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TIME DEPENDENT MONOENERGETIC NEUTRON TRANSPORT IN A

FINITE SLAB WITH INFINITE REFLECTORS

By

Perry Allan Newman

ABSTRACT

The initial-value transport problem of monoenergetic neutrons

migrating in a thin slab surrounded by infinitely thick reflectors

is solved using the normal mode expansion technique of Case.	 The

results obtained indicate that the reflector may give rise to a

branch-cut integral term typical of a semi-infinite medium while the

central slab may contribute a summation over discrete resitae terms.
r

Exact expressions are obtained for these discrete time eigenvalues

and numerical results are presented showing the behavior of real
1

time eigenvalues as a function of the material properties of the

slab and reflector.	 These eigenvalues are finite in number and all
i

of them may disappear into the branch cut or continuum as the material F

properties are varied; such disappearing eigenvalues correspond to

exponentially time-decaying modes. 	 The two largest eigenvalues can be

compared with critical dimensions of slabs and spheres and it is shown

that the numerical values agree with critice.lity results of others.

In the limit of purely absorbing reflectors or a bare slab, the present

solution has the properties which have been previously reported by

others who used the Lehner-Wing technique to solve corresponding

problems.
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A few time-dependent, monoenergetic neutron transport problems in

plane geometry have been solved recently by applying Case's normal-mode

expansion technique (refs. 5, 7) to the equation which results when the

time dependence has been removed by a Laplace transformation. In these

time-dependent solutions, contributions due to various parts of the

spectrum of the transport operator have been indicated by suitably

deforming the integration contour of the inverse Laplace transformation.

This approach was used by Bowden (refs. 1, 4) for his analysis of time

dependent, one-speed neutron transport in a bare slab of finite thick-

ness with isotropic scattering, a problem which had been treated

extensively by Lehner end Wing (refs. 16, 17). Another successful

application of this technique was made by Kuseer and Zweifel (ref. 14)

to the time-dependent, one-speed albedo problem for a semi.-infinite

medium which scatters neutrons isotropically. For these two applications,

the time-de pendent solution involves only a single material medium. In

each of these problems, construction of Case's normal-mode expansion in

the transform plane depends upon the two material properties which

characterize a single uniform medium with isotropic scattering: the

total macroscopic cross section, a, and the average number of

secondaries per collision, c. For time-dependent problems in which

more than one medium is involved, the transform plane must be taken as

the superposition of "single-medium!' planes, one for each medium. The

situation then for a problem in which material properties vary from

point-to-point will be very complicated.
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Mika (ref. 18) has studied one such problem; the initial value

,Nroblem for monoenergetic neutrons in a nonuniform slab surrounded by

a vacuum. He used the same approach that Lehner and Wing (refs. 16, 17)

had used for a uniform bare slab problem and, as might be expected, his

more general hypothesis results in fewer dotails. In particular, it

appears that theorems concerning the reality and number of discrete

time eigenvalues cannot be established. At the outset, Mika (ref. 18)

indicates that such results would be used, in practice, for a system of

uniform slabs. Even for these cases in which there are a limited number

of different material media, he states that the most suitable means of

calculating discrete time eigenvalues would seem to be the normal-mode

expansion, approach employed by Bowden (refs. 1, 4). This is the

approach used in this thesis to analyze a simple idealized two-media

problem in which one would expect to have discrete time eigenvalues in

order to obtain some insight concerning their behavior as a function of

material properties. Such an approach has been utilized for one two

media time-dependent problem by Erdmann (refs. 8, 9) who investigated

the time decay of a plane isotropic burst of monoenergetic neutrons

introduced at the interface of two dissimilar semi-infinite media which

scatter isotropically. In his solution, contributions due to the

continuous spectrum are different for the two media; apparently the

continuous spectrum depends on x. There are no discrete eigenvalues

in his problem.

Lehner (ref. 15) has demonstrated that the continuous spectrum of

the transport operator is very sensitive to the explicit formulation of

a physical problem. He considered a slab of finite thickness



surrounded by a pure absorber which had the same total macroscopic cross

section as the slab. lie obtained the same point spectrum as that found

for the bare slab (refs. 16, l'T) but found the continuous spectrum to be

only the imaginary axis instead of the entire left-half plane. Very

recently Hintz (ref. 10) has generalized Lehner's problem by allowing

the pure absorber to have any cross section and found that when the two

total macroscopic cross sections were different (al ^ 02, see Fig. 1)

the continuous spectrum is a strip parallel to the imaginary axis of

width jal - ar2l and that the point spectrum may be empty. He shows

that his results reduce to those of Lehner (ref. 15) w en al = v2

but does not indicate how the bare slab results of Lehner and Wing

(refs. 16, 17) can be recovered. In the present problem, a finite slab

is surrounded with a material which can scatter as well as absorb

neutrons. Thus the bare slab and slab surrounded by pure absorbers are

special cases and it is shown that the present solution has the proper

behavior (refs. 10, 15, 16, 17) for these special cases.

Consider a slab of material which scatters neutrons isotropically,

extends from x = -a to x = a and is characterized by the nuclear

properties a2 and c2 . Mis uniform slab is surrounded by uniform

infinitely-thick reflectors of another material characterized by the

properties cl and cl (see Fig. 1). For a physically meaningful

system, these reflectors should be nonmultiplying media since they

extend to infinity. Therefore, we- take c 'l < 1. For isotropic

scattering of monoenergetic neutrons in a sourceless medium and plane

geometry, the neutron angular flux, *(x, p, t), satisfies the

equation (ref. 7)



3
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t)6*(x,µ,	
1

---^	 + µ 
b*(x,µ,t)	 c(x)a(x)
---^	 2+ Q (x)^(x, µ, t) ^ —• —^ f ^^X , µ ^ ^ t ) ^ ^

-1

(1.1)

where t is the neutron speed multiplied by the real time, x and µ

are shown on Figure 1 while a(x) and c(x) are given by

	

a(x), 

c(x)	 _ al, cl for	 x > a	
(1.2)

	

Q2, c2 for	 x I < a.

We seek the solution of this equation subject to the boundary conditions

x lim *(±x, µyt ) = 0

and the continuity conditions

given the initial condition

*(x) 4, 0) = f(x)p)

(1.3)

(1.5)

which we assume satisfies (1.3) and is extendable without poles or

branch cuts in the finite µ-plane except perhaps for a discontinuity

across the imaginary axis. When the material properties of the

reflectors are taken to be those of a vacuum this problem reduces to

that of Lehner and. Wing (refs. 16, 17) while for a pure absorber it

reduces to that considered by Lehner (ref. 15) or Hintz (ref. 10).

The method of attack to be used in solving this problem is the

following:
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I

1. Remove the t--dependence with a Laplace transformation.

2. Solve the transformed equation by applying Case's technique.

3. Determine the analytic properties of this transformed solution

in some right-half s-r-lane.

4. Recover the t-dependence and simplify by suitably deforming the

integration path of the inverse transformation. Previously cited re-

sults (refs. 1, 40 8 0 91 14) lead us to expect that the reflectors

should contribute continuous-spectrum type terms typical of a semi-

infinite medium while the central slab should give rise to some point-

spectrum type terms and their corresponding discrete time eigenvalues.

5. Calculate real discrete time eigenvalues as a function, of

material properties if and when they exist.

This is the method which has been successfully employed by Bowden

(refs. 1, 4), Kuscer and Zweifel (ref. 14), and Erdmann (refs. 8, 9);

we use many of their results in solving the present problem. In fact,

our solution contains parts which resemble their solutions. Some

preliminary results for the present problem were given in ref. 23.

i
,r

z

i
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II. ME REMOVAL AND ELEMETUARY SOLUTIONS

If we take the Laplace transformation of *(x,g,t) as

CO

*s(x,µ) = fo e-st *(x,µ,t)dt, 	 (2.1)

then the inverse transformation required to recover the t-dependence is

 Y+ice

*(x,µ,t) = -I--I	 est *s(x..µ)ds,	 (2.2)
y-im

where y is to the right of all singularities and branch cuts of

*s (x,µ) in the transform plane; that is, the s-plane. From previously

cited work of others, it is expected that the path of integration in

Eq. (2.2) can be deformed to indicate more precisely the character of

*(x,µ, t). When we apply the transformation of Eq. (2.1) to Eq. (1.1),

integrate by parts in the usual manner and make use of the initial

condition (1.5), we obtain

µ	 *,(x,µ) + [s + ar(x^ *S (x,µ) = - C (x)C"x) J *s(X,µ )^ + f(X)4) •
ax	 _1

(2. 3)

Equations (1.3) and (1.4) become under this transformation

l m
x	 °° 

^s(+X., _ 0	 (2.4)
(	 I -^ 

and

s(+_Vi-,µ) _ '^s(+ a-,µ) •	 (2. 5)

7

}

..
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Before applying Case 's technique to solve Eq. (2.3) subject to

conditions (2.4) and (2.5), let us examine some properties of the

transformed solution which follow directly from the governing equations.

Bowden (refs. 1, 4) introduced these ideas at a later step i n his work,

but here they aid in the construction of the solution.

An arbitrary function of two variables, f(x,µ), can be written as

the sum of its even and odd parts, namely, f +(x,µ) and f_(x,µ). They

are given, of course, by

f±(XY0 = 2 [f(xM + f(-XI-03(2.6)

and have the property
i
t

E

	

f+(-XS-µ) _ f±(X^µ^ • 	(2.7)
ti
t

Since c(x) and a(x) are even functions of x, we can easily show

from Eq. (2.3) that the even and odd parts of *,(x,µ) obey the

equation

a1µ — *s± (x., µ) + IS + ar(X)] *S±(X, µ) = 
c(x)Q(x)
—f *s±(X, µ') aµ' + f+(x, µ) -

ax	 -1

(2. 8)

The boundary conditions for	 correspondingcorresponding to Eqs. (2.4) and (2.5)

are written as

lim CVs±(x,µ)	 0	 (29)^x1 -4, 00

and

^s±(a+,µ)	 'Vs±(a-^µ)^	 (2.10)

i	 t



where the ± subscripts denote definite parity parts of a function

,gee Eqs. 2,	 and(^	 ( 6)	 ( 2-7)). Equations (2.8)-(2.14) tell us the following:

1. All solutions of the homogeneous equation associated with (2,8)

can be made to have a definite parity.

2. The boundary conditions preserve the parity.
i

;. The definite parity parts of an initial distribution excite

inhomogeneous solutions of corresponding definite parity. Therefore, we

can separate this problem into two problems, one for s+, the other for
i

ors _, and combine the results at any stage of the calculation.

The functions f+(x,µ) and *s±(x,µ) are broken up as

f	
_	 f,+, (x,P),	 (x I > a	 .11

2±

and

*s±lxail) =	 (2.12)
*2±(x, µ:, s)	 Ix I < a,

so that Eqs. (2.8), (2.9), and (2.10) become

1
µ	 *i±(X)µ,$) + (s + ai)*#(XINL' s) 	

2

ciai 

f *j+(x,41,$)^`
x	 -1

+ fj+(X,µ), j = 112, (2.13)

lim 	 0	 (2.14)
1 
x I	 °°

and

*,+ (a, µ., s)	 *2±( a µ., s) •	 (2. 15)
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The notation g j+( a,p) means the limit of g± (x,g) as x -^ a from

r diem J. Solutions of Eqs, (2.13) will be obtained by constructing

even and odd particular solutions, *j p+(x,µ), and adding to them

solutions of the corresponding homogeneous equations, *jc+ (x, µ),

so that conditions (2.14) and (2.15) can be satisf ied. These functions

,yjp+ and *jc+ will be constructed from Case's elementary solutions

which we shall denote here as *jv(x,µ,$).

The elementary solutions .. *jv(x,µ, $), are solutions of the

equation

1

µ ax *jv(X)µ, $ ) + ( s + aj)*jv(x,µ,$) = 1 cjaj	 *jy(x,µ,)s)^I
2	 -1

(2.16)

in the form

*jv(x)pys) = CPjsv(µ)e-(s+aj)x1v
	

(2.17)

where v is a complex parameter introduced in this separation of

variables and 
'P
jsv(µ) is normalized as

1

J	
q)jsy(µ)dp	 s + aj.	 (2.18)

-1

Bowden (refs. 1, 4) and Erdmann (refs. 8 9) have investigated these

solutions; many of their results are given in Appendix A and will be

used herein. They show that the solutions (P jsv (µ) are given by

(PjS W = 2c jQjvp
 v—  ^ - + ?^js(v)S(v 0) v e (-1,+1),

µ

(2. 19)

i

i
is
i

'F ^ 1
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where P denotes the Cauchy principal value, S(v - µ) is the Dirac

delta function and.

T js (v)	 s + aj - c j cT j v tanh-1 v,	 (2.20)

and two discrete solutions,

cQv
^±-vo (µ) = ^ v^ ^ O,j ^ s E S^ji ,	 (2.21)

^	 oJ +µ

provided that the function Ajs(z),

Ajs (z) = s + aj - c j csjz tanh`l 7.0 	 (2.22)

s and z vanishes at the two points ±v 0j.

happen (refs. 1, 4) is that s lie inside

see Fig. 2) defined by

at + ipt at = 2^^ tanh-1 2P S	 (2.23)

We note that voj is an analytic function of s for s E Ski except

for a branch cut on the real s-axis between -a j and -a j (1 - c j ). We

have denoted by +voj that zero of nj s (z) for which Re (vo j ) > 0,

s ¢ [-a jp -aj (l c j )] . The important result is that the general solution

of (2.16) can be expressed as the linear combination

*J(x µps)	 aJ*VOj ( X . L s) + b,j*_y0J (x,4y s) bj(s)

+
 f

1
Aj(v)*jV(xjµ.,$)dv,	 (2. 24)

-1

of two complex variables

The condition for this t

the curve C j (s E Sji,

s+v^ci _	 cicli

b,1
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where we define 81 ( s) as

1, s e Sj i
8j(s) 	 (2.25)

( 0; s e Sh e

and the s-dependence of the expansion coefficients has not been

indicated. To avoid confusion with our notation ± for parity, the

customary notation for the discrete modes has not been used.

The solution (2.24) does not have definite parity. ror a medium

which is connected and symmetric about; x = 0 (such as our slab), even

and odd solutions can be written as

'V^ (x> µ^ s ) = aj± *yaj (xYµ,$) ± *-v0j(xr4,$) sj (s)

+
 fl

Aj±(V)J'(X,µrs) ± *J(-v)(X,µ,$) dv,
0

(2.26)

where

aj+ _ 1"
2 
[aj + bi

and

Aj±(v) = 1 [Aj(v) ± Aj(-v)
	

(2.27)

We have used the properties

*±Voj (-x)-P" 8 ) *T,O J (XPµ) s

and

*J(±V)(-X'-µ's)
	 *J(+V) (X.µas)•	 (2.28)

Y

l
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r

For a medium which extends to infinity in the x-direction (such as our

reflector) the boundary conditions (2.4) require that
	

#^k

b i - Aj(-v) m 0, 0 G v < 1 if x --3 +,o

or

ai Aj (v) m 0, 0 < v < i if x -^ -M
	

(2.29)
	

1

for the expansion coefficients in Eq. (2.24) when Re(s) > -aj.

We use results (2.24), (2.26), and (2.29) now to construct the

solutions *jc+ and *jam.

1

1. IW



Ill . CONSTRUCTION OF TRANSFORM SOLUTION

The even and odd homogeneous solutions in the slab)*2c*) can be

written in the Tom 
of 

Eq. (2-26) with J = 2. On the other hand, the

homogeneous solution in the reflectors ) subject to the boundary

condition (2-29), can be written from Eq. (2.24) as

0
bI*_vOl (X .' 4 " s ) 51( s ) +	 AI(v)* ,IV(x..^tps)dvI x < -a

^Vl (x) s)

a,'
	

(X)4)B)51(s) +	 A1l(v)*lV(x)4,$)dv) x > a,
1 01	 fo

(3-1)
for Re(s) > -Q1. The continuity conditions (2-5) and the parity of the

solutions*2c± can be used to relate the coefficients in Eq.

We find that an even solution inside the slab requires

al l = b
1
 and. A., I (v) = A,(-v)	 0 S V <1 1 	 (3.2a)'.

while an odd solution inside the slab requires

al ' = -bi and Al ' ( v ) = -Al(-v), 0 S V C 1.	 (3-2b)

The explicit forms of *2c± and *,,+ are therefore

*2c±(X)4-' s) = a2± 
I*vO2(x)41S) ± *-V02(x'I.L"s)] $2(s)

+ f A P+ (V) *2v (X.14 ) s) ± *2(-v)(x-4LYs )] dv
0

(3.3)

and

15
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''a *_vOl(x,µ,$)sl(s) +

	

	 AL(-v)*,(_v)(x,µ,$)dv, x < -a
O

*lC±(X) µL $)

i'aj+*V
Ol 	 O

(xytI,$) sl(s) ± f AL+(-v)*lV(x,^^,$)dv, x > a,

(3-4)

for Re(s) > -cll.

We turn now to construction of * j,+ . Consider a function

gjs (x,µ;xO) which satisfies the equation

d	 ^c	
1

µgjs	 µ(x^g;xo) + (s + aj )gjs (x, xO) - -- ^ B^s(Xtµ^xO)dµ,
2	 -1

+ S (x - xo)f j (xo U) .	 (3.5)

Upon integrating on x from xO - E to xO + e and taking the limit

E -^ 0, we obtain the ,dump condition

f j (xOM
gjs (XO+)µ;XO) - gjs ( XO-,4;XO) =	 µ	 (

3, 6)

The function *jp±(x,µ,$) defined as

*jp+k- µ , $) = 2, [*Jp (x)µ,$) + *jp(-x)-µ,$), ,	 (3,7a)

where
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is seen to be a solution of Eq. (2.13). It is shown in Appendix B that

explicit forms of *2p{, and *1p+ can be written as

^^a . ( x, µ, s) =[IF 2± ( x, v02, s) *v02 (x, µ, s )

Fa(-x,v02)s)*-v02(x)µ,$) 52(s)

+ f1rFP+(x,^^)s)*2v{x)µ,s)dv
 1

± 0 F2± (-x) vy s)*2(-v) (x)µ, s)'Iv,

*lp±(x)i L P s ) = FL (xPv01P s)*y01(x'µ, s)

+ F x v s- F± -a v s	 x s 61(s)

+f
1

Fl+_(xyv)s)* ,v(xlµls)dv0
N

+	 [F,+(x.,-v.,$)	 F±{-a.,v,$) *,(_v)(X)µ,$)dv,
0

x < -a, (3.9a)

	

for Re( s) > -a,, and	 j

N
1p±(x,µ, $ ) _ ± -F±(-a,v01,$) + FL(-X,-Vol,$) '^v01(X,µ,$)	

}

± Fj+(-x,vol, $)*-vol(x, µ,$) 51(s)

f

l ^,
F± (-a, v, s) + Fly,(-x, -v, s) '^lv (x, µ, s) dv

0
1	 ,,

J

	

±	 FL(-x,	 _y)(x,µ,$)dv, x > a,	 (3.9b)
Q

ilk-

l

E

La

s

,p	 I



for Re(s) > -al, where
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Fl(-a,-4u, s)

	

_fa

x	
s+Cr xO w 

dxF^(X,w,$) --	 CZ..^.(xO,w)e(2) ^	 0

and	 x
FL(XPwPs)  ^ CL(XOPw)e(s+crl)XO/w dxO*

-0
(3.10)

Here the CJ+ are full-range expansion coefficients of the function

f
J
±(x,µ)µ and are given by

1

C +_( Xo yv) = + 1 _	 J	 fj+(XO)µ)(Pjsv(µ)^^
`^	 vnjs(V)Ojs(v) -1

and if s E 5^1,

1

Cj±(Xo,voj) _	 2,	 f f j±(XO,µ)q)VO (µ) Vi
c,j lr j vOJ Sl j s ( vO,j) -1

and
1

Ci±(XO^-vni) _
	 2 2	

fj±(XO,µ)(P_v ,(µ)Vi
^^	

•
c^vO^ S lj ,(-vO^) -1	 0^

(3.11)

Throughout, we shall use + and - superscripts to denote the limiting

values of a ,function on its branch cut as the argument approaches the

cut from the upper (+) and lower (-) half-planes. The function njs(z)

of Eq, (2.22) has a branch cut along the real z-axis (-1,,1) such that

;7j s(v) Tjs (v) ± incjuj v/2	 -1 < v < 1.	 (3.12)

3
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The functions A' s(z) are defined by

( z )	 a nj s ( Z )•	 (3.13)

Note that the parity of the coefficients C# is opposite that indicated

by the ± subscript. Nevertheless, the solutions *jp+ are easily seen

to have the indicated parity.

