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TIME DEPENDENT MONOENERGETIC NEUTRON TRANSPORT IN A

FINITE SLAB WITH INFINITE REFLECTORS

By

gy

Perry Allan Newman

ABSTRACT

The initial-value transport problem of monoenergetic neutrons

migrating in a thin slab surrounded by infinitely thick reflectors

is solved using the normal-mode expansion technique of Case. The

results obtained indicate that the reflector may give rise to a

R e

branch-cut integral term typical of a semi-infinite medium while the
central slab may contribute a summation over discrete residie terms.
Exact expressions are obtained for these discrete time eigenvalues

and nunerical results are presented showing the behavior of real

time eigenvalues as a function of the material properties of the

slab and reflector. These eigenvalues are finite in number and all

of them may disappear into the branch cut or continuum as the material
properties are varied; such disappearing eigenvalues correspond to
exponentially time-decaying modes. The two largest eigenvalues can be
compared with critical dimensions of slabs and spheres and it is shown
that the numerical values agree with criticality results of others.

In the limit of purely absorbing reflectors or a bare slab, the present
solution has the properties which have been previously reported by
others who used the Lehner-Wing technique to solve corresponding

problems.
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I. INTRODUCTION

A few time-dependent, monoenergetic neutron transport problems in
plane geometry have been solved recently by applying Case's normal-mode
expansion technique (refs. 5, 7) to the equation which results when the
time dependence has been removed by a Laplace transformation. 1In these
time-dependent solutions, contributions due to various parts of the
spectrum of the transport operator have been indicated by suitably
deforming the integration contour of the inverse Laplace transformation.
This approach was used by Bowden (refs. 1, 4) for his analysis of time-
dependent, one-speed neutron transport in a bare slab of finite thick-
ness with isotropic scattering, a problem which had been treated
extensively by Lehner end Wing (refs. 16, 17). Another successful
application of this technique was made by KuSCer and Zweifel (ref. 1h) .
to the time-dependent, one-speed albedo problem for a semi-infinite
medium which scatters neutrons isotropically. For these two applications,
the timé—dcpendent solution involves only a single material medium. In
each of these problems, construction of Case's normal-mode expansion in
the transform plane depends upon the two material properties which
characterize a single uniform medium with isotropic scattering: the
total macroscopic cross section, o, and the average number of
secondaries per collision, c. For time-dependent problems in which
more than one medium is involved, the transform plane must be taken as
the superposition of "single-medium" planes, one for each medium. The
situation then for a problem in which material properties vary from

point-to-point will be very complicated.




Mika (ref. 18) has studied one such problem: +the initial value
problem for moncvenergetic neutrons in a nonuniform sleb surrounded by
s vacuum. He used the same approach thet Lehner and Wing (refs. 16, 17)
had ueed for a uniform bare slab problem and, as might be expected, his
more general hypothesis results in fewer details. In particular, it
appears that theorems concerning the reality and number of discrete
time eigenvalues cannot be established. At the outset, Mika (ref. 18)
indicates that such results would be used, in practice, for a system of
uniform slabs. Even for these cases in which there are a limited number
of different material media, he states that the most suitable means of
calculating discrete time eigenvalues would seem to be the normal-mode
expansion approach employed by Bowden (refs. 1, 4). This is the
approach used in this thesis to analyze a simple idealized two-media
problem in which one would expect to have diécrete time eigenvalues in
order to obtain some insight concerning their behavior as a function of
material properties. Such an approach has been utilized for one two-
media time-dependent problem by Erdmann (refs. 8, 9) who investigated
the time decay of a plane isotropic burst of monoenergetic neutrons
introduced at the interface of two dissimilar semi-infinite media which
scatter isotropically. In his solution, contributions due to the
continuous spectrum are different for the two media; apparently the
continuous spectrum depends on x. There are no discrete eigenvalues
in his problem.

Lehner (ref. 15) has demonstrated that the continuous spectrum of
the transport operator is very sensitive to the explicit formulation of

a physical problem. He considered a slab of finite thickness
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surrounded by & pure sbsorber which had the same total macroscopic cross
section as the slab. He obtained the same point spectrum as that found
for the bare slab (refs. 16, 17) but found the continuous spectrum to be
only the imaginary axis instead of the entire left-half plane. Very
recenlly Hintz (ref. 10) has generalized Lehner's problem by allowing
the pure absorber to have any cross section and found that when the two
total macroscopic cross sections were different (dl # Op, see Fig. 1)
the continuous spectrum is a strip parallel to the imeginary axis of
width '0'1 - 0‘2' and that the point spectrum may be empty. He shows
that his results reduce to those of Lehner (ref. 15) when dp = Op

but does not indicate how the bare slab results of Lehner and Wing
(refs. 16, 17) can be recovered. In the present problem, a finite slab
is suwrrounded with a material which can scatter as well as absorb
neutrons. Thus the bare slab and slab surrounded by pure absorbers are
special cases and 1t is shown that the present solution has the proper
behavior (refs. 10, 15, 16, 17) for these speciel cases.

Consider a slab of material which scatters neutrons isotropically,
extends from x = -a to x =a and is characterized by the nuclear
properties o, and c,. This uniform slab is surrounded by uniform
infinitely-thick reflectors of another material characterized by the
properties o and cq (cee Fig. 1). For a physically meaningful
system, these reflectors should be nonmultiplying media si;ace they
extend to infinity. Therefore, we take ¢y < 1. For isotropic
scattering of monbenergetic neutrons in a sourceless medium and plane
geometry, the neutron angular flux, V(x, u, t), satisfies the

equation (ref. 7)

[P S e e S S
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1
Bv(x,:,t) + p BW£§$§421.+ a(x)w(x,u,t) = Eifigiilh/:lw(x:ﬂ';t)dﬂ';

(1.1)
where t is the neutron speed multiplied by the real time, x and pn
are shown on Figure 1 while o(x) and c(x) are given by

01, ¢3 for |x| >a

o(x), c(x) = (1.2)
0ps ¢p for | x| <a. ;

We seek the solution of this equation subject to the boundary conditions

B

'x | limm ‘lf(ix)ll:t) =0 (1-5)

and the continuity conditions

‘V&a“hu:t) = "V(—"'—*ﬁ';“)t): (l'u')

given the initial condition

\V(x,u,o) = f(x)U) " (1-5)

which we assume satisfies (1.3) and is extendable withbut poles or
branch cuts in the finite p-plane except perheps for a discontinuity
across the imaginary axis. When the material properties of the
reflectors are taken to be those of a vacuum this problem reduces to
that of Lehner and Wing (refs. 16, 17) while for a pure absorber it
reduces to that considered by Lehner (ref. 15) or Hintz (ref. 10).
The method of attack to be used in solving this problem is the

following:

.
]




1. Remove the t-dependence with a Laplace transformation.

2. Solve the transformed equation by applying Case's technique.

5. Determine the analytic properties of this transformed solution
in some right-half s-plane.

4. Recover the t-dependence and simplify by suitebly deforming the
integration path of the inverse transformation. Previously cited re-
sults (refs. 1, 4, 8, 9, 14) lead us to expect that the reflectors
should contribute continuous-spectrum type terms typical of a semi-
infinite medium while the central slab should give rise to some point-
spectrum type terms and their corresponding discrete time eigenvalues.

5. Calculate real discrete time eigenvalues as a function of
material properties if and when they exist.

This is the method which has been successfully employed by Bowden
(refs. 1, 4), KuScer and Zweifel (ref. 14), and Erdmenn (refs. 8, 9);
we use many of their results in solving the present problem. 1In fact,
our solution contains parts which resemble their solutions. Some

preliminary results for the present problem were given in ref. 23.




IT. TIME REMOVAL AND ELEMENTARY SOLUTIONS

If we take the Laplace transformation of (x,u,t) as
o0
\Vs(x)l-’-) """\_/; e-st ‘V(x,’“)t)dt: (2.1)

then the inverse transformation required to recover the t-dependence is
7410

V(x,1t) = 5= s e yg(x,u)ds, (2.2)

where 7 1is to the right of all singularities and branch cuts of
Vg(x,1) in the transform plane; that is, the s-plane. From previously
cited work of others, it is expected that the path of integration in
Eq. (2.2) can be deformed to indicate more precisely the character of
V(x,u,t). When we apply the transformation of Eq. (2.1) to Eq. (1.1),
integrate by parts in the usual manner and meke use of the initial

condition (1.5), we obtain

1
i _a_a; Vg(xm) + [ + o(x)] ¥g(x,m) = -‘5-(-’—‘-)-2-9(-3‘-)-[_1 ve(xut)an’ + £(x,p).

(2.3)
Equations (1.3) and (1.4) become under this transformation
x| ow Velmm) =0 (2.4)
and
Yg(tat,u) = yg(ta-,un). (2.5)




Before applying Case's technique to solve Eq. (2.3) subject to
conditions (2.4) and (2.5), let us examine some properties of the
transformed solution which follow directly from the governing equations.
Bowden (refs. 1, 4) introduced these ideas at a later step in his work,
but here they aid in the construction of the solution.

An arbitrary function of two variables, £(x,u), can be written as
the sum of its even and odd parts, namely, f+(x,u) and f_(x,n). They

are given, of course, by
fi(x)ll) = %‘ [f(x:ll) + f(‘x)'“)] (2.6)
and have the property

fa(-x,-p) = £ fa(x,u). (2.7)

Since c(x) and o(x) are even functions of x, we can easily show
from Eq. (2.3) that the even and odd parts of Vg (x,u) obey the

equation

1
" 553{- Ver(x,1) + [S + a(x)] Ver(x,n) = EQC-)?"-(ﬁ)-f_l Ver(X,n')an® + £a(x,n).

(2.8)
The boundary conditions for Vg corresponding to Egs. (2.4) and (2.5)

are written as

x| limw Ysx(x,1) =0 (2.9)
and
= ¥ (a-,u), (2.10)

‘Vsi(a""} “)




TR ey =

subscripts denote definite parity parts of a function
Equations (2.8)-(2.10) tell us the following:

where the =

(see Eqs. (2.6) and (2.7)).
All solutions of the homogeneous equation associated with (2.8)

1.
can be made to have a definite parity.

2. The boundsry conditions preserve the parity.

3. The definite parity parts of an initial distribution excite
inhomogeneous solutions of corresponding definite parity. Therefore, we |

can separate this problem into two problems, one for Ws+’ the other for

Vs, and combine the results at any stage of the calculation.

The functions fi(x,un) and yg+(x,u) are broken up as

£q.4.(x,1) x| >a
1+ \XsH),
fa(x,u) = 1| (2.11)
fgg—_(x: k), ‘ x| <a,
and
Wii(x:“)s)) |x| > a
(2.12)

Yt (%5 18)
Vor(x,1:8), x| <a,

so that Eqs. (2.8), (2.9), and (2.10) become

a CJUJ l
K S;‘Wji(xyu;s) + (s + Uj)th(x)H;s) = =3 ‘jpl Wji(x:u';s)dﬂ'

+ fJi(x’“)’ J=1,2, (2.13)

Ix| My (x,0,8) = 0 (2.14)

and
Wli(a)uxs) = yor(a,u,8). . (2.15)
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The notation 8Ji(a:“) means the limit of gu(x,u) as x —»a from
rmidium J. Solutions of Egs. (2.13) will be obtained by constructing
even and odd particular solutions, det(x,u), and adding to them
solutions of the corresponding homogeneous equations, chi(x,p),

so that conditions (2.14) and (2.15) can be satisfied. These functions
iji and Vjep Will be constructed from Case's elementary solutions
which we shall denote here as wjv(x,u,s).

The elementary solutions, wjv(x,p,s), are solutions of the

equation

1
H ga; \VJV(X:H:S) + (s + GJ)WJV(X:FI:S) = % €393 [.1 W,jv(x:ﬂ';s)d“'

(2.16)
in the form
- x/v
Vi (5u,8) = 9, (we(#02)%/ (2.17)
wvhere Vv 1is a complex parameter introduced in this separation of
variables and ¢jsv(“) is normalized as
1
J et < s 4 oy, (2.18)

Bovden (refs. 1, 4) and Erdmann (refs. 8, 9) have investigated these
solutions; many of their results are given in Appendix A and will be

used herein. They show that the solutions ¢Jsv(u) are given by

1
V=@

q’jsv(u) = % chJVP + 7\JS(\")S(V - p')) v € ("l)"'l)}

(2.19)

b

e T
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vhere P denotes the Cauchy principal value, 5(v - u) is the Dirac

delts function and

AJS(V) =8 + 0y - Cy04V tanh™t v, (2.20)
and two discrete solutions,
%VOJ(M‘ = % ;f;i-?%, s € Sy4, (2.21)
provided that the function “js(z)’
0y5(z) = 5 + 0y - Cy0;z tanh~t %, (2.22)

of two complex variebles s and 2z vanishes at the two points ivoj.
The condition for this to happen (refs. 1, 4) is that s 1lie inside

the curve Cj (s € S;1, see Fig. 2) defined by

— S+GJ - 1 1 1 _29' -1(2B'>
C,j = CJUJ =qa <+ iB a = T tanh —Tf—- . (2.23)

We note that Vo3 is an analytic function of s for s € Sji except
for a branch cut on the real s-axis between 03 and -oj(l - cJ). We
have denoted by +VOJ that zero of st(z) for which Re(voj) > 0,

s ¢ [}oj,-aj(l - cji]. The important result is that the general solution

of (2.16) can be expressed as the linear combination
¥3(x,n,8) = [ajwvoj(‘x,u;S) + bgw-voj(x,u,S)]ﬁj(S)

1
+[l AJ(V)W‘Jv(x)“)s)dV.’ (2'2’4')
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where we define Bd(s) as

1 5 €8
64(s) = { ’ I (2.25)
0, s € SJe

and the s-dependence of the expansion coefficients has not been
indicated. To avoid confusion with our notation % for parity, the
customary notation for the discrete modes has not been used.

The solution (2.24) does not have definite parity. For z medium
which is connected and symmetric about x = 0 (such as our slab), even

and odd solutions can be written as

Wji(x’“’s) = 84t [WvOd(x,u,S) + w-voa(x,u,s)]ad(s)

1 -
+\/; Aji(V)tWJV(X;M:S) i‘vd(_v)(x,u,si]dy,

(2.26)

where

and

We have used the properties

Wivoj('x)'“:s) = ;VOJ(X:M:S)
and

Wj(ip)('x)'“:s) = WJ(;v)(x;“:s)* (2;28)




1k

i il II

For a medium which extends to infinity in the x-direction (such as our

reflector) the boundary conditions (2.4) require that o

by = Ay(-v) =0, 0SvsSl if x -4w
or

B,JEAJ(V)EO, 0Sv<El if X = -w (2.29)

for the expansion coefficients in Eq. (2.24) when Re(s) > -0y
We use results (2.24), (2.26), and (2.29) now to construct the

solutions xydc._,_. and ‘l’de:' i




III. CONSTRUCTION OF TRANSFORMED SOLUTION

The even and odd homogeneous solutions in the slab, V,.., can be ' ?
written in the form of Eq. (2.26) with § = 2. On the other hand, the
homogeneous solution in the reflectors, subject to the boundary i
condition (2.29), can be written from Eq. (2.24) as

~ 0
bJ_W-V01(x:H;5)51(S‘) +f1 Al(VWlV(x,»u; 8)dv, x < -8

-

N lom) =4

1
aq " X,1,8)8: (8 *}jp A (v (x,n,8)av, x > a
21 wVOl( ), 8) 1(s) 0 1 ( )le sHy ’ ’

(3.1)
for Re(s) > -o,. The continuity conditions (2.5) and the parity of the
solutions V¥p,4 can be used to relate the coefficients in Eq. (3.1). 1

We find that an even solution inside the slab reguires

ay' =by and Ay'(v) = Ay(-v), 0Sv Sy, (3.2a)
yhile an odd solution inside the slab requires

a)' = -by and A '(v) = -A3(-v), OSv <1, (3.2p)
The explicit forms of Voo, and VYq,4 are therefore

\lrgcj._(x,u;S) = 8oy [Wvoe(x,u: s) % ‘V-yoa(x:u: S)] 52(5)

1
+/; Ay, (v) [ng(x;ﬂys) * 1Jrg(.,,)(x,u;S)]fiv

(3.3)

and

15
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1
'ali‘V-vOl(x;P)S)ﬁl(s) '*'A AJ;P_('V)\VJ_(-V)(X:H:S)&V: x < -a

chi(x"p" 3) = 1
iau.wvgl(x,u,S)Sl(S) x j; Ay (-v)¥q, (x50, 8)av, x > a,

(3.4)

for Re(s) > -0y.
We turn now to construction of WJP*' Consider a function

gjs(x,u;xo) which satisfies the equation
d cj05 [t .
H 5§-gjs(x,@;xo)‘+ (s + UJ)EJs(xpuixo) = 5 \/Pl sds(x,u;xo)du'
+8(x - xp)fy(xg:u).  (3.5)

Upon integrating on x from X5 = € to Xy + € and teking the limit

€ =0, we obtain the jump condition

£3(x0,u)
835 (x0+s0;%0) - 835(%p=s1;%0) = —'1-&—-1—- . (3.6)
The function wjpi(x,u,s) defined as
= & + _
ij_t(x:“: s) = ‘5 [‘I’Jp(x,u:s) + ‘J’Jp('x; “N:S)] ’ (5'73)
where
‘V'jp(x)liys) = f Sjs(x:l-’-ixo)d-xo: (3.70)

(medium)
J
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is seen to be a solution of Eq. (2.13). It is shown in Appendix B that

explicit forms of WQP—": and Vipe can be written as
‘L"?p_;;(x.v“) g) = [:Fa;_.(x,voa, S)‘VVOQ(X:P; 5)
+ ng_t("x) Voo» S)‘V-voe(x:“: Sﬂ 82(s)
1
+/;) F&(x,vﬁ)\lfgv(x,uﬁ)dv

1
iA ng(-x,V,S)ﬂfg(-v)(x,u, s)dv, (3.8)

\l’lpt(x;“) s) = {Fli( X,Vo1, S)\lval(x:.“:s)
+ F]i(x)"VOl:s) - ﬁ:!:("a:"o:l_:s)] ‘!’-VOl(x}P)S)} 51(5)
1

+f Fl:t(xyv: S)le(x:u: s)av
0

1 ~
+j; [Fl,.":(x’-v’s) - Fi(-a,v,s)] \lfl(_v)(x,u,S)dv,

x < -a, (3.9)

for Re(s) > -0y, and
‘le:t(x:“,vs) = {i -Fi(-a,VOl,S) + F]_'t("x:'vol:s)] ‘lfvoj_(x:ll,s)

+ Fli( -X;Vo1» é)‘l’-vo]_(x’ H, 3)} 81( s)

I+

f [—F+(-a,v s) + Fp4(-x,-v, s)] wlv(x,u,s)dv

33

f 'J"JV 5)1”1( V)(x,u,S)dV, x > a: (3.9p)
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for Re(s) > -0y, where

Fy(-8,0,8) = Fli(-a,Aw,s) 5 Fi4(-a,0,8),
X .
w
Fou(x,0,5) = | Coulxg,)e{#192)50/ oy
)

and % ﬂb
Fi+(x,0,5) Ef CE(XO,w)e(S-i-O‘]_)xO dxq. (3.10)

=00

Here the Cj+ are full-range expansion coefficients of the function

fji(x,u)/u and are given by

1
Vn‘gs(v)ngs(v) -1

Cji(xo:V) = fli(xo,u)szv(u)du,

and if s € Sji’

1
2
0 31(%:v0g) = [ tptmome, (wa
J 0770 CjO’jVOjen'js(Voj) -1 Ji %07 VOJ
and i
1
2
Csy (%0, -vp3) = , [ T, (x0,0)®_, (p)du.
JE J CJUjVOjgg'JS(-Voj)kl‘ J= 703

(3.11)

Throughout, we shall use + and - superscripts to denote the limiting
values of a function on its branch cut as the argument approaches the
cut from the upper (+) and lower (-) half-planes. The function st(z)

of Eq. (2.22) has a branch cut along the real z-axis (-1,1) such that

“gs(v) = 7\Js(v) + i::cjcjv/2, -1<v<1. - (3.12)
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The functions Q'Js(z) are defined by
0, (2) = & a,4(2). (5.13) ©

Js - dz jS i

Note that the parity of the coefficients Cji is opposite that indicated

by the % subscript. Nevertheless, the solutions wjpi are easily seen

to have the indicated parity. §

The solutions Vg, (Eq. (2.12)) of our problem are written in

terms of ch+ and iji as
+ .

chi(x)“’s) + ‘{f]_pi(X,l.i, s), lx ' > a

(3.14)
‘ygci(x)pys) + szzt(x:lly-s); |x | < a.

