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Cosmic P;iy Diffusion and the "Leakage TJifetirme"
Approxirm^tion: An Investigation of Its Validity

by the Eigenfuncti on Expansion Technique

Frank C. Jones
Theoretical Studies Branch

Goddard Space Flight Center
Greenbelt, Maryland

ABSTRACT

The diffusion of cosmic ray particles in a finite volume of space

with a simultaneous diffusion and/or transport in energy is considered.

The solution of the appropriate differential equation may be expressed

as an expansion in eigenfunctions of the differential opei-Ator. If one

approximates the solution by keeping on1, the lowest or fundamental

eigenfunction one obtains the common "leakage lifetime" approximation.

In some situations this approximation can be justified but in others

(e.g, synchrotron or inverse Compton losses) it cannot. The reason for

the failure in this case can be seen from the point of view of the

expansion. The solution of the general case of Fermi acceleration,

synchrotron losses, and energy fluctuation acting together is also ob-

tained by this method.
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INTRODUCTION

There has been recent discussion in the literature as ti the correct

method of treating the loss of particles from a region of space where

spatial diffusion and energy transport and/or diffusion are occurring

Simultaneously a common method of treating this situation when it has

E.risen in the field of cosmic physics has been to describe it by an in-

homogeneous, partial differential equation

^^E^ t^ t	 lE f) 7- 2^,

In equation 1 4 is a differential operator in energy that describes

the various energy changing processes at :co rk within the region, 'T' is

the average lifetime of a particle against a variety of loss mechanisms

including leakage from the boundary, and q(E, t) describes the energy

distribution of the particles when they are introduced into the region;

the inhomogeneous term q is often referred to as the injection spectrum.

Solutions of this equation are usually sought for the steady state

case, )/,/) t- = Q , for a variety of energy transport mechanisms and

injection spectra. In his now classic papers 1.92 Fermi in essence solved

this equation for the case aeloC,E	 ^!^^	 In his/	 d A::
first paper  he considered	 -7-^ rthe lifetime against nuclear collisions

of the cosmic ray particles. In his second paper l , he had come to the

opinion that diffusive leakage from the galaxy was the most significant

loss mechanism and hence considered r= 7f^; , or the "leakage lifetime ". At

present it is not believed to be very likely that Fermi's mechanism offers

the correct explanation of cosmic rays, however, it is generally believed

- 2 -
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that he presented a correct treatment of a plausible process that should,

in fact, occur even though it might not produce cosmic rays.

The time independent form of equation 1 has been used extensively

to calculate equilibrium spectra for a wide variety of problems in cosmic

physics. Energy loss as well as energy gain has been included in or^ and

many different injection spectra have been considered. The use of this

approach has been too widespread to give any references that would be

complete, however, recently a particular application has been made to the

case of cosmic-ray electrons
,-12

 where it is assumed tha + the injection
—P

spectrum is of the form	 and that synchrotron radiation

and inverse Compton scattering are the main contributers to the energy

transport term, i.e., ^^p_	 6— 0	 . This analysis
dE

predicts a solution of the form ^(C) °C-	 for

and P^^^ 0c L'	 for C J^ ^C	 where ^^ = l r
The significance of this analysis lies in the fact that an observation of

the "break" in the spectrum at E = E c (although the term "break" should be

used with great caution as I shall show in the next section) will yield

the product 6 7,f- 	 With the result that an assumption about the value

of b (the strength of the magnetic field or the energy density of radiation)

will give the properties of the diffusing region through the relation

1	 Q , where R is the characteristic dimension of the diffusing

region and D is the diffusion coefficient.

In all of the treatments of cosmic ray electrons the inhomogeneous term

Z

is included but in some treatments of cosmic radio sourceslJ' 14 and

X-ray sources^ 5 the homogeneous equation is used. It is not appropriate

for cosmic ray electrons for as Kardashev13 points out one can not obtain

steady flat spectra in the presence of inverse Compton or synchrotron losses.

Melrose 
14 asserts the contrary and obtains solutions of the homogeneous

- 3 -
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equation that resemble the cosmic ray electron spectrum. There appear

to be serious errors 
16 

in Melrose's paper, however, which invalidate

his conclusion so I shall consider only equations with the injection

spectrum included hereafter.

In spite of its wide spread use equation 1 has been recently questioned

by Jokipii and Meyer 17 who quite correctly point out V-iat the analogy

between a collision lifetime and a leakage lifetime is not a valid one.

The probability of loss by a catastrophic event such as a nuclear

collision may properly be characterized by a uniform probability per unit

time but the probability that a parL',icle will be lost by leakage at the

boundary depends on the position of observation and even then can not be

characterized by a uniform probability per unit time.

At any point in the diffusing region the "ages" (time since injection)

of the particles will be distributed exponentially with a mean age

if collision is the dominant loss mechanism. If diffusive loss is dominant,

on the other hand, the age distribution can not, in general, be considered

an exponential even with a variable mean age r = r ( :

Jokipii and Meyer point out that the correct equation to solve is not (1)

but rather

N

- 4 -
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wh,.re L is the diffu ", ion coefficient acid once again we consider the

equilibrium case,	 ',^ t = t7	 . The solution of this equation

with the appropriate boundary conditions will yield the correct energy

spectrum at any point.

Earlier Shun 
11 

had pointed out that the diffusion term was important

at high energie.^ since here the leakage lifetime could be much longer than

the lifetime against synchrotron and inverse Compton losses and the

spectrum could therefore depend on the spatial distribution of the sources.

Nevertheless Shen continued to treat the boundary conditions by means of

the leakage lifetime approximation.

Jokipii and Meyer consider a flat disk source of electrons embedded

in a d'_ifusing medium of infinite extent. They find that rather than

one "break" of one power in the exponent they obtain two "breaks" of

one-half power each at energies E, = ,Olb/31	 ^ v/b L

where R 1 and R2 are the diameter thickness and thickness of the disk

respectively. A similar calculation had been performed earlier by

Syrovatskii
18
 but his results were not presented in such a way as to make

comparison with the leakage lifetime approximation very easy.

