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ABSTRACT

The diffusion of cosmic ray particles in a finite volume of space
with a simultaneous diffusion and/or transport in energy is considered.
The solution of the appropriate differential equation may be expressed
as an expansion in eigenfunctions of the differential operator. If one
approximates the solution by keeping only the lowest or fundamental
eigenfunction one obtains the common "leakage lifetime" approximation.
In some situations this approximation can be Jjustified out in others
(e.gs synchrotron or inverse Compton losses) it cannot. The reason for
the failure in this case can be seen from the point of view of the
expansion. The solution of the general case of Fermi acceleration,
synchrotron losses, and energy fluctuation acting together is also ob-

tained by this method.



INTRODUCTION
There has been recent discussion in the literature as to the correct
method of treating the loss of particles from a region of space where
spatial diffusion and energy transport and/or diffusion are occurring
simultaneously a common method of treating this situation when it has
erisen in the field of cosmic physics has been to describe it by an in-

homogeneous, partial differential equation

ar (1)

;P(E,f)r Eﬁ(&;f) + /f_@f) = (& #)
L G Ryl

In equation 1 ,85 is a differential operator in energy that describes
the various energy changing processes at work within the region, 77~ is
the average lifetime of a particle against a variety of loss mechanisms
including leakage from the boundary, and q(E, t) describes the energy
distribution of the particles when they are introduced into the region;
the inhomogeneous term q is often referred to as the injection spectrum,
Solutions of this equation are usually sought for the steady state
case, 9/0/92' = O , for a variety of energy transport mechanisms and
injection spectra, In his now classic panpers.al’2 Fermi in essence solved
this equation for the case a(o ‘)E (a b/d) . In his
first pa.perl he cansidered 71—[ the lifetime against nuclear collisions
of the cosmic ray particles, In his second papere, he had come to the
opinion that diffusive leakage from the galaxy was the most significant
loss mechanism and hence considered / = /& or the "leakage lifetime", At
present it is not believed to be very likely that Fermi's mechanism offers

the correct explanation of cosmic rays, however, it is generally believed
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that he presented a correct treatment of a plausible process that should,
in fact, occur even though it might not produce cosmic rays,

The time independent form of equation 1 has been used extensively
to calculate equilibrium spectra for a wide variety of problems in cosmic
physics, Energy loss as well as erergy gain has been included in,ijr and
many different injection spectra have been considered, The use of this
approach has been too widespread to give any references that would be
complete, however, recently a particular application has been made to the

3=12

case of cosmic-ray electrons where it is assumed tha* the injection

o ol
spectrum is of the form %(E) =KE and that synchrotron radiation
and inverse Compton scattering are the main contributers to the energy

3 a2
. t term, i.e. = 2 /- . This analysi
ransport term, i,e ,0425/9 3= (/Ahf?//Dl{ s analysis
predicts a solution of the form /o(ijf for £ << LE¢

-

and/ﬂ(E/o(E./ ' for 4=>7 - where (£, = /6 75) . ¢
The significance of this analysis lies in the fact that an observation of
the "breek" in the spectrum et E = E (although the term "break" should be
used with great caution as I shall show in the next section) will yield
the product A 7 with the result that an assumption about the value
of b (the strength of the magnetic field or the energy density of radiation)
will give the properties of the diffusing region through the relation

7= 22 ﬁg/ﬂ , Where R is the characteristic dimension of the diffusing
region and D is the diffusion coefficient,

In all of the treatments of cosmic ray electrons the inhomogeneous term

13, 1

is included but in some treatments of cosmic radio sources and

X-ray sources15 the homogeneous equation is used, It is not appropriate

13

for cosmic ray electrons for as Kardashev ” points out one can not obtain
steady flat spectra in the p.esence of inverse Compton or synchrotron losses,

Me].rosellL asserts the contrary and obtains solutions of the homogeneous
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equation that resemble the cosmic ray electron spectrum, There appear
to be serious errorsl6 in Melrose's paper, however, which invalidate
his conclusion so I shall consider only equations with the injection
spectrum included hereafter,

In spite of its wide spread use equation 1 has been recently questioned
by Jokipii and Meyerl7 who quite correctly point out vhat the analogy
between a collision lifetime and a leakage lifetime is not a valid one,

The probability of loss by a catastrophic event such as a nuclear
collision may properly be characterized by a uniform probability per unit
time but the probability that a particle will be lost by leakage at the
boundary depends on the position of observation and even then can not be
characterized by a uniform probability per unit time,

At any point in the diffusing region the "ages" (time since injection)
of the particles will be distributed exponentially with a mean age
if collision is the dominant loss mechanism, If diffusive loss is dominant,
on the other hand, the age distribution can not, in general, be considered
en exponential even with a variable mean age Je = 7= (L) ’