‘lfs-i_;‘(x)u) = {

The solutions in medium 1, lxl > a, have been constructed so that the

boundary condition (2.14) is satisfied. Application of the continuity

condition (2.15) allows us to determine the unknown expansion coefficients q

of chi which appear in Eq. (3.14%). That is to say, if we substitute

% =a in Eq. (3.14), apply the continuity condition (2.15) and use the
explicit forms of Yjc+ given by Egs. (3.3) and (3.4), we obtain a two-
media full-range expansion involving the ¢jsv which contains unknown
coefficients a4+ and Aji' The same expansion is, of course, cbtained
for x = -a. This type of expansion and its orthogonality relations are
discussed in Appendix C and we show in Appendix D that such an expansion
is obtained for the preseﬁt problem. Erdmann (ref. 8) proved completeness
theorems which apply in such time-dependent problems while KuEEer,
McCormick and Summerfield (ref. 13) derived orthogonality relations

which are applicable to two-media expansions which arise in time-
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independent problems. In Appendix C, we extend their results to obtain

ortrogonality relations in a form which are valid for all regions of the
transform plane. As usual in problems involving a slab, we cannot obtain
closed form solutions for the expansion coefficients. However, we can
use the orthogonality relations (App. C) to obtain expressions which
give the expansion coefficients implicitly. That is, the continuum
coefficients AEi(V) are given as the solutions of Fredholm integral
equations and all of the other coefficients are obtained from the

Asy(v). More specifically, if we define

Bpu(v) = Apt(v)ihy(V)83,()e( #4920/
rnd

1. (V) = Ap(-v)01g (V)01 (v) -(ston)aly
¥ BT 157" (3.15)

the use of the orthogonality relations leads, after some algebra, to

the following list of equations:

E&(V) = Iﬁ(V) e {ka gesg ; Xo( V)D)}

Pt e-2(s+02)a/k xo( -y, 8)p au
E P
x{”/o () ()95 (1) (1 + V)

‘ v
+ 62(8)32;}-_8-(8-‘-0‘2)&/1,02 Xo(-VOQS)——O—e—;} , O s v 5 1,




2l

1 (s+ap)a/von _ ks Opg(=)
5 °202v0efs(Vop)apre 2T 102 = Jpy (vop) * 7 a=2my Xol-vops )

1 e-2(s+0p)a/ -,
X {J; Esy (1) 1920870 Xo(-H,8)u

b (k)95 (k) (1 + vop)

+ 32; a&e'(s""’Q)a/‘/og XO('VOQ’S)} ,

s € Szi,
(3.17)
+ o\
B =T + Co02 Q.:I.S(."')Q’:LS(V) -2(s+o'2)a/v
Ji(V) ]i(V) T4 Qgs(v)gés(v) E&(V)e
+ {]..: K 1 }
2 Xo( -Vv,s)
L eplsiap)ale xo( )
« f Bpy (1) Madide Xo(-,8)P1gy(n)20 dp
0 ﬂgs(u)ﬂgs(u)clclv

-{s+02)a/v Vo2
+ 8p(s)ae (st+o2)a/ 02 ¥4(-vgp,s) - -Ov } ’
o2y

Osv<1l (3.18)

and




a2

-\ 8401 )8/V
% ¢101v010" 15(Vo1) By, 0 (s+o1)a/vor _ 15 (vo1) 7 {%_k

1
2’ XO( -Vo1, S)}

1 e-Bsvo2)alh y () e)u au
X ~/; P () D (6~ Vo)

Vo2

+ 52(8)3&6-(S+62)a’/v02 Xy (=vpps5) ”
o2 ~

s €

(

The I
distribution and are therefore known functions when f(x,n) is

specified. They are given by

12+(v) C;U; Fi+(-a,v s)ess+cl)a/v st(v)QES(V) {: s 91 E ; Xo( -

: L |
X [j; F&t(a.v“:s)e-(sw2)a/u Xo("P-:S) p.’dp,

B4V

o -(s+o0)a/v v
+ 8p(s)Fp (8,vop,8)e™ 2 02 Xo(-vgp,8) vaégé-v

_ Mg(w) (: 1 ) e(swl)a/u Pogy(K)2u du
+ Qgs!oo; j; F]i( a‘)p)s) Xo(-p.,s)czo'ev

1

)
Vo1

SJ'ia

3.19)

3+ and J 3 terms contain only integrations over the initial

VS%

Vol

+ Sl(s)Flt( -a,V0]» S)e(swl)a'/VOl

0SvS,

(3.20)

]

Xo(-vo1,5) v - vg




25

o (Vop) = % {é‘ 5 §-§§-; XO('Voa:SE}

1
X {[/; F&(ayu)s)e-(swe)a/p Xo(‘u)s) uu+dt02

+ %-in(a,vOQ,s)e‘(s+02)a/V02 xb(-voe,s{]

s 1 5() [/l FE(_a,“,S)e(swl)a/p Bodp

W Jo xo(-u,S)(u - Vog)
i} (s+01)a/vo1 ‘o1
+ Sl(s) Fl_-g-_( a;volrs)e Xo("vol’s)(VOl - VOE)]},
s € SQ:’L’ (3-21)

Iy(v) =7 [Flt('a’v:s)e-(swl)a/v - zizi Foi(a,v,s)e” (swg)a/x] s(V)Q:Is(V)

ﬂ:{ik 1
2% Bolvr),

1
" {M) Fg(a’u’s)e-(swa)a/“ Xo(-H,8)P g (1) === %

Cc oV 101V
5(5)Fa (8,75,s)e~(5H92)8/v02
+ 2( )F&!:( Voo )e XO(-V ,S) S— v02
_ M g(w) 1 ) (s+oq)a/u T
+ 92—;'(“) L/; Fji( a,u,s)e. , Xo(-p.,s)(p. )
+ Sl(s)Fl__t(-a,vOl,s)e(swl)a/vol - Vo1 _|
( XO('VOl’S)(VOl + V)J ’

o<v<a, (3.22)

i c i = e S R i
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and

~(s+07) a/ Yol

J1x(voy) = FF (-a,voj_,s)% lalvOla'ls(vOl)e

B

k

+

‘r__“ ol

1
® Xo(~vo1s8)

k/\;th(a)“;S)e-(s+02)a/p Xb('ﬂ:s)'liigi-'

X ,
0 K-Vl

+ BE(S)Fet(a,voe,s)e'(s+°2)a/voa Xo(=Vops &) ___392__€]
1

Vo2 - Yo
_4_.9.“’)[ L - (s+0q)a/u g dy
Qg L FJ_4;( a,u,8)e 1 }{0('}1;5)(“ " VOl)

1
XO(‘V01:SXJ ’

+ %—Flt(-a,VOl,s)e(s“l)a/VOl

5 € S14. (3.23)

In the above equations, we have used the XOJ functions which KuScer and
Zweifel (ref. 14) have shown are continuous across the curves C y in
the s-plane (see App. A and Fig. 2). For two material media, we take

the ratio of their single-medium XOJ functions,

_ 2(2)5)
Xb(z,s) = ;gzz;:gjv (3.2k)
where
K ((2,5) = (voj - 2)X35(2), = €844 (5.25)
& (1 - 2)X55(2), s € S3e
and

1
1

gy
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’ 1 1ads(v)
1 1 Js dv
Xjs(z) = = exp enij; in RO (3.26)

For Re(z) <0, Xy(z,s) given by Eq. (3.24) is a nonvenishing analytic
function of z and s provided s § [}od,-oj(l - CJU s the branch cut

of voj(s), J = 1,2. The quantity

ks = S(Clo‘l - 020'2) + 0‘10'2((31 - Ce) (3'27)

is related to the difference between medium 1 and medium 2 continuum
solutions; several equivalent expressions for kg are given in
Appendix C.

In Egs. (3.15) we introduced the coefficients Eji(v) since they
are the forms of the normal-mode expansion coefficients which are
extendable to the complex plane (refs. 2, 3). Thus, Eqs. (3.16) through
(3.23) can be written in a compact form valid for Re(s) > -g,. These

equations (see App. E) are

Bp(z,8) = Ipe(z,s)
+ Kg Qg () Xo(-z,s)u/‘ E2t(z';S)XO(-Z',s)e'2(5+°2)a/z' o
~ cpop Mglw)  2ni oL Q0s(2')(2' + 2) )
(%.28)
Eli(z,s) = I14(2z,8) £ z;g; Eat(z,s)e-2(8+62)a/z
e, Bau(s, s)ig(-zt ) 2R /e
+-c202xo(-z,s)2ni ' ez V(2" - 2) ’

(3.29)

&
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c ke
e = EE o) o (2 0 1)

Lgt(a:z')s)x()(‘z')s) .
% {tf;' Co0ofog(2') (2" + 2) az

26() In+(-8,2',4) dz'
¥ Dps(@) Jgr 101X (=27,8)8 (2" ) (2" - z):} (3.30)

and

I14(2,8) = 5L14(~a,z,s)e 2(st07)a/z + L1 Loy (8,2,8) - ks
Co0p 2niXy(-z,s)

+ L&(&,Z',S)XO(-Z’,S) y
x{'/;, Co0ollng(2T) (2" = 2] Az

21() Lys(-8,2',8) dz' '
* 2s(®) J g1 C101%o(-2",8)0 (2" (2" + 2) dz}, (3.31)

where for Re(s) > -0,

X 1l
e _ ~(s+04) (x-x0) /2 |1 i , oy du
Lji(x,Z,S) \/;(J)e J = jUJL/; f'j:."..(XO’ ]J-) 0+ z

1
-3 °J°Jfo £3x(x0,0) = 2

+ %’- fdi(xo,z)njs(z)} dx,,

(3.32)

with

(1) = <« and 1(2) = -a. | (3.33)
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In the sbove equations, 2z does not lie outside the contour C' which

encircles voy @8 shown in Fig. 3 and oy is defined as

oy = min(oq,0p). (3.34)

The restriction Re(s) > -0, dis discussed in the next section. The

LJi Punctions were introduced as
- - v
LJ:(X:V)B) = F,jj;(xyvxs)ﬂgs(v)ajs(v)e (Sw‘j)x/ , 0SvI1l (3.3)

That Egs. (3.28)-(3.31) reduce to Eqs. (3.16)-(3.23) as all
contours C' are collapsed onto the branch cut v € (0,1) due to
st(z) cen be seen as follows. If s € Sy, [bjs(zi]'l has a pole at
z = Vo4 whose residue leads to a discrete term. When g € Sjes
st(z) does not wvanish. The continuun terms are simply those due to the
integration around the branch cut.

The solutions chi(x,u,s) and dei(x,p,s) can now be written

similarly as

B (21, 8)e(502) (a4x) /2"
WECt(x,H:S) = é%?- L/;' = 923(2’)(2' ) dz'

dz'), |x|<a,

s [ 54 (2", o)e=(5402) (a-x) /o
“Jer ez (2" + 1)

(3.%6)

for Re(s) > -op,
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( 1 f Elf(z',es)e(s'*'o'l)(x*'a)/z'
2 J g1 g(z') (2" + u)
ch;i_-(x:li:s) =<

fc:l.f Eﬁ(z',s)e-(swl)(x-a)/z‘
\ enlJ o Q(2") (2" - p)

(3.37)

for Re(s) > -op,

LEt(x:Z’ »S)

l 1
Vept (ko) = E"—l{/;' Tz (2 )

Low(-x,2',5) \ .
i‘/;t Qs(z')(z' + 1) dz}, le <8 (5:%)

,/.ﬁ
o)
H

RE(S) > -0'2; and

f'
1 f LJ:!:(X)Z")S)
Cl

———— . 1
2t e -

Me(x,2z',8) % Ll.t(-a,z',s)e'(s"'“l)(a‘*x)/z'
o o,
Cl

Me(z) (2" + p)

< -
Wlp_t(x,l-l;s) = < X a

z'

1 f Lys(-a,2',5)e~(Sto1) (a4 /2" M (x,2'8)
ZERAVAY Mg(z') (2" - u)

if L]_-Q_-(-x,iz',s) az'\,
c' Me(z')(z' + u) |

x > a, (3.39)

\
for Re(s) > -0q.
The functions Mi(x,2z,s) are also integrations over the initial

distribution fy.(x,u) and are given by




g
+ 2z

-8 1
Mﬁ(xyz)s) = “f e-(s-{-o'l)(X-}‘x())/Z{l 0161/; fli'(xO)P')

-X 2 W

1
1 |
-3 cldlj; £14.(x0, 1) “d’_‘_ - f
+ L 89, (%0, -2)04(2) ) axg, x > &,
5
(3.40)
and
-8 N 1l
Mi(x,2,5) =j; e-(s+91) (x0-x) /2 {% clcrlj; £14. (%0, 1) ud_': =

1 ' ap
- § (:lﬂlf(; f]__t(XO,"“-) o=z

(3.h41)
for Re(s) > -09 and z not outside C'. Again, the discrete and
continuum terms which appear in Eqs. (3.3), (3.4), (3.8) and (3.9) are

due to the z«4v«7 and branch cuts of st(z) which appear in the

integrands of>EQS. (3.36)-(3.39).




IV. PROPERTIES OF TRANSFORMED SOLUTION

Analytic properties of wsi(x,p) as a function of s must be
investigated before we can recover the time-dependent solution
V¥(x,n,t) according to the inverse Laplace transformation given by
Eq. (2.2). We need to know the behavior of V.4 in some right-half
s~plane. Before looking at the details,*let us briefly review some
results of earlier cited work in which Case's method was used.

In the previously mentioned work of KuSfer and Zweifel (ref. 1k4)
and Erdmann (refs. 8, 9), expansion coefficients could be feund ex-
plicitly and this aided in the extraction of the s-dependence of their
transformed solutions. They find that the branch cuts of voj(s) are
inherited by the transformed solution so that the integration contour
of the inverse Laplace transformation must be deformed around these
branch cuts. For the slab problem solved by Bowden (refs. 1, 4)
expansion coefficients could not be found explicitly but theorems of
Lehner and Wing (refs. 16, 17) gave the analytic properties of the
transformed solution in the s-plane. In that problem, the branch cut
of vo(s) is not inherited by the solution. Instead, the transformed
solution has a finite number of poles at values of s, say 80s cevs Sy
which lie on the branch cut of vo(s), that is, on the real s-axis.
These poles contribute a sum of residues as the integration contour is
moved to the left of them in the s-plane. Fﬁrthermore, in thgse
previously solved time-dependent problems there is a real number,
say 7y, such that the integration contour cannot be deformed into the

region Re(s) < 7, for arbitrary values of x. We expect the preseht
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transformed solution to exhibit similar properties, that is, wéi

may not be analytic for Re(s) less than some number 7, when x is
arbitrary while for Re(s) greater than 71 it should be analytic
except for poles and/or branch cuts. Such singularities probably
occur where VOJ(S) has its branch cut.

We first note that for arbitrary initial distributions f£(x,u),
Wsi(x,u) is not analytic for Re(s) < -0, . This is true since each E
of the inhomogenous terms Iji of Eas. (3.28) and (3.29) contains both
Li4 and Loy as can be seen from Egs. (3.30) and (3.31) and therefore,

in general, is not analytic for Re(s) < - ey Wwhere o, 1s given by
Eq. (3.34). 1In particular, we note that for lxl > a, Wii(x,p,s)
never appears to be analytic for Re(s) < - O However, for special
cases of material properties and initial distributions, Wéi(x,u,s)
can be shown to be analytic for =05 < Re(s) < -0y except perhaps for
poles.

We now look at the behavior of V., for Re(s) > -0,. Recall

that the transform plane for the present problem must be taken as a

superposition of two "single-medium" planes, that is, one for each
material medium in the problem. The expressions (3.3), (3.4), (3.8)
and (%.9) for the transformed solution were not defined for se(,“j and
outwardly appear to be disgontinuqus at seCJ. However this is not
the case. The complex representation of ,EJi given by Eqs. (3.28)
and (3.29) shows that such coefficients gfe continuous across the
curves Cj' Thus it is seen from the representation of Wéi given in

Egs. (3.36)-(3.39) that ¥4 1is indeed continuous across the curves

CJ'.
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It is convenient to introduce at this time the solution of the iy
associated eigenvalue problem, that is, the solution of Eq. (2.13)
subject to the boundary conditions (2.14) and (2.15) with f 3 +(x,un) = 0. é

Such solutions, denoted with a bar, have the form

1
(= bltw-vOl(x’“’S)sl@) +L/; Bli(-v)‘lfl(_v)(x,uys)d\/) X < -a

= [Wvoa(x)l‘;s) * ‘lf_voe(x,v“:sﬂa.?(s)

¥ (x,1) =<
+ 1
+\/; B&(V)[‘ygv(x)uys) + Wg(-vsxyu,S)]dV; |x| <a
-— l —
\? ibli¢VOl(x,u,s)Sl(s) i\/; Bli(-v)wlv(x,u,s)dv, x> a,

(4.1)

where obviously Eﬁi and %ii can be obtained from the Ej+ given

by Egs. (3.28) and (3.29) in the case fji(x’”) # 0. As we shall see

later, the solution Ws+ has poles at those values of s for which

the associated eigenvalue problem has nontrivial solutions. 1In

Appendix F, it is shown that as the slab thickness becomes very large
this eigenvalue problem has only trivial solutions for Re(s) > -0,
except perhaps on the branch cuts of voj(s). When the glab thickness
is not large, we still expect that if the eigenvalue problemfhas
nontrivial solutions for \Re(s) > ~Op, they occur only when 's is real.

