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RELATIVE MOTION OF TWO PARTICLES

IN ELLIPTIC ORBITS

E. R. Lancaster*

Goddard Space Flight Center

Greenbelt, Maryland

NOMENCLATURE
a

r = position vector at time t, r = I r

v = velocity vector at tine t, v =

E = true anomaly at time t

a = semimajor axis, b = 1/a, c = al /2

k 2 = µ = gravitational constant

r • v = scalar product of r and V

Over the past decade a number of papers  -6 have presented approximate

solutions to the problem of the relative motion of two particles in elliptic orbits

in an inverse-square central force field. These papers have assumed that the

relative position and velocity vectors are quite small compared to the position

and velocity vectors of the particles, and several have further assumed one of

the particles to be in a circulars' 
2 

or nearly circular 3 ' 4 orbit. We derive be-

low an exact solution to this problem, subject to no restrictions. The results

Aerospace Engineer
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have applications to problems of rendezvous, nc Zlinear error analysis, station

keeping, targeting, surveillance, and satellite clustering.

SOLUTION

Kepler's equation for elliptic motion and the updating equations for position

and velocity can be written in the form

T = C + A (1 - cos C) - B sin C

r=(1-H(1-cos C)) ro +(D(1-cos C)+N sin Cl vo

v=- (P sin C) ro + (1-S(1-cos C)] vo

where

A -: io • vo /k c, B = 1 - ro b, T = k t b/c

H = a 'r o , D = a (ro , r0 ) 1A, N = ro c/k

P =k c / r ro , S= a/r, C - E- Eo

and a zero subscript indicates the value at time 0.

Let subscript 1 on a symbol designate the value of that symbol for particle

1 in orbit 1 and subscript 2 the value for particle 2 in orbit 2. We define

(1)

(2)

(3)
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y=C 2 — C,, c= 1 2 - 1 1 . ^=^2—v l

T= T 2 - T l . a=A2 - A 1 , /3=B2 - B 1 . 7]=H2-H1

D2 - D l . v = N2 - N 1 , P = P2 - PI' a = S2 - Sl

If we place a subscript 1 on all symbols in (1), (2), and (3) and subtract the

resulting equations from the set with subscripts 2 on all symbols, we obtain

T' =y +A' (1 - cosy) -B' sin 	 (4)

e = (1 - H 1 F) Eo + ( DI F + N 1 G) ^O

(5)

(H 2 G + F) r20 +(D2Q+^F+N2R +vG)v2Q

P 1 G 
EO 

+ (1 - S 1 F) 
ko

(6)

- (P, R+pG) 120 -( S2 Q+aF) V20

where we have defined

F = 1 - cos C 1 , G = sin C I	 (7)

4

T'=T+3G- a F	 (8)
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A' = A2 cos C 1 + B2 sin C 1 	(9)

B' = B2 cos C 1 - A2 sin C 1 	(10)

Q=cos C 1 (1-cos y) +sin C 1 si1 1
(11)

R= cos C1 sin y - sin C 1 (1 - cos y) 	 (12)

To obtain equations for a t a, T , 71 , S , v ,p , and o^ which do not suffer a loss

of significant digits due to the subtraction of nearly equal numbers, we proceed

as follows.

kcA=ro v0

k (C2 
A2 - 

C I A 1 ) = r20 X20 - r 10 * V10

k [ c2 ( A2 - A 1 ) + At (C2 - C 1 )) = 720 'v 2o - r 10 * V10

The last equation can be solved for a. Equations for the other quantities can be

obtained in a similar manner. The full set follows.

k c2 a = i20 • V20 - r10 ' v10 - k Al (C2 - C1)
	

(13)

= rl0 
(b1 - b2 ) - b2 (r 20 - r1o)

	
(14)

I
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1	 it

1

(

c2 T = - k t (b l - b 2) - T 1 (c 2 - c l ) (15)

r l o 	 q - a2 - a l - H2 (r 20 - r1o) (16)

µ S 
= a2 (t2O • y2O - f1O • V1O) + 

( a 2 	
a1) r1O • X10 (17)

k v = c2 (r20 - r 10 ) + rlo ( c 2 - c l ) (1.8)

r 10 rl P = k ( c2 - C l ) - P 2	 ( r 2 (r 20 - r 1O ) + r lo (r2 - r l )) (10)

r l o=a 2 _a 1 _ g 2
( r 2

- r 1 ) (20)

r 2O	 v2O - r 1O	 u lo - K 	 • r 10 +	 0 • v2O
(21)

r 20 - r 1O = EO	 ( '10 + 72O) /( rl o + r 20 ) (22)

r 2 -	 r l	 = E • (I' 1 	+	 r 2 )/ ( r l	 + r 2 ) (23)

C2 - C  = ( a2 - al) / (Cl + c 2 ) (24)

fl2 - al - a l a2 ( b l - b 2 )	 (25)

b l - b2 = 2 (r 20- r10)/rlo r 2o ' ^O • ( "lo + v20 )/N	 (26)
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In the derivation of (26) use was made of

b = 2/r - v 2 /µ.	 (27)

SUMMARY

Given 710 ' v l o ' Ea + ^ 0 at time 0, the steps for finding E and K at time t

follow.

1. Compute r 20 = r 1 0 + Eo' v20 - V 1 f X() , r lo - (r 10 r 1o )1/2 ' v io - v l o • v10•

2. Compute A l , B 1 , T  , H 1 , Dl , N 1 (equations after (3)), al and b l from (2-1).

3. Solve Kepler's equation (1) for C 1 . If Cl is given rather than t, (1) is used

to compute T 1 .

4. Compute rl from (2) and r l = (r l • rl) l, 2

5. Compute P 1 , S1 , A2 , B2 , H2 , D2 , N2 (equations after (3)), a2 and b2 from

(27).

6. Compute in order r 20 • v20 - r10 • u 10 , r 20 - r lo , b l - b2 , a 2 - al

C2 - C l from (21), (22), (26), (25), (24).

7. Compute a, /3 , T, 71 , S , v from (13), (14), (15), (16), (17), (18).

8. Compute F, G, T', A', B' from (7) (8), (9), (10).

9. Solve (4) for y .

10. Compute Q and R from (11) and (12).

11. Compute E from (5).

12. Compute r 2 = r, 4 E , r2 = ( r2 r2) 1 
2.
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r =

13. Compute Pz and S 2 (equations after (3)).

14. Compute p and v from (23), (19), (20).

15. Compute ^ from (6).

Since y will usually be small, 1 - cos y should be replaced by 2 sin e (y/2)

for computational purposes.

NUMERICAL EXAMPLE

We assume the two particles to be in coplanar circular orbits with units

chosen such that ai = g. The initial conditions are

x1U = 1, Y10 = 0, x10 = 0, y 10 = i

jr
	

Ex0 = 0.001, EYO = 0, n
x0 = 0,	 BYO =	 .0004996253122

If we let t = n /4, solve for f l , r2 , vl , v z at time t and compute f and K from

the differences 72 - i t and v2 - v l , we obtain

e x = .00 1539449 1, 	 EY = - .0001262154,

,̂ x = • 00 1 18 536 23,	 Xy = .0004778069.

Using the forn ► u.as developed in this paper we obtain
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X. = .001185362260,	 Xy = .0004778069038.

A ten-digit calculator was used for these calculations.
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