Jokipii and Meyer point ou? that the correct equation to solve is not (1)

but rather

L pte, £)- wHoXPpEL) + PERYE =9EL)



where D i¢ the diffusion coefficient and once again we consider the
equilibrium case, dJAAZF = > . The solution of this equation
with the appropriate boundary ccnditions will yield the correct energy
spectrum at any point,

Earlier Shenll had pointed out that the diffusion term was important
at high energies since here the leakage lifetime could be much longer than
the lifetime against synchrotron and inverse Compton losses and the
spectrum could therefore depend on the spatial distribution of the sources,
Nevertheless Shen continued to treat the boundary conditions by means of
the leakage lifetime approximation,

Jokipii and Meyer consider a flat disk source of electrons embedded
in a diffusing medium of infinite extent, They find that rather than
one "break" of one power in the exponent they obtain two "breaks" of
one-half power each at energies £, =0/} ﬁ,z , &> D/A ,q:
where R, and R, are the diameter thickness and thickness of the disk
respectively, A similar calculation had been performed earlier by
Syrovatskiil8 but his results were not presented in such a way as to make
comparison with the leakage lifetime approximation very casy.

More recently Dogel and Syrovatsk1119 have considered a similarly
shaped source distributicn but instead of an infinite diffusing medium
they consider a spherical region with free escape av the boundary of
radius Ra where R6==R1’ They cbtain results essentially identical to
those of Jokipii and Meyer, Further departures from the leakage life-
time approximation are indicated in a paper by Longair and Sunyaevzo.

Furthermore Berkey and Shen21 claim and amply demonstrate tha. in
general the lifetime of a cosmic ray electron in a general diffusing

region has little or nothing to do with the equilibrium spectrum when

sychrotron and inverse Compton losses are important, Rather the
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structure of the sources is the determining factor,

Clearly the leakage lifetime approach does not work at all well for
cosmic-ray electrons, This brings to mind the question of whether the
theory of Fermi acceleistion might also be in error, It turns out that
this, and other, questions may be invetigated from a general point of
view, If equation 2 can be solved by meanc of an eigenfunction expansion
of the Green's function the leakage lifetime approximation may be seen in
its natural mathematical setting and the question of its validity may be
more easily investigated,

In Section II the method of eigenfunction expansion will be described
and the leaskage lifetime approximation will be placed in its setting., In
Section II Fermi's theory and the theory of cosmic ray electrons undergoing
synchrotron and inverse Compton losses will be compared, We will see
that Fermi's theory turns out to be a very good approximation and also
why the method fails in the lalter case, In Section IV we shall see how
the method of eigenfunction expansion may be applied to more general case
where(x:; is a Fokker-Flanck operator of the form

1 2
‘f_p = )—3-__,(&,/:’-&,5‘)/— éj):‘,_(«?,é' )/0

=

In the above expression the term proportional to a, describes both Fermi
acceleration and bremstrahlung losses and the term proportional to ap
describes synchrotvon and inverse Compton losses, The second order

term proportional to a; describes a statistical spreading or diffusion in
energy space, This term was first considered in a cosmic ray setting by

Terletski and Luganov22 and later in a more general treatment by Davisej.



Further discussion of the importance of this term may be found in work
by Morrison>' and it has been employe! in meny later works>>? W 15, 25
Although all of the processes discussed above have been treated by
many authors to the knowledge of the present author the combinaticn of the
above mentioned Fokker-Planck energy operator with spatial diffusion,

particle losses, and injection has never been treated before, It is

therefore believed that the results of Section IV are essentially new,



II., MATHEMATICAL METHOD
The equation we wish to solve is

.

If we define the total operator Zf'by

L= Keg= 07 + 75

we may write (2) as

Apler)= glsr) |

-
‘)' PR
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The solution may be written in terms of the Green's function

AEL) = jlfﬁé/b‘ = r,Er7) ¢ler) ()
where
f@/ﬁf)og-; v )= §-£98¢r or’) ()

and the Creen's function is constructed to fit the proper boundary conditions,

4 r- " "
If the operator ’z, and its adjoint az’ have "eigen-solutions



;2 n /‘25

2w P ’

I

L.

25!

where )1 represents all of the parameters required to specify the

I\

solutions, and if the delta function may be expanded in these functions

(i.e., they form a complete basis set)

S-S (r-1) = Sﬁn (£, C)/%?Ej[_ 3 ¥

h

where ‘S’ represents summation over discrete parameters and integration

over co;%inuous ones, then the Green's function may be also expanded by26’ T

R
(5 L) P.(Er
G(é"/“,'E /”/) = £ /0 3 j i

An

In many cases the notion of "eigensolution" must be taken with a grain of
salt since the solutions /ﬁL will not fit the boundary conditions,
Nevertheless, much of the time (and in particular in the cases we shall
consider) an expansion of the form (6) can be defined in terms of transform
theory and the analysis follows throwh,