This has been proved rigorously using the method of Lehner and Wing




3

(ref. 25) for several problems which can be obtained as special cases

of the present problem: +the bare slab considered by Lehner and Wing
(refs. 16, 17) and the slab surrounded by pure absorbers considered by
Lehner (ref. 15) and Hintz (ref. 10). 1In all of these problems, there is
no scattering in the reflector and, therefore, no branch cut of vOl(s).
As already indicated, the Xo(z,s) function inherits the branch cuts

due to both v..(s) and Vog(s) and these branch cuts lie on the real

Ol(
s-axis from '°j to 'cg(l'cj) and may or may not overlap depending
on the values of material properties. Note that cq has been taken
less than unity and this insures that the branch cut of VOl lies

entirely to the left of s = 0. In previously solved time-dependent

problems, singularities of the transformed solution always occur where

the VOJ(S) has branch cuts. Since the analysis of Appendix ¥ indi-
cates that for large values of the slab half-thickness, a, the singu-
larities of y_, for Re(s) > -0, also occur where the voj(s) have

branch cuts, we will assume for all values of a that the singularities
of V.4 occur on the branch cuts of voj(s). In any case, we show
that the only other singularities of V_,, Re(s) > -o  which could
occur off the branch cuts of VOJ(S) are poles, whose residue could
readily be added to the time-dependent solution.

In or@er to see the behavior of Wst on the branch cuts of VOj(s)

we first look at V N in the region seSlj.f\ S2 For this region,
st

i.
the expansion coefficients are given by the equations (see App. G)

e
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+ ks %25(=) (voo® - W) ha(w)

Par(u) = * 2 Mgl=) (VO;_Q - 12) go(k)
% 1’12("02)‘;’: ho(-vop) +fl B (V)ho(v) dv o<p<l
B+ voe B Vs o 2 2 v+ pf? T ==
(k.2)
5ra(-) 7 02 Be(k) e(al-ae)a/u
+ ks 925 (=) hy(k)/ho(vop) + ho(~vpp)
G Q (oo) gl(“) M- Yoo B+ Vo2
29, (V)
f Bgt(v)hE(V) —ASK __ 4y (4.3)
€191#
and
¥ hl('VOl)gli = h2(v02) t ho(-vgo)
l —
+ (vop? - VOle)fo Bat (Vng(v) ey (4.
where
X, (<w) -(s-i‘-ce)a/?‘?
hg(w)=w}—(§:-(me _v;,‘
| : _ Q1g(®) Xy (-w) (s-;al)a/w
hl(w) = Qgs("") Xas("”)
and .
g5(k) = b (k) a3 (w). (4.5)
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In addition the eigenvalue condition

NE 21
0 - felvop) , Balrvos) [ Bty e ()

Yoo ¥ Yoz Yor - Vo2 v+ VoL

must be satisfied. Since the eigenvalue condition (4.6) has different
limiting values as & approaches the branch cut of vOl(s), we conclude
that there are only trivial solutions of the associated eigenvalue
problem on the vOl(s) cut. When s belongs to the branch cut of
voo(s), which is not also part of the vOl(s) cut, that is, when
Re(vgp) = Im(vy;) = O, it appears that nontriviel solutions of the
associated eigenvalue problem may exist. From Bowden's results

(refs. 1, 4) for thke bare slab, it is expected that Eqs. (4.2) and

(4.6) are satisfied only at isolated points, {%q}' In the limit

cpopa — » these points lie on the branch cut of vy,(s), that is, the

s, are real. The "thick-slab" eigenvalue condition is seen from

n
Egs. (4.2) and (4.6) to be Eq. (4.6) with §2+(u) = 0.

If material properties are such that =05 < =075 then a portion
of the branch cut of vog(s) lies in sesaif\ S+ In this region
however, s < =0, = =07 and for such values, the solution $;+(x,p),

|x| > a, that is $i+, is not bounded as |x| — . However, v may

2+
have nontrivial solutions on such a portion of the branch cut of

2t

VOE(S)' The equation for B and the additional constraint for this

region are (see App. G)




‘ 5T

""“”““Mﬁwm dooco

= _ . ks 8g() oy Bo(K) X3g(-p)
RN WO I Hl o

ho(von) Xqo(-vop) + Ba(-Yo2) X15(vop)
M+ Voo Xo1(-voa) M - Yoz Xois(voa)

Lo x () W
'*'/Z) Bg—t(v)hg(v) XO:.S('V) T R (%.7)
and
X (-VOQ) Xl (V )
0 = hp(vy,) —= (=vgp) —=-02
B xo1e(-vor) o %% Xgg(vep)
+L/:) Ba)i(V)hg(V) }T-O-l—:—(m av. ()4.8)

As we shall see later, the zeros of Eq. (4.8) can, under some condi-
tions, be poles of Wei and therefore may contribute discrete modes
in V¥(x,u,t), |x| <a. For this reason we are interested in where
these zeros lie and shall refer to them as pseudo-eigenvalues.

We now show how the solution of the associated eigenvalue problem
W;i, is contained in the inhomogeneous solution, Vg4, by following a
procedure of Bowden and Williams (ref. 4). In Appendix H, it is shown

that the original expansion coefficients of Egs. (3.3) and (3.4) can

be written as

FEEY L SRR
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H

Agr(u) = E«at + %Fei(a;voa;ﬁ)] Eji(u) + Bys () T

and

whers §3+ and Eii are given by Eas. (4.2) - (k.4). The coefficients

L

are given by

Bjt and b]+ i
eng (0,-0,)a/v
I At 172
BEi(V) = Too FJ+(-a,v,s)e

+ ks Qes(m)’(voee ~ V) hy(v)

T2 fyg(w) (v015 - v2) gy(v)

1 ( an
X B h
&/; ot 1Y) 2(“) L+ v

1 | ho(vop) — ho(-vgo)
+ z F&(a!VOE&S)[v + Vo2 + 17a- V%éL

1
du
+J; ng'(a)“:s)hg(u) TR

. V.2 2 20 (
¥ L W)
+\/p Fli(-a,uys)hl(p) 012_ R ESresvik au
. Vo2« = KT cpopv

’ (4.10)
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(oy-02)a/v ks S (%) }}l(y)
(v)e 52 T Bl

— Cag ,
hml -

X }-F?(a,v ,8) h————-a(voe) ?——QM Yop)

2 — 02 vV = Vo2 vV + Voe

L
+~/0 [th(“) + ng(a,u,s)]ha(u) 296y (1) du

ClO'lV

1 (v 2 _ HE)
7 [ ria(e,m, oy (u) 0L o
o T o - @) ki h v

¥ [:F_u(-a,v,s) - zigi th(a,v,s)e(cl-og)a/v] (4.11)
and
¥ hl('VOl)[bli - ’ﬁi(-a,vo]_,s)] = B4 (4.12)
The coefficient [:8‘21- + -?2: ng(a, voz,s)] is given by
Elzt + % F2t<a:"02:s)] = .;:Olﬁylﬂ.: ¥ B‘?i') . (4.13)
01%1+ ~ %ot

In these equations, o‘ji and Bjt are

1
%y = ho(vgo) hg('vog) + (V022 - Vo]_2‘) j; Boy (k)hy(1) ;e—é'ﬂ;-—é' ’
- Vo1
2 2 t pdj
Doy = Voehz("oe) F vooha(-voa) + (voe© - Vo1 ) J; Bz.t(")he(“) 2., 2
- Vo1

(%.14)

I
e

.
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Bis = = Faule, Voe’s)[ha("oa) ¥ he("’oa)]

1
+ (v022 - vOlE),/; [th(u) + th(a)“)sﬂhQ(M) —a—du_—i

1
2 2 du
+ - -
+ (VOl Voo )L F +( a,p.,s)hl(p,) “2 : v022

+ [:F’l+(-a,v01,s)hl(v01) + (-8, -vo_l,s)hl(-vOl)] (4.15a)

and

o =

Ly~
2 2 | \ udp
+ (V02 - VOl )f [7323,.(6-1) + Fg-__t(a)":‘sj]hg(“) - B}
0 | H™ = Vor

1
+ (v - Voeg)\/: Fida,u,5)h (k) gﬁ‘ggs"ﬁ
- Vo2

T E’OlFlf( RTAONPL )hl( VOl.) - VOLLFJ:I_-( -8,=V(y58 )hl( -vOl)] .

(4.15b)
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In terms of there guantities, the solutions ‘V,j:!: can be written as

Wei(X,u,S) = [agi- + % Fat(a«yvc)z,s)]Wzt(x,p,S)

1
+fo BatM[‘lfg\,(x,u,S) * Wg(-v)(x,u,sg]dv

1
'+JZ) EF&(X;V)S)‘VQV(X)“:S) + Fet("x.vvrs)‘l’e(_v)(x)pvsﬂ dv

- .
+ -35 For(x,vgp,8) * For( -, -vgpss) |V, (x,u1,8)
L ] o2
1f; y
+ 3|Fou (3t =vgpss) # For(-x,vp,5) W-vog(x:“:s): |x|< a,
. -

(4.16)

and

Wli(x,u,S) = [aE.t + %‘ th(a:vogysﬂvlt(x;“:s)

i‘[bl._t - 'f'i(-a,VOl,S) + Fli-(-x, -VOl,S)]ﬂval(X,p.,S)

t F1+(‘x:vo]_;5)‘|f_v (x,158)
- oL
1 ~

if EBJ_i("V) - Ft('-';ayv;s) + FJ;(-,’X,-V,S) le(x:u;s)
0 ;
l .

if Fu(-x,v,s)wl(_v)(x,p,s)dv, X > a.
0

(4.17)
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The solution ¥3+(x,p,5) for x < -a has a similar form. In these

equations, W&+(x,p,s) are the parts of Wg+(x,u) which are given

by Eq. (4.1). Equation (4.4) is written in terms of a4 88

¥ hl(~v01)s':Li =0, (4.18)

Consider now what happens on the branch cut of vOl(S) where
- = 0~ = - Yy = ot
Vop = 1 |v01| for Im(s) = 07 and vy = -1 |v01| for Im(s) = ot,

From the above equations it can be seen that the quantities Eét’ B+,

Bei’ Bli’ %4y %oy, Pt @nd  Ppy do not dnherit the branch cut of
vOl(s). Equations (4.18) and (%.12) show that Eﬁ: and b, have
branch cuts due to that of v°1(s). Equation (4.13) indicates that
E‘gt + % Fei(a,vog,s)] has the branch cut due to vgp(s) unless
qli/“zi is equal to Bli/BQt' In general, this will not be true since
By+/Bo+ depends on the arbitrary initial distribution fi(x,u) whereas
‘qli/“gt does not. Therefore, it is concluded that both wii and Wgt
inherit the branch cut of VOl(S).

On the branch cut of vg,(s), the quantities By, Biy, byy, Biy
and Bet are single-valued. Since the quantities O 4 and aEt of

Eq. (4.14) are related above and below the branch cut of vog(s) by

SR

it follows then from Eq. (4.13) that on that part of the branch cut
of vgo(s) which is not also pert of ﬁvﬁf'voz(s) cut; that is, for
Re(vge) = Im(vgy) = O; we have
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1 + -
[ag,_, + 3 ng(a,voe,sﬂ = i[ ot + % ng(ay‘/ogﬁﬂ ) (2{"20)

1f the denominator on the RHS of Eq. (4.13) does not vanish. It is

seen from Egs. (4.1), (4.2), (4.3), end (4.4) that for this same region,

[Wsi(x’“)].{- = i[vsi(x)“)]-° (k.21)

Hence the product

[8'24_' + -32: Fei(a,voe,sﬂ Esi(x,p.), (k.22)

which appears in wsi‘ does not inherit the branch cut of voe(s).
However, the denominator of [aEﬂ-_ + % F2i(a, vog,sil , namely
<VOla'1,t'a2i) is equivalent to the eigenvalue condition, Eq. (4.6).
Thus, if the associated eigenvalue problem has a nontrivial solution

at s = s Re(s) > -g., then V¥, has a pole there.

n’
We briefly summarize the analytic properties of the transformed
solution \Ifs+(x,p.). For arbitrary initial distributions £, (x,p),

V.. 1s not analytic to the left of Re(s) = -0, in the szplane,

whereas to the right of Re(s) = -a

m 1t is analytic except for the

branch cut along [-cm, -ol(l-ch' (due to the branch cut of VOl(s))
if o > ol(l-cl) and poles at the values of s at which the
associated eigenvalue problem has nontrivial solutions, -‘Fs 4+ We have
assumed that for arbitrary slab thicknesses, a, these poles, if they

éiﬁi,fst, lie on the branch cut of 'voz(s) since this is the rigorous

result obtained by others for several special cases of the present

S e g - TR
R L




W4

problem and obtained herein for the case when ¢ 0p2 1is large. For

special values of material properties and initial data, ws+(x,u) for

|x|< a (that is wei) may be analytic in the region -0, < Re(s) < =
except perhaps for poles.

o1




V. RECOVERY OF TIME-DEPENDENT SOLUTION

The time-dependent solution V¥(x,u,t) is obtained from the
inverse Laplace transformation Eq. (2.2), where 7 is to the right of
all singularities of V¥, (x,p) in the s-plane. From the analysis of the
preceding section we expect that we can choose any 7 > max [}dl(l'cl)’
-og(l-cg) . In order to show the time dependence of the solution
W(x,u,t) more explicitly, we deform the inversion contour as far as
possible to the left in the s-plane by making use of the analytic
properties of Ws(x,n) obtained in section IV,

We first look at the behavior of ¥, on the contour Re(s) =7.
This contour crosses both of the curves CJ and it has been shown that
Wsi is continuous across these curves. As |s| - ® on such a contour,

-

5€S1 ¢ N Spe and we show in Appendix 7 that Ws + Dbehaves as follows

-(s+ag)(x-xo>/u[

X .
Vor (%51, 8) "ﬁf e £o4(%0,1) + 0(%')]‘13‘0
=8, )

_( 0p-0, ) (a+x)

;& ’ f;a e-('5+01) @;{-Q)[fli(xo,“) + O(LSL-)]de

u -
(5.1)
for ]x‘ <a and p > 0;
1 a -(s+02)(xo-ﬁ> A
‘lfz;_,(x,u,s) —)m“/; e |+ E"Qi(xo,-ip[) + O(-g)]dxo
-(0,-0, )(25X) -(S+ol)(x°'x> |
e— |i|('u')f © A [‘f 14 (%0, = u}) + °\‘)]
(5.2)
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for |x| <a and p<O0;

-(0p-07) (2:_’5 X=X

v, (6m,8) £ - )fa e-(s+02)< a ) E‘gt(xo,u) + o(i)] dx,

H - S

-0

(g -g. )22 -
e (02:1) uf-a e-(swl)(iui%Elt(xo,u) + O(%)] dxg

X-XO

Lx e-(s+01)( M )I}-n(xo,p) + 0(%)] dx, (5.3)

for x>a and p >0 and

+

T+

o _ Xo=X
¥14(%5858) *ﬁTL (e )( |M]) [fli(xo.-'HI) + 0(%)] dx, (5.4)

for x >a and p < 0. Expressions similar to Eqs. (5.3) and (5.4)

are obtained for x < -a. It is seen that Wsi is not necessarily

0(—). However, the parts which are not can be easily inverted as

follows. Define for all s the function Wus+(x,u) as that part of

each of Egs. (5.1) - (5.4) which is not o(%). We show in Appendix I

that upon making the substitution

»
'

»
n

e, w© >0

~
'

"
i

X0 jujt, » <0, (5.5)

that ¥  (x,u) can be written as
ust

© st
Wus_‘__(x:“) =j;) € E’ui(x)“’t)] dt. o (5.6)

[
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L

That is, the parts of Ws:.‘: which do not behave as O(-g) as |s‘ -3 ®,

Re(s) = 7 can be inverted by inspection. The solution V¥, .(x,u,t)

is given by
f'-d,g’b
e fgi(x-ut,u.) , t < a—:-’—‘
v Gout) = ¢ (5.7)
u= mdlt -(62-0'1) ﬁﬁx. a4x ;
ke e flt(x‘ut:“)) t > TR ?i
|
for |x|<a and u > 0; |
|
e o4 (x-Ht, H) , t< ?ﬁ’f z
qfut(x;upt) = { aex (5'8)
-Ul"b (0'2-0'1) T -
f e fli(x-“t, H), t > -|-l-£_|"
for |x| <a and K <O0;
( -olt .
e fli(x-ut,u) , t< =
X =8,
-0t (02.-01)(-—-)
Vo (X, 0y t) = ﬁe e W7 200 (x-ut, 1), IR <t < l‘-ﬁé (5.9)
2a
=07t -(ae-al) =)
f e H f14(x-pt,u), t> X-*-Ta;
for x>a and 4 >0 and
-O'lt
‘l’u_-#-(x)“)t) =€ fl_-t(x‘“t)u) (5'10)

for x >a and W<O0. That V¥, deseribes the motion of uncollided

neutrons from the initial distribution can be seen by direct

i3
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substitution, that is, Wu.t satisfies the uncollided equation

L oV 4

+u-§‘ﬁ=+a(x = 0.

In the limit t - O, we note that
¥, (%,18,0) = £i(x,4). (5.11)

For arbitrery f£(x,u) which venishes as |x| =, ¥ _ (x,4)
given by Eas. (5.6) end (5.7) - (5.10) is an analytic function of s
for Re(s) > -g, for almost all x and M. If £, ®0 (fy = 0),
then V¥ _, iz an analytic function of s for Re(s) > -0, (Re(n) > -07).

Therefore the function ¢ +(x,8) defined as
s (X,1) ®Y_(x,8) - ¥, (x,0), Re(s) > -o, (5.12)

has the same analytic properties as ﬂfs + in the right-half plane
Re(s) > -0, except that it is 0(%-) as |s|=w. If V4 has a

branch cut along [:-crm, 'Ul(l'clﬂ ;5 L.e., 1f o, > ol(l-cl); then

SR EROEE

Similarly if V,4+ has a pole at s = s, then

Residue (‘I’s:t) = Residue (‘ys:t) . (5.14)
Sn Sn
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The definite parity parts of the time-dependent solution therefore

can be written from Eq. (2.2) as

‘7+io<>

‘Vi-(x;“)t) = Wu:__}-(x;u)‘t) + 'é'ﬂl?_‘f ‘I’Si(x)ﬂ)eSt as. (5.15)

7=t

Now using the analytlc properties, we can deform the contour to the

left and obhtain in general

¥y (1, 8) = Y (x,u,t) + Z Residue [Wsi(x,u)eﬂ]

g=
<] Sn

ag

-0, (1-c-) - +
+ -5‘;1(—‘:-1- S Elrs__t(x,u)] - [}fsi(x,pﬂ et ds

m
- +ioo
m st
+ %ﬂf El!si(x,p) - usi(x’“')] e ds
=0, =dico
m
1 lim [ st
* 5T o o O“/C Vou(x,p)e™ ds, =0 < -cl(l-cl) <sp,
P

(5.16)

where Cp is a small circular contour of radius e with center at
s = -0y ( l-cl). Generally the point s = -07(l-cq) vfil,l not satisfy
the eigenvalue conditions, Eq. (4.6), and the contribution from the
contour Gp vanishes as p = 0. If however s = -ol(l-cl) happens
to satisfy Eq. (4.6), the contribution from the contour C, has the
form of a discrete residue term. Details concerning this point are

discussed in Appendices I and K.




Equetion (5.16) is the solution of the time-dependent problem
written in a form in which the uncollided portion of the initial
distribution f(x,u) has been separated. For arbitrary f£(x,u) the
contour cannot be deformed further to the left. In the final section
it will be shown how this solution reduces to those obtained previously
by others for special cases of the present problem.