The solutions 	 (2.12)) of our problem are written in

terms of	 *j ,±	 and ra	 as

	

(

*lc±(1^4ys ) + *1p±( xP4Y s )P I x > a	
14

*2,±(x,µ, s) + *2p+( x ,4, s ) ,	 x < a.

The solutions in medium 1, j > a, have been.constructed so that the

boundary condition (2.,14) is satisfied. Application of the continuity

condition (2.1^55 ) allows us to determine the unknown expansion coefficients

of *jc+ which appear in Eq. (3.14). That is to say, if we substitute

x = a in Eq. (3.14), apply the continuity condition (2.15) and use the

explicit forms of *j c+ given by Eqs (3.3) and (3.4) ., we obtain a two-

media full-range expansion involving the 9jsv which contains unknown

coefficients aj+ and Aj+ . The same expansion is, of course, obtained

for x -a. This type of expansion and its orthogonality relations are

discussed in Appendix C and we show in Appendix D that such an expansion

is obtained for the present problem. Erdmann (ref. 8) proved completeness

theorems which apply in such time.-dependent problems while Kuscer,

McCormick and Summerfield (ref. 13) derived orthogonality relations

which are applicable to two-media expansions which arise in tithe-

1
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;independent problems. In Appendix C, we extend their results to obtain

orthogonality relations in a form which are valid for all regions of the

transform plane. As usual in problems involving a slab, we cannot obtain

closed form solutions for the expansion coefficients. However, we can

use the orthogonality relations (App. C) to obtain expressions which

give the expansion coefficients implicitly. That is, the continuum

coefficients A2±(v) are given as the solutions of Fredholm integral

equations and all of the other coefficients are obtained from the

A2± (v) . More specifically, if we define

E2±(V)= A^(v)%s(v)f&(v)e(s+o2)a/v

i^nd

El+(v) = AL(-v)als(v)^ls(v)e-(s+al)a/v
(3•l5)

the use of the orthogonality relations leads, after some algebra, to

the following list of equations:

	

EP+ (v) = 1P+(V) + ks 	 XO(-v, s)
2 Stls(CO)

nl	 e-2(s+a2)a/µ XO(-µ., $ )µ c
	x J 0 E2+(µ)	 ^+ (µ) se (µ)(µ + v )2s	 2s

	

+ 52(s)a2+e-(s+a2)a/v02 XO (-v02F	
v

s) 02	 0 < v < 1,
v02 + v

(3.6)
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2 c2l2vo2n12s(vo2)a^e(s+a2)a/vo2 - J (x'02 ) ±	 S1lT2s(oo) x0(-v02,$)

1X	 (µ) e-
2( s-t62) a/µ Xq(-µ, s)µ c14

0	 4,,(W) 	(4 + y02)

+ 2 a+e-(s+cr2)a/v02 XO(_y02,$)

s E S 2

(3.17)

EL(v) - = + (v) + c
^1 

^ls(y)^ls(v) E (v)e-2 (s+v2)a^y

1 1 SZ2, Mn) s(v)

1 's
2 s 

XO( -v, s )

1

X(^-
	 E^(µ) 

e-2(s+12)afµ x0(-µjs)Tjsv( µ)2µ+
0	 &2s(µ)S"L^s(4)claly

V02+ S2(s)a^e -(s+a^2)a v02 x0(-v02 1 5) v
02

0 <_ v !!^ l	 (3.18)
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2 claiv01n, 
is 

(vol) al+e -( s+al) a/v01 Jj+ (v01) + 1 ks	 1
2 XO ( -volt s

1	 e-2(s+cr2)a/p 
XO(-µys)µ

0	 gs(4)n2s(9)(µ vOl)

V02+ 52(s) awe -(s+a2) a/v02 XO(-vo2, s)02
V02 - v01

sES.

(3,19)

The I,j+ and JJ+ terms contain only integrations over the initial

distribution and are therefore known functions when f(x,µ) is

specified. They are given by

c1Q1 	 fs+al)a/v +	
+(21

I2+(v) _ ^2Q2 FL(-a,v,$)e 	St2s(v)S22s(v) -
	 ks als ( 00) 

XO(-v;s)

1
X	 F2±(a,µ>s)e-(s+Q2)

a
/4 XOs)

0	 µ + v

+ 52(s)F2± 	 02
(atv02;s)e-(s+a2)a/VO2 

XC(-v ^
s ) v02_

v02 + v

nis(00)1 F {-a s e(s+crl)a/µ 4)2sv(µ)2µ?
'2s

	
Ifo	 XO( -µ, s)o2cr2v

+ 51(s )F3( -a,vol,$)e(s+al)a/v01	 1 Vol

-v01; s ) v - Vol

0 S v s 1,	 (3.20)
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J2+_ (v02) _-- ±	
ks 

n-1;7 
T 1("v02, s )

1
X	 FZ+ ( a ., µ, s ) a (s+a2 ) a/µ Xo (_µ , s )

Ifo 	 µ + v02

+ 2 Fp++(a,V02,$)e-(s+a2)a/y02 XO(-v02,$)

+ ks( g0 ) 1 	) (s+v ) a/µ	 µ ^
Ifo

F (-a, µ, s e 1	 -
n2^^ 	 X0 µ, s µ - V02)

+ sl(s) Fl±(-a,vol,$)e(
s+Q 1 ) a /v of	

v of

X0 ( -v01,8 ) ( VO1 - V02)

	

s s S21 ,	 (3.21)

IL(v) = - [F,+(-a,v,$)e- (s+a l)a/v - c2Q2 F2±(a,v,$)e-(s+ct2)a/v eisma—s (v)
c1Q1

1 k	 _1
_ 2 s X0 

-v, s )

1
)- s+Q a	 '' µ dµ

Ifo
F^►-( a>µ^ S e ( 2) ^µ X

O('µ^ s)^lsv(µ)
 civiv

	

+ 82(s)F2±+(a.,v02)s)e-(s+Q2)a/v02 XO( -v02,$)	 y02
7. - v02

_ als(oo)
1 
F -a s e( s+al)a/µ 	 µ C^u

n2 s (00T Ifo	 X0(-µ,$)(µ + v)

	

+ Sl(s)Fl+(-a,v01,$)e(s,}ol)a/vol 	 Vol

X0( -Vol ^S)(Vol +_71

	

0 <_ v Si ,, 	 (3.22)

t

I.
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and

JL(v01) = +I'y( -a) vpl, $) ^

	

	 "clalVojaI 1s ( vpl)e(s+orl)a/v01

k	 1
2 s Xp("'v01) s ) )

1	
- s+Q aX	 F^(a)µ's)e (	 2) /µ Xo(_µ's)

(Ifo	 µVol

+ 52( s )FZ+( a' v02' s ) e-(s+Q2)a/v02 XO(-v02,$)	 v02
v02 - V01

SZa,	 1
^^ [fro F,+(-a'µ,$)e(s1l)ab 	 µ dA

xo(-4p S) (4 + VolT

+ 2 FL (-a, vpl , s) a (s+al) a/v41 T
-Vol)XO( ly )

S E Sli • 	 (3.23)

In the above equations, we have used the X0j functions which Kuscer and

Z4Jeifel (ref. 14) have shown are c ontinuous across the curves C^ in

the s-plane (see App. A and Fig. 2) For two mwberial media, we take

the ratio of their single _ raedium X0j functions,

XO( Z ' s ) =	 2(z's
)	 (3.24)^

XOl(z,$) 

where

(voj - Z )XJS( Z)' s E SjiXoj ( Z) s) _	 (3.25)
((l - z ) Xjs{ z),	 s E Sje
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X
1

=	 - e	 I	 to
I
	.26,^sz()	 l	z2	 Qi^	 - v v-z (3  )

n	 Z^ s ( )

For Re(z) < O, XO(z,$) given by Eq. (3.24) is a nonvanishing analytic

function of z and s provided s ^ E-aj) -C1j (1 - ci )^ , the branch cuxt

of voj (s), J = 1,2. The quantity

ks	 s(clal c2v2 ) + cla2(cl - 02)
	

(3.27)

is related to the difference between medium 1 and medium 2 continuum

solutions; several equivalent expressions for ks are given in

Appendix C.

In Eqs. (3.15) we introduced the coefficients E j+(v) since they

are the forms of the normal-mode expansion coefficients which are

extendable to the complex plane (refs. 2, 3). Thus, Eqs. (3.16) through

(3.23) can be written in a compact form valid for Re(S) > -arm . These

equations (see App. E) are

E2±(,z,$) = I2±(z,$)

+ ks n`s(oo) XO (-z,$)	 E^(z')s)Xo( -z',$)e-2(s+Q2)a/z'	 '

c2a2 Pls(00)	 2ni	 C ► 	 n2s(z')(z' + Z)

(3.28)

El+ (z, s) = IL(z, s) + c1a1 Ep+(z, s)e-2(s+d2)a/z
2Q2

ks	 Ea(z,)s)XO(-z1,$)e-2(s+Q2)a/z'

dz',
+ c2Q2XO -z, )2ni ^^	 S12s(z')(z' - z)

(3.29)

1
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,2(z,) _ 
c	
^(-a^ z,) + 2s2s()(-z, s)
1 1	 ni ^ls^

X ±	 La(a''zl)s)Xo(-z',$) lz,Cl c2a2n2s ( z ') (z ' + Z)

Skis ( )	 Ll+ ( -a, z' , .^) dz'
+ WAY^2^ 

C 
l 
cal^ 

-z 7 is z z - z	 (3.30)

I^±( Z , $ ) = +	
e ctL1±(-a,z,$)e-2(s+aj)a z +	 l L (a,,Z.,$) -
02cr2

X*	 L2±(a,z',$)XO(-Zl)s) dz',c 	 ar	 Z z	 ZC ^ 2 2 2s

oo	 s. (-a^ ;z' , s) dz'
ls( )	

Ly
w

n2(T C, el 0 -Z , s js z z + z az r (3.31)

where for Re(s) > -arj,

L j+( X ) z , s) = x e - (s+a J ) (x-xp) f z 1 c .^	 1 f +(X J, _µ) dµ

Z(J)	 0	 4

1
2 c^Q f fJ±(X0,µ) d,

0	 µ Z

+ Z J±(x0,z )njs(Z) ^^

(3.32)
with

t(1) _ -^ and 1 ( 2)	 -a.	 (3.33)
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In the above equations, z does not lie outside the contour C' which

encircles v04 as shown in Fig. 3 and am is defined as

am =- min(al, a2) .
	 (3.34)

The restriction Re(s) > -am is discussed in the next section. The

Lj± functions were introduced as

Lj±(x, v ) s ) = Fj±(x,v,$)e, (v'sl-r v)e-(s+dj)x^v^ 0 v 1. (3 35)

That Eqs. (3.2$)-(3.31) reduce to Eqs. (3.16)-(3.23) as all

contours C' are collapsed onto the branch cut v c (O,l) due to

nj ,(z) can be seen as follows. If s e S ji , Chi s(z)] -1 has a pole at

Z V 0i whose residue leads to a discrete term. When s E Sje,

ajs(z) does not 'vanish. The continuum terms are simply those due to the

integration around the branch cut.

The solutions * jc+(x,µ, s) and *j,+(x,µ, s) can now be written

similarly as

- 
1	

Ea(Zl,$)e-(s+tt2)(a+x)/z'

(,f,'	 St2s(z ) (Z - µ)

±J^	 ^	 dz ^ , 1 x <a,C ,	 n2s(Z )( Z + µ)

(3.36)

for Re( S) > -am,

t

a

3
3.



0

W

P

N
N

r{

CS
O
U

I!

or
W

m

2$

M_^yy

YY



29

Ey+ (z' , s) e ( s+al) (x+a) /z'
dz', x < -a

C'	 S2als (z I ) ( z I + 11)

'^lc^ ( x, µ, s)

.11	 El+(z, €3 ) e `( s+Ql) (---a) /z'	
r

2^ G'	 Si:Ls ( z ') ( z ' - µ)	
x > a,

( 3.37)
for Re (s) > -a.)

1

L x,z',s

n (fCI
	 z' z' -

fc,^
Lam(-x, z' s

	

^^	 dz' 	 Ix I < a,
' c!s( Z ) ( Z + W

for Re (s) > -ar2 , and

1	 Ly+(x, z ° , s )
2ni	 ^ , nls z' z'f	 dz

IdzITl±(-a, z',$)e_(s'^al)(a-x)/z'+ 
C 	 92is(Z')

(Zl
 + 0

l	 LL(-a,z',$)e'(s+Ql)(a+x)^z' + M+(x.,z s)

C r 	 SZls{z ){z - µ)

LL(-x,z',$)
f	 z ^ -- dz' , x > a,

C' nls( z I ),	 + IT

for Re(s) > -a,
The functions Ml-(x,z,$) are! also integrations over the initial

distribution fL(x,µ) and are given by

r
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-a	
v )(x+X z

	

M+ (x, z, s) _ -	 e-(s+ l	 o) /	 cicll	 f1±(xp^P µ) C4`
-x	 fo	 µ+z

1	 ^

2 clorl 	 f1±(XO^-µ) µ - z
fr

+ z f +(xo)-Z)Ols(z) dxp, x > a,

r	 (3.40)

and

-a	 1

	

(X^ z, s) = f
	 e

-( S+Cri) ( xp-x ) /Z 1 cictl	 f l+, ( xp^ µ)2	 f	 + zx	 p	 µ

- 2 c1Ql o

	

	 'f1+(xp-µ) µ - z

+ z ;f(.cp, -z)Stls{z) dxp ) x < -a,

(3.41)
for Re(s) > -a1 axd z not outside C l . Again, the discrete and

continuum terms which appear in Eqs. (3. 3), ( 3 .4), (3.8) and (3 . 9) are

due to the z, l,; z and branch cuts of Stj s(z) which appear in the

integrands of Eqs. (3.36)-(3.39)•



IV. PROPERTIES OF TRANSFORMED SOLUTION

Analytic properties of *,+ (x,µ) as a function of s must be

investigated before we can recover the time-dependent solution

*(x,p,t) according to the inverse Laplace transformation given by

Eq. (2.2). We need to know the behavior of *s+ in some right-half

s-plane. Before looking at the details,-let us briefly review some

results of earlier cited work in which Case's method was used.

In the previously mentioned work of Kuscer and Zweifel (ref. 14)

and Erdmann (refs. 8, 9), expansion coefficients could be fCmd ex-

plicitly and this aided in the extraction of the s-dependence of their

transformed solutions. They find that the branch cuts of v
Oj (s) are

inherited by the transformed solution so that the integration contour

of the inverse Laplace transformation must be deformed around these

branch cuts. For the slab problem solved by Bowden (refs. 1, 4)

expansion coefficients could not be found explicitly but theorems of

Lehner and Wing (refs. 16, 17) gave the analytic properties of the

transformed solution in the s plane. In that problem, the branch cut

of v0(s) is not inherited by the solution. Instead, the transformed

solution has a finite number of poles at valaes of s, say s O, .., sN,

which lie on the branch cut of v o(s), that is, on the real s-axis.

These poles contribute a sum of residues as the integration contour is

moved to the left of them in the s-plane. Furthermore, in these

previously solved time-dependent problems there is a real number,

say 7l, such that the integration contour cannot be deformed into the

region Re(s) < yl for arbitrary values of x. We expect the present

31	 '
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transformed solution to exhibit similar properties, that is, *s±

may not be analytic for Re(s) less than some number 7 1 when x is

arbitrary while for Re(s) greater than yl it should be analytic

except for poles and/or branch cuts. Such singularities probably

occur where voj (s) has its branch cut.

We first note that for arbitrary initial distributions f(x,µ),

*s+ (x,µ) is not analytic for Re(s) < -am. This is true since each

of the inhomogenous terms I j+ of Eqs. (3.28) and (3.29) contains both

Li± and L2+ as can be seen from Eqs. (3.30) and (3.31) and therefore,

in general, is not analytic for Re(s) < -am, where am is given by

Eq. (3.34) . In particular, we note that for Ixl > a, * . ( x, µ, s )

never appears to be analytic for Re(s) < a
M. However, for special

cases of material properties and initial distributions, *2+(x,1,$)

can be shown to be analytic for -a2 < Re(s) < -a, except perhaps for

poles.

We now look at the behavior of *s+ for Re(s) > -am. Recall

that the transform plane for the present problem must be taken as a

superposition of two "single-medium" planes, that is, one for each

material medium in the problem. The expressions (3.3), (3.4), (3.8)

and (3.9) for the transformed solution were not defined for S EC and

outwardly appear to be discontinuous at SEC S . However this is not

the case. The complex representation of _E,+ given by Eqs. (3.28)

and (3 . 29) shows that such coefficients are continuous across the
't

curves C^. Thus it is seen from the representation of *s+ given in

Eqs. ( 3 .36)-(3.39) that S+ is indeed continuous across the curves
C j.
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I

It is convenient to introduce at this time the solution of the

associated eigenvalue problem, that is, the solution of Eq. (2.13)

subject to the boundary conditions (2.14) and (2.15) with f (x,µ) 3 0.

Such solutions, denoted with a'bar, have the form

_	 1
= bl+*-v^l(X' 4;s)sl(s) + 0 Bl+(-v)^rl(_v)(X,µ,$)dv, x < -a

*v02 (X,4,$) ± *
-v02 

( x,µ, $ ) 52(s)

'^S+ (x, µ)
1r _

+,I B2i(v) *2v(X,µ,$) ± *2(-v(x,µ,$) dv, I 
x I < a

0

l _
_ +b1+*V ( x, 4,$)sl(s) + f BL (-v)*lv (X,µ,$)dv, x> a,

01	 0

(4.1)

where obviously B + and bl+ can be obtained from the E ,+ given

by Eqs. (3.28) and (3.29) in the case fj±(x,µ) a 0. As we shall see

later, the solution s+ has poles at those values of s for which

the associated eigenvalue problem has nontrivial solutions. In

Appendix F, it is shown that as the slab thickness becomes very large

this eigenvalue problem has only trivial solutions for Re(s) > -a
2

.	 1
except perhaps on the branch cuts of v

0j
(s). When the a^:lab thickness

is not large, we still expect that if the eigenvalue problem has

nontrivial solutions for .Re(s) > -Q2, they occur only when s is real.

This has been proved rigorously using the method of Lehner and Wing

a
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(ref. 25) for several problems which can be obtained as special cases

of the present problem: the bare slab considered by Lehner and Wing

(refs. 16, 17) and the slab surrounded by pure absorbers considered by

Lehner (ref. 15) and Hintz (ref. 10). In all of these problems, there is

no scattering in the reflector and, therefore, no branch out of vQ1(s).