More recently Uogel and Syrovatskii l9 have considered a similarly

shaped source distribution but instead of an infinite diffusing medium

they consider a spherical region with free escape a-c: the boundary of

radius R  where Ro =R 1 . They obtain results essentially identical to 	 4

those of Jokipii and Meyer. Further departures from the leakage life-
1

time approximation are indicated in a paper by Longair and Sunyaev20

Furthermore Berkey and Shen 
21 

claim and amply demonstrate that, in

general the lifetime of a cosmic ray electron in a general diffusing

region has little or nothing to do with the equilibrium spectrum when

sychrotron and inverse Compton losses are important. Rather the

- 5 -
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structure_ of the sources is the deter"IIining factor.

Clearly the leakage lifetime approach does not work at all well for

cosmic-ray electrons. This brings to misid the question of whether the

theory of Fermi accele-:ation might also be in error. It turns out th?:t

this, and other, questions may be invetigated from a general point of

view. If equation 2 can be solved by mean of an eigenfunction expansion

of the Green's function the leakage lifetime approximation may be seen in

its natural mathematic a.1 setting and the question of its validity may be

more ea.Aly investigated.

In Section II the method of eigenfunction expansion will be described

and the leakage lifetime approximation will be placed in its setting. l:n

Section II Fermi's theory and the theory of cosmic ray electrons undergoing

synchrotron and inverse Compton loses will be compared. We will see

that Fermi's theory turns out to be a very good approximation and also

why the method fails in the latter case. In Section IV we shall see how

the method of eigenfunction expansion may be applied to more general case

where ,,; y is a Fokker-llanck operator of the form

 

2.

In the above expression the term proportional to a l describes both Fermi

acceleration and bremstrahlung losses and the term proportional to a2

describes synchrotron and inverse Compton losses. The second order

term proportional to a 3 describes a statistical spreading or diffusion in

energy space. This term was first considered in a cosmic ray setting by

Terletski and Luganov22 and later in a more general treatment by Davis23.

- 6 -
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Further discussion of the importance of this term may be found in work

by Morrison 	 and it has been employE•' iii many later workcl^, 14 p 15, 25^

Although all of the processes discussed above have been treated by

many authors to the knowledge of the present author the combination of the

above mentioned Fokker-Planck energy operator with spatial diffusion,

particle losses, and injection has never been treated before. It is

therefore believed that the results of Section IV are essentially new.

- 7 -



PF

(G

II. MAT11 MATICAL METHOD

The equation we wi:.h to solve is

If we define the total operator / by

we may write (2) ti.	

^17C

The solution may be written in terms of the Green's function

where

—	
0,

	
(4)

1

and the Green's function is constructed tD fit the proper boundary conditions.

If the operator 0^ and its adjoint / thave "ei.gen-solutions"

--8-

3
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7	
'	 /

N

r^)

a	 _	
..i .J a A Yf ^..

where P represents all of the pa rameters required to specify the

solutions, and if the delta function may be expanded in these functions

i.e., they form a complete basis set)

^5)

where	 represents summation over discrete parameters and integration

01over continuous ones, then the Green's function may be also expanded by26, 27

c7)

n

In many cases th-- notion of "eigensolution" must be taken with a grain of

salt jince the solutions Qh will not fit the boundary conditions.

Nevertheless, much of the time (and in particular in the cases we shall

consider) an expansion of the form (6) can be defined in terms of transform

theory and the analysis follows through.

At this point we shall make the assumption that the problem may be

separated into a spatial. part and an energy part. That is to say that

- 9 -
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(8)

the diffusion coefficient L is independent of energy arid the energy

operator /Lr  has coefficients that are independent of position. If

this is the case, the solutions are separable

'V =-- /'^

and ( 5) becomes

ti	 y

and dividing by --) r	 gives

Since `'" and E--7 are independent variables the first and second
ti

terms are functions of	 only and	 only respectively and

hence must be equal to conEtants so we have

^/^ (r) = vp D ^7 ISA( r) + k h ^9)

- 10 -
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f	 ( 10)

and

t	
(11)

c

At this point we shall consider equation (9) only briefly. Solutions

to (9) may be found for a variety or shapes of diffusing volumes. The

usual boundary conditions are Rh _, v on the boundary; however, any
1

homogeneous boundary conditions may be applied. Although the differential

operator is formally self-adjoint the system will be self-adjoint only

for certain types of boundary conditions. So in general 
Rat	

/lh

Since the volume we are consiCering is finite, equation (9) will have
A

solutions only for a discrete set of values of 	 The smallest value

A Z can have will be of the order

17 v / 2 L

if the boundary is freely penetrated or	 v(CIL where	 is the

boundary transmission coefficient C^	 ,Q/L )	 and L	 is the

linear dimension of the diffusing region. In either case we see

- 11 -
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that K ^-where ?-C-0	 is the time required to
C

random walk a distance L,	 in the first case or the Lime required to

penetrate the boundary barrier in the second case.

Since for higher modes one usually has 	 kr? ^ Y^ ^^	 we see

that	 particles remain in the /l	 mode a time of the order	 /e 4, 
z

where	 is the random walk time, not the boundary

penetration time.

We may now :gee what the essence of the "leakage time" approximation

is. In this approach only the lowest or fundamental mode is considered.

To determine whether or riot this is a valid approximation we must turn

to an examination of (10), the energy equation.

Since the domain of equation (10) is semi-irifinite, Q !e < '-, ,

the concept of "boundary" conditions must be Modified somewhat since

setting a value of ^(E) at the two end points is usually not relevant,

i.e. , {^v ) — const. is too restrictive and	 is usually

not restrictive enough. The phys1cal condition that we must apply in

place of boundary conditions is simply that the particle density be

finite or that the function T ^E^ be integrable

(12)

d

With this condition imposed on the solutions it often turns out 27

(and it will indeed be the case in the following sections) that there are

no eigenfunctions of equation (10) that also fulfill condition (12). In

this case we must abandon our notion of a solution in terms of "a complete

set of orthonormal eigc-iifunct ians. "

- 12 -
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.^	 C
0

4

On the other hand, one car. often fired solutions for the adjoint

a quation such that

- ^	 t

<- C^,o

for any function. Z (/-- )  such that

These solutions can be labled by a conti.nuous parameter
	 S	 an d

f 
f	

f

E s

4-'

The delta function 	 may then be expressed in terms

of the integral

C

where the integral is over some contour in the complex S plane. In

this situation one usually says that the operator 
o-fE	

has a continuous

spectrum of eigenvalues WS)	 and calls the function ^^ ) an

"eigenfunct-L	 even though this is not strictly true since

- 13 -
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To understand what it means to say that an equation like (13) is a

spectral expansion of the delta function we must consider the usual

case of expansions of a function space in its basis functions.