At this point we shall make the assumption that the problem may be

separated into a spatial part and an energy part. That is to say that
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the diffusion coefficient D is independent of energy and the energy
operator 4 has coefficients that are independent of position, If

tliis is the case, the solutions are separable

Ay = Bylr) 4,(5)

and (5) becomes

dfa,e = Rott) Lok te) ~H(E) T DR (1)

Ml blE) 5™ =
FAne) F () % = Ap,v Bult) EpiE)

and dividing by -Jk’ / gives

VOV Ry lt) _ L. o (£)

ad
Ag (k) £, () e

Since [" and E are independent variables the first and second
N

—)(h Y (8)

)

terms are functions of ¥ only and E only respectively and

N

hence must be equal to constants so we hawe

v.pv/{k(f)-r /(2/?,:(C) = O (9)

A Pt -
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'(E)‘V‘?ZY/E):—O (10)

Ai v = R +Y * /72 (11)

At this point we shall consider equation (9) only briefly. Solutions
to (9) may be found for a variety of shapes of diffusing volumes, The
usual boundary conditions are Rﬁ = ¢ on the boundary; however, any
homogeneous boundary conditions may be applied., Although the differential
operator is formally self-adjoint the system will be self-adjoint only
for certain types of boundary conditions, ©So in general Ra-rﬁ: RB—
Since the volume we are consiCering is finite, equation (9) will have
solutions only for a discrete set of values of ka . The smallest value

2
/{ can have will be of the order

2 2
k= woar ekt

I8
if the boundary is freely penetrated or A =% of C‘/L where X  is the

boundary transmission coefficient (V\’(( ,0/‘. ) and [ is the

linear dimension of the diffusing region. In either case we see

303



2
/
that ko = /72 where /g is the time required to
random walk a distance [_ in the first case or the time required to

penetrate the boundary barrier in the second case,

Since for higher modes one usually has kn < N ko we see
r &
that particles remain in the N} =2 mode a time of the order 7,/ = /e //7
where 7‘6’ is the random walk time, not the boundary

penetration time,
We may now see what the essence of the "leakage time" approximation

is, In this approach only the lowest or fundamental mode is considered,

To determine whether or not this is a valid approximation we must turn
to an examination of (10), the energy equation,

Since the domain of equation (10) is semi-infinite, O £ £ < 2¢ A
the concept of "boundary" conditions must be modified somewhat since
setting a value of p(E) at the two end points is usually not relevant,
185 f(o) — const. is too restrictive and *‘.‘(00)—}0 is usually
not restrictive enough. The physical condition that we must apply in
place of boundary conditions is simply that the particle density be

finite or that the function f (5) be integrable

Sthea)de <o

With this condition imposed on the solutions it often turns ou”t:27
(and it will indeed be the case in the following sections) that there are
no eigenfunctions of equation (10) that also fulfill condition (12), In
this case we must abandon our notion of a solution in terms of "a complete

set of orthonormal eigcarunctions,"
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On the other hand, one can often find solutions for the adjoint

equation such that
o0
R4
f FE) gee)de < oo
o

for any function Z(E) such that
-
J/Z(E// CF = < -
o

These solutions can be labled by & continuous parameter s and
. 7‘ + ) / ’
/ 7[ - | 7£ TLg B

{4 'te) = Yot () =0

m:-‘; () — Y(s5) 7[; (£) =0

The delta function {(E "E// may then be expressed in terms

of the integral

»” = /] ) o ’
e (/: &) = f =8 J'S (&) 7[ (& /) (13)

where the integral is over some contour in the complex j plane, In

this situation one usually says that the operator oé has a continuous
spectrum of eigenvalues Y/)') and calls the function ~€ (£’) an

"eigenfunction" even though this is not strictly true since

15 &



|E(E)] de = oo,

To understand what it means to say that an equation like (13) is a
spectral expansion of the delta function we must consider the usual
case of expansions of a function space in its basis functions,

Using the Dirac notation% we say that a function may be expanded

in a basis function set and write

[£) = 3 in)nilé) (k)

where/n) S U (x Jthe basis functions and the expansion coefficients are
n

given Ly

nlf) = J'uﬁm £ dy’ (15)
Py,

where the integration is taken over the domain of definition of the
function space, Since the expansion is supposed to hold true for any

function in the space we may de”ine the unit operator 2 and write
L

e 18 =



The delta function is the unit operator since

+(X) — ) O((\'-,Y"/ -/, "'ic‘/Y

In the case of a continuous spectrum we can replace the summation by

an integration and write

1¥) = [ds 1SPs1#)

and

L= §(x-x) = _ff"" PS5/

What we now have of course is an integral transform where
i'\ & f— V| 4 / /
(s/#) = j(;): ) u’(xh[(x):/x

and the inverse is given by

1f) = fa's/:) (S/a(): jdg :f(_?) ;(; (X) :