As already indicated, the XO(z,$) function inherits the branch cuts

due to both v01(s) and v02(s) and these branch cuts lie on the real

s-axis from -a i to -ai (1-c i ) and may or may not overlap depending

on the values of material properties. Note that c1 has been taken

less than unity and this insures that the branch cut of v 01 lies

entirely to the left of s = 0. In previously solved time-dependent

problems, singularities of the transformed solution always occur where

the v0j (s) has branch cuts. Since the analysis of Appendix F indi-

cates that for large values of the slab half-thickness, a, the singu-

larities of *s+ for Re(s) > -am also occur where the v0j (s) have

branch cuts, we will assume for all values of a that the singularities

Of *s+ occur on the branch cuts of voi(s). In any case, we show

that the only other singularities of ors+, Re(s) > - a which could

occur off the branch cuts of v0j (s) are poles, whose residue could

readily be added to the time-dependent solution.

In order to see the behavior ofpsi= on the branch cuts of v0j(s)

we first look at *,+ in the region 
scSli 

As 
21*
 For this region,

the expansion coefficients are given by the equations (see App. G)

*.1

L
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gm (µ) ± k S2s(°°) ( x022 - 42) h2(µ)

2 
nls(oo) 

( 'b
1
2 "

 
42) 92(µ)

X h2(v02 ) + h2(-v02) + 1 B ( v )h ( v ) 'IV, 0 < µ < 1
v	 2±	 v +2 

µ + v02 µ	 02	 0	 µ

(4,2)

c2Q2 —	 (Ql-a2)a/4

c1a1

+ h- ^2s( °°) hl(4) h2(y02 ) + h2(-y02)

2 Ills(o) g1(µ) µ - v02 µ + v02

+fo
1 B (v )h2 (

v ) ^ls u('') dv
 c1cr14

T hl(-v01)bl+ = h2(v02) ± h2(-v02)

3

1 _
( v422 - v012 ) f B2±( v )h2( v ) v2 _av 2

0	 O1

h2(w) = w X ( 'W) e"(s+a2)a^ua
 Xls'

hl(w) _ ^ls °°) Xls (-W) e (S+Ql ) a /w
 

S12s(°°) 
X2;7Z)

9o(µ) µ 3s(4) f^jsw (4.5)



In addition the eigenvalue condition

1

	

o - h
2( 1;02 )	 h2 ( -" 02) ,^, ' B,(v)h2	 dv(v)	 (4 6)

	

V +v	 v	 v	 z^	 v+
Ol	 02	 Ol	 02	 0	

Vol

must be satisfied. Since the eigenvalue condition (4.6) has different

limiting values as s approaches the branch cut of vol(s), we conclude

that there are only trivial solutions of the associated eigenvalue

problem on the v01(s) cut. When s belongs to the branch cut of

v02 (s), which is not also part of the v01(s) cut, that is, when

Re(vG2) = Im(vol ) = 01 it appears that nontrivial solutions of the

associated eigenvalue problem may exist. From Bowden's results

(refs 1, 4) for the bare slab, it is expected that Eqs. (4.2) and

(4.6) are satisfied only at isolated points,s nl. In the limit

c 2a2a --> oo these points lie on the branch cut of v02(s), that is, the

sn are real. The "thick-slab" eigenvalue condition is seen from

Eqs. (4.2) and (4,6) to be Eq. (46) with B2+ (4) = 0.

If material properties are such that -Q 2 < -al., then a portion

of the branch cut of v02(s) lies in ses2i n Sle . In this region

however, s < -am -al and for such values, the solution+(x,µ),
s-

	jxI > a, that is 1+, is not bounded as jx1 -4 00. However, 	
2±
+ may

have nontrivial solutions on such a portion of the branch cut of

v02(s). The equation for B2± and the additional constraint for this

region are (see App. G)

%4i

°1
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B (µ)	
"Is
	 (v 2 _ µ2) h")(µ) Xls(-w

2 sls(Q) op	 g	 xol"(-µ)'

X	 (V	 Xls( -VO2 ) . hz( -Vo2) Xls(Vo2)
µ +Von Xois(-v02) 4 - V02 Xols( voz)

+ l 
F2+(v)h2(v) X 1(-V) dv

	
0 < µ < 1	 (4.7)X	 -vfo 	 ol^F v + µ

and

0 -	
02

h (v ) Xls (-V02) ± h (-v)Xls(
V02 )

02
2	

XQls(-V02)	
2 

02 Xols(v )

+ (^ ^(v)h2(v) x 
is 

-v dv.
	 (4.8)

0	 Ol— s^^

As we shall see later, the zeros of Eq. (4.8) can, under some condi-

tions, be poles of *2+ and therefore may contribute discrete modes

in *(x,µ,t), Ix I G a. For this reason we are interested in where

these zeros lie and shall refer to them as pseudo-eigenvalues.

We now show how the solution of the associated eigenvalue problem

*S+, is contained in the inhomogeneous solution, *s+, by following a

procedure of Bowden and Williams (ref. 4). In Appendix H, it is shown

that the original expansion coefficients of Eqs. (3.3) and (3. 4 ) can

be written as

x

r:

!e

a:

;i>



A#	 [a2i + F2+ ( a., 
V02) s B + (g) + B,+(p)

and

alt [a2t + 2 F (a.I vA2, s)	 + bl+, s c-$1, (1 
S2 	 ( ^

f	 where B 	 and b	 are given by Eq,s, (4.2) - (4.4). The coefficients

B ± and b	 are given by

B v _ C1,11 F	 -	 ( Q
l cx2 ) a/v

2+ ( ) "^ e	 y+. ( a, v
., 
s) e

+ ks ^2s ( °°) (y022	 v2 ) h2(v)

^. 2ls	 (v0].2	 v2 )

 92(v)

f Bp+(4)112(4) µ

	

0	 µ +v

1	 h2(y02) — h2(-v02)
F^(a'vOO,$) v + v02 + v v02

+	 F .(a s )h (	
µ 

dµ

fo	
2 P) + v

j

f

1 F

	

	 a s h	
v012 - µ2 2'p2sv(µ) d

0 
l+(- ,µ., ) 1(µ) 

y022 µ2 c v v µ
	 (x+.10)

2 2

d

i

	

__ .,
	 ,..	 .u,a...	 .....	 ..._.	 ..._....

. _I	 I	milli..
	 ..

:1 . .+raF =s.awF.`ùd41reL` 	 Je	 . .• .	 '^-i



y

+. (-V) .*	 $ ( v )a(Crl-Q2)a/v	 ks	 ) h.,.1 (

	

X ^
	 (a v s) F!h2(V02) +` 

h2(-v02)
F2+ ' 02' v - v02 v + v02

^av Cµ )
+ o 

$p+(µ) + p2i(a,µ,$) h2(µ) 2 ls( ^, aµ

	

T	 Fj,± ( -a, µ, s) hl (µ) ( 012 µ) aµ

c Q (al-a2 )a  ^'
+ [Fl+(-ay.,S) - c2o2 F2±(a.v,$)e

l 1.

hl(-vOl ) bL F+(-a,vol,$)	 per.

The coefficienta2± + 2 F2+(a,v02 s) is given by

1	 -y01a1± + a2±a2± +
2 

Fes. (a, v02^ s)

(VOlml± 002± )

In these equat,ons, o± + and A .+ are

l _

a-,+- = h2(v02) ± h2(-v02) + (v022 - V012) 	 B2-+(µ)h2(µ) 2 du 20	 µ	 Vol

1
0'2+ v02h2(v02) :^ v02h2(-v02) + (v022 - v012)F2±(µ)h2(µ) 2 µdµ 2,

fo 	 µ - Vol

N



d	 4O

alp'^,(a,v02") h2 (v02 ) + h2(-VU2)

1
+ ( v022 vOl2),	 [B2±(µ) + F2±(a,u,$) h2(µ) 2 

dµ 
2

	

0	
µ V 0

	

1dq± (v012 _ v022 )	 F +(_a,µ,$)hl(µ) 2	 2

	

fo	 µ v02

± Fi+(-a, volt s)hl(v01) + F,+(-a, -v01, s )hlk -v01 )	 (4.15a)

and

P2± - 1 F2+(a,v02rs)v02 h2(v02) ± h2(-v02)2

( "022	 ''012) /` Bb (µ) + F2±(a,µ^ 'S) h2(µ) 2 µdµ 2J

	

Q	 µ - Vol

_	 1

	

( v012 x022 )	 Fl+^arµ,$)hl(µ) 2 µ

	

0	 µ _ y02

T v	 a v	 v	 v . F (-a.,-v
ol

) (O Fl 1-l(- , Ols)h
'	

1( 
Ol

) - Ol ^± 	 , s hl -Vol-v

1,
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In terms of thepe quantities ) the solutions *J± can be written as

* 4,(x,µ,$)	 a2+ + 2 F2j (a ^ v02 .lS) -f2,+(x,µ) s)

f+

+ f
l

o B2±(V) *2,(Xj,µ^S) ± *2(-v)(X)µ,$) dv

1[ ^(x,v,$)*2v(xlµ-s) ±F2^+(-x^v,S)*2(-v)(X,µ,$) dv
0

2 FP+(X,v02,s,) ± F2,^( -x, -v02,$) v02(X,µ)s)

+ 2 F2+(^6, -v02.1 s)  ± F2+(-x, v02, s) -v02(X, µ., s ), x 1< a,

.^ ( X ,µs s ) Fa2± + 2 F2+(a' v02.ts) T^ (X' µ ' s)l-	 L

- F+{ -a, v01, s) + Fll ( -X, -Vol, s )]*v01(X, µ^ S )
1	 • I

F,±(-x,Vol"s)*-v
Ol 

(X,µs s)

rl B 

1_+(-v)	 F+(-^,v # s) + Fly(-X,=v,$) ^Vlv(X,11,$)- J 	 -0

1
Fl±(-x)v's)*1(-v)(x.-9,'s)dv, x > a.

0
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The solution *1±(x,µ , $) for x < -a has a similar form. In these

equations, ^(x,µ , $) are the parts of T s+(x,µ) which are given

by Eq. (4.1). Equation (4.4) is written in terms of all as

:F h1(-v01)bl±	 a,,+ .	 (4.18)

Consider now what happens on the branch cut of vol(s) where

Vol = i (volt for Im(s) = 0- and Vol = -i 
lvoll 

for Im(s) = 0+.

From the above equations it can be seen that the quantities B 2_̂, , By,

B2, , Bl+, a'1.+, a,4-,. O1+ and P2+ do not inherit the branch cut of

V01 (s). Equations (4.18) and (4.12) show that b1± and b	 have

branch cuts due to that of voi (s). Equation (4,13) indicates that

[a2± + 2 F^ ( a, v02 , $) has the branch cut due to vQ1(s) unless

al+/a	 is equal to 01+	 In general, this will not be true since

a1±/R2± depends on the arbitrary initial distribution f+(x,µ) whereas

m	 does not. Therefore it is concluded that both 	 anda,+ ^^	 ^-^
inherit the branch cut of v01(s).

On the branch cut of v02 ( s ), the quantities B2+, By, bl±, al±

and 02± are single -valued. Since the quantities a,+ and m of

Eq. (4.14) are related above and below the branch cut of v02(s) by
i

aft T - 
+ aft _ 	 (4.19)

i

it follows then from Eq. (4.13) that on that part of the branch cut

of v02(s) which is not also part of t. ° , ' vo, (s) cut; that is for

Re ( v02) = Im(v01) 0; we have

i-	 i
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a2_+ + 2 r, 2+(a t V02.v s) + = + a 2{, + 2 F2±(a, vo2.v 	,	 (4.20)

if the denominator on the RHS of Eq. (4.13) does not vanish. It is

seen from Eqs. (4.1), (4.2), (4.3), and (4.4) that for this same region,

^s±(X,µ)	 = +
[*

s+( X^µ)	 (4.21)

Hence the product

1[a2± + 2 F (a, v02' s I Ts± (X.,	 (4-22)

which appears in *s+ does not inherit the branch cut of v02(s).

However, the denominator of a 2+ + 2 F2^+(a,v02, $) .9namely

(vOlal±-a2+) is equivalent to the eigenvalue condition, Eq. (4.6).

Thus, if the associated eigenvalue problem has a nontrivial solution
I

at s = sn, Re(s) > m, then *s+ has a pole there.

We briefly summarize the analytic properties of the transformed

solution *s+(x,µ). For arbitrary initial distributions f+(x,µ),

*s+ is not analytic to the left of Re(s) = -am in the s=plane

whereas to the right of Re(s) = -cam it is analytic except for the

branch cut along-Qm, -Ql(l-cl ) (due, to the branch cut of v01(S^)

if m > al ( 1-c1) and poles at the values of s at which the

associated eigenvalue problem has nontrivial solutions, s+. We have

assumed that for arbitrary slab thicknesses, a, these poles, if they

exi5t, lie on the branch cut of v02 (s) since this is the rigorous

result obtained by others for several special cases of the present
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problem and obtained herein for the case when c a2a is large. For

special values of material properties and initial data, *s±( X,4) for

jxj< a (that is *2±) may be analytic in the region -a2 < Re(s) < -a,

except perhaps for poles.

i



V. RECOVERY OF TIME-DEPENDENT SOLUTION

The time-dependent solution *(x,g,t) is obtained from the

inverse Laplace transformation Eq. (2.2), where r is to the right of

all singularities of *s (x,g) in the s -plane. From the analysis of the

preceding section we expect that we can choose any 7 > max -al(l-cl),

v2(1-c 2 )	 In order to show the time dependence of the solution

*(x,p,t) more explicitly, we deform the inversion contour as far as

possible to the left in the s-plane by making use of the analytic

properties of * S (x ) µ) obtained in section IV,

We first look at the behavior of s+ on the contour Re(s) = ^`.

4

This contour crosses both of the curves C^ and it has been shown that
4

^s	 *s+ is continuous across these curves. As I sl -+ oo on such a contour,

sESle  S2e and we show in Appendix that *s+ behaves as follows

l	 - (s+art ) (x-xO ) /P	 1x
^V (X, µ, s) — f e	 f 21-(XO, µ) + O( ;

µ _a

_	 a+x	 _x

-( CT2 crl(µ	 -a -(s+Q1) 0
e 	 )

	 GS
µ e	 fl±(xOrµ) + O,0

—oo

(5.1)

for]xI < a and µ > 0;

c

	 (1140-^)[f2t+(x0.1-M)

a(s+Q2)\
x s)+0(11 dx^( g- 	 J 	 S	 0

x

2 1 C1 µ	 `^e	 1	 µ)	 j1

s	 +	 J e	 f1+(xO, - 1P1 + 0`S1 dxO
Iµ!	 a

(5.2)

45
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for x < a and p < 0;

	

aµ

, µ,	 e	 µa -(s+af) x x02 ^	 /l +(x s) -,	 e	 If 2± (xp, µ) + 0S)
)
] dxp

L.	 µ	 ^	 `-a

2a-(Q2 -ol ) µf-a - (s+arl) µxe+ 	 e	 f^{ x0^ µ) + 0 S) dxp
µ	 \

x-x01

+ µ	 e	 fl±(X0.40 + 0(s) dxp	 (5-5)
a

for x > a and g > 0 and

	

(x ., 4., 	 -' 1	 e	 +(x0,-IXI) + 0CS dx0	 (5-4)
lµ1 x

for x > a and µ < 0. Expressions similar to Eqs. (5.3) and (5.4)

are obtained for x < -a. It is seen that *s+ is not necessarily

0(s). However, the parts which are not can be easily inverted as

follows. Define for aalll ŝ, the function Virus+ (x, p) as that part of

each of Eqs. (5,,1) - ( 5 .4) which is not 0 (s). We show in Appendix T

that upon making the substitution

X x0 = µt, µ > 0

x0 -x= Iµ)t', µ<0,

that	 (x,µ) can be written as
u s±

0 -st

	

*us+ (arc.. _ fo e	 *u+ (x, µ, t  dt .

(5. 5)

(5.6)

l
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That is thearts ofp	 *s+ which do not behave as 0(1) as I s

Re(s) ^ 7 can be inverted by inspection. The solution *U+(x, µ,t)

is given by

-Q2t

	

e	 f2+(x-14t,14)	 , t < a+x

µ
*U+(x,µ, t )

	

	 (5.7)
-'alb -(Q2-al)

	e	 e	 µ f1±(x-µt, µ), t > µX,

for 1x1 < a and µ > 0;

-o2t

	je	

f^+(x-µt,µ)	 , t < ' µ

u".'	
-alt ( a22-Q1) a-x

 e	 µ fl±(X-4t1#10, t > a--xx

for x l < a and 4<0;

..olt	 t

	

e	 fi+(X.µt,4)	 , t < X-a

	

µ	

£.

x-a 11-Q2t (Q2-arl) 
µ)x-a	 x+a

	

e	 e	 f{x-µt,µ), µ< t< µ	 (5.9)

,-alt -(a -a,) 2a

	

e	 e	 µ fl±(x-µt,µ), t > Xµa,

for x > a and µ > 0 and
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substitution, that is, *u± satisfies the uncollided equation

a*'++ + µ^ ++cy(x)*U+=0.
dt	 cox

In the limit t -> 0, we note that

*U+ ( X , µ, 0 )	 f± ( X i µ) •	 (5. 11 )
I	 r

as I x I -+ CO, *Usi, (x, µ)

an analytic :Function of s

µ. If f1+ n 0 (f2± = 0),

for Re(s) > -a2 (Re(n) > -al).

as

For arbitrary f(x, µ) which vanishes

given by Eqs. (5.6) and (5.7) - (5.10) is

for Re(s) > --am for almost all x and

then 
*us± 

is an analytic function of s

Therefore the function 0s± (x,µ) defined

os±(x,µ) n rsl.(x,µ) - bus+(x,µ), Re(s) > - am.,	 (5. 12 )

has the same analytic properties as 
s± 

in the .right-half plane

Re(s) > -Q,,, except that it is 0 S as I s 00. if *s+ has a

branch cut along -ail, -al(l-cl) ; i.e.,  if am > a l(1-cl ); then

Est	 - 
fis+ +	 s+ - - * +•	 (5.13)

Similarly if *st has a pole at s s n, then

Residue ((P s± ) = Residue C*s± 	 (5.14)
sn	 sn
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The definite parity parts of the time-dependent solution therefore

can be written from Eq. (;2,2) as

7+ice
.+ 1 x, µ, t ) + 1 

f"

	

S+ C x, µ) e st	 (5-15)*+ (x., µ, t) = *U
'Y-J00

Now using the analytic properties, we can deform the contour to the

left and obtain in general

*U_+(XP4.Pt) +	 Residue [*,± (x ,, 4) e s t
s=sn

+ 2ni f _
CY
l

(l_cl )

[Ir

s+ (X.,4 	 Asa (x,µ)	 est ds
j	 -am

i

am+i0o	 st

+ 2ni	 s+(X.,µ) - ^`us+(X,la) a	 ds
-Qm -ice

+ 2ni Plim0 JC,
 
p
 *s+(X,µ)est ds ,, -am -al(l-cl ) < sn)

(5.16)

where Cp is a small circular contour of radius p with center at

s = -al(1-c1). Generally the point s = - al(l-cl) will not satisfy

the eigenvalue conditions, Eq. (4.6), and the contribution from the

contour Cp vanishes as p -4 0. If however s = al(l-cl ) happens

to satisfy Eq. (4.6), the contribution from the contour C  has the

form of a discrete residue term. Details concerning this point are

discussed in Appendices I and K.
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Equation (5.16) is the solution of the time-dependent problem

written in a force in which the uncollided portion of the initial

distribution f(x,µ) has been separated. For arbitrary f(x,µ) the

contour cannot be deformed further to the left. In the final section

it will be shown how this solution reduces to those obtained previously

by others for special cases of the present problem.