Using the Dirac notation 
26 

we say that a function may be expanded

in a basis function set and write

4Z / 17^ (h
ki

where!; ^^ =U(Y)the  basis functions and the expansion coefficients are
n

given by

r	 1

U.---- 	X

where the integration is taken over the domain of definition of the

function space. Since the expansion is supposed to hold true for any

function in the space we may de".Ine the unit operator 	 and write

- 14 -
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r	 ^!
ti	

)	 ~^	 h

The delta function is the unit operator since

In the case of a continuous spectrum we can replace the summation by

an integration and write

and

ti
What we now have of course is an integral transform where

s

and the inverse is given by

i^, _ J ^s ^S> ^S ilk, f ^ s ^^>> ;^S ^X> .

4

- 15 -

h.	 -



The theory of the Fourier, Laplace, Meilin and other transforms is

of this type arid such things as the "continuum wave functions" of quantum

mechanical scattering problems are to be understood from this point of

3
view. In Section. III we will be able to construct the delta function by

comparing our results to known transforms such as the Mellin and Fourier

transforms. In Section IV, however, we shall be forced to consider a

non-standard transform based on cocfluent hypergeometric functions. This

transform will be established in the appendix.

- 16 -



III. FERMI ACCELERATION VERSUS SYNCHROTRON AND INdVEILA CJMPTON LOSSES

L-t us first consider the problem of Fermi accelf-ration. l ' 2 In

this case we have the equation

The solution to (16) is

t t	 _	 ^-'.1T'r_	
4-

r-	 - 3/C?
e,/s / . e -

It is easy to see that there is no value of y for whichivis

integrable from 0 to o.o . However, it is also easy to see that the

relevant transform theory is that of the Mellin transform;

Y 7
lo,

for/^ (y/`^)<E and an integrable q(E') . We may therefore immediately

write
0" f L

lr E	 d	 l
	

(20)

where r, -<&  .

(16)

(17)

(18i

( -9)

0

- 17 -
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Remembering equation (11), we have from equation ('()

t	
^I

ti

where

For	 we may close the contour or the right hand

infinite semi-circle without adding anything to the integral. There

are no singularities in the right hand plane so

For ^^ ^,:	 we may similarly close the contour to the left and

pick up the pole at y ;-1 	 to obtainr	 /r
/	 for

,'1)

(22)

4v



If all of the particl , are. injected at a Single, low energy E 

we will Have

h-(/ / 
-11^ ^/,

ti

where

^	 t	
( 24 )

N

Since, as we have seen in Section II, the mode lifetimes

are monotorfcly decreasing functions of 	 tL	 and hence

the spectrum index _ 0 t ,,? r )	 is too.

- 19 -
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For this reason t.h- , high(--r the mode, the steeper the spectrum, and for

some enertie>> ,^_ , one can neglect all but the fundamental mode. This

is illustrated in Fig. 1 where log ^(^ 	 versus log E is sketched for

the first three modes. In the case o" Furmi's origin theory, the next
_1,91

ricxif • to bc: ccnsid(•red (the first harmoni( , ) would be of the form E	 where

so one may sexy that the leakage lifetime approach was quite

justified in this case.

On the other hand, if we consider the case of elc:ctruns injected

into the region with a power low spectrum, t (E r) = $^r)L`__^id

subsequently undergoing -nergy loss by synchrotron radiation 25,28 or

inverse Compton scatterin i,, 29 , w^ ^ have

k25

whose solution is	 ,

7
ICY (0

The ad„oint solution is

If we cor:sider the variable y = E -1 , we see that the transformation

in this case is equivalent to the Laplace transform and we have

^ ?1t	 h

- 20 -
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Using the same analysis as before, we obtain for 

Continuing, we obtain for	 (^"^ /")

C	 1

r,ti
whe re

J'

Y	 V

(26)

and
	

(27)

t

This expression is well known; 	 it has been pointed out many times

that f'^(F) has two disti.nut ;asymptotic forms.	 For E<'I(EC _ C //^ a)

- 21 -
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and for

This is the spt_ ,+ -mim (with_ /e	 ) that appears in the

leakage lifetime approximE.tion and it has led many authors3' 5-10

to refer to a "break" in the spectrum at the critical energy, Ec.

This is, in fact, rather unrealistic, in Fig. 2 we see plotted the

value of the effective spectral index increment

 

Vc

C^

where

.:7	 JY

mac:

X

and P = ^ .	 We can see that the spectral index does not sharply

break, but changes from 2.5 to 3.5 very smoothly over a1-,out two decades

of the parameter X = E/E c .	 For comparison one should check the

s-,ectrum curves in figures of references 3, 5, 8 1 9, and 10. At this point it

:should also be pointed out that the spectrum of photons produced by these

particles in the inverse Compton of synchrotron process will. change its slope

over about four decades, a fact that should be kept in mind when interrreting

"breaks" in X-ray or gamma ray spectra.

In this situation, the effect of including higher modes is somewhat

more complicated. At first glance one might think that there would

- 22 -
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always be a steepening at the critical energy of the fundamental mode

^-( 6)	 D 7	 where R is the linear dimension of the diffusing

volur:rc and for the r:iomcnt we have neglected Z, assuming it to be very

long compared to diffusion times. As a matter of fact,just such an

argument was mad6 in attempting to explain the shape of the galactic

cosmic ray electron spectrum. Such a conclusion would seem to be borne

out by the calculations of Dogel and Syrovatskii 19 w.10 consider a

spherical diffusing region of radius R  and an ellipsoidal source region

of axes R 1 and R2 where R 1 =Ro and R 1 /R2 = 102 . They obtain a spectr. iun

that steepens by 1/2 in the exponent at an energy of P X` 
&2. 

and

again by a factor 1/2 at an energy Jr	 ^	 This would appear to

indicate that R  is a dimension that determines the first "break" in the

spectrum. This is misleading; it is, in fact, the dimension R 1 , which

in this problem is equal to Ro , that determines the position of the

first break. The size of the diffusing region has very little effect

on t',.e shape of the equilibrium spectrum, this is almost entirely

determined by the size and shape of the source region.