We close this section by indicating the form of some parts of
Eq. (5.16). The uncollided term, \yui(x,u,t) is glven explicitly by
Eqs. (5.7) - (5.10). The form of Vg4(x,u) on the branch cut
[}om, -ol(l-cli] wes given in section IV. From those results, it is

- +
seen that on this branch cut [\]fsi(x,u)] - [Wsi(x,u)] can be written

trom Eqs. (4.16) and (4.17) as

- + r L -
‘Vsi(x:ll) - ‘Vs—_f-_(xyﬂ) = \agi— t 5 Fg_t(aavog)s)

+ ,
- E‘-Q-_l: + ;éF%(a;Voa)s)] ‘Vgt(x;}bs)

(5.17)

for |x| <a and

- + - - -
@St(x,uﬂ - [:\Vsi(x,“)] = [5'2_4_- + % ng(ayvoeys)] [Wlt(x,u,S)

+ 1+
-E, +-F2t(a,v02,s)][ (X,N;S)

-

i[ 1+ F+ =&,V o1’ S)] WVO],(X, 1Y) s)
[bl+ - F+( -8,Vg1s°8 )] w'VOl(x, Hys)

(5.18)
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for x > a, where [aei + %1?2'.:(9""02'5‘)] is given by Eq. (4.13),
_\ﬁai(x,u,s) by Eq. (h.l) and [Zblt -;.t(-a,VOl,s)] by Eq. (k.12), The
solution \Vsi(x,u) has poles at s = Bos e esBy due to the poles of
Ea.a._;: + % Fou(a, VOQ')S)] voa(lq:l)/ 2  Agein, from the results given in
section IV, it follows that

st |- -(1%1)/2
Residue [E{rsi(x,u)esﬂ = e ‘Vsi(x’“)[voe
8n S
“"n
(1¥1) /2 1
X Residue Voo [aai + 5 th(a,voz,s) .
sn
(5.19)
: F1)/2 - =-(1F
Note that the factar 1/02(:L 1)/ is introduced so that ‘Vsivog (1+1)/ e

(1F1)/2

and [32_4_. + %th(a,voe,sﬂ Voo are single-valued on the branch

cut of Vo2 [cf., Eqs. (4.20) and (4.21). These terms have an

sn’t

exponential time dependence, e = , and we have obtained the implicit
Eqs., namely, (4.2) and (4.6), from which the eigenvalues (Sn} can

be computed. Since information concerning the behavior of eigenvalues
(i.e., number, location, etc.) as a function of materisl properties is
not readily obtained analytically from such expressions, we have made

a numerical study of real time eigenvalues and the results are discussed

in the next section.




VI. CALCULATION OF REAL TIME EIGENVALUES

We first note that the eigenvalues and pseudo-eigenvalues depend
on five parameters (cl, 015 Cpy 02, and &) and therefore many numerical
computations would be required in order to see the specific depsndence
on each parameter. As we shall see, the bare-slab results of Bowden
(refs. 1, 4), the theorems of Hintz (ref. 10) for slabs surrounded by
pure absorbers and some observations of the present numerical results
for a few reflected slab cases allow us to draw some conclusions sbout
the behavior of eigenvalues for reflected slabs as a function of the
slab half-thickness a. However, rather than compute eigenvalues {%d}
in terms of c,, g1, Cos Ops and & we define a nondimensional

varigble ¢ and nondimensional parameters Og»  Op» ead A as

s+ op _c101 _ 0L - 02 _
C = —CTQO_—-E—-, O’R = 0202, O’D = W and A = 020'28“ (601)

In terms of these quantities, the branch cut of Voo becomes the real
interval (0,1) and the branch cut of Vo1 becomes the real interval

(-cD, -0p + o). Since o ~and cy are non-negative, it follows that

1
o S
ch - 02_) (6'2)

where the equality holds only if o, = 0. Also we have restricted

cp <1 so that -0p + oR 21 implies that cp < 1. Obviously,

or = 0 when the reflector is a pure absorber or a vacuum and op = 0
when the total macroscopic cross sections of the two media are the

same. We have seen from the last section that in general the inversion
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contour can be deformed to the left only as far as Re(s) = -0p» Which

corresponds to Re({) = max(-op,0). However, there are no eigenvalues

on the branch cut of vg3; so0 the region of the real § axis where the

eigenvalues {Qn} should appear is L
mex(-op + o,0) < §, < L. (6.3)

This interval corresponds to s € S1;/) Sp; and Egs. (4.2) and (4.6),

written in terms of the quantities of Eq. (6.1), are solved numerically

to obtain the real eigenvalues {lﬁ} for specified op, op and A.
In addition the pseudo-eigenvalues are obtained numerically by solving
Egs. (4.7) and (4.8) also written in terms of the quantities of
Fq. (6.1). Numerical results are also obtained in the thick-slab
approximation, that is, Eq. (4.6) with ﬁgi(p) = 0. Details concerning
numerical procedures and computational equations are given in Appendix J.
The calculations were done on a Control Data 6600 computer system
at NASA Langley.Research Center.
The time dependence of discrete modes is seen from Egs. (5.16)

and (5.19) to be
esnt = e(CeCn-l)o‘Qt. (6’-!-)

Now &, = -op + og implies that s = -07(1 - c1) SO since c; <1
and the equality holds only if 0y = 0. Therefore such §n correspond
to time-decaying modes regardless of the value of co. For values of
¢, within the interval (6.3), the “ime decay or growth depends on

whether cof, is less than or greater than unity as can be seen from

Eq. (6.4). A discrete mode represents a critical system if oty = 1.
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The largest eilgenvalue §O with an even parity eigenfunction corresponds

to a critical sleb problem with

o _ 1
slab ~ IE?
- OR
Creflector = m
and
Oslab Beritical = SOA (6.5)

where &gniticgl LS bthe critical slab half-thickness. For a bare
sphere (qR = 0) the largest eigenvalue §; with an odd parity eigen-
function gives the critical sphere radius, Bapiticals ¥hen it is used
in Egs. (6.5) in place §0 (ref. 21).

Many different compinations of material parameters could be
considered, but here we§restrict our study of the eigenvalue behavior
to the case of overlapping branch cuts. As OR departs from zero, we
would like to see how the eigenvalues depart from those previously
reported (refs. 1, 4) for a bare slab. A comparison of the present
eigenvalues {gn} for vacuum reflectors, i.e., oR = O, with those of
Bowden (ref. 1) is given in Tables I and II. Results generally agree
to three figures for slab half-thicknesses A from O.4 to 20. In
Table II, eigenvalues calculated in the thick-slab approximation are
also shown for bare slabs. For slabs with half-thicknesses A > 1, the
thick-slab approximation generally agrees with the numerical solution
of the exact eigenvalue condition to three figures. this can be seen
from Table IIT where we compare such results as cﬁ  departs from zero

with op = 0. From the bare slab results (og = O)ﬁof Tables I, II,
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TABLE II.- EIGENVALUE

o FOR THIN BARE SLABS

Slab Thick-slab Present Bowden
thickness approximation Eq. (J.6) (ref_ 1)
A Eq. (J. 19)
1.0 0.702 0.703 0.705
.8 612 615 615
.6 473 483 483
N .24l .282 .282
.2 * 043 .048

*No solution found for € > 0.001
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and III, critical slab haelf-thicknesses are obtained from {, wusing
Egs. (6.5). These are compared with critical slab half-thickness
results of Mitsis (taken from ref. 7T) in Figure 4 (open symbols).
Closed symbols give criticel sphere quarter-diameters obtained from
Eqs. (6.5) and §; while Mitsis' critical sphere results are taken
from ref. 20. The agreement is good to the scale of the Figure. For
og = O the eigenvalues {5 and §l have also been compared directly
with numerical bounds computed by Mullikin (ref. 21) for bare slabs

end spheres and again the agreement is good. Critical half-thicknesses

of slabs with infinite reflectors have been recently computed by
Kowalska (ref. 12) for a number of combinations of cgyq, and
Cpeflector: Some present results {, for op # 0 can be compared
with her critical slab half-thicknesses. Her parameters are given
in terms of CO and present input quantities op, op, and A by
Egs. (6.5). TFigure 5 gives a few present cases (circles) for which
Cg1gb VWas close to some of Kowalska's points (diamonds) (ref. 12).
No attempt has been made yet to compute points which lie on Kowalska's
curves. The present cases for cgjop ~ 1.11 are from A =2 and
1.4 in Table III. |

The remainder of the results have been computed for A = 5. For a
bare slab with A = 5, it can be seen from Table I that there are five

eigenvalues. We have studied the behavior of these eigenvalues as

o departs from zero for several values of op. In Figure 6, results
are given for op = O. Our calculations show that the largest eigen-
value, §O, is present up to oR = 0.9999. Apparently this eigenvalue

remains up to og = 1, which is only obtained for cp < 1. All other

H L s
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elgenvalues disappear into the branch cut of vop @t Qn = ORs labeled
with ¥, which corresponds to a time-decaying mode, regardless of the
value of cp. In fact, on Figures 6 - 9, we indicate the points at which
an elgenvalue or pseudo-eigenvalue coincides with the branch points cf
Vo1 by an asterisk, *. Even though such points appear to have s
discrete eigenvalue type of time dependence, we feel that they are
properly part of the branch-cut integral contribution. We note that the
brench points of vy, are located at § = -op and § = -optog  and find
that the limiting form of the condition which determines whether or not
such points are eigenvalues (or pseudo-eigenvalues) no longer depends
explicitly on og or op. (See Appendices J and K.) The theorems of
Lehner (ref. 15) apply for og = O in this Figure.

In Figure T, results are presented for op = -0.65 + 0.5 og. These
represerit what happens for -0p in the range between zero and
[Qd]qR=o, where the notation [?é]GR=O neans bare-slab eigenvalue,
which we note depends on c¢p,00 and a. The open and closed circles
represent eigenvalues as in Figure 6 while the half-closed circles are
pseudo-elgenvalues corresponding to s < -op = -01. Again the largest
eigenvalue, §O, appears to remein provided that co > 1. Here, as in
the next two figures, results for op = O agree with the theorems of
Hintz (ref. 10) which apply only for Cp = O. Basically his result is

that the strip Re(f) bvetween O 'dnd -0, belongs to the continuous

D
spectrum and that the bare-slab eigenvalues lying in this interval are
not eigenvalues of the slab surrounded by perfect absorbers. He finds

that there are no eigenvalues if -op > [ﬁd]aR=o, but says nothing about
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the physical significance. It is seen from Eq. (6.2) that for such
cases QO < l/c2 and corresponds therefore to a time-decaying mode.

In other words, stationary (critical) or time-increasing modes camnnot
disappear into the continuous spectrum as material properties are
varied. In fact, we have seen that when op # O such modes cannot
dissppeer into the branch cut of v, either. In Figure 8, results
are given for -op + Og = 1 wvhich we recall implies ¢, < l. For this
case, all of the bare-slab eigenvalues lie in the continuous spectrum

found by Hintz (ref. 10) when o = 0. In both Figures 7 and 8,

s = =0y corresponds to £ = -0p- Figure 9 shows the behavior of the

eigenvalues for op = 1 and it is seen to be similar to that of

Figure 6. For o = O, the continuous spectrum found by Hintz (ref. 10)
lies in the strip -op = -1 < Re(t) < 0. Here s = -0, corresponds to
¢ = 0.

All numerical results indicate that. real time eigenvalugs {;A} for
material reflectors are finite in number and tend to eigenvalues pre-
viously obtained for a vacuun as oR =0, as do the pseudo-eigenvalues
for s < “Ope If the set {gn} is empty, then the neutron density is
necessarily decaying in time. Conversely, if the neutron density is
stationary or increasing in time, then the set {QA} is not empty.

One also expects that if Cy > 1, then a critical thickness can be
found. That is, the largest eigenvalue Co must be present for large
enough slab thicknesses for the given Cpoe This can be seen from
Table I as follows: For exsmple, if -op = 0.8, then the eigenvalue
o for A =1 is not present, while that for A =5 would be and

rﬂpreseﬁts a mode whose amplitude increases exponentially with time

"v:,,.,:m‘&.:s::ﬂ’??*»rm‘
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for cp > 1/0.975. That for A = 20 needs only cp > 1/0.998 in

order to represent a time-increasing mode.

As pointed out at the beginning of this section, we can draw some

conclusions concerning the behavior of {Qn} for reflected slabs as a !
function of the slab half-thickness a. That 1is, given 4 and o 3
what can be said about {§n> as a function of a. We base the 1
following conclusions on the observation that if QO at og = 0 lies to
the right of ~Op» then it appears to remain to the right of -op + or

as oOg increases until -op + og = 1. (See Figs. 6 and T7.) The
dependence of [C(S_] og=0 O° sleb half-thickness is given in Tebles I-IIT

and many more points are given in reference 1. First, if -0p + Og 21

(recall that this implies cp < 1) then the set {Cn} is empty for all
a. However, there may be pseudo-eigenvalues 1if -op > 0. Next, if

-op + 0g < 1 then two cases arise, depending on the value of op*

(a) When -op > 0 then regardless of the value ¢f Cp, we can find an
a* such that a < a* implies that the set {gn} is empty, whereas

a > a¥* implies that the set {l_‘,n} is not empty. The number a* is

obtained from the bare-slab result [{;O] - as
OR=

[go(cg,og,a*)] og=0 " -0y, (6.6)

(b) When -0 < 0, the set {gn} is never empty. Thus, given cy, o3,
a and the bare-slab eigenvalﬁeé corresponding to cp, o0, and a, we
. can say whether or not the set {Cn} is empty. Furthermore, the number
of eigenvalues {Qn will not exceed the number of bare-slab eigenvalues
{[;n] oR =O} which are greater than -op. Finally, the number of real
reflected-slab eigenvalues and pseuao-eigenva.lues does not exceed the

number of bare-slab eigenvalues.




VII. CONCLUDING REMARKS

It has been shown using Case's method that the solution to the
initial-value problem of monoenergetic neutrons migrating in a finite
slab (properties cp, op) with infinite reflectors (properties c;,

0,) cen be written in the form

b Snt
Y(x,1,8) = Y (%50, %) +Z Residue | ¥g(x,p) 5y ©
S-"-"Sn =
-0 (1-c1) - r 0 -
+ Y (x,m)| - \lrs(x,u)] e " ds
eniJ _q L
m
+ —Lf EVS(X:N) = Wus(x}“) e dS, "'Um < "dl(l = cl) < Sn:
2ni ~Op =100

| | (7.1)
In this equation, t is the neutron speed multiplied by the real time,

O is the minimum of o3 and 0, and each ¥ function is the sum of
its definite parity parts 1,. Some terms of the solution (7.1) will not
be present if -oy 4 -01(1 - ¢p) ¢ sp- That is, 1f -07(1 - ¢7) < -0,
then the branch-cut integral does not appear. Likewise, if all

s, < -cl(l - c1), then there are no residue terms. These discrete
eigenvalue %erms are characterisfic of a finite slab (refs. 1, 4) while
the branch-cut integral term is typical of a semi-infinite medium

(ref. 14). The term vy (x,p,t) describes the behavior of neutrons from
the initial distribution, f£(x,u), which have not suffered a scattering |
collision and its definite parity parts are given in Egs. (5.7)-(5.10).

The discrete eigenvalue terms in Eq. (7.1) are given by Eq. (5.19) while

the integrand of the branch-cut integral is given by Egs. (5.17)-(5.18).
68
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The definite parity parts of the last integrand are given by Egs. (5.6)
and Egs. (3.36)-(3.39). The eigenvalues (?n} cen be computed as was
demonstrated in the last section; thus, everything which appears in f
Eq. (7.1) can be readily calculated.

In all special cases of the present problem which have been solved
using the Lehner-Wing technique (refs. 10, 15, 16, 17), c; = 0. 1In
these cases, there is no branch cut due to vOl(s); therefore the

branch-cut integral is not present in Eq. (7.1). It was shown that as

¢y =0 the eigenvalues, {gﬂ}, which are greater than -op, approach

those for a bare sleb as do the pseudo-eigenvalues for s < -g,. The
solution Vg4 has the proper behavior as cy - 0 since those terms of
Eq. (3.%0) and (3.31) which appear to blow up in such a limit actually
cancel when the contour C' is collapsed onto the portion of the branch
cut of QJs(z'), 0 £z'<1. When the uncollided term is combined
with the last integral it is then seen that the solution (7.1) and the
eigenvalues {?n} have the behavior required by the theorems of

Lehner (ref. 15) and Hintz (ref. 10). The present problem reduces to

those considered by Lehner and Hintz when

¢y =0, 0y =0p; Lehner (ref. 15)

and

cy =0, op #0p; Hintz (ref. 10). (7.2)

Hintz shows that for o) = 0p, his spectral results reduce to those of
Lehner.
In order to describe the same physical problem in the slab as that

solved by Lehner and Wing (refs. 16, 17) we must not only have
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cp =0 and oy =0, (7-3)

but also
x<-a, p>0

£(x,u) =0, {

x>a, u<O. (7.4)

In other words, neutrons from the initial distribution outside the slab
cannot impinge on the slab faces at times t > 0. Lehner and Wing

solved the time-dependent problem with boundary conditions
¥(*a,u,t) =0; uSo, t>o. (7.5)

Restrictions (7.3) and (7.4) in the present solution meke I (m,s)
and. therefore Aa:(“’s) depend only on slab properties. Then, in
looking for solutions inside the slab (|x| < a), the inversion contour
along Re(s) = -0, can be deformed back to Re(s) = -gp, and we pick
up a residue contribution from any pseudo-eigenvalue in the region and
thus obtain the Lehner-Wing results. That is, the solution has the
proper form and all bare-slab eigenvalues are recovered. Hintz
(ref. 10) did not indicate how the Lehner-Wing solution for the bare
slab could be obtained from his results. Here we emphasize that he is
not solving the same physical problem inside the slab unless both
conditions (7.3) and (7.4) are satisfisd.

The analogous problem for cy # 0 in which thé inversion contour
can be deformed to the left of Re(s) = -0 for |x| <a is obtained

when 0p >0y and fy(x,u) = 0. That is, if

£f(x,u) =0, |x|>a and oy >0, (7.6)

7
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then all terms in Io.(M,s) which contain (s + 07) factors in the expo-
nentials are identically zero and this allows us to deform the contour
along Re(s) = ~op back to Re(s) = -op when |[x| <a. Sucha
deformation 1s not possible for |x' > a; for this latter range of x we
must stop at Re(s) = =0y = =07. If there are pseudo-eigenvalues in

-0p < Re(s) < -07 = -g, (see, for example, Fig. T) they will appear in
the solution for |x| < a as residue terms which have the exponential
time dependence. They are not eigenvalues for the reflected slab though,
since such terms do not appear for |x|> a. Erdmann (refs. 8, 9)

solved the time-dependent problem for two semi-infinite media where an
isotropic pulse of neutrons was introduced at the interface and found
that the inversion contour for x € medium J could be deformed to the
left as far as Re(s) = =0 - In the present problem, such deformations
can be made only when conditions (7.6) are satisfied. It appears that
the contour Re(s) = -0, cannot be deformed to the left of

Re(s) = ~dp, since the implicit equation which determines Aet(u,S)

(see Eq. (I.3)) requires Re(s) 2 -0p. Apparently Re(s) = -0p is the
edge of a continuous spectrum in all cases for the reflected slab.