We close this section by indicating the form of some parts of

Eq. (5.16). The uncoil ded term, *U+(x,µrt) is given explicitly by

Eqs. (5.7) - (5 .10). The form of	 s±(x, µ) on 1..he branch cut

ICIM., -al ( I-C,	 was given in section IV. From those results, it is

seen that on this branch cut *s+ (x,µ)s+(x,µ)	 can be written

from Eqs. (4.16) and (4.17) as

-	

+	
rr

Is±(X^µ) 	CVs± (X)µ) 	 a2± 2 F(a, v02) s)

[a2± + F,,+(ap vop) s )	 T2t (X, µ: s)

(5.17)

for lxl < a and
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for x > a, where a,+ + F :2t(a, v02) s)	 is given by Eq. (4. 13) ,

w.	 N

* ,+(x, µ,r s) by Eq. (+.1) and [bl± - W -a, voi, s) by Eq. (4.12), The

solution *,+(x,µ)  has poles at s = s0, ., sN due to the poles of

ate. + 1 F (a,vQ2;s) x02 ( 1*1)/2 . Again, from the results given in

section IV, it follows that

snt i	 -(M)A
Residue	 (x, 4)4)es	 ^ e	 s-+(x, 4)t	

v02
sn	 s

(1 ^FJ.) /2
X Res idue v02	 a + F(a,v02ts)

s

Note that the factor v	
/

02	 is introduced so that ^rs^v42 (l+l 2

and [a2± + 1 F (a, v , s) v (l^'),2 are single-,,valued on the branch2 2i-	 02	 U2

cut of v02 ICf ., Eqs. ( x+.20) ;and (4.211. These terms have an

exponential time dependence, e s
nt

, and we have obtained the implicit

Eqs., namely, (4.2) and (4.6), from which the eigenvalues ( sn) can
'be computed. Since -information concerning the behavior of eigenvalues

(i.e., number, location, etc.) as a, function of material properties is

not readily obtained wialyt cally from such expressions, we have made

a numerical study of real time eigenvalues and the results are discussed

in the next section.

E
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VI. CALCUI ATION OF REAL, TIM, EIGENVALUES

I

We fixs note that the eigenvalues and pseudo-eigenvalues depend

on five parameters (el, a,, c2, Q2, and a) and therefore many numerical

computations would be required in order to see the specific deF--dence

on each parameter. As we shall see, the bare-slab results of Bowden

(refs. 1, 4). the theorems of Hintz (ref. 10) for slabs surrounded by

pure absorbers and Some observations of the present numerical results

for a few reflected slab cases allow us to draw some conclusions about

the behavior of eigenvalues for reflected slabs as a function of the

slab half-thickness a. However, rather than compute eigenvalues (sn)

in term-- of cl, a,, c2, Cr2, arid a we define a nondimensional

variable	 and nondimensional parameters CYR, aD, Paid A as

s + c'2	 c1G1	 al - Q2
= 

c-2Q 
aR = c2a2, 

CID 

al
	

and A = c2a2a.	 (6.1)

In terms of these quantities, the branch cutof v02 becomes the real

interval (0,1) and the branch cut of vol becomes the real interval

(-aD, -aD + aR ). Since a  and c  are non-negative, it follows that

2

where the equality holds only if Ql = 0. Also we have restricted

cl < 1 so that -aD + aR ? 1 implies that c 2 < 1. Obviously,

aR _	 r a vacuum and aD0 when. the reflector is a pure absorber o	 0

when the total macroscopic cross sections of the two media are the

same. We have seen from the last section that in general the inversion

52
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contour can be deformed to the left only as far as Re(s) = -dm, which

corresponds to Re M max(-aD,O). However, there are no eigenvalues

on the branch cut of vol so the region of the real 	 axis where the

eigenvalues (* should appear is

max(-aD + crR, 0) < gn < 1.	 (6.3)

This interval corresponds to s e Sli o S2i and Eqs. (4.2) and (4.6),

written in terms of the quantities of Eq. (6.1), are solved numerically

to obtain the real eigenvalues fin} for specified ajj, aD and A.

in addition the pseudo-eigenvalues are obtained numerically by solving

Eqs. (4.7) and (4.8) also written in terms of the g laantities of

Eq. (6.1). Numerical results are also obtained in the thick-slab

approximation, that is, Eq. (4.6) with $2j (µ) = 0. Details concerning

numerical procedures and computational equations are given in Appendix J.

The calculations were done o„n a Control Data 6600 computer system

at NASA Langley-Research Center.

The time dependence of discrete modes is see, from Eqs. (5.16)

and (5.19) to be

esnt e (c2tn-l)a2t .	
(6.4)

Now to = -aD + aR implies that sn = -al(1 - cl) <_ 0 since cl < 1

and the equality holds only if a, = 0. Therefore such to correspond

to -time-decaying modes regardless of the value of c 2 . For values of

within the interval-(6.3), the time decay or growth depends on

whether c2tn is less than or greater than unity as can be seen from

Eq. (6.4)	 discrete mode represents a critical system if c2n = 1.
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The largest eigenvalue to with an even parity eigenfunction corresponds

to a critical slab problem with

1
cslab

oR
creflector t0 + CrD

and

aslab acritical ° 041
	

(6.5)

where acritical is the critical slab half-thickness. For a'bare

sphere (aR 0) the largest eigenvalue 1 with an odd parity eigen-
I

function gives the critical sphere radius, acriticalft when it is used

in Eqs. (6.5) in place '0 (ref. 21).

Many different combinations of material parameters could be

considered, but here we restrict our study of the eigenvalue behavior

to the case of overlapping branch cuts. As aR departs from zero, we

would like to see how the eigenvalues depart from those previously

reported (refs. 1, 4) for a bare slab. A comparison of the present

eigenvalues stn} for vacuum reflectors, i.e., aR = 0, with those of

Bowden (ref. 1) is given in Tables I and II. Results generally agree

to three figures for slab half-thicknesses A from 0.4 to 20. In

Table II, eigenvalues calculated in the thick-slab approximation are

also shown for bare slabs. For slabs with half-thicknesses A > 1, the

thick-slab approximation generally agrees with the numerical solution

of the exact eigenvalue condition to three figures. This can be seen
0

from Table III where we compare such results as ajA departs from zero

with aD 0. From the bare slab resultG( QR 0) - of Tables I, II,
3
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TABLE T.I. EIGENVALUE to FOR THIN BARE SLABS

Slab Thick-slab present Bowden;
thickness approximation Eq.	 (J.6) (ref. 1)

A Eq.	 (J. 19)

1.0 o.7o2 0.703 0.705

.8 .612 .615 .615

.6 .473 .483 .483

.4 .244 .282 .282
Y

2 .043
q$i

.o48

*No solution. Found for	 > 0.001
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and 111, critical slab half-thicknesses are obtained from ^O using

Eqs. (6.5). These are compared with critical slab half-thickness

results of Mitsis (taken from ref. 7) in Figure 4 (open Qymbols),

Closed symbols give criticel sphere quarter-diameters obtained from

Eqs. (6.5) and t1 while Mitsis' critical sphere results are taken

from ref. 20. The agreement is good to the scale of the Figure. For

arR = 0 the eigenvalues t0 and t1 have also been compared directly

with numerical bounds computed by Mullikin (ref. 21) for bare slabs

and spheres and again the agreement is good. Critical half-thicknesses

of slabs with infinite reflectors have been recently computed by

Kowalska (ref. 12) for a number of combinations of cslab and

creflectoro Some present results t o for ctR 4 0 can be compared

with her critical slab half-thicknesses. Her parameters are given

in terms of ^o and present input quantities qR, arD, and A by

Eqs. (6.5). Figure 5 gives a few present cases (circles) for which

cslab was close to some of Kowalska's points (diamonds) (ref. 12).

No attempt has been made yet to compute points which lie on Kowalska's

curves. The present cases for eslab N 1.11 are from A = 2 and

1.4 in Table III.

The remainder of the results have been computed for A = 5. For a

bare slab with A = 51 it can be seen from Table I that there are five

eigenvalues. We have studied the behavior of these eigenvalues as

oR departs from zero for several values of Q D. In Figure 6, results

are given for aD = 0. Our calculations show that the largest eigen-

value, ^0, is present up to c jR = 0 . 9999• Apparently this eigerxvalue

remains up to arR 1, which is only obtained for c 2 < 1. All other

a

F„

{

A
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Critical sphere quarter-diameter (ref. 20)1
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0	 Mitsis (refs. 7,20)
0 Kaqalaka (ref. 12)

12 r	 0 Present

0	 .2	 .4	 .6	 .8	 1.0

c reflector

Figure 5.- Critical half-thickness for fist ite slabs with infinite reflectors.

a.
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eigenvalues disappear into the branch cut of vol at ^n - aR, labeled

with *) which corresponds to a time-decaying mode ) regardless of the
value of c2. In fact, on Figures 6 - 9, we indicate the points at which

an eigenvalue or pseudo-eigen.value coincides with the branch points of

v01 by an asterisk, *. Even, though such points appear to have a

discrete eigenvalue type of time dependence ., we feel that they are

properly part of the branch-cut integral contribution. We note that the

branch points of vol are located at t = -cD and t	 c*DtaR and find

that the limiting form of the condition which determines whether or not

such points are eigenvalues (or pseudo-eigenvalues) no longer depends

explicitly on aR or aD . (See Appendices J and K.) The theorems of

Lehner (ref. 15) apply for aR = 0 in this Figure.

In Figure 7, results are presented for QD = -0.65 + 0.5 qR . These

represerib what happens fur -a. in the range between zero and

[q
CrR-

_0, where the notation [9n]U,=O means bare-slab eigenvalue,

which we note depends on c2,a2 and a. The open and closed circles

represent eigenvalues as in Figure 6 while the half-closed circles are

pseudo-e;Lg( nvalues corresponding to s < -am = -al . Again the largest

eigenvalue, t0 , appears to remain provided that c 2 > 1. Here, as in

the next two figures, results for aR = 0 agree with the theorems of

Hintz (ref. 10) which apply only for c l = 0. Basically his result is

that the strip Re(t) between 0 'and -aD belongs to the continuous

spectrum and that the bare-slab eigenvalues lying in this interval are

not eigenvalues of the slab surrounded by perfect _absorbers. He finds

that there are no eigenvalues if -crD ? IQ R-o, but says nothing about
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the physical significance. It is seen from Eq. (6.2) that for such

cases ^O < l/c2 and corresponds therefore to a time-decaying mode.

In other words, stationary (critical) or time-increasing modes cannot
i

disappear into the continuous spectrum as material properties are

varied. In fact, we have seen that when arR # 0 such modes Cannot

disappear into the branch cut ofv01 either. In Figure 8, results

are given for -oD + QR = 1 which we recall implies c2 < 1. For this	 }.
a

case, all of the bare-slab eigenvalues lie in the continuous spectrum
z

1

y	 (	 )	 0. In both Figures 7 and 8found b Hintz (ref. l0 when ^R	 ,	 1?;

S = -arm corresponds to	 -atD. Figure 9 shows the behavior of the
z

eigenvalues for arD l and it is seen to be similar to that of

Figure 6. For aR O, the continuous spectrum found by Hintz (ref. 10)

p _ D 	 ( < 0. Here s = -cr corresponds tolies in the strip ar	 -1 < Re ^)	 m

= 0.

All numerical results indicate that-real time eigenvalues { n3 for	 3

material reflectors are finite in number and tend to eigenvalues pre-

viously obtained for a vacuum as aR -+ 0 ., as do the pseudo-eigenvalues
i

for s < -am. If the set	 is empty, then the neutron density is

necessarily decaying in time. Conversely, if the neutron density is

stationary or increasing in time, then the set (Q is not empty.

One also expects that if c2 > 1, then a critical thickness can be

found. That is, the largest eigenvalue 10 must be present for large

enough slab thicknesses for the given c2 . This can be seen from

Table I as follows: For example, if -aD = 0. 8 then the eigenvalue
^0 for A 1 is not present, while that for A _ 5 would be and

represents a mode whose amplitude increases exponentially with time
a

i
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for	 c2 > 1/0.975.	 That for	 A = 20	 needs only	 c2 > 1/0.998	 in

order to represent a time-increasing mode.

As pointed out at the beginning of this section, we can draw some

conclusions concerning the behavior of 	 {P}	 for reflected slabs as a 3`

function of the slab half-thickness 	 a.	 That is	 given	 c	 and	 a

what can be said about	 (tn)	 as a function of	 a.	 We base the

following conclusions on the observation that if 	 t0	 at	 aR	 0	 lies to

the right of	 -arD, then it appears to remain to the right of 	 -aD + aR
I'

as	 eR	 increases until	 -aD + aR = 1.	 (See Figs. 6 and 7.)	 The ^f

dependence of [to] t7^	 on slab half-thickness is given in Tables I-IIIR

;E

and many more points are given in reference 1. 	 First, if	 _aD + aR ? 1

(recall that this implies	 c2 < 1) then the setl^,n/	 is empty for all

a.	 However, there may be pseudo-eigenvalues if -a D > 0.	 Next } if

-aD + aR < 1	 then two cases arise, depending on the value of 	 a..
3

(a) When	 -aD > p	 then regardless of the value pf 	 c2, we can find an

a*	 such that	 a < a*	 implies that the set 	 Ltn! is empty, whereas

a > a*	 implies that the setL^n^
	

is not empty,	 The number	 a*	 is 3

3
F

obtained from the bare-slab result[to] as
oR;=o

4

^0(c2.pQ2^a*) _ -QD .	 (6.6)
cR-

(b) When -crD <_ 0, the set	 nJ	 is never empty.	 Thus, given	 cj ,	 ark,

a	 and the bare slab eigenvalues corresponding to 	 c2 ,	 a2	and	 a, we

.can say whether or not the set 	 (tn)	 is empty.	 Furthermore, the number

of eigenvalues	 {	 will not exceed the number of bare-slab eigenvalues

([9n]^	 which are greater than	 -aD .	 Finally, the number of real

reflected-slab eigenvalues and pseudo-eigenvalues does not exceed the

number of bare-,slab eigenvalues.



VII. CONCLUDING REMARKS

It has been shown using Case's method that the solution to the

initial-value problem of monoenergetic neutrons migrating in a finite

slab (properties c2, Q2) with infinite reflectors (properties cl,

al) can be written in the form

snt

*(X,µ, t) 2-- *u(Xy il ) t ) +	 Residue	 s(X.,	 s en
s=sn

1	 -crl(1-cl) 	- -	 + st
27ri	 (X^µ)	 e	 ds

rGI

1	 -am+ice
[4rs(x^µ) - *us(X14) est ds, -am < -al ( l - cl) < sn,

2ni -am-ico

(7.1)

In this equation, t is the neutron speed multiplied by the real time,

am i s the minimum of art and a2 and each * function is the sum of

its definite parity parts *+. Some terms of the solution (7.1) will not

be present if -am y -al(l - cl)' 9 sn, That is, if -al(l - cl) < -aM

then the branch-cut integral does not appear. Likewise, if all

sn < -al(l - cl), then there are no residue terms. These discrete

eigenvalue terms are characteristic of a finite slab (refs. 1, 4) while

the branch-cut integral term is typical of a semi-infinite medium

(ref. 14) . The term *u(x) µ, t) describes the behavior of neutrons from

the initial distribution, f (x,µ), which have not suffered a scattering

collision and its definite parity parts are° given in Eqs. (5.7)-(5.10).

The discrete egenvalue terms in Eq. (7.1) are given by Eq. (5.19) while

the inte rand of the branch-cut integ ral is given b E s.g	 ^'	 g	 y Eqs. 	 7)-(5	 )

68
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The definite parity parts of the last integrand are given by Eqs. (5.6) 	
}

and Eqs. (3.36)-( 3 . 39)• The eigenvalues (sn) can be computed as was 	 ,!

demonstrated in the last section; +nus, everything which appears in 	 a.

Eq. (7.1) can be readily calculated:. 	 j,

In all special cases of the present problem which have been solved

using the Lehner-Wing technique (refs. 10, 15 ) 16, 17), cl = 0. In

these cases, there is no branch cut due to v0l(s); therefore the

branch-cut integral is not present in Eq. (7.1). It was shown that as

cl -*0 the eigenvalues, ^sn), which are greater than -om approach

those fora bare slab as do the pseudo-eigenvalues for s < -am. The

solution *s;. has the proper behavior as c l -+0 since those terms of

Eq. (3.30) and (3.31) which appear to blow up in such a l imit actually

cancel when the contour C' is collapsed onto the portion of the branch

cut of njs (z'), 0 < z' <_ 1. When the uncollided term is combined

with the last integral it is then seen that the solution (7.1) and the

eigenvalues {sn) have the behaviorrequired by the theorems of

Lehner (ref. 15) and Hintz (ref. 10). The present problem reduces to

those considered by Lehner and Hintz when

cl = 01 al = a2; Lehner (ref.  15 )

and

cl = 01 al # Q2; Hintz (ref. 10).
	 (7. 2)

Hintz shows that for al = a2l his spectral results reduce to those of

Lehner.

In order to describe the same physical problem in the slab as that

solved by Lehner and Wing (refs. 16, 17) we must not only have
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cl = 0 and of = 0,	 (7.3)

but also

f (x
,µ) = 0, x<-a, µ>0

x> a,	 µ< 0.	(7.4)

In other words, neutrons from the initial distribution outside the slab

cannot impinge on the slab faces at times t > 0. Lehner and Wing

solved the time-dependent problem with boundary conditions

*(+a,µ, t )	 0; µ > 0, t > 0.	 (7.5)

Restrictions (7.3) and (7.4) in the present solution make I2±(4,$)

and therefore A2+(4,$) depend only on slab properties. Then, in

looking for solutions inside the slab (IxI < a), the inversion contour

along Re(s) = -Qm can be deformed back to Re(s) = -d2 , and we pick

up a residue contribution from any pseudo -eigenvalue in the region and

thus obtain the Lehner-Wing results. That is, the solution has the

proper form and all bare-slab eigenvalues are recovered. Hintz

(ref. 10) did not indicate how the Lehner-Wing aolution for the bare

slab could be obtained from his results. Here we emphasize that he is

not solving the same physical problem inside the slab unless both

conditions (7.3) and (7.4) are satisfj.ffvd.

The analogous problem for cl 4 0 in which the inversion contour

can be deformed to the left of Re(s) = -Qm for j x < a is obtained

when a2 > Ql and fi(x,µ) 0. That is, if

f(x,µ) 0, jxj > a and 02 > Ql,	 (7.6)
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then all terms in 12j(4, s) which contain (s + a,) factors in the expo-

nentials are identically zero and this allows us to deform the contour

along Re(s) = -am back to Re(s) - -Q2 when (xj < a. Such a

deformation is not possible for jxj > a; for this latter range of x we

must stop at Re(s) = -cm = -a,. If there are pseudo-eigenvalues in

-02 < Re(s) < -al -am (see, for example, Fig. 7) they will appear in

the solution for jxj < a as residue terms which have the exponential

time dependence. They are not eigenvalues for the reflected, slab though,

since such terms do not appear for jx > a. Erdmann (refs. 8, 9)

solved the time-dependent problem for two semi-infinite media where an

isotropic pulse of neutrons was introduced at the interface and found

that the inversion contour for x e medium j could be deformed to the

left as far as Re(s) -aj . In the present problem, such deformations

can be made only when conditions (7.6) are satisfied. It appears that

the contour Re(s) = -o. cannot be deformed to the left of

Re(s) = -Q2, since the implicit equation which determines A2±(g,$)

(see Eq. (I.3)) requires Re(s) ? -Q2. Apparently Re(s) 	 -Q2 is the

edge of a continuous spectrum in all cases for the reflected slab.