This point has been made by Berkey and Shen 
21 

and has been illustrated

by them in a model calculation where a spherical source of radius 13

in a concentric diffusing volume of radius R is considered to inject

-A
electrons with a spectrum 5(e) O< CC U . For this injection spectrum

f
h
(E) simplifies and may be expressed in closed form, i.e.

fh	
J

- ^3 -
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For completeness we shall consider essentially the sarrr? case as

Berkey and Shen but instead of limiting our consideration to an injection

spectrum proportional to E 2 we shall consider a general power law and

make use of a convenient approximate form off m (E). We shall also see

that to an observer inside the source r( , gion, the outer diffusing volume

serves only as a "quantization volume" for the eigenfunct ions and for

this reason has relatively little effect on the solution.

Consider a spherical diffusing region of radius R and a concentric

source region of radius B with 	 Dui, to the :spherical s.,,rianetry

of the problem, the e igenfunctions are / (^ r, r	 where

ft .,r 77- 	 and f^'<hM'^= (J^,. r) SIl1 (^^,i^)	 if

the source strength is » particle] per unit volumf,, the resultingi
density will be

whe re

C,I.Z. ^/3 Si h (hM d)_-
j	 hM l.3

and fm^E) is given by equation (27) .

A good approximation to (27) is given ba r

(28)

- 24 -
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It is easy to see thE,.t, ^m has the salve asymptotic properties as F

rr

and we can see in Fig. 2 that the spectral index	 is a similar functionti	 ti
of E. The major difference between Tr" wid 11^ is that -f6,„ is over-

.4helmingljr simpler.ti
Now using T^ instead of f 'M in (28), we may write

.Q

E r 1 - 	 ------ ^_ Cosh,.	 S,^ (h,^ r)	 E/	 hN	 /^^	 (31)

o2

where ^^ =[ jo ^^bE/p^	 Since 6jil _ 1 ^/ = v/^	 =
we may write (30) as

(k^3)	 Si h ^h w r	 (31')
T10	 "'	 ItM	

C US^h. 1 	 Z	 ,^

The only role that R plays in the above expression is to determine how

close the spacing is of the levels k. In this sense it acts only as

a 
IT 	 volume" as in quantum mechanics and does not have a

profound effect on the system (of size,B) provided Q << , ,5 . In fact, if

g(< /^ there will be many levels contributing to a small variation of

kmB or km and we may approximate the sum in (31') by an integral

7/^	 h 73	 ^r(h^'' v
and R no longer appears in the expression at all. This holds true for

-25 —



(E)	
ti

as well as for 	 (E)	 In fact, i t would hold for

any .pectrum that is a function of k such that the integral or sum is not

dominated by the lowest values of k. If it is so dominated, the

approximation k #" 1^ ti Q	 is not valid and the

result will be a function of ^„,,	 and hence R since ^q,.,,,, _ ^i = -2771A

The Fermi acceleration spectrum 	 (`C) n,C E	 can be seen to
h

be of the kind that is dominated by the smallest values of k.

	

If we note that (2 1

 (h 4)' 2 	 for ^{

and oscillates for k ,(3,>I'> 1	 we may approximate the integral by

simply cutting it off at A .= //9	 and writing ( h r) -' ,$r/ n ( h r ) .- -2

( assuming f^ L3	 ) . We obtain

7771C	 NX

There are two asymptotic forms of (33) depending on the magnitude of keB.

(33)

2	 —/

ti Y/ '̂  9 /5
f /T D

b"5 << I (54)

- 26 -
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7,:	 ^^ r

(35')

htrTnk({i zr;^R) l Ĵ
r;> 16

_/psi)

b
	 ) ko 13 ->J1
	

(541)

The critical energy is therefore seen to be determined by

r 7

Expression (31) may in fact be summed exactly giving

^46-, r)

/P ) b

(35)

i

c6rs G,(AIC r)

Ae ^^

- 27 -



if i^E1-3 << 1
	

we may write (35) and (351)

f-----	 / —^	 —Asr

(56)

ti /J 
L	 _ I / , A

 ( 361)

For Ae 17 ^> /7 	 have

h(i^k r1 	 •P	 ex	
(37)

 h !^^

28 -



ti	 E J

(^7')

We can see at once that for V 4 1i	 the leading term:- are just those,

apart from a numeri(.a-i factor, obtained by the simple calculati-n of

expressions (34) and (34'). The correction terms are Small and do not

affect the spectrutr. appreciably. If' 13 'n%-, X the third term in (^6i is of

the order unity but in this case the two critical energie.., 10/P -///, R Z

and Wo'. _/) 1
4171 1^
	 are approximately equal and one still sees only unc

"break" at a critical energy that is determined by the :size of tht- Source

region rather than the whole diffusing volume.

In Fig. 3 the spectral -index increment, 	 has been

^l
plotted as a function of X = E/Ec where E. = ,^ ^^- -j^ /^	 is

given by equation 35, r = 1/2 B and R/B = 1, 2, 10 a.nd 100.