We briefly summarize the results which have been obtained. The
present solution has been shown to have the required properties in all
speciul cases which have been solved previously by others using the
Lehner-Wing technigue. However, in all of these rigorous solutions,
there was no scattering outside the slab. We have seen that with infinite
reflectors on the slab and neutrons anywhere outside the slab initially
that it is possible for some neutrons which have spent their entire

history in the reflector to impinge on the slab faces at times t > O.

.« .1,,am;ﬁ‘z::saw

R T S R




T2

Such neutrons have a collision rate which is characteristic of reflector

properties and this, in general, restricts us from deforming the
inversion contours to the left of Re(s) = -op. We have illustrated
two cases in which a further deformation is possible for |x|<a, by
eliminating neutrons outside the slab initially which can later impinge
on the slab faces. This is equivalent to a further restriction on the
Hilbert space which has been used in some of the above-mentioned
rigorous solutions. The exact elgenvalue condition has been obteined
and real time eigenvalues have been calculated for a number of
combinations of material parameters. The largest eigenvalues have been
shown to agree with criticality results of others. Our calculations
show that eigenvalues can disappear into the branch cut or continuum as
material properties are varied and we point out that all such
disappearing eigenvalues correspond to exponentially time-decaying modes
regardless of the value of c, since we have taken ¢y < 1l. We expect
(but have not shown) that there is no drastic change in the shape of the
solution given by Eq. (7.1) when this happens; we conjecture that one of
the integrals in Eq. (7.1) probably has regonance-like terms due perhaps
to zeros of the eigenvalue condition on the next Riemann sheet. We have
made the assumption that the eigenvalues are real for arbitrary slab
half-thicknesses. We have shown this to be true for thick slabs and it
has been proved rigorously by others for the above-mentioned special
cases. On the basis of our sample calculations, we conclude that if one
is given the material properties Cy OJ and slab half-thickness, a,

as well as the bare-slab eigenvalues correéppnding to ¢, 0o and a

it
R
i
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then he can conclude whether or not the set @n} ls empty and the
maximum number of 8, in {sn}.

Perhaps the present results can serve as a gulde for a rigorous
Lehner-Wing type analysis of the reflected-slab problem. If the
eigenvalues are all real, then one might be able to prove it in such

enalysis of the present problem.
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X. APPENDICES

A. Summary of Elementary Solution Properties

In this Appendix, the elementary solution properties derived by
others (refs. 1, 4, 8, 9), following the lead of Case (refs. 5, 7), are
summarized. These solutions are obtained from Eqs. (2.16) - (2.18) of
the text and are given by Egs. (2.19) - (2.21). Such solutions are
complete and orthogonal in the following sense. A function, say g(p),
satisfying very weak restrictions (see for example ref. 7, Apperdix G)
for -1 Sa<M<P<1l can be expanded as follows:

1. Full Range; a = =1, B = 1

g(m) = [{:«Jcpvoj(u) + bjcp-voj(uilsj(s)
1
+t/i1 Aj(v)mjsv(u)dv, (A.1)

where the notation BJ(s) was defined by Eq. (2.25). The orthogonality

relations used to determine the expansion coefficients in Eq. (A.1l) are

1 | 1 _
S e s [ a0y, ey = a0 hvra, ()5, 00)

and for seS,,
Ji

1
f.l H2gavt W0y, (WK = O,

1
f_l uwvoj(u)cp_mj(u)du =0

and

!
f- b (W =  egopvd il (o), |  (a2)
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where

235(voy) = & “Js(z)l.woJ

and +
‘Tjs(V) = 7\JS(V) x iﬂCJUjV/E' (4.3)

2. Half Range; a =0, g =1

1
W) = 82,0, (W8y(2) + | a(vIe, (Wav. (A1)

Here the orthogonality relations for seS,.

3 i are

1 pl
L/; st(u)¢Jsvr(u)duh/; A5(1)945, (W)av = Ag(v' Wy (v (v )0z (v1),

1
/; sz(u)'pjsv(u)choJ(u)du =0,

1l

1
L/; a9, (0.0 (W)ak = vegayvo g (vgyle, (4,

N R 2
?(%Lé%—j) st(tvoj),

~1
S WaswI9y W (e

Cc.0O

1 o
fo WJs(u)cvaJ(u)csz(_v)(u)du = (J?l) WosXss(-v)s

1 c
\/; sz(“)¢jsv'(“)@js(-v)(“)d“ = —%;i v'(voy + v )X3s(-v)P35(oy) (v')

and

1
fo Wis(Woyg, (Wdp = % c 304, | (A.58)

where
C 4044

sz(u) = 0<u<l, (A.62)

20y, (M vy + WKgg (W)’




e (W) ot (w)
7 (K
Js JS O<pu<l,
(W) 235(n)
with de(z) given by
1| ads(v)
X..(z) = exp L/q In | 238
Js 2ni J g [QES(V) V=z
_ 245(2)

(v5y = 22)035(=)Xyq(-2)

_%5% fl udp :
2055(=) Jg (vgj - ua)xjseu)(u-z)

(A.7a)

(A.8a)

The orthogonality relations for seSJe for the expansion (A.4) are

1 1
T Wseweyg, s [ 8 0gg, War = Ayl Mgy )85, (0103

1
S a5y (993 (W88 = 4 g3 Hogo (V)ega( ) ()

and

1
j; st(u)cpjsv(u)du = % 304V,

where
(1) Fifle 0
w = < <1
Jstk 2ﬂjs(w)xojs(-ﬂ), sHE=S
and
at s(#)
O,js(“') <p<l,

XOJS(H) ,js(“)

(v,

(A.5Db)

(A.6b)

(A. D)
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with XOJS(Z) given by

It

1 Q+
exp { =% L/ﬂ In 38V | av
0

Xojs(Z) E;I QES(V) "

st(z)
o (=Kg5(-2)

1

c.o v 1
1494 W . (A.8b)

2045(=) VO Xps56H)(p-z)

1

These half-range orthogonality relations and identities are obtained by
extending the time-independent results of KhEEer, McCormick and
Summerfield (ref. 13).

A result, due to Kuscer and Zweifel (ref, 14), which we shall need
to analytically continue solutions follows from Eqs. (A.8). For a
fixed value of 1z, st(z) does not become XOJS(Z) as s crosses Cy.
However, it follows from the middle expressions in (A.8a) and (A.8b)

that

(voy - 2)Xyq(z) = Xg4(2) . (4.9)

8 T’CJ" s —>Cj
sebji' sesje
Following Kuscer and Zweifel (ref. 14) then, we define a function
ij(Z’S) which is continuous as s - C; by Eq. (3.25). Such a
function of the two complex variables z and s has the following
analytical properties (ref. 14).
Fixed s: no singularity in z-plane cut along (0, 1);
one simple zero at 2z = VOJ(S)’ Re(VOJ) >0,

only if sesji'
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Fixed z: no singularity in the s-plane cut along (‘“d’ -cj(l-cj));

one simple zero at s = -UJ + cjcjz tanh'l(l/z)

for Re(z) > 0.
We note here that Xoj(z,s) is a nonvanishing analytic function of =z

and s for Re(z) <0 and sf(-ad, -aj(l-cj)), the branch cut of

voj(s).
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B. Derivation of ¢in(X,u,B)

B s

In this Appendix, explicit forms of wdp+(x,u,s) are obtained.
Following Bowden (ref. 1) we take, for medium J, the function
SJS(X:sto) as

( (s40,)(x-x0)/vg
D;3(%0)9_y,, (W)e B

5(s

0 -(s+oJ)(x-xo)/v :
-\/11 Cj(xo,v)wdsv(u)e dv, x < x4 !
836 (%, Hix0) = (B.1)

-(s+0, ) (x=x4) /1
Cj(xo)¢voJ(u)e A VOJSJ(S)

1 ~(s+04) (x=xp) /v
+\/; CJ(xo,v)¢Jsv(u)e J 0 dv, x > x,.

\
The expansion coefficients in Eq. (B.l) are to be determined so that

gjs(x,p;xo) satisfies Eqs. (3.5) and (3.6). That is, on putting the

expension (B.1) into Eq. (3.5), we obtain in the limit x - x

50, H)/H = E:;j(xo)cpvojm ; DJ(xo)w_voJ(nil 55(s)

/«l
+ ) CylForVIegg, (Kav. (8.2)

This is a full-range expansion (see Eq. (A.1)) of the function

fj(xo,u)/u and use of the orthogonality relations (A.2) gives the

coeff'icients as
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1 1

""Ss(")"Es(V) -1

i

CJ(XO,V) fd(xo:u)‘?dsv(“)dﬂ

and, if seSJi

1
Cy(xq) = ——52 £,(%0ok)9,  (u)du
T e gapgiatvoy) Y1 T g
and
. 1
Dy(xg) = f fj(xo,u)w_voj(u)du- (B.3)

cjcjvgjn'Js(‘VoJ) -1

However, we shall need expansion coefficients for the even and odd parts

of fJ(xo,u)/u separately. It follows from Eqs. (B.3) that
and., if Sesdi
and
Cji(xo:'VOJ) 5% EJJ(XO) ¥ CJ('xoﬂ; (B.Ll-)

are the expansion coefficients of fjt(xo:“)/ui that is, Eqs. (3.11)

of the text.

In order to construct iji(x:“:s) according to Eq. (3.7), we note

that for j =2

f.axo=f-:.dxo=f:.dxo+"/;a.dxo. (B.5)

(medium)
2




8l

Upon using Eq. (B.l), we obtain Wep(x,u,s) as

. |
WQP(X,M,S) _ L/:a Cg(xo)e(swe)xo/vozdx()] \Vvoa(x,p.,s)Ba(s)

A

fx (s+a2)xo/v

Al

. Cg(xc’v)e dxo] Wav(x, Hys)dv

DQ(XO)G-(swa)xo/voe g ] W'Voa(x’“’ 5)8,(s)

1 pa ~(s+05)xq/v
-L/:) [L Co(xg,-v)e dxo] WE(_V)(x,u,s)dv.

The definite parity

using Eq. (B.6) as

- ~X
WEpt(x’“’s) ={‘/:a

[
e
2

1
1

=X
el [  Caulxgve)e

-

(B.6)

particular solution w2p+(x, H,5) 1s then obtained

(s+02)x0/vop
Cot(x0,voo)e dx, VVOE(X:H:S)

(s+op)xp/v
02@0] v voe(x,p.,s) 85(s)

-
’

C X (s+op)xg /v
f Cor(xqgyv)e dxg | Yo, (x,u1,s)dv

" =8,

~ p=X (s+00)xq/v |
f CQ&(XO)V)G 2)*o/ dxo] ‘er(_v)(x,u,s)dv
- =5

(B.7)

That (B.7) is a solution of Eq. (2.13) for J = 2 can be seen by direct

substitution as follows. The \Vav(x,u,s) in Eq. (B.7) are solutions

of Eq. (2.16), the homogeneous equation corresponding to Eq. (2.13).

i T
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However, their coefficients in Eq. (B.7) are functions of x 80 that

some additional terms are obtained from the §L operation. Thus we get '
Ox 1

n [Cgt(x, Vog)%og(“) + Cop(x, —vgg)w,voe(uﬂ 8a(s)

1
v [ ol ngg )av) = £ (on),  (3.8)

L]
i

which is an identity since according to Eq. (3.11) the C,. are the

full-range expansion coefficients of fpu(x,u)/n.
To get V¥1,(x,u,8) according to Eq. (3.7), we first note that

uudxoz'v/"mcdxo*\ja odxo
(medium)
1 (" ~x -8 ©
f -dxo-}-[ 'd.Xo“'"f 'd.X0, x < =8
-0 Yoy 8

u
s

g, X (%)
f 'dXo-l"f 'd.)(o+f ‘dXo, x > 8.
k.oc» a X
(B.9)

We follow the same procedure as before and ge® vip+(x,u,s) as




;
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X (s+09 )x,4/v i

Wlpt(x,u,s) = U Cligxo,vOl)e o7 oL d.x(] WvOl(X,M,B)5l(S) i
1 rx (s+0,)x, /v 1

+J; [_/:m Cq (%0, v)e 1o dxo]\vlv(x,u,s)dv 3

-8 -(s+al)xo/v01
+ 1[ C14(xg, =vgy e dxq
x

f -8, +(s+ol)xo/v01
‘- OO

* Clt(x0’+v01)e dx] W-VOJ.(X, u,S)ﬁl(S)

—

21 - -(s+a,)
+/ [’f " Cya (g ve Mottt &g
0 x

-8, (s+al)xo/v
if C];g-_(xo.vv)e dx \l'l(_v)(x,u,S)dV; X <=2

(B.10a)
and

-8 (s+01)%0/v01
\lei(x,u,s> = [f CI:(XO,VOl)e d.xo

-»00

-8, ~(s+0y)xq/v
;f Cl:t(xO: -VOl)e ' 0/ 01 dxg WVO:L(X)H:S)SJ_(S)
-X A

1 -8 (S+O’l)Xo’/V
+\‘/‘o U_m Cli(xO,V)e dXO

-8, -(s+dl)xo/v .
:Ff Cl._;:(xo ,=v)e dxq le(xm:s)di“
=X ¢

N [ (S+O’l)XQ/VOl 7

-X
f Cli(xO’ VOl)e dxo_J \V_VOl(x,p,s)ﬁnl(s)
1r p=x (s+01)xg/v ] i
ij; [f Cli(XO)V)e dXO Wl(“1;_)(x,u,(5)dv, x > a.

=00
) il

(B.10b)
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Again, it is easily shown by direct substitution that Eqs. (B.1l0a) and

(B.10b) are soiutions of Eq. (2.13) for J = 1. We introduce the

F functions of Eqs. (3.10) and by allowing x to take on negative and

positive values, it follows that Egs. (B.7), (B.10a) and (B.10b) can

be written as Eqs. (3.8) and (3.9) of the text.

We also note here that the Cjy coefficients of Egs. (B.4) have

the property

CJi("XO’-V) = ; Cjt(Xo,V)

and

Cji('xO"VOJ) =¥ Cji(XO;VoJ):

so that it then follows from Eqs. (3.10) that

th(a-: “w,s) = F Foi(a,0,s)

and
Fi(-a,-w,s) = ¥ F+(-a,w,s).

(B.11)

(B.12)
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C. Two-Media Full-Range Expansions and Orthogonality Relations

In this Appendix, we first summarize some results of Erdmann
(refs. 8, 9) and Kug\c’er, McCormick and Summerfield (ref. 13). Erdmann
(refs. 8, 9) shows that a function, say h(u), satisifying very weak

restrictions for p on the interval -1 S u <1 can be expanded as

() = a3y, (1)81(s) + by, (1)Ba(s)

1 0
+fo A (vV)oy g, (w)av +~/‘.1 Ax(v) Py, (H)av. (c.1)

This is a two-media full-range expansion of the function h(p) and
the expansion coefficients in it can be determined using orthogonality
relations which are easily determined from the time-independent ones
of Kus€er, McCormick, and Summerfield (ref. 13). For

8,(s) = 85(s) = 1, that is s ¢ Slin Spy, these relations are

1 | 1
J Fatwrtey an [ a)og, ey = atv ig(vnIat vz,

1
fl WB(“)q)sv(“)q)VOI(M)du = 0,

1
J | ewreg,wey = o,

1l

1 ,
f Ws(u)ﬁ?sv(u)ﬂvm(u)du = ve(v)o(v) vy (Voo - "01)xs("’01,)4’-v01("):

R i g e
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1
S s109, (09, e = ve(r)alo)voals - Yoa kg(¥o2) (4,

\2

. C
= 191V01
f L a0y (W)Pevy () au = - ('_2") (Vo1 * Vo2)Xs(*vo1),

' coOoV0o \°
f.l WS(“)Q)-VOE(“)%Voz(“)d“ - (""T") (voz 7 vo1)¥s(¥vp2),

1
fl Ws(u)‘PvOl(H)Q’vOg(u)d“ = - ;lé-' 010'1020'21/011/022 XS(VOQ)

and

1
= T 2
fl Ws(“)q)_vog(“)q)_\,ol(“)d“ = § 010'102021’01 Vozxs( -Vo]_),

where
Cq,0 v>0
1’71
c(v),o(v) = {
02,02, v < O’
Pgy(i)y v >0
st(“) = {
q>23v;(|1)) v <0,
+
2.(v), v>o0
at(v) = {is ’
| a5.(v), v<o,
%g(2) = Xy5(2)Xp5(-2),
and
(voo + V)Xog(-V)Wpg(v), v> o0
WS(V) =

-(vo1 - V)X15(v)Wog(~v), v <oO.

All remaining quantities have been defined in Appendix A.

(c.2)

(c.3)
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RN kg i .
R S

Rather than write out explicit orthogonality relations for the
other three regions of the transform plane in the present notation, we
introduce a function which is continuous as s = C j+ ¥rom the results of ;;

Kusfer and Zweifel (ref. 14) quoted in Appendix A, we see that one such

function is given by Eq. (3.24) and can be written using Eg. (3.25) as j
( (vop - 2)Xpg(2) 7
02 28
, s €8.Nsg
(Vo1 - BEpg(m) ~  wiieed
(Voo - 2)Xpg(2)
02 Xog , 5 €Sy ASZi
XOls(z)
Xo(258) = ¢ (c.4)
Xo2s(2) Sei M\ s
€
Goy - DX () e
Xo2s(2)
L m, ie Qe

In terms of this function, Wg(v) can be written as

( ClO‘lV

Q'Q—lm Xo(-vys), v>0
S
Hal¥) = < OoV (c.5)
Co0p 1
) \2%8(00) Xo('V,S)’ v < 0.
The function XS(z) is expressed as
( Xo(-2,¢) D 5(z)
(VOQ + Z) (VOl - Z)le(oo)’ RE(Z) >0
Xs(z) =< , (€.6)
L ps(2)
(vOl - Z)XQ(Z,S) (v02 + 2)925(“’)’ Re(z) < 0.
"
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In order to obtain a two-media expansion in the form (C.1), we
generally have to switch some continuum solutions in one medium to those
in the other. From the explicit form of ¢jsv(p) (Egs. (2.19)), we
have that

c107Ppgy(H) = o0 Py (k) = kB(p - v),
where

kg = s(cqop - coop) + °1°2(°l - cp). (c.7)

We see that when the two media are the same, kg = 0. This quantity
can be expressed in a number of different ways, and several that we
shall use are
c10125(V) = cpozh (V)
ks = ¢ c10195(vp3) (c.8)

-co0o 5 (vo2).

The orthogonality relations (C.2) can now be written in terms of

Xo(z,8) gnd k, as

I ()00, () / T A0 (W)Y = AV (v)aE(v )2z (v ),
1 S sV -l sV SN <] S.