The theory of the Fourier, Laplace, Mellin and other transforms is
of this type and such things as the "continuum wave functions" of quantum
mechanical scattering problems are to be understood from this point of
view, In Section III we will be able to construct the delta function by
comparing our results to known transforms such as the Mellin and Fourier
transforms, In Section IV, however, we shall be forced to consider a
non-standard transform based on confluent hypergeometric functions, This

transform will be established in the appendix,



III. FERMI ACCELERATION VERSUS SYNCHROTRON AND INVERSE COMPTON LOSSES

Let us first consider the problem of Fermi acc:elca'rat,ion.]"22 In
this case we have the equation
Lhote) = 2 (36t) = V¢
(16)
o F 2_{ = /V/J "'/) #
b ¥ 4 2=
The solution to (16) is
/ Y/a -/ )
£ = Cons?t £ ,
(17)
-
) F ot =38 i
AL L Ll - R ; (18)
P ; _ =YIR
7& = Cens?. £ (.9)

It is easy to see that there is no value of Y for whichf,/is
integrable from O to e© . However, it is also easy to see that the

relevant transform theory is that of the Mellin transform;

ff G () A7’ /£ -Y/;(b Vw22

for@ (Y/J/<e'a.nd an integrable q(E'). We may therefore immediately

write

Ot (o0
sw-e9= o [(E) dva)
0"-4'-0
where O"(é .

= L



Remembering equition (11), we have from equation (7)

r 21
G(E,ﬁj' £71') = 2 Rﬁ/ﬁ)/s’ﬁ (r) 2‘?/[_:57 (21)

where
~l o0
-
V/a’" - a
G EE)= - & £ Y (22)
7k AT Wk.}:%: 4// /4’) s
O - p0

7
For £ < E we may close the contour or the right hand
infinite semi-circle without adding anything to the integral, There

are no singularities in the right hand plane so
& - 2
ﬁk“"‘:):() e e .

For E) /_-_-'/ we may similarly close the contour to the left and
pick up th:pole st Yo - }7_ = "'(/ ,é {+ // ) to obtain
y / A ‘Z:
EF) -~ - : /
7’h( )A_/-E,é%[aE/f//aK]/ for E/£
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If all of the particles are injected at a single, low energy EO

$ilai @(E/[) = Z(L') ;/E‘L’::-)

we will have

| -(/+/
PEL) - EC& Rulc) & 7)o
k

where
// r ’ ’
r.os & ‘“’ffr’/}’ (r) (L) . -
ko

Since, as we have seen in Section 1I, the mode lifetimes

are monotornicly decreasing functions of n and hence

the spectrum index = (/f. //"2 7; ) is too,



For this reason the higher the mode, the steeper the spectrum, and for

some r-nnrg_yE)) fo one can neglect all but the fundamental mode. This
is i1llustrated in Fig. 1 where log (O(E') versus log E is sketched for
the first three modes. In the case of Fermi's origin theory, the next

mode to be considered (the first harmonic) would be of the form E-'~ where
/"2 4/ so one may say that the leakage lifetime approach was gquite
Justified in this case.

On the other hand, if we consider the case of electrons injected

-=P
into the region with a power low spectrum,@(t; C)" 9(£)¢ and
subsequently undergoing energy loss by synchrotron radiation25’28 or

29

inverse Compton scattering <, we have

Ltz 2l-bEF) = VF

whose solution is
-
#Y{E) = Corsk & M'P[V/LE]

The adjoint solution is

F:/E}: Cons? EXP[- Y/AE]

If we consider the variable y = E-l, we see that the transformation

in this case is equivalent to the Laplace transform and we have

At R
5(5‘575;"7/';;'}5-261,0[’//1:5‘Y/bé'jaf/f) :
G-/ o0

-20 =



Using the same analysis as before, we obtain for ?A (£ & )

PhEE") = (bE’) 6}(//[(7;‘57:'/7;4[)—] (26)
Continuing, we obtain for W/E' )

PUE ) = Z Cy R(L) ﬁ(é‘)

A

where

Cy = fal 3r'ﬁ:_/f’/?(,f')

= -/,:{E/: el/’[/Tbé'){f_, é:X// /rbb }J‘/‘- i

This expression is well known; it has been pointed out many times

= -/
that fA(E) has two distinct asymptotic forms. For £ (Lo = (7; b)

-21-



4 (£) == . i
A ) - 7:5 and for 5"/)‘:2

{; n s __-ﬂ/“r{j
Kbl /b (7 ~1)

This is the spe~+tmm (with ;a: . ;‘;’ ) that appears in the
leakage lifetime approximetion and it has led many authors”? 210
to refer to a "break" in the spectrum at the critical energy, E,.
This is, in fact, rather unrealistic, in Fig., 2 we s<e plotted the

value of the effective spectral index increment

(oo digf
a[/fdx

\a

— Vv /o; (P=1)X

where

(= =)

. v ,..,é |
1f = X expl-tx] | X éxp[’//’] dx’
X

and /0 = A.%7 . We can see that the spectral index does not sharply

break, but changes from 2.5 to 3.5 very smoothly over about two decades

of the parameter X = E/Ec' For comparison one should check the
spectrum curves in figures of references 3,5, 8, 9, and 10. At this point it
should also be pointed out that the spectrum of photons produced by these
particles in the inverse Compton or synchrotron process will change its slope
over about four decades, a fact that should be kept in mind when interrreting
"breaks" in X-ray or gamms ray spectra.