The primary effect of increasing R from B to B x 10 2 is to broaden

the transition region to some degree. However, the transition remains in

the vicinity of E c (B) and no partial break appears at a different

characteristic energy Ec(R)

From this we can see why the results of Dogel and Syrovatskiil9

agree so well with those of Jopipii and Meyer 17 even though the latter

considered the case nO - c ko

_ ^9_
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IV. SOLMON FOR Fill FOKKER- PLANCK ENERGY OPERATOR

We now want to consider the equation

a

This equation may be written in the form

(38)

(38')

where

If we make the substitution

we obtain an equation for U fit,\
i

If we choose of such that

i.e. rx, _ LF

C2

we may make the transformation

- 50 -
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Boor	 -a 	.^

and obtain the equation

.Z u ^- (L? - ,,2-) a	 A i-,! = 6
	

X40)

This is Kurrurwr's equation whose solutions F-.rt• the confluent hypt-r•geom-tric

functions 30;

These functions are defined by the series

IA	

j?7	
(42)

which is convergent for all finite	 if	 — l^ -'^ -	 E t

whe re

4(,4	 0

and

f/^ }o	 1

An independent solution is

A

It may be seen by s:raightforuard substitution that although there are
r

two independent solutions to equation 40 and two values offs(, namely

A* and A _ the solutions of equation 38 have the property

(43)

- 3i -
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so Lherc^ are still only two independent solutions o: e^utstion 38.

T!^e ad^oint ecivation is,

^ ^

whe re ^ ^. ^^. ^a j	 Jh ^^ ^ t — ^ ^ j — _ ^ .

(' t y ^d^ 3

By the sslrif , procedure as before, we obtain solution::

^^E^ = E	 ^^ ^ ^' O^(f^ ^f^ !^'r ^h^ ^^ ^	 145 1

The solst ions depend on th^^ eigenvalue 
.y 

through ^t ^^(, ^^/^ . The

functional relaticnshiF of'p( on yis rathe. complicated so instead of y^

we will define ^. new variaGle, s, with which we will label cur solutions.

Define:	 t = 1 t, 3
i

c^^

We now have

^_
^S	

1^+7^

and

S

_ 32 _
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............^s........v.e; _ _ .......	 ^.

We must now determin F ^ whether or not the solutions wr havt • chosen

form a complete set (and if sue, in chat sense) and if not wt• must find

the y proper comri.nation of solutions that rill have this property.

Mu.}cing use of the asymptotic forme; of the confluent hypergeometric

i'unctionj 0

r

and

^ r^^3 ^

/'!.!^ ^
rl^^

we see at once that tht, ads pint

^-B
^XN ^ ^ l^l^-^, ^^^ t ^ d

solution has the property

. f'	 _ ^

	

This means that	 °° t

will be defined only for a very restricted class of injection spectra.

It turns out that the functions we want are the linear combir_ations

/1 is
fis ^ )	 l	 9

t	 '/-/^ "S
rts (,^-) - /^ E^	 (^ ^- 5^ <<^"J	 (501

where

- 33 _



l<—;^^
___.__u^ ^-s^ —^ - >	 >	 ^

^-^	 ^	 ,^ ^/ '	 w	 ^ ^	 /	 `^^	 1	 I

-^s r^ ^ s^- ^-	 }
(51)

Using the Kurtaner transformation^0

^ X^	 ^ ,^	 ,F/B-A^B^ -^)

it is straightforward to verify that 49, and 50 are indeed solutions of

equation: 38 and 4^+ respectively. One may also verify from equation 51
S..

that these solutions are symmetric in s, i . e . , ^ (^ ^ $, ^ } ^ ^ u ^.. sl ^,

The asymptotic forms of U p s, z) area

^ ^``^ - S
1

- 31F	-
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ifsince — / —^ ^ ^/ — ^ /
— ;	 i i1 s , ^ ^? 3

^'
so we see that 

I S 
( L—) ^ C , O ,

_- / ^-^ ^ S^ ^

^ ^ E^ -^

^ E^^' U

and 
/ i^ ^ S l ` ^^ ^ ^. 1 ^ 4^

-^'

°^ fthen we have S . ŝ (^ ^ (f ') ^^ ^ ^^
G	 ^ /

^	 _

if 1 r ^^ ^^ ^ / ^/C C ^^	 and we have a well defined
O

transform. It is not clear that there is any p^iysical reason to require

a / 
/ ^^	

, however, if we require this to be formally true we will see

that our final Greens function may be quite trivially continued from

^^ ^ ^ ^	 to :^'^ ^ ,^^ 3	 so no real restriction is imposed.
.^

It is shcwn in the appendix that the proper form of the unit operator

appropriate to this transform is,

^	 .... `
^l X —^//

•^..

/^oG

1, — ^	 ^

X ^	 17l/ ^♦^) ^^/ ^3 —S^	 ^	 X 52)
X

^	 (.^-) X
^^

where /1 ^ ^^
jrj

.^	 Ems..



^)	 ^,/^ ?
	 ^

To obtain the Green's function, we note that 1 = ^ 3^^^1^^ —^

2 ^

and since /^h y = /t ♦ /̂  'f' ^	 we have
^	

/

where

	

i	 ^^^s =^^^^^^ ^^^ti ^r^ a3
therefore

i^ _

^	 /	 ^ ^-// ^
^ Y

`^ ?i ! ^7 ^X3
^^

-sjar ^ -,^ f s) r'^ ^ -/3 -^ i	 s	 S X	 v^ -̂^i'r'.S X ^1X CSC C ^) n	 1--.•o--- ..ems...	 ......... .̂_ -- — ^^

_^^
,^ <s ^ ^, ^

To evaluate the integral in equation S3 we use the definition of ^^he

function Uis, x), equation 51 to expand the integrand as,

l oa

	

X, ,t ^^ -- _ X ^ ,,...._.,.r.	 ,^) ^^S

^^

^ -

X53)



(5^+)

r

wli^^re	 _

r,	 `

_,r-	 _.__... _ . _._.......w^...___.......

^	 -	 ^ t.

_	 `^ I-,	 ,

-- ---	 --
^s	 -^.	 ^1x r	 ^^.., ; F^^,

-------	 ^
,`'	

1-_ ,^	 ^

where we have used tre notation

	

\ re	 ^-	 ^l
We may now determine the behavior of each of the four terms as f —^ D4

from the fact3^ that as , ^:^K' ^ /^^ ^„^ ^ --^	 const. We see

immediately that the first two terms are dominated by the value of the ratio

/^^^^ '	 and that we may close the contour of integration in Ito the
c	 1

_ 37 _
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^^

X
/ l f ^-is

•	 1	 1

right or left a:: (X^^ ^ ^	 is less than or greater than one respectively.