1
u/\ Ws(u)¢sv(u)¢V01(u)du = 0,

1
k/il Ws(u)st(u)¢-v02(u)du = 0,

1
b/il Ws(Wey, (We_, (waw = o,

ST



92

1 Mo vorks
~/:1 Ws(P)q’sv(p)q)_vOl(")dﬂ = AQES(W)XO('VOl,s)(VO:L " V))

L4

1 _ve(v)o(v)vookgXo(-voo, )
U/:l Ws (k) 0g,, ()P (H)au = - by 2(=) (vop = )

1
W () Py, (B)Pyy . (m)dn =
f'l R | ©101v01Ks 1
(B (=)X0(-v0y,8)

(" ep0VooksXo(-voo, )
SQlS (00)

1
wo(we_, (W),  (n)ap =
"/\-l S —V02 ivOQ 4 o 9'23<v02) 1

1
“\3 °2°2V02> » ?
Y (2 Qogl@)  X5(-vgp;s)

¢101Vo1V02ksXo(-vo2, 8)

1
f ws<“)%01(u)¢vo2(u)du "

~l L"le(oo)(vol bt Voe)
and
1 Cr0nVA1 VAnk
, 2Y2Y01"02%s 1
W du = = — C.
f-l S8y (1)Poyy () #pg (=) (Voo - vo1) Xo(-vo1ss) (@.9)

These expressions appear more complicated than the corresponding ones
in Egs. (C.2); however, the orthogonality relations needed for all
regions of the transform plane are given by Egs. (C.9). That is, for

s € 51e A Sp;, the proper orthogonality relations are the first , third,
sixth, and eighth equations of (C.9) with X,(z,s) given by Egs. (C.k4).
We note here that Xo(z »8) always appears in Egs. (C.9) with

Re(z) < 0. It follows then from Appendix A that for Re(z) < 0,

Xo(z »8) 1is a nonvanishing analytic function of both 2z and s except
for the branch cuts in the s-plane due to vy;(s} and vy(s).
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D. The Two-Media Full-Range Expansion for This Prohlem

In this Appendix we show that application of the continuity
condition, Eg. (2.15), results in a two-media full-range expansion of
the type discussed in the last Appendix. For x = a, we readily obtain

from Eqs. (3.14%) and (2.15) upon using the explicit forms of Vjer ond

Vsp+ &iven by Egs. (3.3), (3.4), (3.8) and (3.9) that

0 = agy [Wvgp(askss) = Voygo(asp,s)] 8p(s)
1
+/; A&(v) B’av(a,“)s) e \Vg(_v)(a,u,sﬂ dv

. |
; [ag_..;wvo:L(a,u,s)sl(s) of Ali(-vwlv(a,u,s)av]

1

+ ng(a:voa:S)‘lfvoe(a,u,S)Sg’(S) +‘/; F&(a;")s)“@v(a:“)s)dv

- FH(-B,VO]_}S)[\VVO:L(&:“)S) x V-vOl(a‘:“:s)] 51(5)

1 |
f\/;) Fli('aJv)S) [\Vlv(a':}l)s) + ‘lfl(_v)(a}“)s] dv. (D.1)

We have indicated in Appendix C that according to Erdmenn (ref. 8) the

functions @y (k) @y ()5 @pgu(n), 0SvS1 and @, (W),

=Vo2
-1 < v <0 forma complete orthogonal set of basis Ffunctions for the
expansion of h(u), -1<p<1 for s € Slin Sp; (see Eq. (C.1)).
However, Eq. (D.1) also contains terms in which @og,(p), 0 S v 1,
and @ .. (1), -1 Sv S0 appear. These continuwum solutions must

be replaced by corresponding continuum solutions for the other media.

We use the relationship (C7) to do this; that is,




Ok

Paan(8) = [T 0140 + oot ol an(v)
and
(o ks
Proy () = [C;; Ppen(H) - s (v - uﬂ B(-),
vhere

1, v>0
H(v)={

0, v<o.

(D.2)

(D.3)

When explicit forms of the elementary solutions and Egs. (D.2) and

(D.3) are used in Eq. (D.1), we obtain the two-media full-range

expansion.
- a/v
) = [Faoe,vonse) & apa]er(Ho0e/ 00 g, (o

4232ie(s+“2)a/v02 IR LNE

f {[F;L_\-a,v,s) (v)] '(S+0'1)a/v

€107

-1 %29

where h(p) is given by

. _EEZ[FQ_t(a,v s) + A&(v)] (S""’«?)a/} J(n)av

:‘:fo [Cl"l Fli(_a,_v,s)e'(swl)a/v - Az_i;(-V)e'(swg)a/ﬂq’asv(ﬂ)dv’

(DJ-.L&,)
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h(u) =

cl;;l H(p) [Fat(&,u, 8) + A?_t(“)] e-(8+0’2)a,/p

H('H)Fli(-&,-u,s)e'(s+°l)a/“

+ [F?__%(a:VOQ:S) + a&]e-(swe)a/vog ‘ong(“)aa(s)

£ Fpu(-8,vgy,8)elEH91)e VoL Py, (W51 (5. (D.4b)

The orthogonality relations, Eqs. (C.9), can be used on the expansion
(D.4) to obtain equations which determine the remaining unknown

coefficients implicitly. However, it is convenient to introduce first
the Ey, coefficients given by Egs. (3.15). We then have, after some

algebra, the equations listed in the text as Eqs. (3.16)-(3.23).

T

A S S,
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E. Complex Representation of V. .(x,u)

In this Appendix we outline how Egs. (3%.15) - (3.23) are extended
to the complex plane (u = z) with s considered a parameter. As
shown in references 2 and 3, functions such as those introduced in
Eq. (3.15) are extendable. The particular grouping of terms in Eqs.
(3.16) - (3.23) indicates some integrals and residues which go together.

The first functions to be considered are the Fdi(xgb,s) functions
given by Egs. (3.10). In Egs. (3%.20) - (3.23), these functions appear
with Re(w) > 0 so we consider the functions Lji(x,v,s) given by
Eq. (3.35). When the explicit expressions of EqQs. (3.10) and (3.11)

are used, we can show that for fdt(xo;u) extendable y4 -z without

singularities in the finite z-plane then Lji(x,v,s) can be extended
to LJi(x,z,s) given by Egs. (3.32) and (3.33). Nowas z —v ¢ (0,1)
it can be seen that the limiting values of Ly , nsmely L;i(x,v,s)
and Lgi(x,v,s), are identical. Thus, L, does not inherit the branch
cut of st(z) as one might be led to expect from Eq. (3.32). There
appear to be no other singularities of th in the finite z-plane,
Re(z) > 0 and Re(s) > oy. It follows from Eq. (3.32) that
Lys(x,vop08) = 3 CJ%Voagﬂis("oa)FJt(x:Voa’s)e-(swj)X/VOJ’ 5 € Sy
(E.1)
In order to extend the functions Ijt(V) to the complex z-plane,

we need the identity




o1

b (Va3 (v) g, - ¢, 0, M (V) + e oM, (V) (5.2)
= 3 .
cgogﬂls(v)ﬂls(v) clcl €101€202 1s(v)ﬂls(v)

which can be verified directly. We use this identity and find that
Iji(v)’ given by Eqs. (3.20) and (3.22), can be written respectively

as Eqs. (3.30) and (3.31). The restriction Re(s)> -0, on these
equations comes from the fact that Lyz for both J =1 end 2 occur

in each I More will be saild about this restriction later. The

g’
contours C' are given in Figure 3. By letting z = vp, in Eq. (3.30)

and z = vy, in Eq. (3.31), it can be seen that

12_4_.(1/02, S) = JQi(vOQ)

and

I1+(vops8) & J1x(vey ). (E.3)

Thus, the inhomogeneous terms of Eqs. (3.16) - (3.19) are seen to be
extendable and related as shown in Eq. (E.3). For =z Vg in Ipy
(see Eq. (3.30)) and 2z = vy in Ijs (see Eq. (3.31)), these
functions might seem to be singular. However, it is seen upon examining
the residues that this is not the case. Thus, the Iji(z,s) appear
to be analytic in the finite z-plane, Re(z) >0 and Re(s) > -o,.

In Eq. (3.16), we now let v =z and for Re(s) > -o_ and
Re(z) > O in the finite z-plane, Eo+(z) is given by the inhomogeneous
term Iet(z), a term involving apy 1if s € Sp; and an integral over
Eet(“)’ 0<u<1. Asingularity occurs in the integrand when either
ﬂgs(p) or 05 (n) vanishes and this happens for s € Cp- However, for

this case, it is seen that we obtain from Egs. (3.16) and (3.17) that
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Eai(Vog) is related to &p.. It appears that Epi(z) i1s analytic in
the finite z-plane, Re(z) >0, Re(s) > -0, and can be written as
Eq. (%.28). We follow the same procedure with Eq. (3.17), and obtain

an equation which is easily seen to be Eq. (3.28) evaluated at 2z =y

02’
that is, E2+(v02,s) and apt &re related as
_ (s+ap)a /v
1 , 02
E?.i (VOZ’S) = 5 02021!02‘.%5(1)02)&2-&6 y S € Sei. (E.)-#)

In & similar manner, we obtain from Eqs. (3.18) and (3.19) on letting
v =z and making use of Eq. (E.4), Eq. (3.29) of the text and again
it follows that E;4(vgy,s) and ajy are related as
-(s+al)a/v
1 ' 0l .

Eli(VOl,S) = § ClUlVOlQlS(VOl)al.te sy B € Sli- (E-5)
It also appears that Ej+(z,s) is analytic in the finite z-plane,
Re(z) > O and Re(s) > -oy.

The solutions Vjet+ and iji can now be written in terms of the

B,
Bt

as shown in Eqs. (3.3%6) - (3.39) of the text.

» 0
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F. Investigation of the Associated Eigenvalue Problem

We consider in this Appendix, the associated eigenvalue problem;
that is, the problem for which f(x,u) = 0. The inhomogeneous terms
Tyt (given by BEgs. (3.30) - (3.32)) can be seen to be identically zero
when f(x,u) 1s zero everywhere. Solutions for Ijt =0 will be
denoted with a bar, i.e., Eﬁt‘ The unknown expansion coefficients for
the eigenvalue problem, Eﬁi) are given by Eqs. (3.28) and (3.29) vith
Ij¢ = 0. It is seen from such equations that Ej can be determined
only to within an arbitrary factor independent of 2z and that ﬁit
depends on Eéi' Furthermore, the original normal-mode expansion
coefficients for the eigenvalue problem are given by Eﬁi(“’s)’
0<u<l, §=1,2 Eii(VOl’s)’ s € 8;; and EQi(VOE'S)’ 8 € Spy.
Therefore we must examine solutions of such equations as a function of
the transform variable s for 2z —u with the contour ¢’ collapsed
onto the branch cut (0,1) due to 05,(z'), and for =z = voj When
s € S.;. This will be done for all s in some right-half s-plane and

Jt

it is convenient to divide the plane into three regions: s € Sae’

s € S2i and s € 02.

When s € Spg, ,4(2') does not vanish within C' so that Eq.

(3.28) with I, = O can be written as

l o
Eot(u,s8) = ifo Ks(Wyv)Ep(v,s)dv, s e8,, 0<u<l, (F.1)

where

Ky fog(®) Xo(-u,8)Xg(-v,s)v  -2(s+op)a/v
5= e
¢ M1s() g (v)ag (v)(veu)

K (u,v) = y 0<u,v<l,

(VR v o
0 (F.2)
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When s ¢ SEi! Qes(z') vanishes inside C' but not on the real
interval (0,1). As C' is collapsed onto (0,1), a residue term appears

so that Eq. (3.28) with I., = O takes the form

2t
B, ks ps() Xo(-H8)Xo(-vopys) -2lstop)alvop
el =2 Nsl=) 0 © 2(V5p05)
€202 s QQS(VOQ)(v02+u)
l —
i\-/; KQ(“’V)EE—t(V,S)dV’ s € Sei, 0 S n ..<.. l, (F.5)

for z = where K (w,v) is given by Eq. (F.2). However, Eq. (3.28)
with Izi = 0 must also hold at 2z = Voo and this gives an additional

constraint on solutions of (F.3), namely

kg 92s(m) Xg(-VOQ;S) e-2(s+02)a/v02 5 (v s)
a0z 0 .(=) 2voofing(vop) 2t} "oz

-E-Qi(voays) = &
1
i\/; Ks(vo2,v)E2i(v,s)dv, s € Sy (F.4)

When s & J5, the curve separating Sp; and Spe, 5 (v) 055(v)
vanishes for some Vv on the interval (0,1). That is, vy, is real
and lies on (0,1). Setting vgo = m, we can put Eq. (3.28) with
I = 0 in the form
k. Oog(®) Xo(-4,8)Xo(-n,5) -2(s+op)a/n _

E_,(4,s) =% =2 , e Epe(n,s)
2t 22202 My5(=) 05 (n)(n+u) ’

kg Qo () ( » 1 ﬁéi(v,s)xo(-v,s) -2(s+05)a/v
T pos XO “M,S) f e et
2" 0y4() do  af(v)as (v) v
s e€Cp O0<i,n<l. (F.5)
:\\
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e *“WMM

Note that this equation would be obtained from either Eq. (F.1) or Eq.

i

(F.3) for s - C, from s e 8, or s e Sy respectively.
For arbitrary complex values of s, the kernel Kg(u,v) which

appears in Eqs. (F.1) and (F.3) is not symmetric since é

P g s gy

K (wyv) # [Ks(v,u)]*, m(s) # 0, (7.6)

where * denotes complex conjugation. Note, however, tuat when

Im(s) = O, the unknown functions Eéi(u,s) can be redefined so that

a symmetric kernel is obtained. Solutions of Egs. (F.1) and (F.3)
depend on the behavior of K.(u,v) and we shall look at a quantity

B%(s) given by
2

K (u,v)| dudv. (F.7)

B2(s) =\/;lfol

To do this, we introduce the nondimensional parameters €, Ogs Op

and A given by Eq. (6.1) with § = a + ip. Note that a, B, ogr, oy
and A are real while oR and A are nonnegative. In terms of these

quantities, we have

2 _ {ti(oR-l)-cﬁ]e + pe(GR-l)%}EKa-l)2+ 32]

T h‘:(a*dD;oR_)e + [3;:]

KS(H;V)

|XO(-u,s)le ’XO(-v,s)lev2 “4Aa/v
X

! e y 0<muv <L
& P 1) F -
s 7| |2 (e)?

Co0p Cao02

(r.8)
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2
To make estimates of the function |Xo(-p,s)| , We use an integral

representation of the single-medium X-function given by KusScer and

Zweifel (ref. 1k), namely,

st(z') dz'
st(”) z' +

100
Xos(r8) = e (s [ m (.9)
w00

Upon letting 2z' = iy and using st(z') = st(-z‘), we see that Eq.

(F.9) becomes

o [,,(1)
Hoplte) = et [ o {st(f)'}y ) (r.10)

which is seen to be real for s real. In terms of the quantities of

Eq. (6.1) we find

[é*cD-oRg(yi] + r iy

(arop-og)® + B2 y2 + u2

2 u
IXOl(-“’S)| exp ?r

and

2
lxog(-ﬂ;s)'

exp 2pf \/[a-s(yj +B dy Y (F.11)

a-1)2 + g2 y° 4

where

gly) =y tan lyy- (F.12)

It follows from Eq. (F.12) that 0 <g(y) <1 for 0 <y <« and that

it is a monotonic increasing function of y on this interval. Further-

more, since

& Ty, | (F.13)
Jo ¥y2 + ue |

o i
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2
the following bounds (perheps rather loose) are obtained for |XOJ('“’S)| .

L

2 2 2 .
1< Joal-ws)|” <\ [—25E ;
(a-1)< + 8 ‘

and

1< X <u>f< (atay)” + 92 (F.14)
- - S —~— .
— Ol ) - ( D‘UR)E + B§

for a > mex (1,-optog), and

L

L

| | 2 2
82 < |xgn(-1,8)|° < 1, o +P
Ve < st o [0\ 25

and

e

2 ' \ 2 +0 )2 2
P 2 2 S 'xol("“)s)| S max | 1, (“ = Z P 2
(u*cD-aR) + B (atop-cg)= + B

(F.15)
for a <max (1,-op#og) and B # 0. We note that in the {-plane, the

points { =1 and { = -op + og are the right ends of the branch cuts
of Voo and Vol respectively and these cuts lie on the real

t-axis. The left ends are at { = 0 and { = -op, respectively.
+ 2 D

Bs(v)
Col¥

The functions

are easily found to be

2

& _(v) 2
2s = (a-v tanh~1v)2 4 <é + gz) , (F.16)
C20p | 2

Recall from Appendix A that the curve C, (see Figure 2) is given by

a' = gg; tanh-1 Q%L . (F.17)

1

—r ‘ e i S e . Py



10k

The parametric form of this equation is

'p" =%, o =vtanly, 0<v<L (F.18)
% (V)|
We see from Eq. (F.16) that [—e&—= are the squares of the distance

cho
2v2
(in the f-plane) from the point (a,B) to the points (a'(v), F p'(v))

respectively which lie on the curve Co. Since these functions appear
in the denominator of IKs(p.,v)le the integral (F.7) will not be
bounded when o and B ° are related as in Eq. (F.17). We define
Dpnin(®,B) as the minimum distance from the point (a,B) +o the curve

Co for O0<v<1l. That is,

2 2
= . QES(V) Qés(v) 0 < o
Dmin(a')ﬁ) = min a0p -—c-z-&-g- <v<1 (F.19)

and Dyin(o,B) # O for (a,B) ¢ C,. Therefore, we have from Egs.

(F.16) and (F.19) that

< = oO<v<l (F.20)
+ - 2 Tk ’ = =7 |
2ps (V) P neﬁ(v)l Drin(2,B)
cp02 cooo |

Analytical bounds for the above function are not as easy to get. For

B =0, Qgs(v) = l:ﬂés(v)] and

2
Co0. 1 1 -
-1'-2—2— === S(E;V): (F.21)
Bas(v) @
p=0

where g(é, v) has been investigated and tabulated by Case, de Hoffmann,

occurs at v =0

and Placzek (ref. 6). They show that g(%:, v)

max
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for a < n°/8 whereas for a > n2/8 it occurs for v between O and
l. For a very large they have Bnax ~-> l}me/ne. The present geometric
interpretation is consistent with all of these characteristics. The
radius of curvature of the curve C, given by Eq. (F.17) is /8 at
(a',p') = (0,0). For a' very large, B'~ =n/2 so that the minimum
squared distance from (a,0) to (a',B') approaches =°/L, in agreement

with Eq. (F.21) and g - 4a?/x°.
max

“bar /v
Note that the exponential factor e in Eq. (F.8 ) requires

@ >0 in order for B%(a,p) to be bounded since both v and A are
nonnegative. On using estimates (F.14%), (F.15) and (F.20), we obtain

from Eq. (F.7) a bound for Bg(a,, ) which we denote as 32 (a,,B):

( lod {@(cR-l)- D] + 8%(a -l)} (a2+r52)
4D}, (oyB) (arop-0g)> + p°

a > max(1, -optog)

-’-IrdA CL2 + B2 >
max y, 1
(a,B) (a-1)2 + g2

min

B (“}B) =

max

e

B#0,

X £[a‘(0'R'l)'UD]2 + BQ(UR-l)E} [(a_l)a + BQ]

BE

0 < a < max(1,-o +0R).

D

(F.22)
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It can be seen that Bﬁax depends not only on a and B Dbut also
the nondimensional material parameters op and Og as well as the
slab thickness parameter A. The estimate (F.22) for Bgax is not

bounded for the following regions in the s-plane:

S € 02
and

s € branch cuts of VOl(s) \Ivoe(s)n (F.23)

These regions must be handled separately. Even for the general case,
where s does not belong to any of the regions (F.25), it appears
difficult to say whether or not the eigenvalue problem has nontrivial
solutions., We suspect that it has only trivial solutions for such
regions since that is the result vhich has been found for certain
special cases by others. Lehner and Wing (refs. 16, 17) have shown this
for the bare slab, while Lehner (ref. 15) and Hintz (ref. 10) have
obtained this result for the slab surrounded by pure absorbers. We
can show that this result is also obtained for the special case A —
that is, a thick slab.