We briefly summarize the results which have been obtained. The

present solution has been shown to have the required properties in all

special cases which have been solved previously by others using the

Lehner-Wing techniq ae. However, in all of these rigorous solutions,

there was no scattering outside the slab. We have seen that with infinite

reflectors on the slab and neutrons anywhere outside the slab initially

that it is possible for some neutrons which have spent their entire

history in the reflector to impinge on the slab faces at times t > 0. i

Yv	 ..
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Such neutrons have a collision rate which is characteristic of reflector

;properties and this, in general, restricts us from deforming the

inversion contours to the left of Re(s) = - am. We have illustrated

two cases in which a further deformation is possible for IxI < a, by

eliminating neutrons outside the slab initially which can later impinge

on the slab faces. This is equivalent to a further restriction on the

Hilbert space which has been used in some of the above mentioned

rigorous solutions. The exact eigenvalue condition has been obtained

and real time eigenvalues have been calculated for a number of

combinations of material parameters. The Largest eigenvalues have been

shown to agree with criticality results of others. Our calculations

show that eigenvalues can disappear into the branch cut or continuum as

material properties are varied and we point out that all such

disappearing eigenvalues correspond to exponentially time-decaying modes

regardless of the value of c 2 since we have taken cl < 1. We expect

(but have not shown) that there is no drastic change in the shape of the

solution given by Eq, (7.1) when this happens; we conjecture that one of

the integrals in Eq. (7.1) probably has resonance-like terms due perhaps

to zeros of the eigenvalue condition on the next Riemann sheet. We have

made the assumption that the eigenvalues are real for arbitrary slab

half-thicknesses. We have shown this to be true for thick slabs and it

has been proved rigorously by others for the above mentioned special

cases. On the basis of our sample calculations, we conclude that if one

is given the material properties cp 
a, 

and slab half-thickness, a,
4

as well as the bare-slab eigenvalues corresponding toe 2, Q2 and a

to

{
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then he can conclude whether or not the set ($n) is empty and the

maximum number of sn in (8n).
Perhaps the present results can serve as a guide for a rigorous

Lehner-Wing type analysis of the reflected-slab problem. If the

eigenvalues are all real, then one might be able to prove it in such an

analysis of the present problem.
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A. Summary of Elementary Solution Properties

In this Appendix, the elementary solution properties derived by

others (refs. 1, 4, 8 ) 9), following the lead of Vase (refs. 5, 7), are

summarized. These solutions are obtained from Eqs. (2.16) - (2.18) of

the text and are given by Eqs. (2.19) - (2.21). Such solutions are

complete and orthogonal in the following sense. A function, say g(O'

satisfying very weak restrictions (see for example ref. 7, Appendix G)

for -1 < m < µ < a < 1 can be expanded as follows:

1. Full Range; m = -1 ) p = 1

B(µ) = ai rPv0j (4) + bjcp_vOj OA 8j(s)

+
 f

1

Ai (v)cpisv (µ)dv,	 (A.1)
-1

where the notation 8 j (s) was defined by Eq. (2.25). The orthogonality

relations used to determine the expansion coefficients in Eq. (A.1) are

	

l	 1

Jsv' ( IA) dg
f l 

A3
(v)cpj sv(µ)dv = Aj (vl)v' stds ( v' )n s (v' )

-1 

and for seS
j1

f

f

1

PVjsv' (µ)rptv0,^ (µ)dµ	 0,_l 

1
Kv0

^ 
(µ)(P-v0

^ 
(µ)dµ = 0

-1 

and

1
y {µ)dµ 2 c i a i v0^tt s(±v0^),

	

_l	 0,^

77

'iI

I	 .
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where

_a

	

^^js (v0i )	 dz ^^ s(Z) z=v0j

and
tt s (v)	 = 7^^ s (v) - iicc jojv/2.	 (A.3)

2. Half Range; m = 0 1 	1

1

g(µ) = aj9v0j (µ)sj(s) + fo Aj(v)cpjsv(µ)dv.
	 (A.4)

Here the orthogonality relations for sES
ji
 are

1	 1
Wjs(µ)^jsv'(µ)aµ	 Aj(v)cpjsv(µ)dv = Aj(v')Wis(v')Sl+S(v')St's(v')s

0	 fo

f

f

1
W^ s (µ)^ sv (4)cpv (µ)dµ = 01

0	 O,j

1

0

Wjs(W (PJ sv(µ ) (P_v 
0j 

(µ)dµ = vc jaivOixis( -v0
i )IP 

-vOi (v),

,1 c Q .v	 2
Wjs(W CPV (µ) (p±v0 (µ)aµ = ^ ^- 2-01 x s (+v0 ),

1 W

	 d _ (c
ja,. 2

is(µ)(Pv (µ)(pjs(-v)(µ) µ	vv0 X s( -v),
0	 O^j	 2

1	 c

J	 W^s(µ)cp 	(µ)mjs(_v)(µ)dµ = —
Jw
j v'(vOJ + v')XJs("v)(PJs(-v)(v')I0

and
!^ 1

J	
Wjs(µ)q)jsv(µ)aµ = 2 c jaj v,	 (A.5a)

f0
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and

	

s(µ)	 nos ( µ )
0 < µ < 1,	 (A, 7a)

	

Xi
 
s (µ)	 nos (µ)

with X j s (z) given by

	

11	 ejs( v ) dv
Xs(z) 1-z 

exp 2ni	 In

	

0	 n^js(y) v-Z

nJs(z
0

(v0^j - Z2)nJs(00)x,js( -Z)

	

c 
i 

a 
i	

1	
µdµ	 (A.8a

	

-	 ^ fo22)2Q^s( ) 	 (v 0j - µ)xjs^µ)(µ-Z)

Tt!e orthogonality relations for seS je for the expansion (A.4) are

f

1	 1
Wk s(µ) 3s v^(µ)dµ f Aj ( v ) (Pjsv(µ)dv = A^j (v' )W^js (v' )&. (v' )n^s (v' ),

0	 0

1 W (µ	 µ)	 (µ)dµ = 1 c Q v'X 	 ( -v)
fo

	

,js ) cp jsv ( cpjs (-v)2	 03s	 ^,js(-v(v'))

and

f

1

	

wjs(µ)(PJSV(µ)dµ = -g 	 (A.5b)
0

t	 '

where
µ

W s(µ) 	 0 < µ < 1,	 (A. 6b)
^	 2n^s(°°)XO^S(-µ)

and

	

X+0 
ss^	 n-js(s	 0 < 4< 1	 A	

_

	

xpjs(µ)	 Ds(µ)

zi

a

e.t.

_,
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with XOjs (z) given by

XO s(z) = exp1 
ifo1 

In f+js(v) dv
77—ti 	 - St^ s (v) ^' z

11js (z)

njs(00)XOjs( -z)

l
1 + c
	

µdµ	 (A.8b)	 r
2t2js (00) JO XOjs(-µ)(µ-z)

f

These half-range orthogonality relations and identities are obtained by

extending the time-independent results of Kuscer, M cCormick and

Summerfield (ref. 13)-

A result ,, due to Kuscer and Zweifel (ref) 14), which we shall need

to analytically continue solutions follows from Eqs. (A.8). For a

fixed value of z, Xjs(z) does not become X 03s (z) as s crosses Cj.

However, it follows from the middle expressions in (A.8a) and (A.8b)
zj

that j

(v0J - z)Xjs (z)I _ XG s (z)I
s

(A.9)
s ->C  -+C

seS^ i sESje

Following Kuscer and Zweifel (ref. 14) then, we define a function
i

XOj (z,$)	 which is continuous as s -*C^
i

by Eq. (3.25).	 Such a

function of the two complex variables z and
i

s	 has the following

analytical properties (ref. 14).

Fixed s;	 no singularity in z-plane cut along (0, 1);

one simple zero at z	 voj (s), Re(voj ) > 0,

only if	 seSji. {

j

r;
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Fixed zs no singularity in the s-plane cut along (-a j , -cj(l-cj))

one simple zero at s = -a i + c iai z tanh-1(1./z)	 .

for Re(z) > 0.

We note here that X0j (z,$) is a nonvanishing analytic function of z

and s for Re(z) < 0 and sj(-ap -aj(1-cj)), the branch cut of

v0j(s).

j

>?_ ,,,,.



82

B. Derivation of *jpl, (x, µ, s )

In this Appendix, explicit forms of *jp+(x,µ, $ ) are obtained.

Following Bowden (ref. 1) we tape, for medium J, the function

gjs(x,14; xo) as

(s+Qj) (x-x0 ) w0j

-
 f

0

	

	 - (s^-cr )(x-x0)/u

Cj(xo,v)^,^sv(µ)e	
i	 dv, x < xO

-1

gis(x, 4'; x0)
	

(B.1)

C• (x^ )<p	 (µ)e 
(s+aj)(x-x0)/vojb 

(s)^	 v03	 ,^

l	 - (s+Qj ) (x-x0 ) w
C3(x0,v)^^sv(µ)e	 dv, x > x0.

0

The expansion coefficients in Eq. (B.l) are to be determined so that

gjs(x,µ;xo) satisfies Eqs. (3.5) and (3.6). That is, on putting the

expansion (B.1) into Eq. (3.) we obtain in the limit x -+ x0

fj (xO.'W/µ 
= IC 

j (xo)cp, 
O 

(p) + Dj ( x0 )CPyou (41sj(s)

r1+ 	 C i (xo,v)rp sy(µ) dv.	 (B.2)
^..ml 

This is a full-range expansion (see Eq. (A.1)) of the function

fj (x0,4)/g and use of the orthogonality relations (A.2) gives the

coefficients as
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1
C j (x0,v) = + 1 -	 f j(XO.'OP v(µ)dµ

Ve. (v)D-is (v) -1

and, if s eS j i

1
C (x0) =	

2	
f (xO,µ)(Py

0
 (µ)dµ

c j QjvOj A^ s (vOj )	 1 j j
and

1
Dj ( x0 ) =	 2	 f j (x ,µ) (P_v (µ)dµ . 	(B.3)

c j c^jvpj DI J,,(—vOj) -1	 O	 C 
j

However, we shall need expansion coefficients for the even and odd parts

of fj (xo,µ)/µ separately. It follows from Eqs. (B.3) that

Cj+(Xo,v)	 , [Cj (xo .,v) T Cj(-x0,-v)

and, if seSji

Cj+(xO,vOj) a 
2 

Cj (xO) + Dj(-x0)

and

Cj±(xo,-vOj) 6	 [Dj (XO ) :F Cj (-x0 ) ,	 (B.4)

are the expansion coefficients of fj+(xo)µ)/µ, that is, Eqs. (3.11)

of the text.

In order to-construct
jp
+(x,µ,$) according to Eq. (3.7), we note
-

that for j = 2



f'

Upon using Eq. (B.1). we obtain ^Y2p (x, µ, s) a

x	 (s+o )XO v02
x s_	 x e	 2	 dx	 x s S s,2p( ^ µ, )	 c2( Q)	 0 *v02( ,u, ) 2( )

-a
t

1 x 	(s+o2)x0/v

C2(xC v)e	 dx0 *Pv(x,µ)s)dv
QU-' a

a	 -(s+a2)x0^v02	 V^_vg2(xtµ,s 52s)
D2(x0 )e	 dx0

[f,X

f

l[fa

 
C2(x0,-v)e	 dx0 *2(-v)(x,µ,$)dv

0	 x

(B.6)

The definite parity particular solution *2 p (x,µ,$) is then obtained

using Eq. (B.6) as

x	 (s+Q2 )x0w02
^ '2p+ (x , µ, s ) =	 C^+(X0, v02 )e	 dx0 *v02 (x, µ, s

-a

-x	 (s+a2)xol
C 
2± 

(x ^
v )e	 ^02dx	 (x)µ, $) 52(s)

-	 0 02	 01 ,-v,.a	 02

 [fx a
(s+o2)xO/v

+ fl  
C2+(x0,v)e	 dx0 *2v(x,µ,$)dv

0	 -

±f
1 -x	 (s+Q2 )x0w

C2t (x0,v)e	 dx02(-v)(x,µ,$)dv
U	 -a

(B•7)

That (B.7) is a solution of Eq. (2.13) for j = 2 can be seen by direct

substitution as follows. The *iv (x, µ, $) in Eq. (B.7) are solutions

of Eq. ( 2.16), the homogeneous equation corresponding to Eq. (2.13).

C
It



However, their coefficients in Eq. (B.7) are functions of x so that

some additional terms are obtained from the ^ operation. Thus we get

g
(1

C2±(x'"OP-)rPv02(µ) + C2j:(xI-
V02)cP"vO2(g 

s2($)

+
 f

1

.1 Ca(x v)T2sv(µ)dv = f2_+(x,0, 	 (B.$)

which is an identity since according to Eq. (3.11) the 02± are the

full-range expansion coefficients of f2±(x,µ)lµ.

To get *lp (x, µ,,$) according to Eq. (3.7), we first :note that

	

a.	 r oa

dxO
J	 _ 1 00	 L a

(medium)
l IX	 _a

• dxO +^	 dxo +	 dxO, x < -a

	

-	
t 
x	 a

^a	 x 

J	
• dxO +	 • dxO +	 . dxO, x > a.

o0	 8	 X

We follow the same procedure as before and get *lp±(x,µ,s) as

i

t

tt_

rt

ii
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x	 { s+vl )xp^vOl
^lP±(x,N► ,$) =	 C(xp)vQl)e	 0 ^Vy01(x,lA)s)Sl(s)

_o"

1	 x	 (s+a1)x0w

+`	 f Ci+,(x0,v)e	 dxp *1v(x,µ, $ )dv
0	 -

-a	 - (s+o1)xp/vol
cl±(xp, _Vol )e	 dxp

x

J	 C1±(x0,+vpl )e	 dxo *_v (X,µ,$)Sl(s)
_o0	 01

-a	 -(s+crl)x0w
+ J I-fx Cyr (Xp, -v ) e 	^p
0 

 (s+crl)xpwf -a
 C,+(xp,v)e	 dxp *,(_v)(x,µ,$)dv, x:<-a
_00

(B.loa, )
and

-a	 (s+Q1)x0^v01
*1P+(x,µ, $) = f0

0
 Cl±+(x0,v01)e^0

_

-a-( s+c )x v
+	 C t(Xo,-v )e	 1 0^ O1 

dxo *V (x,µ,$)81(s)
1	 Ol	 i-x	 -	 •.F'

1-a	 (s+al)xoly
+

	

	 Cy(Xp,v)e	 dxp
p If- ^

_a	 -(s+Ql)x0/vT f CL(xp 'v )e 	dX0 ^Vlv(x , µ, s )a'
_X

r -x	 (s+al )xolv01
± J	 Cl+(xp, vpl )e	 dx0 *-vpl(x. µ, s)sl(s)

J

f

1 -x	 (s+al)Xpw

Cl+ (xo., v)e	 dxO *1( _v (X,.4., dv, x > a.
0	 -00

(B.1Cb)

III. 	 ,I

I	 -	 l

t
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i
Again, it is easily shown by direct substitution that Eqs. (B.10a) and

(B.10b) are solutions of Eq. (2.13) for ,j = 1. We introduce the

F functions of Eqs. (3.10) and by allowing x to take on negative and

positive values, it follows that Eqs. (B.7), (B.10a) and (B.10b) can

f	 be written as Eqs. (3.8) and (3.9) of the text.

We also note here that the Cj+ coefficients of Eqs. ( B -4) have

the property

Cj±(-x0, -v) _ :F Cj+(x0,v)

and

	

C j±(-x0, -v0 j ) _ :F C j±(xo, Vo j ),	 (B.11)

so that it then follows from Egs. (3.10) that

F2:t (a., -cu, s) = + F2± (a,W, s)

and
F+ -a,, 	 _ + F±(-ap,$).	 (B.12)
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C. Two-Media Full-Range Expansions and Orthogonality Relations

In this Appendix, we first summarize some results of Erdmann

(refs. 8, 9) and Kuscer, McCormick and Sunmerfield (ref. 13). Erdmann

(refs. 8, 9) shows that a function, say h(µ), satisifying very weak

restrictions for µ on the interval -1 S p <_ 1 can be expanded as

h(µ) = a1(pv01(µ) 81( s ) + b2q)-v02(4)52(s)

1	 0
+	 Al(v)fP1sv(4)dv + 

r 
A2(OP2sv(µ)dv.	 (C.1)J0	 -1

:
.a

f

=k

This is a two-media full-range expansion of the function h(µ) and

the expansion coefficients in it can be determined using orthogonality

relations which are easily determined from the time-independent ones

of Kuscer. McCormick, and Surmnerfield (ref. 13) . For

51(s) 82(s) 1, that is s e Sli n S21, these relations are

	

1	 1
Ws(0 Osv ` (4)C J	 A(v ) Osv(µ)dv = A(v')Ws(v')e-(v')ns(v' ),

	

-1	 -1

f

f

f

1

W,3(µ)'Osv(µ)q)v
01

 (µ)Vi = 01
-1 

1

Ws(µ)Osv(µ)q)_v0 2(w)^ 0,..l 

1

1 
WS (0 w01(P)CP_V02(4)dP ' = 0'-

1

Ws(µ)^sv(4)q-v ,(µ)Vi = vc(v)ar(v)v01(v02 v01)Xs (-v01)(P_v (v)^

	

a	 4^.	 o1

i

I

f
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1

`l WSWOsv(µ)q)y02(µ)dµ = vc(v)a(V)V02(v01 - V02)Xs(V02)q)v02(v),

1r 
Ws(µ)(Pv (µ)(P±v01(µ) cw = - c1= (Vol ± v02)Xs('^yol)PJ

	

of	 2

1 W (µ)^	 (µ)^+ {µ)ms = 
(c2a2vO2 

2 (v — v ) X (+v 2))
-1 s
	 -v02	 +V02	 2	 02 + of s 0

f

1
Ws(µ) cPy ^D1 (µ) 4PvJ2 (µ) dL = - 12 

clalc2a2Vo1v022 Xs(v02)
_l 

and

1

WS(µ)(P_y02(µ)^P_Vol(µ)aµ = 2 clalc2a2v01 V02Xs(-v01))
-1

where

CC2.P a2y

l, e'1,v > 0

 v < 01

(

q,1sVG')j	 v > 0

T2sv(µ),	 v < 01

+ nls(v),	 v > 0

W+S(ol

Xs(z) ° Xls(7)X2s(-z)l

and

Ws(v) _
(V02 + V)X2s(-V)Wls(v), v > 0

-(Vol . v )Xls(V)W2s(-v), v < 0.

All remaining quantities have been defined in Appendix A.

(C.2)

(C• 3)

j
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Rather than write out explicit orthogonality relations for the

other three regions of the transform plane in the present notation, we 	 T

introduce a function which is continuous as s -+ CJ . From the results of

Kuscer and Zweifel (ref. 14) quoted in Appendix A, we see that one such

function is given by Eq. (3.24) and can be written using Eq. (3.25) as

!k

(v02 - z)X2s(z)	 s E S n S
( Vol - z)Xis(z)'	 li	 21

)v
E

(v02 	 z)X2s(z)

	

XOls z) 	
s e Sle n S21

XO (z ' s) _

	

	 (C.4)
X02s(z)

Vol - z)Xls z
s c Sli n S2e

X02s(z)
s E $ie n S2e.