In this situation, the effect of including higher modes is somewhat

more complicated, At first glance one might think that there would

- 22 -



always be a steepening at the critical energy of the fundamental mode

(7'6) 07: where R is the linear dimension of the diffusing
volume and for thL moment we have neglected 7:, assuming it to be very
long ccmpared to diffusion times. As a matter of fact, Just such an
argument was ma.dg in attempting to explain the shape of the galactic
cosmic ray electron spectrum. Such a conclusion would seem to be bcrne
out by the calculations of Dogel and Syrovatskiil9 who consider a
spherical diffusing region of radius RO and an ellipsoidal source region
of axes Ry and Rz where Ry=R_ and R1/Rz = 10°, They obtain a spectrum
that steepens by 1/2 in the exponent at an energy of D?I’/AK,, and
again by a factor 1/2 at an energy D[r/ Rk « This would appear to
indicate that R, is a dimension that determines the first "break" in the
spectrum. This is misleading; it is, in fact, the dimension R;, which
in this problem is equal to Ry, that determines the position of the
first break. The size of the diffusing region has very little effect
on tre shape of the equilibrium spectrum, this is almost entirely
determined by the size and shape of fhe source region,

This point has been made by Berkey and Shen2:L and has been illustrated
by them in a model calculation where a spherical source of radius 13
in a concentric diffusing volume of radius R is considered to inJject

A
electrons with a spectrum %(E')Q(E' « For this injection spectrum

fh(E) simplifies and may be expressed in closed form, i.e.

£ (E)= 7 o ('e"’( Abf])

-23-



For completeness we shall consider essentially the same case as
Berkey and Shen but instead of limiting our consideration to an injection
spectrum proportional to E © we shall consider a general power law and
meke use of a convenient approximate form of fm(E). We shall also see
that to an observer inside the source region, the outer diffusing volume
serves only as a "quantization volume" for the eigenfunctions and for
this reason has relatively little effect on the solution,

Consider a spherical diffusing region of radius R and a concentric
source region of radius B with B¢ /? . Due to the spherical symmetry
of the problem, the eigenfunctions are f”(k”' ’“) where

ho = 7Tm/R @8 folkar)= (kar) Sin(Rab) - I
the source strength is )7 particles per unit volume, the resulting

density will be

PET)= S Co folhr) 4ute) )

m=l

where

in(hab
C - 7 /” 8 Co5(ﬁ..5)> -

and fm(E) is given by equation (27).

A good approximation to (27) is given by

i L e

7C (&) = (7] - (p)bE i D-;'%}nz r(prIbE

(30)

-2)_‘-



/-
It is easy to see that ¥, has the same asymptotic properties as va.
and we can see in Fig. 2 that the spectral index is a similar function

A

A
of E. The major difference between *m and 14“ is that £, 1s over-

whelmingly simpler.
-

Now using -/m instead of fM in (28), we may write

fm/k.,i L] o -P
PEr= 5 Z (L oty p)) i) _E

aued (ko + Aé)
where k E:[(,o-/}bt‘/pj . Since A= g )

we may write (30) as

T/R=6mu/R = Ak,

(E/“)— 785 Sm(k in(kaB) Sinlhm I') (31')
Ak - Coslh, 3)
2 A
Rt ke + k2 )

The only role that R plays in the above expression is to determine how

close the spacing is of the levels Km’ In this sense it acts only as

a "quantization volume" as in quantum mechanics and does not have a
profound effect on the system (of size~B) providedB((ﬁ. In fact, if
B(( /3 there will be many levels contributing to a small variation of

k Bor k = and we may approximate the sum in (31') by an integral

/p(g,«) ﬁ/,»f J 5m(h/3 /k/3) sin(hr) (32)
D / KB Ar(rrhe)

and R no longer appears in the expression at all. This holds true for

-25-



A

7Lm (£) as well as for 1[,,, (£) . In fact, it would hold for
any spectrum that is a function of k such that the integral or sum is not
dominated by the lowest values of k, If it is so dominated, the
approximation h Bia =5 O is not valid and the
result will be a function of Kmw,» and hence R saince Buie = Rs = T/R
The Fermi acceleration spectrum e‘(;) ac E""’"/a can be seen to

be of the kind that is dominated by the smallest values of k,

If we note that C,‘x}"(hﬁ)'z for RPBL 2
and oscillates for kB> 1 we may approximate the integral by
simply cutting it off at K = //5 and writing (R r)-')’,n Ch r) e 7
(assuming P 13 ). We obtain
E ys'sf 7
PEr) = Y . th_
I77 L2 A ‘s /?/-;
A -
= YE £

/0
-/
374 [/_A*-"? /2n (’//"f"")J' S

There are two asymptotic forms of (33) depending on the magnitude of keB.