Since the slab thickness parameter A appears only in the
exponential term of Eq. (F.22), it is seen that Bﬁax(a,ﬁ) can be made
as small as one likes as A —» o if s does not belong to any of the
regions given in (¥.23). For |Bmax(d,ﬂ)|< 1, the Neumann series
solution of the inhomogeneous integral Eq. (F¥.3) converges to a unique
solution. (See ref. 19, for exa;ple.) Fredholm's Alternative Theorem

(ref. 19) then guarantees that the corresponding homogeneous equation,

e L e R

——

|
}
i
;
H
1
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namely (F.1), has only the trivial solution. Thus, for s ¢ Spe the

eigenvalue problem has only the trivial solution as A - =, When ’

s € Spy, the unique Neumenn series solution of Eq. (F.3) must satisfy

the additional constraint, Eq. (F.4). Using the condition nas(vo?_) = 0,
we obtain
-2(s+0p)a Vo i6(s) A %
e = |p(s)e ) (F.2k) ;
where
2 .2
pa(s) _ @e(VOE)'JJ + Im' (Vog)
- 12, Tl
[Re(vop)+1] =+ I (vgp)
and
Tm(vn.,) In(vyo)
8(s) = tan~t 02" |- tan™t %2 .
Re(vgs) - 1 Re{vpz) + 1
(F.25)
Now since Re(vy,) 20, we have
o(s)]" 6
Lp(s)] =% 0 Felvgy) 4 0. (F.26)

Therefore, the Neumann series solution is seen to converge to zero as
A - when Re(vgy) # 0. Note that Re(vgp) = O is the branch cut
of vgp(s) which is one of the regions given by (F.23) which we must
consider separately. When s € 02, v =1, 0<n7 <_l so that pe(s)

02
of Eq. (F.25) becomes

.
p°(s) N (: n i) <1 (F.27)

and p =1 occurs only at s = -0, (that is, (a,B) = (0,0)).
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We use Eq. (F.27) in Eq. (F.5) and on taking the limit A - ® we find .

i

coun

that Epr(M,8) 0 for s e 0y 5 # -0p.
Summarizing vthe results then for A = «, we find that the eigenvalue
problem has only the trivial solution for Re(s)> -0 unless s
belongs to either the branch cut of vy,(s) or voa(s). In order to
see what happens on these cuts, we must write Egs. (3.28) and (3.29)

with I, =0 in terms of the X,,(-z) functions rather then the !

XO(-z,s) function. This will be done in the next Appendix. When A

is not large, one has for the problems of Lehner and Wing (refs. 16,
17), Lehner (ref. 15) and Hintz (ref. 10) that if the eigenvalue problem
has nontrivial discrete solutions, they occur on the real s=-axls. For
the bare slab, Bowden (refs. 1, 4) has shown that these solutions lie

on the branch cut of vy(s). In view of these results, it is assumed
that the eigenvalue problem has nontrivial solutions for Re(s) > -op

only if s 'belongs to either the branch cut of VOl(s) or VOZ(S)'

e . "
R et - A Rt A s T T

e
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G. Solution of the Assoclated Eigenvalue Problem for s € Soy

In this appendix we look at solutions of Egs. (3.28) and (3.29)
with I, =0 for s on the branch cuts of VOJ(S). It is convenient
to use coefficients related to the original expansion coefficients
.Kﬁi(v) and &jq (the bar indicates that we are considering the
associated eigenvalue problem). Recall that the Eﬁi are related to
such coefficients by Eqs. (3.15), (E.4) and (E.5). We also noted in
Appendix F that the coefficients can be determined only to within an
arbitrary factor independent of v. Following Bowden (refs. 1, 4), we
introduce coefficients iﬁi as

Ryp(v) = anyBya(v), 81a = by (6.1)

The estimate B?max(“’ﬁ)’~Eq' (F.22) of Appendix F, was not bounded on
the branch cuts of VOJ(S)° In that estimate we used the Xb(-z,s)
function so that the behavior for s inside, on, end outside the curve
Co could be seen. To investigate what happens on the branch cuts of
vOJ(s), we should use the Xjg(z) functions (Appendix A) which do not
inherit the branch cuts of vpy. Also, when vo1(s) becomes pure
imaginary (that is, on its branch cut), we cannot include its contri-
bution (the pole at z' = vy;) in the integral over the contour C' of
equation (3.29). We note again that the material properties cy and
oy determine where on the real s-axis the branch cuts of VOJ(B) lie.
The only restriction vhich has been made 1s ¢ < 1 and this alone
does not specify how the cuts overlap. It does, however, guarantee

that the branch cut of VOl(B) lies entirely to the left of s = 0.

e
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We consider s € Spy M\ Sy4 first. When the relationships (G.1),
(3.15), (E.4) and (E.5) are used in Egs. (F.3) and (F.4), we obtain
after some algebra and use of the X-identities of Appendix A,
equations for Bp.(p) and the additional constraint, namely Egs. (4.2)
and (4.6) of the text. Rerall that Eqs. (F.3) and (F.4) were obtained
from Eq. (3.28) with Ip+ = 0. Equations for fu(-u) and Sl-t are
obtained in a similar manner from Eq. (3.29) with Iy4 = O when the
contour C' is collapsed onto the interval (0,1) of the branch cut of
Qog(2z'). These equations are given as Egs. (4.3) and (4.4) of the text.
The normel-mode expansion of the solution of the associated eigenvalue
problem is given in terms of the i&i coefficients by Eq. (4.1). We
note that Eq. (4.6) is the exact eigenvalue condjtion since all material
properties have been assumed known. It determines the values of
S, <?n)’ for whiclhi the eigenvalue problem has nontrivial solutions.
When s belongs to the branch cut of vg;, Eq. (4.6) takes on different
values above and below the vy, cut. Therefore, it is concluded that
the eigenvalue problem has only the trivial solution on the branch cut
of Vp1. On that portion of the branch cut of vy, vhich is not al¢-

part of the ; cut, Egs. (4.2)-(%.6) require that the limiting values

Yo
of the coefficients above and below the voz cut be related as

(Bretul] * = #[Eputu] -

and

[Bli]-i- - i[gli*]-’ ‘Re(voe) = Im(vol) =0, F(G-2)
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that is, where s dis real and is given by
max E—cg, ~o1(1 - cl)] < s < -0p(1l - cp). It then follows from Egs. (L4.1)
and (G.2) that the limiting values of JSi(x,u) for the same region are
given by Eq. (4.21). From Bowden's results (refs. 1, 4) for the bare
slab, it is expected that the eigenvalue problem has nontrivial solutions
only at isolated points, (sn} » which lie on the branch cut of vgy but
not on the branch cut of Vo1

In the limit coopa -« which was discussed in Appendix F, we see

that Eq. (&.2) gives §2+(u) -0 while Eq. (4.6), the eigenvalue

condition, becomes

o = Yes{-voz) e~(s492)a/von o (vgp) o{Sto2)alvoz
= T .
XlS ( -v02) VOl + V02 xls ( vC}2) VOl - 'V02

(G.3)
Equation (G.3) is the "thick-slab" eigenvalue condition and for the

region of the s-plane where it is valid, it can be seen that we have an

even eigenvalue s, if

Xps(vop) et Sn+02)a/vop
=0
X15(vo2) (vo1 - vo2)

and an odd eigenvalue sy, if

. {XQS(VO2) o(5n#02) a,/vOQ

X15(vpe) (Vo1 - voo) > Tee

We note that Eq (G.3) has the same form as the zero-order approximation

of the critical condition given by Case and Zweifel (ref. T), except
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here we have both even and odd parity solutions. Numerical solutions of
the eigenvalue conditions will be discussed in Appendix J.

In the region of the s-plane s € Sle{\-szi we are specifically
interested in the solution on the branch cut of voz(s} which lies to
the left of s = -g7. That is, for s real and -0, <s < -07. For
such values of s the solution (4.1) outside the slab is not bounded

as X =»», since

N R S I CoL LA S (6.5)
1lv lsv

In addition, the restriction Re(s) > -o, on both inhomogeneous terms
T3+ (see Egs. (3.30) and (3.31)) also indicates that we cannot deform
the inversion contour to the left of Re(s) = -0; 1in general. However,
when one is looking for the solution inside the slab, |x| < a, perhaps
the inversion contour can be deformed to the left of Re(~) = -0, for
special values of material properties and/or initial data. For

s € Seif\ S1e, expansion coefficients for the solution inside ‘the

slab are obtained as Egs. (4.7) and (4.8). We note that Eq. (4.8) is
exactly Eq. (4.6) with Xbls(z) replacing (vgy - z)XlS(z). Recall
from Eq. (A.9) that these are the X-functions which are continuous as

s »Cy. Under the same replacement of X5;5(2z) with (vgp - 2z)X34(2),
Eq. (4.7) reduces to the equation from which Eq. (4.2) was cbtained.
Equation (4.8), which corresponds to the eigenvalue condition Eq. (4.6),
determines the pseudo-eigenvalues. ff«t is, the values of s,

-0, < s < -g,, where Wéi(x,p,s) has nontrivial solutions.

R S ) R
e e
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H. Form of VYgu(x,u) on the Branch Cuts of voJ(s)

In this appendix, we show how the transformed solution Vg4(x,p)

is put in a form where one can see how it behaves on the branch cuts of

VOJ(S)’ We expect that Vg, inherits the branch cut of vgy;(s) since
only one of the two discrete modes appears for |x| > a. Such branch
cuts appeared in the half-space albedo problem solved by Kuscer and
zweifel (ref. 14) as well as the two dissimilar semi-infinite media
problem solved by Erdmenn (refs. 8, 9). We also expect that the branch 4
cut of voo(s) is not inherited by Vg4 but instead one should find |
poles at s = s,, the place where the associated eigenvalue problem has
nontrivial solutions. This is what Lehner and Wing (refs. 16, 17) and
Bowden (refs. 1, 4) found for the bare slab. |

It is not obvious upon iooking at the equations of section III which

determine the expansion coefficients implicitly how we should group

terms to show what we expect. We start by looking at wet(x,p,s).

From Eqs. (3.3) and (3.8) of the text we have that
r .
‘V&(x,u, s) = any. L‘VVOE?(X’u; s) £ \I{-vog(x,u,S)]
1
+/; Aa(fﬂ/)[\lfgv(x:u:s) + wg(_v)(x,u,S)] dv
+ F&(X:VOQ: S)WVOQ(X:N: s)

+ Fa-_@_-('x:voay s )V (x,u,s)

-Vo2

1
+f [Fa._(x,v,S)ﬂrgv(x,u,S) * ng(-x,v,S)WQ(w)(x,u,s)}aw
0 | |

(E.1)
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Note that this equation can be obtained of course from Eqs. (3.%6) and
(3.38). It is readily shown from the definition of the Fj+ functions,

Egs. (3.10), and the properties of the Cj+, Eqs. (B.11), that

F&(x,voa,s) = Fat(a,'Voz,S) * ng(-x,-voa,s)

and

F?_—{;(X, -vog, S) = Fz{_-(&, -Voe,s) i F&(-x,VOE)S)o (H.E)

It follows from Eqs. (H.2) then that two coefficients in Eq. (H.1l) can

be written as

F&(X)VOE:S) = % [F&(X,VOQ, s) £ ng('x: -Vo2, S)] + %F&(a,voe, 8)
and

iFQE_-('x’VOQ:S) = %[F&( X, 'VQQ:S) + ng(‘xyvoz;s)] + %ng-(a)vogvs):

(H.3)
where we have used Eq. (B. 12) to replace Fei(a,-voe,s). Equation (H.1)

becomes then

W&(X:H; s) = [aat + %F.ﬁ’ﬁ;{ﬁf.ﬁi’g}gﬁS):l[‘lfvoe(x:ll: s) W-VOE(X:P:S)]

+j; A&t(v)lWEV(x’“’s) + ‘l’g(_v)(x)“:s)]dv

T
+ Lng(xJ Vo2» s) & ng( =X =Yoo s) WVOE(X’ )

o= -

.
Lng(x) ~Vo2» s) * ng( ~X,V02> s) W-voa(x} H,8)

1 :
""_/; [ng(x,v:s)‘ygv(x:“':s)‘ + ‘F&(‘X:V;S)\lfg(_v)(x;“; S)] dv.

(H.1)
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When s € branch cut of vgo(s), we have vgoo = 1 'voe' for Im(s) =0
and Vg, = -1 |v02| for Im(s) = 0*. Therefore, on going from below
the vgp cut to above it, we see that the third and fourth terms in the
RHS of Eq. (H.4) simply interchange while those containing FEi(x,v,s)
and Fai(-x,v,s) are unaffected since these functions do not depend on
Voo* The coefficient of [aei + %-in(a,vog,s)] changes sign however
for odd-parity solutions and we do not yet know how AEi(V) behaves,
By comparing Eq. (H.4) with Eq. (4.1) for |x| < a, we suspect that
[agi + %-Fei(a,vog,s)] is the coefficient which excites the associated
eigen-solution Vg+(X,1k). This is the information we needed to see how
to group terms in the implicit equations for the expansion coefficients.
Now we look at the equations which determine the expansion
coefficients. We obtain from Eq. (5.17)'upon using the X-identities,
the definition of the hs: functions (Eqs. (4.5)), and the relationship

J
between the Eji and the original expansion coefficients that

1. | olvor) | ho(-vo2)
0= = PFr sVAns B *
[:a& * 5 Farlevop, )] ["01 + Vo2~ Vo1 - Vo2

ho(vop)  ho(-vop) ]

1
+ = F,, (28,v55s8) [ T
2 "ex 02 Vor * Vo2 Vo1 - Vo2

1
+J;) [Agt(u) + Fat(a,u,s)] ho(u) ‘T'%EV(-)I

1
' KL+ V
i'f F]_-;_:("‘a)l-’-:s)hl(u) —2——01'5 Ay
0 K= - Yoo

; v,
. 1
t Fia(-8,v5,8)hy (vg) —52m—s (E.5)
© Yoi1 - Yoz |

. P
iy "iﬁ‘:z;.;‘ i

M, B
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Following the same procedure with Eq. (3.16), we cbtain after several

partial fractionings and use of Eq. (H.5)

_ ¢io1 (g7 -00)a/v
Stz F1.(-a,v,s)e'°1™2

e A e M R

+ s Qpg() VOE - V2 ho(v)
2 0y ¢ () Vor® - »2 go(v)

[hg(vog) + h2( -VOQ)]

V+V02 V-V02

X [?gt + %F&(&,VOQ,S)]

1 ho(vpe) _ ho(-vgo)
=T a,Vv s ——— T gy
T3 25—’(’02’)[\/+v02+v-'v02

1
+/; [Ag;(u) + F&t(a’“’s)] h2(“) o+ v

1 vo1°
¥L Flt('a’l-’vs)hl(ﬂ) 5

Vo2

“ | Q(PQSV(“)

dv
“5 Co0oV

(H.6)

From Eq. (3.19), we get
‘—i:hl( -Vol)al.t = [&&b + %Fg:(a, Vog, S)] &IQ(VOQ) + h2( -Vog)]

+ %—F&(a,voe,s) [fle(vog) + hg( -Voe)]

1
+ (vge? - v512) f [Ae_t(u) + ng(a,p,sil hg(u)_g_é.“v_z_
0 - Yo
t dp
3 (vo2© - vo®) f F1+(-2,1,8)hy (1) 5
0 K- = Vo2

+ F11(-2,v51,5) [hl( -vo1) * hl("01)]

(H.T)
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Finally, we have from Eq. (3.18) that

Aya(-v) = %A&(V)e(q-dg)a/\/ _ :L'{E?. Qg (%) hl(V)}

c1071 2 Qyg(w) g1 (v)

1 ho(vop) , ho(-vop)
* [,a&t 2 F&(a’voa’s)] [" - Voa Vv + Vo

1 ha(vog) _ ha(-vo2)
= v -
t2 For(200,%) [v = Voo TV + Voo

1 20, (k) |
+/; [A&t(“) + F&(a,u.,S)] ho(k) c—los-‘lf;— dy |

1 Van2 o e
~ 17 - K- du
7 [ Bpy(-a,m, o)y (n) 2L

o 1\ =S Hy BN V022-u2“+v

F [Fh__(-a,v,s) - %F&(a,v,s)e(crae)aﬁa . (H.8)

We now follow the procedure of Bowden and Williams (ref. 4) and

write the expansion coefficients AJ._,._('u) ‘and, 81+ 1in the form

A,ji(ﬂ) [a& + %‘Fg‘h(ayvog,s)]f\'ji(ﬂ) + BJi(u)

and

a1+

[a,&t + %F&(a,vog,s)]a'l.,._ + bya(n). (H.9)
When Egqs. (H.9) are used in Eqs. (H.6)-(H.8) it follows that

where fji('p.) and 514; are the ejcpansion coefficients of the
associated eigenvalue problem given by Egs. (%.2)-(4.4). The

coefficients Bdi(u) and by are found to be given by Eqs. (4.10)-(%.12).
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The coefficient as. is obtained from Eq. (H.5) as

ho(voz) | hp(-vge) 1 _ ap
[9‘2:'; + %Fai(a)vog;S)] [V 2 + +\/; B&(}l)ha(u) }-l—'r—V(-)_l-]

oL+ Yoz Vo1 - Vo2

hg( VOE) hQ( 'VOQ) }

1
= - = F,, (a,v50,8) [ F

* ay
'_/:) [Bgi(ﬂ) + FQ&‘J&:M;S)] ho(p) T

’J,+Vol

1
R S au \
) Taslom ol (u) o |

, 2v,
¥ P12 (-8, v01,5)hy (V) . (H.11)
V12 = Vool
‘01 02

It can be seen from Eq. (4.6) that the coefficient of

[22s + %th(a,vog,s)] in Eq. (H.11) is the eigenvalue condition, and
it will be zero at the places where the associated eigenvalue problem
has nontrivial solutions. Equation (H.1ll) appears in the text as

Eq. (4.13). The solutions \lrj,_gz(x,u,s) can now be written as

Eqs. (4.16) and (4.17) of the text.

BRI N e e i s S
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I. Behavior of \yst(x,p.) on Inversion Contours

In this appendix, several points concerning the behavior of
¥s+(X,1) on the integration contour of the inverse Laplace transforma-
tion and some portione of related deformed contours are discussed.
First, we look at the behavior of Vg.(x,u) 8s |s|=—e with
Re(s) = 7, a large finite positive number. It will be seen that
1

(x,) 1s not necessarily O(-). Such parts of Vg, (x,u) eare

\VS:’_: s

inverted separately and the resulting solutions are shown to satisfy the
uncollided transport equation. Then we consider how Vgu(x,n) minus
the uncollided term, ,.(x,u,s), can be deformed around the poles and
branch cut of ., which were discussed in section IV.

