
<td>00:37</td>
</tr>
<tr>
<td>16:55 - 16:56</td>
<td>Both</td>
<td>00:01</td>
</tr>
<tr>
<td>16:57 - 17:23</td>
<td>Leading</td>
<td>00:26</td>
</tr>
<tr>
<td>17:24 - 20:06</td>
<td>Both</td>
<td>02:42</td>
</tr>
<tr>
<td>20:07 - 20:44</td>
<td>Trailing</td>
<td>00:37</td>
</tr>
<tr>
<td>20:45 - 20:46</td>
<td>Both</td>
<td>00:01</td>
</tr>
<tr>
<td>20:47 - 21:13</td>
<td>Leading</td>
<td>00:26</td>
</tr>
<tr>
<td>21:14 - 23:57</td>
<td>Both</td>
<td>02:43</td>
</tr>
<tr>
<td>23:58 - 24:00</td>
<td>Trailing</td>
<td>≥ 00:02</td>
</tr>
</tbody>
</table>

*The designations "leading," "trailing," and "both" indicate that the spacecraft's upper leading camera only, upper trailing camera only, or both upper cameras, respectively, are operable within the time interval specified. The operability criterion is defined to be a sun line-camera axis angle exceeding 30 degrees.

displayed in the right column. Table 1 corresponds to actual camera operability condition predictions generated for April 14, 1969 (Universal Times).

Figures 6 and 7 illustrate the variation of \(\alpha_1 \) and \(\alpha_2 \), respectively, over a different time period of 8 hours and 20 minutes. Table 2 lists the camera operability conditions for a 24-hour period, the first 8 hours and 20 minutes of which corresponds to the time period covered by Figures 6 and 7. Here Table 2 presents actual camera operability condition predictions generated for April 29, 1969 (Universal Times). The intervening 15 days between the two dates have witnessed a change in the dynamical geometry of the satellite orbit sufficient to cause a definite alteration in the succession of constant-status time intervals. For example, whereas Table 1 shows the interval of greatest duration to be approximately 2 hours and 42 minutes in which both upper cameras are operable, Table 2 indicates the interval of greatest duration to be 2 hours and 49 minutes in which only the upper leading camera is operable. In contrast to Figure 4, Figure 6 shows that the angle \(\alpha_1 \) for the upper trailing camera varies between 28 degrees and 165 degrees for an amplitude width of 137 degrees. The period between successive like extrema has been reduced by 3 minutes to 3
Figure 6—Variation in the angle between the sun line (referenced to the spacecraft hub center) and the camera field of view axis for the upper trailing boom camera on Date 2.

Figure 7—Variation in the angle between the sun line (referenced to the spacecraft hub center) and the camera field of view axis for the upper leading boom camera on Date 2.