-
RE) = Y8 £
3770

/?[:_ B << l (34)

- Bk .



~/P?)
PUE) < 7£ .

B 2AL (341)
777//?-/)19 ¥

)

The critical energy is therefore seen to be determined by

- A
kEB b _7. or tc. — p/ﬁ’/)bg
Expression (31) may in fact be summed exactly giving

’/p”)/

(&,r) = _Z__
prer) ZE L oot subtne-coni

p SnhlheB) = ReBCosh(k,: B)J f/hM‘h—/} (35)
lanhlkR) i il

/p #)

Coshlke 1)
(P-/)ﬂb Zf kel Coblhneh) - }”MAEBy [
5mh(/u 72 (351)

/{ rTanhlhe R)




1f /155 << P 4 we may write (35) and (35¢*)

z 'ﬂ
P . 5 t- 2 2 h /3 ‘
/ () ) ‘Z‘";,Q 3/ ) 3 7::7:?;:/9) \ fL/)

(36)

3

/7
F i /ﬁ:f)
:\\: ZE—% [Of ,‘(' = ’5'/"1' — ] g '

¢ r Coshlher) Toni(keR)7 ) r2é k"2

For kEB>7 Z we have

-(pP+!)

F(E,/‘) ;:__Zé__ /—//*AEB) Sinh (ke F) T 7 ¥ (5;()
(p-) 2 b " "“’52, do



We can see at once that for } £ J§  the leading terms are Jjust those,
apart from a numerical factor, obtained by the simple calculation of
expressions (34) and (34'), The correction terms are small and do not
affect the spectrum appreciably, If /S % /f the third term in (36) is of
the order unity but in this case the two critical energies, Q/P "/}é ﬁ o
and 0// 12=1) A 5‘? are approximately equal and one still sees only cne
"break" at a critical energy that is determined by the size of the source
region rather than the whole diffusing volume,

In Fig. 3 the spectral index increment, 5 has been
plotted as a function of X = E/E, where E_ = D//f )b B A . P is
given by equation 35, r = 1/2 B and R/B = 1, 2, 10 and 100.

The primary effect of increasing R from B to B x 10° is to broaden
the transition region to some degree, However, the transition remains in
the vicinity of EC(B) and no mrtial break appears at a different
characteristic energy EC(R)

From this we can see why the results of Dogel and Sy‘rovatskiil9
agree so well with those of Jopipii and Meyer *F even though the latter

considered the case Ro = .
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IV. SOLUTION FOR FULL FOKKER-PLANCK ENERGY OPERATOK

We now want to consider the equation

a L |
o\i— %;(f‘):%/a,f-d,f"/'t -+ ;E&(ajf/{: Y4,

(38)

This equation may be written in the form

(38')

Et +(bEr ') r(CrtisE) £ =

whe re L: ‘/‘(/,/ .f) : el
¢ =24ly-2,lfs La-Rsidds

If we make the substitution

1['(4—‘) = 5 Uln &

we obtain an equation for ( (t’\") L:)

4y
E U +Efixsb fé‘gja bl 1) 4 b v (s ,,Q{-‘ju:o (39)

If we choose & such that

X(xtl) + bot + & =0

v wezd Lk 2 igiae

- ;7’/(13"'1

”.

SR

we may make the transformation

P Az X+2 ; B = Ax+b

PV
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and obtain the equation

ZUu'rlE-2)u—AuU = o (ko)

This is Kummer's equation whose solutions ere the confluent hypergeometric

o
functions” 3

af//f:/A)'B)' 2’): :/:,'-(K-flj' ﬂo(-fb)' —Jéz‘) ' (41)

These functions are defined by the series

o0 h
(A, Z

sz = D, e
; /) n:D(B)n n—'

which is convergant for all finite 2 if 5 # — j) - =3 € te.
/ /

where

(Al = AlA2)(A*2) =~ (Arbi-1)
(A),= 21

An independent sclution is
-8
Ca - - ¢ L4
Us = 2 ,F(1+4-82-8 %)
It may be seen by straightforward substitution that although there are

two independent solutions to equation 4O and two values of¢X, namely

17\/* and 0(_ the solutions of equation 38 have the property

2% U0, 2) = UK, 2)

-
Z UJ(X-,E) = 2’(*“;(“/*)2)
(43)



g0 there are still only two independent solutions of equation 38.