K—jsTT

In terms of this function, Ws(v) can be written as

1

clCrly

2517  7 
XO( v, s), v > 0

c2Q2v	 1 	 v < 0.202,(oo) XO(v,$)

The function Xs (z) is expressed as

Xo(-z,$)	 als(z)
), Re(z) > 0

tv02 + z (Vol z) flls P i
Xs(z) _	 (C.6)

Re(z) < 0
(Vol z)XO(z,$) ( v02 + z)%s(w)' 

i
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In order to obtain a two-media expansion in the form (C.1), we

generally have to switch some continuum solutions in one medium to those

in the other. From the explicit form of cpisv(µ) (Eqs. (2.19)), we

have that

clelT28v(µ) - c2a2T1sv(µ) = kzB(µ - v),

where

We see that when the two media are the same, k s - 0. This quantity

can be expressed in a number of different ways, and several that we

shall use are

c1o1?^2s(v) - c2a2^ls(v)

ks =	 c1cr1a2s(v01)	 (C.$)

c2Cr2Pls ( V02)

The orthogonality relations (C.2) can now be written in terms of

XO(z,$) and ks as

	

1	 1
	Ws(11) Osv (µ)dµ	 A(v) sv (µ)dv = A( v')ws(v')^s (vI as,(v')

	

-1	 -1

f!	 1

f Ws(µ)O(µ)(Pv (µ)dµ = 0sv	 ,

	

-1	 01

j,,	
1

f Ws(µ)Osv(µ)q)_v (µ)Vi 0,
02

ii

1

1	 f Ws(µ)4)v01{µ)^_v (4) 4L _ 0,
!	 -1	 02
iE

i}
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	1	

-ws(	
vc(y)Q(y)vOlks

	

-1	
µ)^^y(µ)^_,,ol(µ)^u ^a2

-- (-yol,$)(yoi + y>'

	

l	
Vc(v)a(v)v02ksXO(-VO2)s)

Ws(µ)osv(µ)^y (µ)ms - - 	 ,02	 4si1s(°°) ( y02 - v)

	

2 S2'	 (y	 )

	1	 2 cialvo	
Wls yol) XO(-vOl,s

\	
1

is
-1 W6(µ)^y01(µ)^+vOl(µ)ms

clolvolks

8n2s (00)XO ( -VOJ, s)

C2o2vO2ksX0('v02,$)

	

1	 —^ls^-
Ws (µ)-v (I1 )^±y (w)^ ,

02	 02

„
((2

1 c2a2y02 12 n' 2s (y02)	 1
 /	 SZ	 ^	 -v2s( )	 XO( 02)s)

	

1	
cloly01y02ksXO(-v02,$)

-1 Ws(µ)^y01(µ)(Py02(µ)C - 4SZls(oo)(v01 - y02)

and

WSW (P 	 (µ)(P=y (h)d4	
c212y01y02ks	 1 _ -.

fl2	 Ol	 4S22s (0°) ( v02 - y01) XO( -y01., s )
(C-^9)

These expressions appear more complicated than the corresponding ones

in Eqs. (C.2); however, the orthogonality relations needed for all

regions of the transform plane are given by Egs. (C.9). That is, for

s e Ste n S2i, the proper orthogonality relations are the first, third,

sixth, and eighth equations of (C.9) with X O(z,$) given by Eqs. (C.4).

We note here that XO(z,$) always appears in Eqs (C.9) with

Re(z) < 0. It follows then from Appendix A that for Re(z) <0.,

XO(z,$) is a nonvanshing analytic function of both z and s except

for the branch cuts in the s-plane due to vo l(S'l and v02(s).

1
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D. The Two-Media Full-Range Expansion for This Problem
;E

In this Appendix we show that application of the continuity
,i

condition, Eq. (2.15), results in a two-media full-range expansion of
f

^j

the type discussed in the last Appendix. For x = a, we readily obtain

from E s.	 .14+ and 2.1 upon using the explicit forms of	 and^ (3 )	 ( 5) p	 g	 ^	 ^^^+	 ;

*Op j given by Eqs. (3 ► 3), (3 . 4), (3• 8) and (3.9) that

0 = a2± I *VO2(ay!t,'8) 4" *-v02 (a) µ, s )352(s)

1
+	 A2±(v) C*2v(a^µrs) ± *2(-v)(a, 4 ,s^ dv0

1
'+ [a,+* Vol (aps ) 81( s ) + f Al±(-v)*lv(a,µ,$)av

0

1
+ F2±(a'v42's)*v02(a,µ,$)52(s) + 	 F2±(a,v,$)*2v(a,p,$)dv

0

- Fes(-a,vol,$)1*Vol(a,µ,$) ± *-vol(a'µ1s) 51( s)

1
J	 Fj+{-a, v , s ) [*,, ( a ,, V ., s) + *l(-v)(a,µ.,s dv.	 (D.l)

0

We have indicated in ,Appendix C that according to Erdmann (ref. 8) the

functions (PvOl(µ) 7,02(4); Tl,sv (µ)y 0 : v < 1 and Cp2sv(µ),

-1 C v < 0 form a r omplete orthogonal set of basis ^O_unctions for the

expansion of h(µ), - 1 < p <_ l for s e Sli A S21 (see Eq. (C.1))

However, Eq. (D.1) also contains terms in which cp2sv(µ), 0 !,v < 1,

and (Plsv(µ)^ "'1 c v <_ 0 appear. These continuum solutions must

be replaced by corresponding continuum solutions for the other media.

We use the relationship (C.7) to do this; that is,
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'	 (W = 
rc2a2	 kr 

6(v -
,	

P H(V)P2s	 'PISAI) 
+ Cal

	

UC _ICY I	 il

and

(PJSV(11)T2"'(4) _ 
ks 5(v 

_ µ) ii( -v )	 (D-2)
01C2a2 	 02cr2

where

1) V > 0

H(v) = 
(01 V < 0.	

(D-3)

When explicit forms of the elementary solutions and Eqs. (D.2) and

(D-3) are used in Eq. (D-1), we obtain the two-media full-range

expansion,

h(p) = [Fj+(-a .,vOlj s) ± a,+ -$4-ODalivol 9V_](	
01 (051(s)

:F a2±e (s+a2 )a/vO2 q)_v 
02 (062(s)

+	 Fl+"-a.,v.,$) ± Al+(-v) e-(S+Crl)a/v
0

22Ea2± (a., v,$) + A2+(v) e-(S+c r2)a 
1pisv(^

L)dv
C1111 IF

	+s+al)a/v	 -(s+a2)aA2±(-V ) e,^0 c 20'2 	 /V] 
T2sv(g)dv,,

where h(P) is given by
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h(µ) = 
k' 

H(µ) [72.(a,g, s) + A,2±(µ)] e
-(s+CrOa/µ

0-1011

H(-µ)FS_+(-a,-µ,$)e- ( s+al)a/µ
c2Q2

+ [F2± (a, v02) s) + a j 
e'_ 

(s+or2) a/v02 4Pv02 (µ) 8 2 (s )

) a/var
F3±(-a,vol	

(s+ l,$)e	 Ol ^p_VOl(4)5l(s) • 	 (D. 4b)

The orthogonality relations, Eqs. (C.9), can be used on the expansion

(D.4) to obtain equations which determine the remaining unknown

coefficients implicitly. However, it is convenient to introduce first

the Ej+ coefficients given by Eqs. (3.15). We then have, after some

algebra, the equations Listed in the text as Eqs. ( 3- 16)-(3.23)-

:i

i

i
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E. Complex Representation of * si( ,µ)

In this Appendix we outline how Eqs. (3.15) (3.23) are extended.

to the complex plane (µ ->z) with s considered a parameter. As

shown in references 2 and 3, functions such as those introdiAced in

Eq. (3.15) are extendable. The particular grouping of terms in Eqs.

(3.16) - (3.23) indicates some integrals and residues which go together.

The first functions to be considered are the F j±(x,cu, s) functions

given by Eqs. (3.10). In Eqs. (3.20) 	 (3.23), these functions appear

with Re(w) > 0 so we consider the functions LJ+ (x,v,$) given by

Eq. (3 . 35 )• When the explicit expressions of Eqs. (3.10) and (3.11)

are used, we can show that for f j±(x0) µ) extendable g -^ z without

singularities in the finite z-plane then Lj±(x,v,$) can be extended

to Lj+(x,z,$) given by Eqs. (3.32) and ( 3.33). Now as z -+v F (O,l)

it can be seen that the limiting values of L, namely L+,^ (x, v, s )
J±	 J-

and LJ+(x,v,$), are identical. Thus, Lj+ does not inherit the branch

cut of iljs (z) as one might be led to expect from Eq. ( 3.32). There

appear to be no other singularities of Lj+ in the finite z-plane,

Re(z) > 0 and Re(s) > arj . It follows froniEq. (3.32) that

Li±(x^v0,$) = 2 c^a^vO^st s ( vo^)FJ± (x,v0 , $)e 	 s E sji.

(E.1)

In order to extend the functions I j+(v) to the complex z-plane,

we need the identity
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a lai%'S(v)f2s(v)	 ks	 0111^'2s(v) + c20'2'1^1s(v)

'202 smn s(v) 
clal clalc2a2	 fils(V fzis(v)

which can be verified directly. We use this identity and find that

2j±(v), given by Eqs. (3.20) and (3.22), can be written respectively

as Eqs. (3.30) and (3.31) The restriction Re(s) > - any on these

equations comes from the fact that Lj+ for both j = 1 and 2 occur

In each 1j+ . More will be said about this restriction later. The

contours C' are given in Figure 3. By letting z = v02 in Eq. (3.30)

and z = vol in Eq. (3.31), it can be seen that

z2±(v02's) J2-+(V02)
and

	

Il±(vOl)s) 'E J1+(v01).
	

(E•3)

Thus, the inhomogeneous terms of Eqs. (3.16) - ( 3. 19) are seen to be

extendable and related as shown in Eq. (E.3). For z vol in I2±

(sAO( .'A . '40 ) 1 ^	 ^	 „_	 i_^^-^^ 	^, , and 	- 02 .n I	 (see E	 7.( ^ X1	 *-ko,) ), 	 s€

functions might seem to be singular. However, it is seen upon examining

the residues that this is not the case. Thus, the ZJ..(z,$) appear	 x.

to be analytic in the finite z-plane, Re(z) > 0 and Re(s) > -vm.

In Eq. (3.16),  we now let v -+z and for Re(s) > -a and

Re(z) > 0 in the finite z-plane, B2±(z) is given by the inhomogeneous
a

term I2+(z), a, term involving a2± 	 s e S2i and an integral over-	 s

E;:)+ (4), 0 < g 1. A singularity occurs in the integrand when either
i

2s(µ) or 2s(µ) vanishes and this happens for s E C2` However, for

this case, it is seen that°wre obtain from Eqs. (3.16) and (3.17) that

x...

	 F



98

E2+(v02) is related to a2±. It appears that Ee,(z) is analytic in

the finite z-plane, Re(z) > 0, Re(s) > -am and can be written as

Eq. (3.28). We follow the same procedure with Eq. (3.17), and obtain

an equation which is easily seen to be Eq. (3.2e)) evaluated at z = v42;

that is, E2±(v02ps) and a2 are related as

E2+ (v02)s) " 2 c2a2V02n2	

(s+R2)a/v02

s(v02)a2ie	 , s E S2i .	 (E.4)

in a similar manner, we obtain from Eqs. (3.18) and (3.19) on letting

v z and making use of Eq,, (E.4), Eq. (3.29) of the text and again

it follows that El+(v01,$) and a, are related as

E +(v	 s) = 1 c a v R (v )a +e	 , s E S .	 (E.5)1- 01^	 2 ]. l Ol is Ol 1-	 li

It also appears that E1±(z,$) is analytic in the Finite z-plane,

Re(z) > 0 and Re(s) > -am.

The solutions * jc± and *jp+ cwi now be written in terms of the

E j± as shown- in Eqs_. (3.36)	 (3.39) of the text
N
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F. Investigation of the Associated Eigenvalue Problem

We consider in this Appendix,, the associated eigenvalue problem;

that is, the problem for which f(x,µ) = 0. The inhomegeneous terms

Ij+ (given by Eqs. (3.30) - (3.32)) can be seen to be identically zero

when f(x,µ) is zero everywhere. Solutions for I# - 0 will be

denoted with a bar, i.e., E j+ . The unknown expansion coefficients for

the eigenvalue problem, Ej+, are given by Eqs. (3.28) and (3.29) ith

Ij+ = 0. It is seen from such equations that Ej+ can be determined

only to within an arbitrary factor independent of z and that E

caepends on Ems. Furthermore, the original normal-mode expansion

coefficients for the eigenvalue problem are given by Efj+(µ,$),

0< µ E 1, J	 1, 2; E,+(v01, S), s e Sli and E2_+ ( v02) s ), s e S21.

Therefore we must examine solutions of such equations as a function of

the transform variable s for z -->µ with the contour C' collapsed

onto the branch cut, (0,l) due to 02s (z'), and for z = v0j when

s E Sji . This will be done for all s in some right-half s-plane and

it is convenient to divide the plane into three regions: s e 
Ste,

s e S2i and s E C2.

When s E S2e-1 922s (z') does not vanish within C' so that Eq.

(3,28) with I2_+ = 0 can be written as

_	 1
E2+ (µ, s ) = +

 10
 KS( µ, v )E2 (v, s) dv, s E Ste , 0 < µ 1,	 (F.1)

where

	

kri P2s ( o°) Xo(-µ, s)XO(-v, s) v	 2(s+Q2 )a/v
Ks{ µ^ v) - 

2 ^ls (°°) ^+ v SZ' v v+ e
	 , 0 < µ, v < 1,

	

gs ( ) 2s( )( µ)	
—	 —

µ = v02.
(F.2')

3

i

_	 I

^I

I

1
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When s e S21 , S12s (z') vanishes inside C' but not on the real

interval (0,1). As C' is collapsed onto (O,l), a residue term appears

so that Eq. (3.28) with I2± = 0 takes the form

 
s)	

kt> P2s 
(oo) x0(-µ, s )X0( -v02, 

s) e -2(s+a2 ) a/v02 
^+- v	 s )K21: (

µ^	 c2a2 Ols Q0 P2s(V02)(v02+4)	
02'

±^
1	 _

K,(µ, v )E ( v , $ )dv, s E S21, 0	 µ < 1,	 (F.3)
0

for z µ where Ks (EL,v) is given by Eq. (F.2). However, Eq. (3.28)

with 12+ 0 must also hold at z V02 and this gives an additional

constraint on solutions of (F.3), namely

E	 v	 s	
ks 112s(00) X0(-v02,$) e-2(s+a2)aw02 E

	 v	 s( 02' )	
± c

2QG Pls 0 2v02'12s VO2)	 ( 02 ^ )

1

^0
Ks(v02-v)E^(vgs)dv, s s S2i'	 (F.4)

When s e 12.1 the curve separating S2i and Ste) o&( v) P2s(v)

vanishes for some v on the interval (0,1). That is, v 02 is real

and lies on (0,1). Setting V 02 = q, we can put Eq. (3.28) with

12,x. = 0 in the form

_	 k	 il2s (00) X0(-4) s)x0(-Tj s) -2(s+v2 )a/Ti —
E (µ,$) = ±

	

	 e	 72±(Tl,sc)2 2 Dls(CO) n2S(O(T&4)
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Note that this equation would be obtained from either Eq. (F.l) or Eq.

(F.3) for s -+ C2 from s e Ste or s e S21 respectively.

For arbitrary complex values of s, the kernel Ks(µ,v) which

appears in Eqs. (F.1) and (F.3) is not symmetric since

Ks(µ,v) IX (V,4 ) 	 ira (s) ^ 0,	 (F•6)

where	 denotes complex conjugation. Note, however, treat when

Im(s) = 0, the unknown functions E(µ,$) can be redefined so that

a symmetric kernel is obtained. Solutions of Eqs. (F.1) and (F.3)

depend on the behavior of Ks (µ,v) and we shall look at a quantity

B2(s) given by

B2( s)

	

	 1fo1 Ks (µ, v ) 2 dµdv.	 (F.7)
.f0

To do this, we introduce the nondimensional parameters t, Q R, QD

and A given by Eq. (6.1) with t = m + ip. Note that a, R, arR, aD

and A are real while an and A are nonnegative. In terms of these

quantities, we have

K (µ, v 2
	 Pail-1) -aD]  

2 
+ p2 (aR-1)2 Ba-1) 2 + p2]

SI
) ^

I 	 4 Ba+aD-aR  )2 + p l_]

2	 2

IX
0(-µ, s)	 1 X0 (-v, s) I v2 -4Am/v

X	 e	 , 0<{^v<_l.2
n2s (v) 2	 2s (v)	 2.
----	 (v+µ )
c2a2	

c2Q2

(F.8)
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2
To make estimates of the function 

1 Y-4.90 1 , we use an integral

representation of the single-medium X-function given by Kuscer and

Zweifel (ref. 14), namely,

(v^)1

f—i0o

3.00^

X0j(-µ's) = exp 2nd	 to •is	 dZ	
(F.9)

 s ( 00) z' + µ

Upon letting z' = iy and using Qj ,(z') = Pjs (-z'), we see that Eq.

(F.9) becomes

°o
	 Is js

(iy)	 dy

	

X0^ (-µ, a) = exp 
n	

In St
	 «,	 ,	 (F.10)

0	 js( ) y + µ

which is seen to be real for s real. In terms of the quantities of

Eq. (6.1) we find

2	

2 
Y)3Irs)(

2	 00	
&+aD-aRg(

= exp n24
tora

2 22
0QD-QR ) + a	 y2 + µ

and

2 --1
22µ	 E.-g(y) + a2 d	 {F.11)X02(-µl s)	 exp	

fOOO

Zn	 2	 2 (a-1) + a 	y+ µ

where

g(y) = y tan
_1 

l/y.	 (F.12)

It follows from Eq. (F.12) that 0 <_ g(y) <_ 1 for 0 S y <_ o- and that



tanh-1^	
n (F•17)
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2
the following bounds (perhaps rather loose) are obtained for I

1 < X02(-µ,$) 2 <	 a2 + A2I	 I	 _ 2	 2V(a, 1) +

and

2	 (a+QD)2 + a2

01(-A, S )l :5 1 
( a+aD -QR) + P

(F.14)

for m > max (1, -aD+QR), and

--- 22--^ < I X02 (-µ, s) ^ 2 < mast 1,FM2+^
++ p

and

	

a2	 2	 (a+aD)2 + 02

	

2	 2 < IX01 ( -Al s ) I <max 1,	 2 	 2
	(a;arD-QR } 	 + p	 (ac oD-oR) + p

(F•15)

for m < max (l,-ataR) and p # 0. We note that in the t-plane, the

points t = 1 and t = -vD + aR are the right ends of the branch cuts

of	 v02 and Vol	respectively and these cuts lie on the real

t-axis. The left ends are at 5 0 and 	 _ -aD, respectively.
2

The functions	 areare easily found to be2 2
2

(ac-v tanh-lv)2 +	
2

p ± nv	 (F.16)

	

coat	 2

Recall, from Appendix A that the curve C2 (see Figure 2) is given by
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The parametric form of this equation is

	

( R' I = 2 ,  m l = v tanh-1 v, 0 < v < 1.	 (F.18)

(v) 2
We see from Eq. (F.16) that

c272 I 

are the squares of the distance

(in the t-plane) from the point (m,p) to the points (m"(v), T p'(v))

respectively which lie on the curve C2 . Since these functions appear

in the denominator of K	 I2 the integral ral F.I s(µ,v) 
1	

7) will not be

bounded when m and p' are related as in Eq. (F.17). We define

Dmin(m,a) as the minimum distance from the point (m,a) to the curve

C2 for 0 < v < 1. That is,

Vt (v) 
2 

	 2

-1 	
IDmin(%P) =	min	 c2ar2 ,	 c2Q2	 , a < v < 1	 (F-19)

 I )

and Dmin(mPp) 0 for (m.,p) ^ C2 . Therefore, we have from Eqs

(F.16) and (F.19) that

1	 <_	
1	

, 0 < v <_ 1.	 (F.20)

I2s(y) 
2 

^2s(y) 
2 D7

 (m,

L	 Q2 2	 2 2

Analytical bounds for the above function are not as easy to get. For

R 0) "2s(v) Ns(v)] and

2
+	 2 g a,vl,	 (F.21)

W2s(v)aIP=O

where g1
( V  

v has been investigated and tabulated by Case, de Hoffmann,l
and Plac zek (ref. 6) . They show that a (l. A	 occurs at v 0
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I	 ,

for a < n2/8 whereas for a > n2/8 it occurs for v between 0 and

1. For m very large they have gmax -+442/n2 . The present geometric

interpretation is consistent with all of these characteristics. The

radius of curvature of the curve C2 given by Eq. (F.17) is g2/8 at

(m', p') 	(0,0). For a' very large, p l -> n/2 so that the minimum

squared distance from (a,0) to (m',P l ) approaches 7t2/4., 	 agreement

with Eq. (F.21) and g	 - 4m2/n2.
max

-4atA/v
Note that the exponential factor e 	 in Eq. (F.8 ) requires

ac > 0 in order for B 2(m, p) to be bounded since both v and A are

nonnegative. On using estimates (F.14), (F.15) and (F.20), we obtain

from Eq. (F.7) a bound for B 2(a,p) which we denote as B2 (a,a)
max

e -4arA	
([M(

aR -1)-a
Dj 2 + p2(a

R
 -1) 2 (a2+p2)_ 

4D4 n(a, p )	 (atvD-QR)2 + P2 	 19

mi

m > max (l, -eD+QR )

Bm
ax

(a, p) = i
e-4aA	

2 + p2

^+D " (m,_p) max (( M-) 2 + p 2 1
min

2 
+ p2(QR-1 )	 2 + p2j

X	 2p
P 1 0,

I	 0 < m < max(" -aD+QR).