Table 2

<table>
<thead>
<tr>
<th>Time Interval (Hours: Minutes)</th>
<th>Camera Status*</th>
<th>Duration of Interval (Hours: Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 – 01:29</td>
<td>Leading</td>
<td>01:29</td>
</tr>
<tr>
<td>01:30 – 02:03</td>
<td>Trailing</td>
<td>00:33</td>
</tr>
<tr>
<td>02:04 – 02:14</td>
<td>Leading</td>
<td>00:10</td>
</tr>
<tr>
<td>02:15 – 02:27</td>
<td>Both</td>
<td>00:12</td>
</tr>
<tr>
<td>02:28 – 05:17</td>
<td>Leading</td>
<td>02:49</td>
</tr>
<tr>
<td>05:18 – 05:52</td>
<td>Trailing</td>
<td>00:34</td>
</tr>
<tr>
<td>05:53 – 06:02</td>
<td>Leading</td>
<td>00:09</td>
</tr>
<tr>
<td>06:03 – 06:15</td>
<td>Both</td>
<td>00:12</td>
</tr>
<tr>
<td>06:16 – 09:05</td>
<td>Leading</td>
<td>02:49</td>
</tr>
<tr>
<td>09:06 – 09:40</td>
<td>Trailing</td>
<td>00:34</td>
</tr>
<tr>
<td>09:41 – 09:51</td>
<td>Leading</td>
<td>00:10</td>
</tr>
<tr>
<td>09:52 – 10:04</td>
<td>Both</td>
<td>00:12</td>
</tr>
<tr>
<td>10:05 – 12:54</td>
<td>Leading</td>
<td>02:49</td>
</tr>
<tr>
<td>12:55 – 13:28</td>
<td>Trailing</td>
<td>00:33</td>
</tr>
<tr>
<td>13:29 – 13:39</td>
<td>Leading</td>
<td>00:10</td>
</tr>
<tr>
<td>13:40 – 13:52</td>
<td>Both</td>
<td>00:12</td>
</tr>
<tr>
<td>13:53 – 16:42</td>
<td>Leading</td>
<td>02:49</td>
</tr>
<tr>
<td>16:43 – 17:16</td>
<td>Trailing</td>
<td>00:53</td>
</tr>
<tr>
<td>17:17 – 17:28</td>
<td>Leading</td>
<td>00:11</td>
</tr>
<tr>
<td>17:29 – 17:40</td>
<td>Both</td>
<td>00:11</td>
</tr>
<tr>
<td>17:41 – 20:30</td>
<td>Leading</td>
<td>02:19</td>
</tr>
<tr>
<td>20:31 – 21:05</td>
<td>Trailing</td>
<td>00:34</td>
</tr>
<tr>
<td>21:06 – 21:16</td>
<td>Leading</td>
<td>00:10</td>
</tr>
<tr>
<td>21:17 – 21:28</td>
<td>Both</td>
<td>00:11</td>
</tr>
<tr>
<td>21:29 – 24:00</td>
<td>Leading</td>
<td>02:31</td>
</tr>
</tbody>
</table>

*The designations "leading," "trailing," and "both" indicate that the spacecraft’s upper leading camera only, upper trailing camera only, or both upper cameras, respectively, are operable within the time interval specified. The operability criterion is defined to be a sun line-camera axis angle exceeding 30 degrees.
hours and 48 minutes. This value is closer to the orbital anomalistic period of the satellite (3 hours and 44 minutes). Also, in contrast to Figure 5, Figure 7 shows the angle a_2 for the upper leading camera varying between 15 and 152 degrees for the same amplitude width of 137 degrees. Again, the amplitude variation of a_2 has been depressed relative to a_1 by 13 degrees. Also note that the oscillations of both a_1 and a_2 in Figures 6 and 7 are contained in envelopes symmetrically located 7 degrees within the respective envelopes containing the oscillations of a_1 and a_2 in Figures 4 and 5. The period between successive like extrema of a_2 in Figure 7 is 3 hours and 48 minutes, equal to the period of a_1 in Figure 6. Finally, the phase difference between a_1 and a_2 is still 35 minutes, with a_2 leading a_1.

In summary, the sun line-camera axis angles a_1 and a_2 display regular oscillatory variations within each orbital period of the satellite's motion. From one orbital period to the next, these oscillatory variations are slightly and continuously perturbed, an effect probably due mainly to the slowly varying shift in the orientation of the earth-sun line relative to the orbital plane of the satellite. Over the course of several days the oscillatory variations of a_1 and a_2 are sufficiently perturbed to cause appreciable changes in the camera operability constant-status time intervals within a given orbital period.

ACKNOWLEDGMENTS

The author is particularly grateful to David J. Stewart and N. L. Bonavito of the Mission Trajectory Determination Branch for valuable discussions that substantially contributed to this paper. Especial appreciation is accorded Eddie M. Jones, also of the Mission Trajectory Determination Branch, for his painstaking and dedicated efforts in adapting the method to a computer program and in generating the numerical results presented here.

REFERENCES

"The aeronautical and space activities of the United States shall be conducted so as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546