The adjoint equation is,

R +_asnt? AT "7_
£ F W ErSET) +C f =0 a5

#*
where b 39,/33 20l gr:: — C?;/Jj = ‘5-
c’=v/a,

By the same procedure as before, we obtain solutions

e -/ =Xy
70(5): Vol -/;/'/‘/‘o(_f)',?f-p?({p’é)‘gf) (45 )

The solutions depend on the eigenvalue Vthrough Ky =X ()/). The
functional relationship ofo( on Vis rather complicated so instead of y’

we wlll define a new variable, s, with which we will label our solutions.

Define: Xp = 77 S
/3" %(21/33)"%

52 -2,

We now have

 f ) . ok LI

(47)
and
~2-3ts . e * (s
_/*': E’):’E //;:/'/'/SIS)]I;’);/‘L (48)
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We must now determine whether or not the solutions we have chosen
form a complete set (and if so, in what sense) and if not we must find
the proper combination of solutions that will have this property.
Making use of the asymptotic forms of the confluent hypergeometric

function30

ARSI G TR

and
/.'(/3) -4 / .
2l2e0 fe2d O
Flas;z) | ram E .
;7{;? 2 expz-, |2]/2=,Red > O

we see at once that the adjoint solution has the property

f
Lle)— explsE) s L& 3 2D .

This means that o » 4
Fle)G(&) 4 &
o
will be defined only for a very restricted class of injection spectra.

It turns out that the functions we want are the linear combinrnations

BrS -
L(e) = (6£) ‘-’—"/’('JF)M(S’ 7 (49)
4 -/-/8-5
4 (&)= (§F) U(-5,$E) (50)
where

- 33 -



[(-25)
u/j 2 E e e - ) - ’ - !
) it (13757 14250 B)

| o e s o
F/—l°/3‘+3

Using the Kummer transformationjo

é’.){/?/t) /E/A). /3/’ 2): ,/;:/5'/4)'5)‘ "2’)

it is straightforward to verify that 49, and 50 are indeed solutions of

equations 38 and 4i4 respectively. One may also verify from equation 51

that these solutions are symmetric in s, i.e., Z’M (S) z) = Z. s”(-s} }).
20

The asymptotic forms of U(s, z) are

1t3-5
uis,z)—=z 2'/ , 1212 o0



>
so we see that ﬁ(E)—-)COI}r: )/E/_’ -

_-/'/JIS
- &

, /&l 2 O
stnce =) =43 _—-4//-2,/,73) it @, < d3
//‘{AS/ C#(1- 1,/3 )

then we have {.,0 z:}?(/‘)élé:'(oo

R
)\o ?}(E)/(/ﬁ < o and we have a well defined

transform. It is not clear that there is any plysical reason to require
a, < JJ , however, if we require this to be formally true we will see
that our final Greent function may be quite trivially continued from
4, V4 95 to dl Z <l 3 so no real restriction is imposed.

It is shown in the appendix that the proper form of the unit operator

appropriate to this transform is,

o g(X-X')

g

B -X
2 X e /ﬁ/'/‘ﬁﬁ)/—'/-/—*:"s) - (52)

- l'a()

where X; 55



X3
To obtain the Green's function, we note that y: 8;[7/4;6) -5]

and uince/?ky_k*/r +-V we have

A= -a;(s-5)(s+5

theref :’[/’7‘/3 ;L’“(h’z"//75)/21'.37//.Q
-
/ - ,X CE
?(X)X) = ,)n“ﬁ
drv (X

| &2

X

(P/-i-ﬂ*f)/’(-'-/"f) X M(sX) X 4—4‘(‘5)()

) Teas) [As)

’t"s)

(- ;) (5t s,)

To evaluate the integral in equation 53 we use the definition of

function U(s, x), equation 51 to expand the integrand as,

qlxx)= = ”{sﬁrrﬂ’rﬂ/fﬂ)d.s

Yl dy (X)

the

(5

3)



where

* Fls x) Fl=5x

Z
o <X) 1s -5)(5#5:)

- (3 Bl
g (5-5,) (5 *51)

- -2¢) VAT $ |
1T = [(=25) [ (-1 ,Jﬂ)/x ) Fls )%,y (54)
Plas) ot s =3 e
4 ) ) (5’11//:.;,’,/’

e A /.' ¥ 2} ,-5 - /
TV = [0/ (-85 (xy’) Fe-s,x) Fl-52")
[(-251](=1=35) (5% ) (5+5,)

where we have used the notation
a BUEee T /() -8+ )()
/—(S)f'): /////"‘"5//"‘“'5! ’
/