(F•22)
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It can be seen that Bmax depends not only on a, and R but also

the nondimensional material parameters aD and aR as well as the

3

slab thickness parameter A. The estimate (F.22) for Bm	 is not

bounded for the following regions in the s-plane;	
j

Re(s) < -a2 (m < 0),

I
	 s e C2

and

s e branch cuts of vOl(s) V v02 (s),	 (F.23)

These regions must be handled separately. Even for the general case,

where s does not belong to any of the regions (F.23), it appears

difficult to say whether or not the eigenvalue problem has nontrivial

solutions, We suspect that it has only trivial solutions for such

regions since that is the result which has been found for certain

special cases by others. Lehner and Wing (refs. 16, 17) have shown this

for the bare slab, while Lehner (ref. 15) and Hintz (ref. 10) have

obtained this result for the slab surrounded by pure absorbers. We

can show that this result is also obtained for the special case A -+00;

that is, a thick slab.

Since the slab thickness parameter A appears only in the

exponential term of Eq. (F.22), it is seen that B(a,p) can be made

as small as one likes as A -ow if s does not belong to any of the

regions given in (F.23). For I 	 1, the Neumann series

solution of the inhomogeneous integral Eq. (F.3) converges to a unique

solution. (See ref. 19, for example.) Fredholm's Alternative Theorem.

(ref. 19) then guarantees that the corresponding homogeneous equation,



107

namely (F.1), has only the trivial solution. Thus, for s s Ste the

eigenvalue problem has only the trivial solution as A -+c*. When

s e S2i , the unique Neumann series solution of Eq. (F.3) must satisfy

the additional constraint, Eq. (F.4). Using the condition 028(v02) = 0,

we obtain

e-2(s+a2)a/vo2 =	 ie(s) A
I(s)e	 t

p2(s) 
_ Pe (V02 ) -1] 2 + Im2(v02)

Ine(v02 )+l3 2 + Ma (v02)

IM(v02 )	 1 ?m (v42)
6(s) = tan'1	 tan-

Re(v02) - 1	 Re%v02) + 1

Now since Re(v02 ) > 0, we have

('	 A
I)(s) A - 0, Re ( v02 ) 0.	 (F.26)L

Therefore, the Neumann series solution is seen to converge to zero as

A -+ oo when Re(v02) J 0. Note that Re(vo2) = 0 is the branch cut

of v02(s) which is one of the regions given by (F.23) which we must

consider separately. When s e C 2, v02 = Ti, 0 < 71 < 1 so that p2(s)

of Eq. (F.25) becomes

p2(s)	 T1 
_

_ 1)
2

< 1 (F,27)
R 

and p = 1 occurs only at s	 -a2 (that is, (ac,.p) = (010)).

n

_	 _.
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We use Eq. (F.27) in Eq. (P.5) and on taking the limit A 	 we find

that Eli (p, a) - 0 for s e C2, s i -ar2.

Summarizing the results then for A -+=, we find that the eigenvalue

problem has only the trivial solution for Re(s) > - o2 unless s

belongs to either the branch out of v01(s) or v02(s). In order to

see what happens on these cuts, we must write Eqs. (32$) and (3.29)

with Ij± = 0 in terms of the Xjs (-z) functions rather than the

Xo(-z, s ) function. This will be done in the next Appendix. When A

is not large, one has for the problems of Lehner and Wing (refs. 16,

17), Lehner (ref. 15) and Hintz (ref. 10) that if the eigenvalue problem

has nontrivial discrete solutions ) they occur on the real s-axis. For

the bare slab, Bowden (refs. 1, 4) has shown that these solutions lie

on the branch cut of v0(s). In view of these results, it is assumed

that the eigenvalue problem has nontrivial solutions for Re(s) > -Q2

only if s belongs to either the branch cut of vol(s) 012 v02(s).

r

..

aI

a
i

0
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G. Solution of the Associated Eigenvalue Problem for s e 821

In this appendix we look at solutions of Eqs. (3,28) and (3.29)

with Ij± % 0 for s on the brunch cuts of vo j (s). It is convenient

to use coefficients related to the original expansion coefficients

Aj+(v) and ajt (the bar indicates that we are considering the	 is

associated eigenvalue problem) . Recall that the E j± are related to	 !.

such coefficients by Eqs, (3.15), (EA) and (E.5)• We also noted in

Appendix F that the coefficients can be determined only to within an

arbitrary factor independent of v. Following Bowden (refs. 1, 4), we

introduce coefficients Bjf as

Ajt{u) _	 jt(v), 8i± ;;^tblf •	 (G.1)

The estimate B 2(a) p), Eq. (F-22) of Appendix F, was not bounded on

the branch cuts of vo j (s). In thatr estimate we used the Xo(-z,$)

function so that the behavior for s inside, on, and outside the curve

C2 could be seen. To investigate what happens on the branch cuts of

voj (s), we should use the Xjs(z) functions (Appendix A) which do not

inherit the branch cuts of v0j . Also, when v0l(s) becomes pure

imaginary (that is, on its branch cut), we cannot include its contri-

bution (the pole at z' = vo l) in the integral over the contour C'' of

equation (3.29). We note again that the material properties ej and

aj determine where on the real s-axis the branch cuts of vo j (s) lie.

The only restriction which has been made is c l < 1 and this alone

does not specify how the cuts overlap. It does ., however, guarantee

that the branch cut of v0l(s) lies entirely to the Deft of s = 0.
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We consider $ e S20 Sli first. When the relationships (G.l),
(3.15), (E.4) and (E.5) are used in Eqs. (F.3) and (F.4), we obtain

after some algebra and use of the X-identities of Appendix A,

equations for Bb(µ) and the additional constraint, namely Eqs. (4.2)

and (4.6) of the text. Recall that Eqs. (F.3) and (F. 4) were obtained

from Eq. (3.28) with I2+ =- 0. Equations for BL( -µ) and bl+ are

obtained in a similar manner from Eq. (3.29) with I3_+ = 0 when the

contour C' is collapsed onto the interval (0,1) of the branch cut of

St2s(z'). These equations are given as Eqs. (4. 3) and (4.4) of the text.

The normalr mode expansion of the solution of the associated eigenvalue

problem is given in terms of the Bj+ coefficients by Eq. (4.1). We

note that Eq. (4.6) is the exact eigenvalue condition since all material

properties have been assumed. known. It determines the values of

S) (sn}) for whidft the eigenvalue problem has nontrivial solutions.

When s belongs to ti'ie branch cut of vol, Eq. (4.6) takes on different

values above and below the vol cut. Therefore, it is concluded that

the eigenvalue problem has only the trivial solution on the branch cut

of vol. On that portion of the branch cut of v02 which is not a?{

part of the vol cut, Eqs. (4.2)-(4.6) require that the limiting values
of the coefficients above and below the v02 cut be related as

^8±(µ) + s [B-j±(P])

and

Cb-,+  _ +Cb1+] , ' Re (V02) = Im(VOl) = 0
	

(G.2)
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that is, where s is real and is given by

max [-a2, -Crl(l - cl)] < s < -Q2 (1 - C2)- It then follows from Eqs . (4.1)

and (G.2) that the limiting values of ^, , (x,µ) for the same region are

given by Eq. (4.21). From Bowden's results (refs. 1, 4) for the bare

slab, it is expected that the eigenvalue problem has nontrivial solutions

only at isolated points, (s n), which lie on the branch cut of v02 but

not on the branch cut of x'01'

In the lird,t c2a2a -> oo which was discussed in Appendix F, we see

that Eq. (4.2) gives 52g, (µ) -a0 while Eq. (4.6), the eigenvalue

condition, becomes

0 = X2s (-v02) e -(s+a2) a/v02 _ X2s (VO2-)- e(s+a2) a/v02' ca
 a ^ ^o

Xls(-v02) v01 + v02 + X1^^21 v01 - v02	 2 2

Re(v02) _ Dn(vOl) = 0.

(G•3)

Equation (G.3) is the "thick-slab" eigenvalue condition and for the

region of the s-plane where it is valid, it can be seen that we have an

even eigenvalue sn if

X2s( v02) ekf1n12)a/v02

V71 s (VO2-) ( Vol - v02 )	 0
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here we have 'both even and odd parity solutions. Numerical solutions of

the eigenvalue conditions will be discussed in Appendix J.

In the region of the s-plane s e S le n 823 we are specifically

interested in the solution on the branch cut of v 02(s) which lies to

the left of s = -crl . That is, for s real and -or 2 < s <_ -a1 . For

such values of s the solution (4.1) outside the slab is not bounded

as x -4 o, since

c^
*lv(x''1's) _ CPlsv(µ) e

- (s+ 
1

) xw
 , 0 < v < l •	 (G• 5)

i=

In addition, the restriction Re(s) ,> -am on both inhomogeneous terms

Ij+ (see Eqs. (3.30) and (3.31)) also indicates that we cannot deform

the inversion contour to the left of Re(s) -Q 1 in general. However,

when one is looking for the solution inside the slab, Ixj a, perhaps

the inversion contour can be deformed to the left of Re(	 -q1 for

special values of material properties and/or initial data. For

s c S21 n Sle, expansion coefficients for the solution inside the 	 t

slab are obtained as Eqs. (4.7) and (4.8). We note that Eq. (4.8) is

exactly Eq. (4.6) with XOls(z) replacing (vol - z)Xls(z). Recall

from Eq. (A.9) that these are the X-functions which are continuous as

s -+ Cl. Under the same replacement of XOls(z) with (vol - z)Xis(z),

Eq. (4.7) reduces to the equation from which Eq. (4.2) was,,aotained.

Equation (4.8), which corresponds to the eigenvalue condition Eq. (4.6),

determines the pseudo - eigenvalue s. '•t is, the values of s,

-Q2 < s < -art, where T2+(x, µ, s) has nontrivi,al solutions.
f

'"L
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H. Form of *,j (x, µ) on the Branch Cuts of v0 i (s )

In this appendix, we show how the transformed solution *s±(x,g)

is put in a form where one can see how it behaves on the branch cuts of

v0j (s). We expect that *,± inherits the branch cut of voi(s) since

only one of the two discrete modes appears for jxj > a. Such branch

cuts appeared in the half-space albedo problem solved by Kuscer and

Zweifel (ref. 14) as well as the two dissimilar semi-infinite media

problem solved by Erdmann (refs. 8, 9). We also expect that the branch

cut of v02(s) is not inherited by *s+ but instead one should find

poles at s = sn, the place where the associated eigenvalue problem has

nontrivial solutions. This is what Lehner and Wing (refs. 16, 17) and

Bowden (refs. 1, 4) found for the bare slab.

It is not obvious upon looking at the equations of section III which

determine the expansion coefficients implicitly how we should group

terms to show what we expect. We start by looking at *p+ (x,µ,$).

From Eqs . (3.3) and ( 3.8) of the text we have that

r
^V2±(X,,µ.,s) = ate+ 1*V02^(X)P^8) ± *-V02(XYµ.$)

f

1
A2+(:v) ^2v( x.µ) s) + *2(_v) ( XYµ, s) dv

0

+ F2±(x,v02Ys)*v02(xYµ,$)

F2±(-XYv02, $)*-v02(xYµ,$)

1

+f[F2+(X-vV-'S)*2V (x-' ^L-1 s) + F2+(-xv,$)*2( w )(x,µ,$)1dv.-0
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Note that this equation can; be obtained of course from Eqs. (3.36) and

(3-38)- It is readily shown from the definition of the F j functions,

Eqs. (3.10), and the properties of the C j+, Eqs. (B.11), that

F2+(X.,v02,t s ) = F2±(aIv02ys) ± F2±(-x,-v02,$)

and

FP-v02,$) = Fp+(a,-v02,$) + F2±(-x,v02,$). 	 ( H'2)

It follows from Eqs. (H . 2) then that two coefficients in Eq. (H.l) can

be written as

Fp(X I v02i s ) _ 2 [F2±(x)v02ys) ± F2±(-x,-v02,$) + 2 F2±(a,v02)s)

and

±F2j(-X)V02Ps)	 2 F2±+( x, - V02 .1 	 ± 
F2±(-x, v02) s ) + 2 F2±(a.,v02.,$)-,

(H. 3)

there we have used Eq. (B. 12) to replace F2±(a,-v021 0 . Equation (H.l)

becomes then

*2+ (x -4-1 s ) _	 + 2 Fq s)	 v02 (x>µp s ) + *_v02(xlµrs)

+f
l	

ti_

AZ+( v ) 2v(X .,µ. S ) ± *2(-v) ( Xt µ, s) dv
0

2IF2±(X)'vO2ls) ± F2+(-X,-v02's) *V02(x^µ's)

+ 2 F2±(x,-v02,$) ± F2+(-x.I v02' s) _v02(X.,µ,S)
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r

1`
When s c 'branch cut of v 02(s), we have v02 = i IvO21 for ?.m(s) = 0-

and v02 = -i IV021 for Tm(s) 0+ . Therefore, on going from below

the v02 cut to above iu, we see that the third and fourth terms in the

RHS of Eq. (H.4) simply interchange while those containing F2+(x,v,$)

and Fp+( -x, v,$) are unaffected since these functions do not depend on

v02 . The coefficient of a2± + 2 F2±(a)v02,$) changes sign however

for odd-parity solutions and we do not yet know how A 2+(v) behaves,

By comparing Eq. (H.4) with Eq. (4.1) for 1 x I < a, we suspect that

a2+ + F2—+ (a,vo2,$) is the coefficient which excites the associated

eigen-solution 7s±(xr4) . This is the information we needed to see how

to group terms in the implicit equations for the expansion coefficients.

Now we look at the equations which determine the expansion

coefficients. We obtain from Eq. ( 3.17) upon using the X-identities,

the definition of the hi functions (Eqs. (4.5)), and the relationship

between the E+ and the original expansion coefficients that

1	 h2(y02) + h2('v02)0	 a2± + F2_F (a' v02, s) v
2	 + v 

_ Vo
l01	 02	 l	 02

+ 1 F
2+( 

a v s) h2(v02_) — h2(-v02)
^

2 _	 02^Vol + v02 Vol - v02

1[
	 C+ f A2+{µ) + FZ+ (a.,µss) h2(µ) µ + y

0	 01

1	 + vµ
±^ FL(-a,µ.$)hl(µ) 2	 012

0	 µ	 v02

2v01

'F F1+(-a,vola s)hl(v01)
2 x022Vol 

(H. 5)
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Following the same procedure with Eq. (3.16), we obtain after several

partial fractionings and use of Eq. (H.5)

A (v) = viol Fl+(-a,v,$)e(Ql-Q2)aw
2±	 c2Q2

k.. S?2 	 y022 - v2 h2+
2 , air. (00) vp12 - v2 92(v)

X+ l F ( a.,v ps) h2(̂+ h+ 2	 02	 v + v02 v - v02

+ 1 F (acv ^s) h2( y02) + h2(-y02)
02	

v + v02 v - 'P02

1 [+ f A2±(p) + F2±( a .,µ, s h	 d"2 (µ) + v)
0	 µ

2	 21	 v01	 µ 2(P28v(µ)
+	 F1+(-a,,µ,$)hl(4)	 --- dv

0	 v022 µ c2Q2v

From Eq. (3- 19)., we get

+hl(-v01)al± =a2+ + 1 F2±(a ? v02 s) h2(v02) 
± h2(-v02)

+ 2 F2± (a' v02' s) h2(v02) + h2(-v02)

+ N22 - v012 ) f 
1 

A2±(µ) + F2±(a>µ	
^,

,$) h2(µ)

	

0	 µ	 Ol

1
+ (v022 - v012 ) J Fl±(-a,µ.,$)hl(µ) 2 241 2

	

0	 µ	 v02

+ FL(-a, v0l^ s) hl(-vol) + hl(vol)

j
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Finally, we have from Eq. (3.18) that

A,+(-v) . '2Cr2 A,(v)e(crl-o2)a/v ^, ks n2s( co) hl(V)
clol	 2 5ls oo) gl v

X a + 1 F av s h2(^1.h2
2	 (' 0 ' ) v - v02	 v + v02

+ l F (a,v s h2(.- + h2(-y02)2 2±	 02^) v - v02 v + v02

Î 	 + 1 A µ+ F a µ s h µ ^9lsv(µ)J	 ^C)	 2±C^.,) 2C)	 --
0	 11

+f
l	

y012 - µ2 dp

o F1+C -a^ µ^ s)hl(µ)	
2	

2 -- y

 
v02 - µ µ +

+ Fes(-a,v,$)	 "C'
cicrl

4

(H.8)

We now follow the procedure of Bowden and Williams (ref. 4) and

write the expansion coefficients A j+(µ) and aL in the form

A± (µ)	 [aa + F (a)v02,$) A` ±(µ) + Bj±(µ)

and

aL = [a,+ + 2 F2± (a,.v02Ys) 'a'l + bI+(µ)

When Eqs. (H. 9) are used in Eqs. (H.6)—(H.8) it follows that

(H•9)

A'j±(µ) Bj+(µ) and a' l+ = bL ,	 (H.10)

where Bj+(µ) and b+ are the expansion coefficients of the

associated eigenvalue problem given by Eqs. (4.2)-(4.4). The

coefficients B j+(p) and bL are fo=d to be given by Egss. (4.1o)-(4.12).

i

1;
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f

The coefficient aZ is obtained from Eq. (H.5) as

[6,2± + lLY  F2+̂(arv02^s)2(v02) 
+ 
h2(-V02) + 

1 
B (µ)h ()v + v 2	 v	 ,^ ^ 2	 + v[Vol	 0^ 

V
ol	 02	 0	 µ	 OZ

h2(v02 )	 h2(-x02)

2	 vol + vp2 Vol - x02

fB,(µ) + F2±(a,^i,$) h2(µ)

f
1.
F1+ ( -a, µ s ) hl(µ) 'L- 0o d

0	 µ - x02

+ Fly(-a ) v01^ s)hl( vOl) 22x01 2 • 	 (H. 11)
x01	

x02

It can be seen from Eq. (4.6) that the coefficient of

[a2± + 2 F2±( a,v02, s)] in Eq. (H.11) is the eigenvalue condition, and

it will be zero at the places where the associated eigenvalue problem

has nontriv al^solutions. Equation (H.11) appears in the text as

Eq. (4-13). The solutions J.;.(x,µ, s) can now be written as

Eqs. (4.16) and (4.17) of the text.

n

i

4.

j

S

i

a

i'
r

r

'r

ii

f
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I. Behavior of *a.t(x, µ) on Inversion Contours

In this appendix, several points concerning the behavior of

*,+(x ) µ) on the integration contour of the inverse Laplace transforma-

Lion and some portions of related deformed contours are discussed.

First, we look at the behavior of *, j (xt µ) as ( s 1 --^ oo with

Re(s) = V a large finite positive number. It will be seen that

*s+ (x,µ) is not necessarily 0	 Such parts of *,j(x,µ) are

inverted separately and the resulting solutions are shown to satisfy the

uncoll.ided transport equation. Then we consider how *s+{x)µ) minus

the uncollided term, *U+(x)µ,$), can be deformed around the poles and

branch cut of 
*s+ 

which were discussed in section IV.