^l''he oppo:^ite is true for iI. 	 The third and fourth t^:rm:., however, are

dominated as s -^ ^ by the gamma function: since

^	 ^	 ' ^

_	 , ^ ^^	 y S

^-^-	 r

so we see that iII may always be closed to the right and IV may always be

i^
clo:.ed tc; the left regardless of the value of (^/X

If we designate by CR and C^ the contours that run up the imaginary

axis and arr closed on the right and left infinite semi-circles respectively,

we may write if' X ^ ^( ^

^ ~ ^^

(-

,,

J^-+ ^ {^

and if x	 ^

^.

.S

y	 I	 ...,.»..,,^.....-

/\

a ^J^ ^ ^Y^ ^^/ I

^S^

_ 3^ _



^ j - ^1

it

^'.s	 X̂ ^ _
C`^

^ ^	 (S S,^ ^> t S, )
(>6)

/	 /	 s	 'u

- 39 -
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Wf• must now investigate the positions of the vsrious singula •hies

of the integrands in the s plane. Wf^ first note that the gr^tunn functions

will contribute no :singularities, ^^^ithin r.heir respective contours as

long as — ^/^/^%7 U , (di<^j ^	 Furthermore U(s, xJ is an entire function
30

of s 3° and F^,s,x) ha:. only simple poles at s = - ^ ^rt ^/^	 Wc^ see,

therefore, that in each of the integrals of equations 55 and 56 the only

poles that contribute to the integrals are those of the denominator•

/s-5,^^^ ^j^)	 Evaluation of the residues is straightforward from this

point on and if we adopt the notion^^l'^ ^X^ ^ is the larger (smaller)

of the two variables x and r_' we may write the result in the simple form

-X
^,/•^ ^X, X ^) = X C	

S
.___..

In terms of E we have

^^^ 5^ E	 ^(as,^ ^^^

At this point we may note that since s^ - ^(/ t^l^ "^^(/^^	 y ^	 1

_ / —i^ t s^ , G1 for any value of a l ^a3 so the restriction ^7^ ^ J j

may be relaxed and our Green's function remains perfectly regular.

- 40 -
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Th^^ Green':: function of equation 58 is quite complicated and one

would not expect simple spectra to result ir. general; however, in the

case. of an inverse • power low injection ^(,L'^ ^ ,^_ ^ 	 one simple

result ^an be obtained. If we examine the case of large E we may i,^-

vestigate the asymptotic form of the Green's function. If ^^

we have

The exponential quickly damps any contribution from values of E' m^1ch

removed froia E so little contribution is obtained from energies ^ ^^ Ei
On the other hand, if Eft we have

The resulting spectrum is approximately
^•o	

_ :	 ^ P 1	 /

y ^--

F

ti .^ `
r•v _ ^'E, 

^t

r%
	 _ fp t!;

LJn^

This result i^ the same as for the case of synchrotron and inverse Compton



I

w

lossf• s alone. This is indeed r«^asonable since if one assumes that f;E)

is a >>,^^-r• low the original diff«^rential «^qurstion, equation 38, ::hr.+s

that a:; ,E ^ 00 thc^ synchrotron or C.:mpton lOJJ term proportional to

e^,1 dominates the entire process.

A more deta_led ex^rr^ination of the asymptotic forms of F(s,z 1 and

Ul^,z) shows that the a:: ,ymptotic forms are valid if we• have

^, ^ Vii, ^ ^ L

	

_	 ^` 1
d

Insetting the expressions for :^, ^ and ^ we obtain the condition

	

^>>	 -- a ^-
c? ;,	

._	

^ n
whc^r^^^is the totsl lifetime for the nth mode. This is the Same condition

^^.s for synchrotron and inverse ^ornpton losses alone so we may concludf^

that inclusion of energy diffusion and Fermi acceleratic.^n does not

sabstantiall;,^ al°:er the form of cosmic ray electron spectra at high

energies.

-42-



GCJNIIdAkY

We drive investigated the vt^lidity of the leakage lifetime rspproxi-

rnation !hat Luis hr^d wide use in cosmic physic.:;. We t^ve ::een tt,rst this

• lpproxir^stion hris its cultural setting in the eigeufunctic^n exp^^nsion of 	
,^

the differ^-ntial equation de::cribing spritial diffusion rind energy trans-	 I!^

port . The :• pectr^^ that f ire derived in the lesk • >.ge lifeti m^^ approxita1-

tion rare the energy spect,ru of the vririous eigenmodes of tree diffusion

operator plus spatisl boundary conditi^^ns . Each mode teas its own leatcage	 j

lifetime with that of thc: nth mode being approximitel; ^ 1 ^/h ^

where ^	 i:: the rrindc^m wr^L: time ricross the diffusing region of

linear dimension L, ^ 1 L ^7"^	 n being the diffusion

coefficient .

We saw th rit for Fermi acceleration the lowest mode dominates and hence

the leakage lifetime s.pproxit^.tion is quite good. On the other hand

for the case of inverse power law injection of electrons with s^;bsequent

synchrotron or inverse Ccmpton losses all nigher modes contribute signi-

ficantly with tree fundamental lifetime 7o being of no par^cicular signi-

ficance. The resulting spectrum in this case i^ determined almost wholly

by the spatial distribution of ttie sources.

Finu.11y we were able to obtain a solut^.on to tt^e more general

Fokker-Ph.nck energy operator in terms of confluent hypergeometric func-

bons. These solutions are, in general, quite complex, however, for

inverse power law injection the; were seen to have the familiar property

of steepening the spectrum by one power at high energy.

All in all the eigenfunction expansior. of thA Green's function is

.;een ±o be ^.n effective method for putting the leaka^ lifetime approxi-

oration in it: natural mathematical setting and thereby ma.ing it possible

to investigate the limits of its validity.

_ ^3 _



<s^ _

<,ppendix

We wish to consider the transform

o-^

^^ / - ^3 tS) ^ - / -^ -S

<^ ^
^'^^ s

v

and its ": wersc: "

-X ^^

^lX ^ _	 ^' C^ l s^ ^) ^ < S ) ^s

-^^

and discover to what extent we may say ^^X) _ ^^^'^

FirUt ^^re will re4r_rite the transform formula as a Lebes gue-Stieli,jes

^ L - S ) integral .