We may now determine the behavior of each of the four terms as S —}po

from the factBO that as 5-7,4//:{3‘);/ ——) const, We see

immediately that the first two terms are dominated by the value of the ratio

i/ ]

and that we may close the contour of integration in I to the
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right or left as (X/X/) is less than or greater than one respectively,

The opposite is true for I1I. The third and fourth terms, however, are

dominated as & —» o& by the gamma functions since

i

//7(55)/’(»/..,;-;-/ / g 45,’ as _)_’7 =
(t-25)]7.,. ;145) | " ‘3)

so we see that III may always be closed to the right and IV may always be

/
closed to the left regardless of the value of /»(/X }

If we designate by CR and Cp the contours that run up the imaginary

axis and are closed on the right and left infinite semi-circles respectively,

we may write if X(X’

2 =X
- &

(xx) = .
? ¢ d;(x') e

£ .
)(Z A b s X/ Al x) Ur-s x') /5 Pk
iy

rezs) \
R I L 5%5;]

B T R L e T

/ ,
o LR (@ ’5f§})

—

and if X>X/

/( /L/‘/A)L(/SY}JS
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A _X
/ -~
Fox') = X & _~

4t ds(X)

X {f/(/ MS) F(S/X/)M(-S/x) As (56)

rias) (5-5,)/>’r5,)

+J 4 "’5)/)///‘/5/)/1/5%) J;}
% /(=25 ) i< s (5*5/)
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We nust now investigate the positions of the various singula-ities
of the integrands in the § plane. We first note that the gamma functions
will contribute no singularities, within their respective contours as
long as-(/+ﬂ)70, (aJ.(dg) . Furthermore U(s, x) is an entire function

30
of s3° and F(s,x) has only simple poles at § = -f(n +/) . We see,
therefore, that in each of the integrals of equations 55 and 56 the only
poles that contribute to the integrals are those of the denominator
(s-s,)( s #5,) . Evaluation of the residues is straightforward from this

point on and if we adopt the not,ion,X> (X< ) is the larger (smaller)

of the two variables x and ' we may write the result in the simple form

/ B_~-X s
Foaris 08 J(-1-6+5, )/ X\ (57)
22,5,0)" r(2s,) ;;;) Fls, X )U-5,%)

In terms of E we have
b i

. - R ¢ ‘ , .
At this point we may note that since )’, - %l*ﬂ) +//;-' 5 //7,2)/‘73 )//‘}/j/)
-]=/3 f 5/ ) o for any value of a;/as so the restriction 4, ¢ 23

may be relaxed and our Green's function remains perfectly regular.
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The Green's function of equation 58 is quite complicated and one
would not expect simple spectra to result in general; however, in the
case Of an inverse* power low injection %(E) 2 E-P one simple
result can be obtained. If we examine the case of large E we may iu-

vestigate the asymptotic form of the Green's function. If E)E’

we have
/f@/‘) = E‘[’
9(£, F) o~ [C13#5) _f & ¥ / (59)
id,%5/as) 8 g3

The exponential quickly damps any contribution from values of E' much

4
removed from E so little contribution is obtained from energies & <E

/
On the other hand, if £ )& we have

= =) A P(—/"f*‘z) -A
;(A',c e - Vi
8.5 /tas)8

The resulting spectrum is approximately

o0
e .
#/gjzfﬁféé/f de’
5

(60)

M o
~ L(1-5+5) ‘,_c-'lff/ As
2d3 5, f/?ﬁ)g €
= Cons/7o F-(P*/) i

-

This result is the same as for the case of synchrotron and inverse Compton

Sh=5



losses alone. This is Indeed reasonable since if one assumes that f(E)
is a power low the original differential equation, equation 38, shcws
that as E “» o0 the synchrotron or Compton loss term proportional to
ag dominates the entire process.

A more detalled examination of the asymptotic forms of F(s,z) and

U(s,z) shows that the asymptotic forms are valid if we have

2
S, —(/1’~ﬂ) .
o &

Inserting the expressions for g, ﬁ and S we obtain the condition

2
R * 772 i -
Fr> = 5.7
el 4 1/R
whe re ,{Tis the total lifetime for the nth mode. This is the same condition

as for synchrotron and inverse Compton losses alone so we may conclude
that inclusion of energy diffusion and Fermi acceleration does not
substantially al'er the form of cosmic ray electron spectra at high

energies.
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V. SUMMARY

We have investigated the validity of the leakage lifetime approxi-
mation that has had wide use in cosmic physics. We have seen that this
approximation has its natural setting in the eigenfunction expansion of
the differential equation describing spatial diffusion and energy trans-
port. The spectra that are derived in the leakage lifetime approxima-
tion are the energy spectra of the various eigenmodes of the diffusion
operator plus spatial boundary conditions. Each mode has its own leakage
lifetime with that of the nth mode being approximtely 2 % 77/n ?
where 74 is the random walk time across the diffusing region of
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