We are interested in the behavior of 
CVs+ 

on the contour

Re (s) = y as I s I -*oo, where y is finite. For such cases,

s E Ste n Ste and the solutions
J+

 can be seen from Eqs . (3.3),

(3.4), (3.8) and (3.9) to be

z+;(x^ µ^ s)	 [A2±(v) + F^(x,v, s )
 e-(s+v2)x/vq)2sv(µ) dv

0

1
+ 	 [A,(v) + Fp+ (-x, v, s ) e (S+ar2 ) x/^V 

'P2s v ( -µ) dv
0

(I.1)

and, for x > a,

. n

V^L(x^µ^s) = +
f

l [Al+(-V) - F±(-a,v,$) + FL(-x, -v ) s)
0

X e-(s+Ql)xwcpl 
sv(µ)dv

+	 F-x)v s)e	 CPlsv(-µ)dv, (I.2)

.	 t

1

y _^..	 + $	 d
	

h.. oCAo*e	

H_.	 -	 t.	 .	 __,	 _,F
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XO(z , s) —4 0(l),

and, for 0 < µ, v < l

r

Cpisy(W -a 0(s)

and

(P,jsv(-µ) -)0(1).	 (1,;7)

The Fj+ functions appear with an exponential factor and its behe,,V.or

in the same limit is

Fj ±(x,v,$)e-
(s+crj)x/v-► 	 1	 e-^(s+aj)(x-x0)/v f (^±	

1 

^ dx0v s f x x0 )v) +0 c s 

	

-^ 0(1	 (I.8)
s^

On using Eqs. (I.7) and (I.8) in Eqs. (I.5) and (1-6) we find that

- I2 (µ, s )— --^ F	 aji s) e ( sidl) a/µ —^ 0(1 )	 (I.9)
qs (4) nj^ (

and

IL+, (µ, s)
-a 'FL±(-a,µ,$)e-("l)a/µ ± Fp+(a.µ,$)e-(s4-a2)a/11

ail (µ)nis(µ)

_. 00 1,	 (I.10)

The coefficient Am(µ) is obtained from the integral equation (I.3).

Since the kernel of this equation is also 0(S), the first term of the

Neumann series solution will give the behavior of Ap+(µ) as

Isl  -* oo. It follows then from Eqs. (I.3) and (I.9) that
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A2±(µ) -+Fl±(-a,µ,$)e-(a2-al)a/9 -^O(^). 	 (T.11)

Using Eqs. (I. 10) and (I.11) in Eq. (I.4), we obtain

[A,±(-iL) ± FL(-a, µ,$)] ->± F2±(a,µ, $)e - (Q2-al)a/4

Fj+(-a..µ, s)e-2(a2-al)a/µ

O(1l6	 (1.12)	 I

These last two results are used in Eqs. (I.1) and (1.2) to get

(s+C12 ) e- (s+C'2) X/IAIF 2± (x, µ, s) + FL (-a, µ, s) e - ( a2-a1) a/µ ,

)	
µ > 0

(x, µ, s -^
+ (s+d2) e - (s+a2) x/µ F2± (-x., -µ, s ) + FL ( -a, -µ, s) a (a2-ol) a ,

µ< 0

(I.13)

and

+(s + Ql) a -( s+Ql)X/µ F1±(-x, -µ, s) - Fl++(-a, -µ, s)

+ Fp++(a,µ,$)e-(e2-al)a/µ

-2(Q Q )a/µ1

(S,.+ arl)e -(s+al)X3µ Fl+(-X, -µ^ s).,	 4 < 0"
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can be written as Eqs. (5.1)-(5.4) of the text, where we have used the

symmetry properties of fj+(x,). It can be seen from Eqs. (5.1)-(5.4)

that *j+(x,µ,$) is not necessarily0 6). In fact if fj+(x0)4)

contains 5(x - x0) then *s+(x,µ) is 0(1) as ( s 	 oo, Re S )	 y,

The parts of *s+(x,µ) which are not OW can be inverted by

inspection after a change of variables is made.

We define *us±(x, µ) for x > a, µ > 0 and all s as

'bus±(x, µ)	
xµ f e-( s+al) (x-x0 ) /µ fl+,(x0, µ)dx0

a

e- (Q2-Q1)(a-x)/µ a+ 	
e- (s+a2)(x-xo)Iµ 

f ( 'µ)Vi

µ 2± x0	 0
-a 

e- ( Q2-arl)2a/4	 -a e -(s+al) ( X-xO) /µ f
µ	 —oo

F__,

(I.15)

which gives the portions of Eq. (5.3) which are not 0(1)for

I s I + oo, Re(s) = Y. Now we make the change of variables

x - X0 = µt,	 (1.16)

where t >_ 0 since x >_ xo and µ > 0. Equation (1.15) then becomes
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r (x-a)/µ
'bus±{x, µ) = J0

(x+a)^I

(x-a)^µ

+ft
ao

x+a)/µ

e- (s+cri) t 
fl+(x µtyµ)dt

-(s}o2)t	 (ail -a )(a-X)/µ

e -(s+arl )t e-(ar2-al)2a/4 fl+(x - µtrµ)dtj

(1.17)

which is easily seen to be Eq. (5.6) of the text with *u+(x,4,t) given

'by Eq. (5.9). For µ < 0, we use

x0 - x =I^Ljt.	 (1.18)

It is seen then that all of the results given as Eqs. (5.6)-(5.10)

follow.

Another point to be discussed in this appendix is the contribution

from the contour Cp (see Eq. (5.16)) around the right-hand end of the

branch cut of v01(s) as the radius p goes to zero. This branch

point is ,located at s = arl(l - cl) so we define

S + al( 1 - cl) = peicp.	 (1.19)

Here v0l(s) -t^ oo as p --^ 0 as

v012 ^ C1011 1 , -n < (P< it.p^ --3— peiT
	

(L. 20)

The branch cut has already been picked so that v 0l(s) is real when

s is real and greater than 	 c,). The interrral i
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f*s±(X, µ) est ds =	 P *s±(X, µ) ,!st e t. -'P d(p,
C P 	-n

(1.21)

with s given by Eq. (1-19), is zero in the limit p -a 0 if

P-m0 [P*.±(X.,	 = 0,	 (1.22)

independent of (p. As pointed out in section V, the point

S = -al(1 - cl) may happen to satisfy the eigenvalue condition,

Eq. (4.6). we assume for the moment that it does not and show later

what changes are required if i;, does. The function als (ao) -4 0 as

P -4 0 as

SZls(co) P 0 Pei
	

(1.23)

so that

vol2als (°o)

	

	 = cam•	 (I.24)
s=-ctl(1-c1)

At this branch point s e Sli n S?i so we need -to show the behavior of

all functions given in section 1V as p ->O. This behavior can be

given in terms of the behavior of vol and als(00). In the relati on-

ships which follow, quantities which are functions of s will be

given as 0(vol), 0(llvol), 0(Qjs), 0(1), etc. as s --^ -al(1	 cl) .

For example,

nls(W)v012 -), finite -+ 0(1),	 (2.22)

f

j
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where we have given the eg3uation number as that from which the relation-

ship can be seen,

x js (-W -+ 0(1),

xjs(+v02) -+0(1),

and

xjs(`}'v01) -o 0(1/v01 ) .

ks _+ 0(1) .

h2((0) -'0(1), (0 	 µ(^	 µ	 1),

gj(µ) -o(1),

hl(4)	 0(SIls)

and

hl(±vol) -0(1/vol).

:F2±
	 0(1)

bL -+ 0(x01)

By{-µ) -^ 0(1)

*2±(X , µ) s) -^ 0(1)

and

(A. 8a)

(C•7)

(4.5)

(4._2)

(4.4)

(4.3)



and

and

B2-+(v) --X0(1).

BL(-v) -+0(1).

al± -+ 0(1)

wa -+ 0(l) .

P3 + -+ 0(l)

aP+ -+ o(l) .

(4.14)

(4.15)
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F+(-a,vol,$) -^O^1/v01)

N
and

( 3.10)

[b
i
+ - F±(-ar Vol, s) j -4 O(v01) .

(a2± + 2 F2± (a., v02 ; SO -X0(1).

*1+- (X) 4 ps) -+ O(v01)

We have from these last two relationships and Eq. (I24) that

(4.12)

(4.13)

(4.16)

(4.17)

P*r ±(X.' O --aljP 0(l),	 (1.25)

so that Eq. (I.22) is satisfied. Therefore, there is no contribution

from the integral (I.21) for the,case when s -gl(1 - cl) does not 	;D

satisfy the eigenvalue condition ., Eq. (4.6).
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If the point s = -ol(l cl) happens to satisfy the eigenvalue

condition, then the denominator of Cap* + F2i(a) v02A , which is

equivalent to the eigenvalue condition Eq, (4.6), vanishes. it can be

seen from Eq. (4.13) that the limiting form of this condition at the

branch point is o^+ = 0 and we shall say something about it in the

last two appendices. If we consider, for such cases, the function

*$+ (X,µ) - Cap + i F2±(a.,vo2)s)] Ts*(X)µ)1	 (1.26)

instead of *,+(x,µ) as the integrand of the integral (I.21), then it

follows that in the limit p --0, the contribution from such an integral

vanishes. The part which has been subtracted from *,,(x,µ) in (I.26)

is considered separately and would appear to have a pole, due to the

zero in the denominator of [a2±+ 2 F (a,v02 , s.)]. its contribution

therefore does not vanish in the limit p -^0, in fact, its contribution

looks like a discrete residue term. However, the point is not isolated

(remember that we are considering the branch point of vo l at

s -al (1 - cl)) so we shall understand that its contribution is

included in the branch-cut integral term of Eq. (7.1). We shall see

from the numerical results that such points occur.
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theza, eqpations are sc,::,re-i	 using the procedure of ',-:eferences

I and 4. As pointed as  in Secti
o
n VI., the above equations can be

written in terms of the nOndimensional quantities introduced in Eqs.

(6.1). By wing the zubstiimtion

^:(14)h2(14)
1±1

lVO2)
-
(

At(sA)	 V ^.
f 0 	 'Ls

it follows that Bq,. (4.2) can V-'.- ^otAeLte-11 for 	 real and

k	 of the branch out Of
( 4tvMax -c'D + CrR.' 0) < < 1	 on that part

V02 which is not also part of the branch cut of vol) as

where

and

B±(^L) = -6fµ) +O	 j	 B4-(V)	
V,L- 

+ I V02 1 2 	 2, 0 - 
7-+-41

0

2 

4(1 - t)e 
-2 ^A/g 

g2 + 1 V021 
2

g(4)	
lt(V02) X2t(-	

2
X  2t(g)	 + V01)

c 
2 

CY 
2

2 2

tNd Im X2t(VO2) e tAN2
Re

x1; .1 t(V02 ) V01 - V02

i	 I
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Now we define At+ as

I
tat± a -2g± 'F fro B+ (v) dv,

0
(J.4)

which is the eigenvalu^, condition, Eq. (4.6), if At+ = 0.

Equations (J.2) are reduced to two sets (*) of N equations in

the N unknowns B+(gi ) and B- (µi ), i - 1,...,N (see for example,

ref. 24 1 ) given by

N
	u ig+	 Iv02^g+ 1	 B±(4j)

µi + I v021	 s1	
µ + µi

where R  Is the weighting function for the numerical integration

scheme which is used. Equation (J-4) is written as

N

Ate. = -2g± :F	 B j B+(µ j ) .	 (J.6)

J=l

Since we must search for values of 	 for which Al ± = 0, it is seen

that we must be able to compute all quantities which appear in Eqs.

(J.3) for any value of 	 in the range (6.3). These quantities are

computed as follows.

nit( v02 ) 	 + OD - taR

	

Pjt(00)	 + aD - oR

Cµ)2(µ)	 l+	 n 2
22 __2 in(—µ1+	 (J^a)

c2ct2

ii
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The functions v0i are determined by 0 1 ^(v0j) 0 and they are

computed numerically using the Newton-Raphson iteration (ref. 24) on

the nonlinear equations

Iv02 1 tan-1 v
02

l	
t	 (J-9)

and
r

V tanh-1 
1 

= t	 (J.10)
01	 Vol

R

The X-functions are computed from the first relationship in Eqs. (A.8a);

namely,

1	 1	 l	
"A(v) dvXj 5(z) =	 exp	 to -----: (J.1.1)

1: - z	 2ni ^ o	
fi (") v - 

z

For	 and z reel where z -µ, 0 < µ < 1, we have from Eq. (J,11)

that

2r.	 .µ) _ exp 1 11E)2(t.,v)-6, I Q , v ) dvl(tQ R D ^v + 4)	 (J.12)
Xlt(-µ)	 0

where

e2Q, v) = tan
.1	 .Irv/2

- v tanh-1 v

and
QR, nv/2

8	 ,1(C aR. QD, v) , tan 
	

-1t+aD - arRv tanh _ v

(J•13)
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For t real and z = v021 we calculate the real and imaginary parts
X	 )

of 2 
(v 02 as

Xlt(v02)

X2t(V02)
	 cos (r2/70cos TRe	 e	 2/n)

Xl V02

and

2(̂vo2) 	 rl jn
Tm1.11 a	 sin(rp/n),

Xlt(V02)

where

(J.14)

rl f e2MV) - 81(^,oR>QD,v) 2 
vdv 2'

0

1 

	 v + IV02

and

l

r2 = IV02 
I f [02(t-'V) 	 el(t, QR, QD, v )	 2 aV	 2 .	 (J.15 )

0	 v + 'v02 I

Integrals in Eris (J.12) wnd (J.15) are computed as

M

f

1

,. e2 (5; v)- el(t,aR,aD, v ) f(v)dv = Ri 82(t, Vi) - el( t., 	 f(vi),
i=1

(J.16)

where R  is again the weighting function for the numerical integration

scheme.

In all numerical integrations, we used Gauss' Method (ref. 24).

For integrations in Eqs. (J.5) and (J.6), the interval (0,1) Was
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(0,1) = (0,0.05) + (0.05,0,1) + (0.1,0.9) + (0.9,1.4), 	 (J-17)

and we used a 10-point Gaussian formula in each subinterval. For

integrations in Eqs. (J.12) and (J.15) the interval (0.1) was divided

as

(0,l)	 (0,0.1) + (0.1,0.9) + ( 0 . 9, 0 .99) + (0.99 + 0 .999) + (0.999,1.0),

(J.18)

and in each of these subintervals we also used a 10-point Gaussian

formula. The subdivision (J.18) is the same as that used by Kowalska

(ref. 11) and the X-functions calculated here agree with those she

gives to all figures which she quotes except for the real and imaginary

parts of Xjt ( v02 ) She apparently used r2 instead of r2/n in Eqs.

(J.14) to obtain the numerical values for the real and imaginary parts

given in Part II of reference 11. Since her later published critical-

slab results (ref. 12) agree with those of Mitsis (ref. 20) for a bare

slab, we expect that this oversight was corrected.

Conditions (4.7) and (4.8) which determine the pseudo-eigenvalues	 r

for s E Sle n S21 lead to very similar equations which will not be

written down. In this region, the real s-axis corresponds to

0 < < -aD and such equations need be considered only if -vD > 0.

The procedure we use to calculate the eigenTvaluesn is as

follows. For fixed values of A QR and QD, we select a number of

values in the interval given by (6.3). For each of these values we

obtain Lv02
1
 and vol from Eqs. (J.9) and (J.10) by iteration

(Newton-Raphson). Equations (J.13) are evaluated at each of the



(J.19)8± - 0,

k Y
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50 Gaussian integration points, v3, 0 < v i 
<1. Next., the X2... t

( µj)
Xl 

t 
( -µj )

are calculated for each of the 40 Gaussian integration points,

4p 0 < µj < 1 by using Bgs. (j.16) in Eq. (J.19). The real and

X ( v )
imaginary parts of 2t 02 are computed in the same way x'r+73? ^.s.

X1t(v02)

(1.14) - (J.16). Now we can compute g(4 j ) from Eq,. (J.3) at each of

the 40 points gj and evaluate all of the coefficients in the two

sets (+) of N equations in the N unknowns B +(µj ) and

B-(µj ) (Eqs. (J.5)). These two sets of simultaneous equations are

solved numerically for B 4.(4j ) which are then used to compute 0t+

from Eq. (J.6) at the selected values of 	 lu this way we locate the

zeros of At+ approximately. A new set of	 values, located about

each approximate tn; is selected and the process is repeated. For

the present computations, the to were located to three figures.

Discussion of computed results is given in section VI.

In Appendix G, the thick-slab eigenvalue condition was given as

Eq. (G.4). We note that g+ given by Eq. (J.3) are, within a factor,

exactly the quantities needed in Eq. (G.4). Therefore the thick-slab

approximation eigenvalues are obtained from

as would be expected from Eq. (J.4).

The bare slab eigenvalues are obtained when QR = 0 and it is

easily shown that in this case Eqs. (J.5) and (J.6) no longer depend

on QD. That is, for aR 0 these equations do not contain QD '
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We have noted in section V and Appendix I that the branch point

of 
Vol 

located at s -al(l - cl ) may happen to satisfy the eigen-

value condition, which can be seen from Eq. (4.13) to be

M1± 0
	

(J.20)

when Vol -> w. This point corresponds to t = -aD + aR and it can be

shown that Eq. (J.20) then determines values of t = to which do not

depend on aD or aR . That is, if we use t = -aD + aR to eliminate

aD from the condition (J.20), then a'R drops out of the equations.

Equation (J.20) determines the values of t at which eigenvalues

disappear into the right end of the branch cut of v01. We also note

that the limiting form of the pseudo-eigenvalue condition for s = -al,

which corresponds to	 -aD, determines the values of	 where the

pseudo-eigenvalues disappear into the left end of the branch cut of

Vol. Such points, as well as those given by Eq. (J.20), are labeled

with * in Figures 6-9.
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K. Remarks on Eigenval.ue - Branch-Point Coincidence

In this Appendix we make a few remarks concerning the situation 	 .

when the eigenvalues (or pseudo-eigenvalues) disappear into the branch

cut of v01 . This situation is somewhat analogous to that encountered.

by Hintz (ref. 10) for the slab surrounded by pure absorbers. He

could not say whether a bare-slab eigenvalue (which does not depend

on aD) that happened to coincide with -aD belonged to the point

spectrum or the continuous spectrum for his problem. In the present

problem, the eigenvalues coincide with a branch point as they disappear

into the branch out of v01
0

 We have not made a numerical study of the

branch-cut integral in Eq. (7.d) nor have we looked at the eigenvalue
R

i

condition on another Riemann sheet. We suspect that there is no
Y

drastic change in the shape of the solution given by Eq. (7.1) when

an eigenvalue disappears into the branch cut of vol and such studies

would resolve this point. We pol,nted out in Appendix J that the
f

i

condition (J.20), which determines whether or not the point

s = -al (1 cl ), Q -aD + a'R )j is a zero of the denominator of

[a2+ + I Fes. (a, v02, s] given by Eq. (4.13) does not depend on aD or

aR explicitly. In Appendix I, we indicated that the contribution

from such points should be included in the branch-cut integral since

it arises from the integration around the branch point. We understand

then that such a contribution is included in Eq. (7.1) if

s = -al(1 - cl) happens to satisfy Eq. (J.20). We do not know how such

zeros of Eq. (J.20) behave or appear in the solution after passing

r	 through the branch point as the material properties are varied.}
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If one considered the problem of a finite slab with symmetric

reflectors of finite thickness then he might be able to see what is

happening at the places where the eigenvalues coincide with vol = oo.

In such a problem, the solution probably does not inherit the branch

cut of vol, but instead has discrete eigenvalues along it. Even

though there is another parameter in the problem the reflector thick-

ness, one might be able to do a numerical study of all the eigenvalues. s

{
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