^^.°^

^lx'^
/'^^

^^>>

dQ^s, ^

-^^-

_,	 • ,j _. ,
<<:. .



X /whe r^:	 - / - ^ -^	 r ^i
^^	 ^/

j' ^^s^	 _ (3 _ J

	
,3rs

% ,^ I _,B t 
s^	

_ 1
/'^ ^-^ ^

/1	 1

^

r. _ ^

r
We note the following properties of 	 ^ SJ x

h

as S-^ 
^

— h ^	 (s,X J —

h

iN ^ ^
^	 M

^ X ^ ---^
(^''t^^ ^

^5



and

^̂ (s )
,.vs^^s^ - ^i^rn

^^^
..^' ^ °°

If f ^^( ^^	 is of unbounded variation and^or of unbounded range in ,Y

the proper definition of trn `- ^ 	 integral is

Q^°°)	Q ^^

^	 ^(^r'' ^ ^ 4^11/-^ i°	 /V
Quo)	 ^ ^aa

Q<o ^

where /_ X ^) ^	 X ^)	 if / FlX ^^ ^ ^N (	 ^(
^^, (x
It is assumed that the limits exist. We may now define

y	 and

respectively.

^.<s,
J

/'(mss)

P(^s)

c,? ^r

F <X "J ^ Q
c^lo,

- 46 -
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'^	 ^^

Since ^ ^^ SJ X ^) = ^ (SJ iY ^)	 we see that for pure imaginary s

^, is real. We may therefore introduce two auxiliary functions of s,

^- (S) _	 ^r ^S^ ^s^^v g	 ^r
'	 r- v

an d

13

' (s) _	 ^S)	 r (S ^

^ r
N ^'	 r ^

where q^, ^s)	 is ±he

variation of Q^s,x^) over the set	 Er of points X ,,

E,. � ^X^^ {r^F(X^J^Tr^^ X L ^ ^	 and ^^ - tr i^	 ^r ^ s ) ^ L^^

and^r - ^,^ ^^	 ^r ^S^ L b	 Likewise 1 r = -^r+^	 ^ ^ ^,. ^s) > O

and L,, - ^^ i ^'	 ^,, (S^ ^ O (c^(s)	 is real)	 ^

where we have ^? i vided the ordinate between -N and +N into R intervals.

From the theory of the L - j integral we know that

WE now note the fact that since for s pure imaginary ,^' '/-^ -S ^^(-S ,^'' )
/	 ; ^ _^ ,s	 /	

v	
J /

is bounded uniformly in ^( and s, lX	 u^- s ^ X 1 l ^ / ►^

where M is a constant inde pendent of X r and s w Therefore we have

- ^+? -



X.
_ i_A-S

X,

Xk
C ^ -/ ^-S

X^
^X1 -^^

s o / ^^ ^ ^ S ^ / ^ ^^ h'J ^	 where mE .^, i s the

measure of the set E r . If we now iet R r ye Large enough so that the maximum

i
separation of ordinate subdivisions (^ ^ — +^ 	 = ^	 we can

M^,^

consider ^' ^5) - r'-- (5 J
^`i,^	 '^^.^

We have

^,^^	 ^ ^ ^
^'	 r

^	
/ ^	 //1 

^r^^	 l r	 I , (S ^ 	 C^	 ^ ^r
Ur	 r

E M ,Y

We see that as we l.et /^ -^ ^' so that E -i U the two functions ^N ^ S^ ^,ri d
i

N̂  ^s) converge uniform^_y in s to one another. We may def. ine another

auxiliary function

-^+8-

.^	 _ ^^



.^`• `^	 rw
	 ..

/"	 r 
^'r ^ r ^S^

and re;idi ly see that

^g ^s^ ^ ,( ^s> ^ ^' is ^
^	 ^ Ng	 N^	 ^ g

Sines the functions ('^—^ ^.5^	 and `^N Y ( S " 
bracket boar the

^	 ^	 i

functions ^N, ^- (s)	 and ^ Q (S^ ^(^ S ^ we see that a:: ,/^ —^ ao

and E -^ (^	 we have	 ^'^ - i - i3 +S

%	 ^ ^^ ^ i S}

<s^
V^, g	 r _, ,^^ ^ s^

^j,(N g ^5 J 
u h^^o ► ^N ^y
^H s

Also from the uniform boundedness of

J	 J	 ` ^/^(S^ -
I-	 J

v.o
-,

-^ -^ -s	 _
X '	 ^l ^ J X ', we note that

(Whfrf	 ^S^X^ ^,6>_1,^dLX^ =	 t
b^	 C' c ^Frw. • :s f

L	 - ^ -^ -s

v

- 49 -
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c^
n

^ ^ Î  ^ ^— ^ X ^^ — ^^^ ^ Y ^ S ^x ^ v^ x GG a(

0

^	 ^'

^)	 d'K
	 ^	 ^	 ^ ^

0

FlX') /^,' ^ ' ^ ^

	

mince we nave assumed that 	 ^

v

we have	 ^ (/ J 1

	

I	 ^- i	 ^^	 ^,^

/	 - -^^..
-;^ ^

	

and the limit is uniform in s. 	 ^Je mdy now write

_._. ^, / ^"'

`" ^ C
^'^ == ------	 l ^^ ^	 ^ ^^ ^ ^	 ^ i ^ ! ' ^ ^'SJ ^l ^^^	 --	 ( ,

-^ ^

^w, ^,^ ls) ^ 5
^;^^ ^^

=^ ^ v

_ 5 p _
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The limits in the bra^:kets are uniform in s, the remainder of the

integruiid outside of the brackets is uniformly bounded is s, hence the

entire: in+,egrand approaches its limiting value uniformly in s so we may write

^^
c

-^	 ll 	- X

,^^
y .,,r ,

,^.o

^S f S

^( fills, X) ^ ^s^ d S
NX

Since /,/ ^s^
/"' N ^' ^r / ^ ^sJr. J

we mdy write

^^
^'—	 — X	 - ^

_	

r^	

^
N^ ^, /^	 ---	 r	 ^	 ^	 X	 G((S^ x

- ^.^

and	 _	 ^ -	
/ 1

J	 .."-' ,,vim °°	 ^ -^ °`	 /^/^ „X ^ !