We are interested in the behavior of Vs+ ©On the contour
Re(s) =7 as |s| -0, where 7 is finite. PFor such cases,
5 € Sle/\ Sne and the solutions j& cen be seen from Egs. (3.3),

(3.4), (3.8) and (3.9) to be
1

Yor(x,1,8) =f

[:A‘M_(v) + F&(x,v,s)-‘] e'(swe)x/vtp?sv(u) dv
o , ' >

1 ’
+ A [Ag_t(v) + Fg_.(-x,v,s)] e(E+o2)x/v Ppgy(=H)av

(1.1)
and, for x > a,
WE(X,H,S) = if [A]i("'v) - Fi("a)v;s) + F]i('x)‘v)s)]
0
-(s+0q )x /v
X e (S Ul) /(plsv(u)dv
N .
< P (5,00 o (e, (1.2)
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XO(Z,S)-* O(l))
and, for 0<,v L1l

Pysvln) = 0(s)

and

Pygy(-1) =0(1). (1.7)

The F 3t functions appear with an exponential factor and its behevior

in the same limit is

-(srog)x/v_ 1 . - 1
Fji(x,v,s)e J -»v S+0'J) L(J)e (s+o'J)(x xo)/V lzt‘Ji(xo,v)+O(-s-).deo

-»o(%-). (1.8)

on using Eqs. (I.7) end (I.8) in Egs. (I.5) and (I.6) we find that

I 3 ‘
Qérsigzé':zu) ’*Fni('a:“’s)e(swl)a/u -)O<ESL') (1.9)
and
I (“,S) ‘
ng:;i)g.fs(u) - 'T'FE("a:ll:s)e-(swl)a/u = F&(a”p”s)e-(swz)a/u
- o(-sl-) (1.10)

The coefficient A, (n) is obtained from the integral equation (I.3).
Since the kernel of this equation is also O(é), the first term of the

Neumann series solution will give the behavior of A (n) as

|s|-»®. It follows then from Egs. (I.3) and (I.9) that

is
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Aoy (1) -aFli(-a,u,s)e'(ce"’l)a/“ - o(%). (1.11)

Using Eqs. (I.10) and (I.11) in Eq. (I.4), we obtain

[A1£(-h) * Fiu(-a,n,5)] »% Fat(a,“,,5,)9-(0‘2""1)&/51

% Fpu(-a,p,5)e-2(02-01)a/k

-»o(i). (I.12)

5

These last two results are used in Egs. (I.1l) and (I.2) to get

r(swg)e'(s“’e)x/“ [Fgg(x,u,S) + F]_t(-a,u,S)e'("e"’l)a/*ﬂ ,

H>0
Vou (X518, 8) =¢

-'*-'(S+o‘2)e'( s+o2)x /1 [FE".’:( =Xy ;l-'-: s)+ Fi4(-a, -y, S)e(dencl)a/u] ’

L p< O

(1.13)
and

r'i(s + Ulf)e-(swl)x/“%]i('x; -p.,s) - F]i‘("a: '“)S)
* Fai(a}u)s)e-(cz-cl)a/“
) ,
* Fu(-a,u,S)e'e(ue'ql)a/“]: w>0

E (s‘:-l- al)e-(swl)x/u FH(-X’ Wy 8), k<0,

(1.1%)
when x > a. For x < -a, ‘\Lr]__,_. has a similar form. Upon using

Eq. (I.8) for the Fy+ functions, we find that Egs. (T.13) and (I.14)
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can be written as Egs. (5.1)-(5.4) of the text, where we have used the ' g
symmetry properties of fj4(x,u). It can be seen from Eqs. (5.1)-(5.4) g
that \;fji(x,u,s) is not necessarily 0(%). In fact if f£34(x0,1)
contains B(x - x0) then Vg, (x,u) 1s 0(1) as |s|-«, Re(s) =7. ;

The parts of \ysi(x,u) which are not O(%‘-) can be inverted by

inspection after a change of varisebles is made.

We define 1V, .4(x,#) for x>a, >0 andall s as ;

. pX
Yyt (X,0) = %f e-(swl) (x-x0) /1 T1+ (%, 1) dxg *

a

, e_(o'e-o‘ll(a-x)/p‘fa e-(S+O‘2)(x"x0)/“' f&(xo,li)dxo
=8,

. e-(ca-ol)Ea/uf-a ~(s40y) (x-x0) /u £14(X0 1) &%

H -
(1.15)
which gives the portions ()if: Eq. (5.5) which are not O(';—') for
| s| »», Re(s) =7. Now we make the change of variables
x - xo = “t, (1016)

where t 20 since x 2x%; and u > 0. Equation (I.15) then becomes
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(x'a)/“ e“(s+cl)t fli(x - ut,p)dt

Y (X51) =f

0

00 ]

+f e (Bt01)t o ~(0p-01)2a/u f14(x - pt,p)dt,
(x+a)/u

(1.17) s

which is easily seen to be Eq. (5.6) of the text with Vu.(x,u,t) given

by Ea. (5.9). For p < 0, we use
Xy - % = ]t (1.18)

It 1s seen then that all of the results given as Egqs. (5.6)-(5.10)
follow.

Another point to be discussed in this appendix is the contribution
from the contour C, (see Eq. (5.16)) around the right-hand end of the
branch cut of vOl(s) as the radius p goes to zero. This branch

point is located at s = -g7(1 - c;) so0 we define
s + 01(1 - ¢p) = pel®. (1.19)
Here vy (s) »® as p =0 as

2 ) ClUl 1 - .20

The branch cut has already been picked so that VOl(s) is real when

s 1s real and greater than -61{1 - cl). The integral
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» “ .
é,%fc Vx(x,n)e®" s = 21-; f p[wsi(x,u)e“]e*\” ao, (I.21)
p -

with s given by Eq. (I.19), is zero in the limit p =0 if

:imo E"Vst(x:“)] =0, (I.22)

independent of @. As pointed out in section V, the point

5 = -cl(l - ¢1) may happen to satisfy the eigenvalue condition,

Eq. {4.6). We assume for the moment that it does not and show later
what changes are required if il does. The function Q35(») =0 as

P =0 as
N\ ]
le(”) p=0 Pe'q: (1.23)
so that

V01501 5(w) = L, (1.24)
s = =07(1 - c3)
At this branch point s € Sli’\ Spy so we need to show the behavior of
all functions given in section IV as p - 0. This behavior can be
given in terms of the behavior of Vop &nd Meg(w). In the relation-
ships which follow, quantities which are functions of s will be
given as O(vgy), O(1/vpy), O(fs), O(1), etc. as s - -g7(1 - c1).

For example,

0 5(2)vg1° = £inite »0(1), (2.22)

idiasi i
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where we have given the equation number as that from which the relation-
ship can be seen,
xjs("“) "’O(l):

x35(tvoe) = 0(1),

and
x35(£vo1) = 0(1/vp1). (A.8a)
kg = 0(1). (c.7)
ho(®) »0(1), ®=#vey, p(0Sp<l),
Sj(l-") - 0(1),
hy (1) =0(2)
and
hy (£vpo1) "’O(l/VOl)' | (4.5)
.‘fu - 0(vg1) - (4. 4)
By (-p) =0(1). (4.3)
Vo (x,u,8) - 0(1)
and
¥14(x,1,8) = 0(vo1). (4.1)
F,ji(x’“’s) —)O(l),
F&(x:ivogys) - 0(1)
and

F+(x,2v01,8) = 0(1/vg;) . (3.10)
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Box(v) = 0(1). (4.10)
Bya(-v) = 0(1). (4.11)
and
oo = 0(1). (4.1%)
B+ - 0(1)
and
Bor = 0(1). (4.15)
ﬁt(-a,VOl,s) - 0{1/vg1)
and
f&(-a,v,s) -0(1). ‘(5.10)
[b]i - Fi(-a,vo_l,s)] = 0(vgy)- (4.12)
@2_,3 + %th(a,vog,s):} -0(1). (4.13)
Yor(xs1,8) = 0(1). (4.16)
‘lfl-_i-_‘(x:u)s) "’O(VOJ_)' ) (%.17)

We have from these last two relationships and Eq. (I.24) that

PYes (x,) ~¥F O(1), | (1.25)

so that Eq. (I.22) is satisfied. Therefore, there is no contribution
from the integral (I.21) for the case when s = -al(l - ¢1) does not I

satisfy the eigenvalue condition, Eq. (4.6).
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If the point s = -g7(1 - c¢1) happens to satisfy the eigenvalue
condition, then the denominator of [32_4: + %‘F&(a,voe,s)-‘] , Which is
equivalent to the eigenvalue condition Eq. (4.6), vanishes. It can be
seen from Eq. (4.13) that the limiting form of this condition ab the
branch point is a4, = O and we shall say something about it in the

last two appendices. If we consider, for such cases, the function

Vei(®s1) = [aoe + % Far(a,vop,8)] Veulx,m), (1.26)

instead of VYg.(x,u) as the integrand of the integral (I.21), then it
follows that in the limit p =-»0, the contribution from such an integral
vanishes. The part which has been subtracted from \ysi(x,u) in (I.26)
is considered separately and would appear to have a pole, due to the
zero in the denominator of Ea,& + %‘Fei(a, Vo2 ,s)J . Its contribution
therefore does not vanish in the limit p =»0; in fact, its contribution
looks like a discrete residue term. However, the pcint is not isolated
(remember that we are considering the branch point of vbl at

5 = =01(1 - ¢1)) so we shall' understand that its contribution is
included in the branch-cut integral term of Eq. (7.1). We shall see

from the numericel results that such points occur.
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J. Egiesions =ni Procaduirss for Compination of Eigenvslues

The equetions from whizh the time eigenvaluer, 3, ars Jetermined

for o & 1 ﬁﬁgg_ srs Eas. (b.2) ani («.2) of section IV. When

z e 8, Nz, the corresponiing equations are Eqs. (».T} ani («.%) and

they determine what we have called the pseuio-eigepvalues. ALL of
thege equations are sclved numericslly using the procedure of reflerences
1 and 4. As pointed out in section VI, the ghove equations can be
written in temms of the nondimensional guantities introduced in Eqs.

(£.1}, By meking the substitution

AT
py) = 2EIn2ln) {“1ﬁ(v°3) (1) (‘*),. (2.1)

(vor * Blvpe Y 734(x)

4t follows that Eq. (4.2) can by wristen for § reel and
max (-op + og, 0) <& <1 {(thex .4, on that part of the branch cut of

vgp which is not also part of the branch cut of VOl) as

lhg: £ 1, as o
By(h) = a0 | | °d‘2"+ 1‘] B:(v) 593l (3.2)
W%+ |"02|
where 2
s - aatroe) X)) s - c)e’egA/“ i+ |voe|”
c.%fo.%
and
Imf{ec("oz) Vo2
84. = ) " ’ (J'?))
B g’lc("oe) Vo1 = Y02
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Now we define Apy as
l P
Arr = -2g, ?f By (v)dv, (7.4)
‘ 0
which is the eigenvalu. condition, Eq. (4.6), if A§+ = 0,
Equations (J.2) are reduced to two sets (%) of N equations in

the N unknowns B, (u;) and B_(pi), 1=1,...,8 (see for example,
ref. 24), given by

N

‘ HiBy & Voo |8+ - B (ks)
B,(uy) = -8(y) | —p | L* + L Z R, £-9°
ny + |voz|

where RJ 1s the weighting function for the numerical integration

scheme which is used. Equation (J.4) is written as

N
]

Since we must search for values of § for which Dy = 0, it is seen
that we must be able to compute all quantities which appear in Eqs.
(J.3) for any value of ¢ in the range (6.3). These quantities are

computed as follows.

f¢(vop) &+ op - Log

= J.
@ Trop o (7.7)

ot (u)ase(p) 12 2 |
g2\ 1+u ; _

22
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The functions VOJ are determined by QJ;(VOJ) = 0 and they are
computed numerically using the Newton-Raphson iteration (ref. 24) on

the nonlinear equations

(7.9)

|v02| ten=* |v02l =

and

E+ a0
Vo tenht 1. D, (3.10)

>
or %

The X-functions are computed from the first reletionship in Egqs. (A.8a);

namely,

(J.11)

For ¢ and 2z real where z = -y, O <p <1, we have from Eq. (J.11)

that
X, (u)
= 0 sV - 8 »0psOny J.lQ)
x1g(-u) exp{f [ea(&:v) 1(C6R°DV)V+“} (
where
0s(t,v) = tan™t g 'vi::ii_l -
and o -

onv/2
R’ ) (7.13)

91( ¢ ORsOpsV ) s tan

' 1
Lg.-l-cD - ogv tanh™ v
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For § real and z = Voo, We calculate the real and imeginary parts

X (Vo)
Qf_g.s__og_as

X1 ¢(vo2) 1
" Xoelvo) | Ta/x (o) ;
e = e cos T
X ¢(vop) .
and ;
1
X, (voo) Iy /n
Inm |-2 1 - e sin(ly/n), “ (7.14%)
X1¢(vpr) |
where
1 vdv ‘ i
Iy =f [QQ(Q)V) - el(cichcD}v)] 5 )
0 vV + 'Voe' ) -
and
1l
dv
s = |v k/\ 0,(¢,v) = 6,(¢,05,0 v{] —., (J.15)
2 = |Yoz| 0[2 ) 1(§,0g, op, 7+ boal?

Integrals in Egs. (J.12) znd (J.15) are computed as

M
1
J; [92( ¢ v)- 91( g, OR» UD’Vﬂ £(v)dv =z Ry [92( £, Vi) - e,l( £, OR»%D» Viﬂ f(vi)y

i=1
(3.16)

where Ri is again the weighting function for the numerical integration

scheme.

In all numerical integrations, we used Gauss' Method (ref. 2&).
For integrations in Egs. (J.5) and (J.6), the interval (0,1) was

split into four intervals,
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(0,1) = (0,0.05) + (0.05,0.1) + (0.1,0.9) + (0.9,1.0), (7.27)

and we used a 10-point Gaussiasn formula in each subinterval. For | .*
integrations in Eqs. (J.12) and (J.15) the interval (0.1) was divided

as

(0,1) = (0,0.1) + (0.1,0.9) + (0.9,0.99) + (0.99 + 0.999) + (0.999,1.0),
(J.18)

and in each of these subintervals we also used a 10-point Gaussian
formula. The subdivision (J.18) is the same as that used by Kowalska
(ref. 11) and the X-functions calculated here agree with those she
gives to all figures which she quotes except for the real and imaginary
parts of XJQ(VOQ)' She apparently used P2 instead of Pe/n in Egs.
(J.14) to obtain the numerical values for the real and imaginary parts
given in Part II of reference 11l. Since her later published critical-
slab results (ref. 12) agree with those of Mitsis (ref. 20) for a bare
slab, we expect that this ;versight was corrected.

Conditions (4.7) and (4.8) which determine the pseudo-eigenvalues
for s e 8, NSy lead to very similar equations which will not be
written down. In this region, the real s-axis corresponds to
0 € §{ < -op and such equations need be considered only if ~-op > O.

The procedure we use to calculate the eigen&alues §n is as
follows. For fixed values of A, o and oy, ﬁe select a number of
t values in the interval given by (6.3). For eaéh of these values we
obtain ‘v02| and vy, from Eq;. (7.9) and (J.10) by iteration

(Newton-Raphson). Equations (J.13) are evaluated at each of the
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Xop(=hy)
50 Gaussian integration points, v;, 0 < v;<1l. Next, the iggz"QY
| 168 -H3

are calculated for each of the 40 Gaussian integration points,
ki, O < My <1l by using Bas. (J.16) in Eq. (J.19). The real and

Xoe (Vo)

imaginary parts of
X1 ¢(vo2)

are computed in the same way yrom Rys.

(7.14) - (J.16). Now we can compute g(uj) from Eq. (J.3) at each of
the 40 points “j and evaluate all of the coefficients in the two
sets () of N"equations in the N unknowns B+(uj) and
B_(uj) (Eqs. (J.5)). These two sets of simultaneous equations are
solved numerically for Bi(“j) which are then used to coumpute Ati
from Eq. (J.6) at the selected values of {. In this way we locate the
zeros of Apy approximately. A new set of { values, located about
each approximate Qn) is selected and the process is repeated. For
the present computations, the §n were located to three figures.
Discussion of computed results is given in section VI.

In Appendix G, the thick-slab eigenvalue condition was given as
Eq. (G.4). We note that g+ &iven by Eq. (J.3) are, within a factor,
exactly the quantities needed in Eq. (G.4). Therefore the thick-slab

approximation eigenvalues are obtained from

g+ = 0, (3.19)

as would be expected from Eq. (J.4).
The bare slab eigenvalues are obtained when op = 0 and it is

easily shown that in this case Egqs. (J.5) and (J.6) no longer depend

on op- That is, for og = O these equations do not contain op.
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We have noted in section V and Appendix I that the branch point

of v located at s = -al(l - cl) may happen to satisfy the eigen-

0l
value condition, which can be seen from Eq. (4.13) to be

ay4 = O (3.20)

when vy, = . This point corresponds to t = -0p + Og and it can be
shown that Eq. (J.20) then determines values of ¢ = §, which do not
depend on o or og. That is, 1f we use § = -op + op to eliminate
op from the condition (J.20), then oR drops out of the equations.
Equation (J.20) determines the values of ¢ at which eigenvalues
disappear into the right end of the branch cut of Vor We also note
that the limiting form of the pseudo-eigenvalue condition for s = -0y,
which corresponds to § = -op, determines the valuss of { where the
pseudo-eigenvalues disappear into the left end of the branch cut of
vo1. ©Such points, as well as those given by Eq. (J.20), are labeled

with % in Figures 6-9.
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K. Remarks on Eigenvalue - Branch-Point Coincidence

In this Appendix we make a few remarks concerning the situation
when the eigenvalues (or pseudo-eigenvalues) disappear into th: branch
cut of vy, This situation is somewhat analogous to that encountered
by Hintz (ref. 10) for the slab surrounded by pure absorbers. He
could not say whether a bare-slab eigenvalue (which does not depend
on aD) that happened to coincide with ~0p belonged to the point
spectrum or the continuous spectrum for his problem. In the present
problem, the eigenvalues coincide with e branch point as they disappear
into the branch cut of Vo We have not made a numerical study of the
branch-cut integral in Eq. (7.1l) nor have we looked at the eigenvalue
condition on another Riemann sheet. We suspect that there is no
drastic change in the shape of the solution given by Eq. (7.1) when
an eigenvalue disappears into the branch cut of Vop 2and such studies
would resolve this point. We pointed out in Appendix J that the
condition (J.20), which determines whether or not the point
s = =01(1 - cq), (6 = -op +‘0R),is a zero of the denominator of

any + 32- Fe:‘:(a-’voe’s)] given by Eq. (4.13), does not depend on op or
Ogr explicitly. In Appendix I, we indicated that the contribution
from such points should be included in the branch-cut integral since

it arises from the integration around the branch point. We understand
then that such a contribution is included in Eq. (7.1) if
s = =0q(1 -vcl) happens to satisfy Eq. (J.20). We do not know how such
zeros of Eq. (J.20) behave or appear in the solution after passing

through the branch point as the material properties are varied.
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If one considered the problem or a finite slab with symmetric
reflectors of finite thickness then he might be able to see what is
happening at the places where the eigenvalues coincide with Vor = ®
In such a problem, the solution probably does not inherit the branch
cut of Vol but instead has discrete eigenvalues along it. Even
though there is another parameter in the problem, the reflector thick-

ness, one might be able to do a numerical study of all the eigenvalues.
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