Since the set E r may be covered by a series of intervals

,.,, r̂ ^- ^ /-r,^ ^
- Sl -

F^	 J	 ^!



where /l 1 is the lenght of the interval

where	 xA	 andr, .

X.2 ) r , ; are the upper and lower end points respectively of the	 (r
interval. We have then

i
where

Since the sum over i may be at times an infinite series we mast question

whether its convergence (which is assumed) is also uniform in s. We have

J	 ^	 I l

This Way be made as small as desired by manking n sufficiently large independently

of s so we may write.

.O
—'to"	 Qrs

(,Y— -----	 Tr —	 (S ^S

- 52 -



We mast now evaluate integrals of the type

d s	 X

X
X 'r

I

f	 sS } / /^-^	 ^'

It can be readily seen that the third (and fourth) term makes no cotribution

to the integral for any value of x and Xh	 This is because all of

-the poles of this term are in the left (right) hand plane and the combination

of Gamma gunctions always insures that the contour may be closed in the right

(left) hand infinite semi-circle thereby enclosing no poles. We may therefore

drop these terms and consider simply

- 53 -



S

Y	
^	

rf

l^

	

s	 -s

Y/ 2

We now note that a, e -y s^ , /'- / r S ^,^ —^. L

and	 ^_'	 - ^	 ,e^ r" 	-	 Therefore the behavior on the
- 	T s

infinite	 circle is dominated by the factors (X^X^^	 if X X',

we may close the first (second) term to the left (right) and vice-versa if

^ > X P1	 0 If ,^ - X:,	 we may close the contours ei cher way but the

contribution if the infinite semi circle is finite.

Next we note that the poles at r 1 0"' 5 Z. — n1	 make no contribution

as long as the first and second terms are closed in opposite directions.

To see this observe that % ,her. / t ; ; --i -- „,	 the first term approaches

The second term approaches the same value for	 --	 ;.	 and

since the two sets of poles would be encircled in oppo.Ate directions the

contributions would cancel, term for term. So that we may ignore these poles

we will always close the two terms in opposite directions even when )( = )(h

- 54 -
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we will

We next turn to the poles at .5 = -t (pr, -,,3 )	 . The first term

has the pole., along the positive axis at S - , ry, _ /,3
	

and the second

term has the poles along the negative axis at S _ — w t /1&	 . We see at

once that when X	 k I7
	 the integral is zero since in this case each term

will be closed to the side where it has no poles.

If X < X j we close the first terry. to the right and the second

to the left. Each term will give a contribution when ol _ ^ ^^^ '', )

equal to

0t;
M

Adding these together we obtain for the integral

This series may be evaluated simply by evaluating the case X Z Ye

If we close the contours in the same manner as for X 4 x n

4F

obtain the game series but with a correction to compensate for the contributions

from the infinite circle. W? obtain for the integral

- 55 -



X

^r S,
.Y

liow(-ver, .W,, may also close the contours in the opposite :::ann e x as for the

cap, X;;p X n	 «nd get no contribution
s from the poles. The contribution 	

X

from the infinite circle is of opposite sign so we obtain a value of 0 r-

for the integral. The two method:: of evaluation must yeild eyursl results

so we have

or	
(-/-)Y).,
	 'h	 \	 X

Combining these results we see that the integral

l^

i- 1 nJ

^^	 X > X h
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X Z, x 

X

71l <°	
X=Xh .

If now instead of 	 AtX.,) we insert Q^ (1'^ ^^ 	^,/(s^ X a	 ) --<s^ ^ r^ )

into the integral we will obtain O	 if / x is not in or an ens'. point of
T	 Xthe interval l r^	 4(	 L°	 if X is in the interval .l r	 and

X
f ^L `°	 if x is an end point of the interval Ire

We no g. note that the intervals r r	 do not overlap and must cover

the entire interval v to	 Therefore if we assume that ,^( is in

the interval Cl to g the point )( will fall in eme of three categories;

(i)	 it will lie in L.n interval Ir, c	 (ii) it will be a boundary point

of two adjacent intervals (with different valuee- of r) or

t	 ( iii) it will be a point of accumulation .,1' an infinite sequence of intervals.

In the case ( iii) the point X can not be unambigousl;; assigned to ary

interval and hence the value of ±h6 integral is indeterminite. It should be

noted, however, that the only way an infinite sequence of intervals can arise

is for the function 	 (X	 to have a point of infinite oscillation and at

this point the function itself is indeterminite, eg., sin(X_y	 at the

point

For the case (i) we have  	 ^^, }	 ^r	 and for the case (ii)

we haveA, 	 (X)	 J (-Pr f ^^^)	 where 1" i►►+^ r are the values of r

for the two intervals that have 	 X	 as a common boundary point.
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o r ;^ ^^- ' rte '/ 	 = 
JI	

^E J N

ff ^r1 J
X-E

it

We must now inquire as to the effect of taking the limit /4̂ --^> vO	 F

A little reflection will show chat for both cases (i) and (ii) the limit

This may or may not be equal to /Ĉ,	 but it will be equal for

"almost a]1" values of	 X (values taken by / (X)	 on sets of

measure zero are ignored). It is also easy to see that case (i) corresponds

to a point of continuity and case	 (ii) may (but not necessarily) correspond to

a point of discontinuity of the function 	 IA5^ 0 , (once again ignoring

values taken on sets of measure zero). If 	 is a point of discontinuity

the transform will take on a value half way between the values on either oidc.

Taking the limit g--> 0.0 is now trivial since we have assumed that X
was large enough so that X < T 	 and increasing if further has

no effect so

/, ^14

_T-> C,j

ti

F <X) - //
,Y+6

^E

^- E
F (^)Wig

If A w+ !" 
(X	 exists so will.	

fv ^
	 and
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We therefore have F/ X almost everywhere.
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Figure Captions

Figure 1 - Log P(5)	 vs. log E fc z- the first three modes of

Fermi acceleration showing how the fundam(.ntal mode I /'J =O) dominates at high

energy.

Figure 2 - Plot of	 spectral index incren,: -
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