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The restriction to a stationary, conducting surface in the proof of

Birmingham and Jones (10) is removed. When the conducting surface S is

moving and/or deforming, field lines are identified by the fixed material

point at which they pierce S, provi&Ed E ll is zero everywhere outside S. We

illustrate the utility of this field line identification by examples in which

general results °follow from knowing the topology of the magnetic field.

- 2 -



Identification of Moving Magnetic Field Lines II;

Application to a Moving, Ton-Rigid Conductor

Frank C. Jones and Thomas J. Birmingham

introduction

In a previo-us paper (Birmingham and Jones, 1968) hereafter called I. we

condidered the identification of magnetic f ipld lines, all of which at least

once pierce a stationary, arbitrarily shaped, perfectly conducting surface.

(The motion of the field lines is due to time varying currents external to

and,/or within the surface.) Provided that the entire region external to the

surface is filled with a conducting plasma so that no electric field

parallel to B exists, a magnetic field line is usefully identified by the

fixed point (or points) at Which it crosses the surface; the same field line

always intersects the surface at the same point.

}r

^k

^f

This identification of magnetic field lines is useful in following the

motion of low energy charged particles (for which magnetic gradient and

curvature drifts are unimportant). Such particles undergo Ext drifts which

keep them frozen to field lines identified in this manner. Thus, for
y

example, one can legitimately follow the motion of a low energy particle

r'A..	 during compressions anX expansions of a model magnetosphere by merely tracing

the motion of the magnetic field line on which the particle is initially,

located (Hones, 1963; references in 1).

We show in this paper that the restriction to a stationary surface in I is

unnecessary. When the conducting surface is moving and,/or distorting, the
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useful field line identification is the one in which the same field line

always cuts the surface at the same mater_''.a1 point. The identification of

field lines here, of course, reduces to that of I when the conducting surface

is stationary.
w

Use of the field line identification introduced in this paper permits

us to make general predictions about the motion of particles in the presence

of moving magnets or the combined effect on particles of both moving magnets

and external currents.

We stress that the results of this paper are general, untied to

particular model of the electric and magnetic fields. We require only that

all magnetic field lines pierce the perfectly conducting surface at least once

and that the parallel electric field be zero everywhere outside the surface.

The utility of our results is that the motion of low energy charged

particles becomes evident from the mere topology of magnetic field. lines.

The often cumbersome task of calculating explicitly the electric field

(Schulz and Eviatar, 1969) is uronecessary.

To some readers our results will seem intuitively obvious on the basis

of Cowling's Theorem (Lundquist, 1951; 1952). Cowling's Theorem, however,

applies to a medium in which the electrical conductivity is infinite in all

directions. We assume only that the conductivity parallel to B is infinite;

the -perpendic.•ular conductivity is unspecified and may even be zero.

Field. Line Identification

As in I we introduce the notion of the Soler potentials o{	 ,

and fj t ,1 where U = Va/. X ^	 and we may define the vector potential
1 -	 Aw
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A :^ °C V e	 . We have for the electric field

E	 cat

wx
c + P)

where

I	 ^

The velocity



'D 
X	 Tx1X 	 = O

The two velocities differ by

IrE — VV
	 L X^	

c^)

In I we considered the case where all magnetic lines of force pass at

least once through a perfectly conducting, stationary surface S. We were

able to show that a given field line could be uniquely labeled with the values

of v( and	 6	 determined by the point (or points) where it crosses
the surface S. This was possible because on a perfectly conducting surface

yr - 	̂ = coast. where J is the Jacobian and X l and X2 are

curvilinear coordinates in the surface. From this condition it followed that

we could make the time independent gauge choice 	 ^P^ t Z 0/at = O
everywhere on the suxface and the values of v{ and 0 on the surface
uniquely label a field line for all time. This gauge choice is equivalent

to the condition	 O	 on S.

Combining this condition with the fact that the tangential electric

field must vanish at the conducting surface we see from equation (1) that

	

^f + q) 	is constant on the 431Arface S. Filling the volume with a

plasma such that E B I 0 forces j f q	 to be constant along

any field line and hence throughout all space. Flquation (4) then says that

	

'M W	 and trapped paaticles' E X	 drift motions cause
^.

them to remain "frozen" to a particluar field line which is defined by the

fixed point where it crosses the surface S.
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In the foregoing, which is a brief reviev of the argument presented in

1, it was assumed that the surface was rigid and fixed in space. It is the

purpose of this paper to sbx)w that this condition is not necessary; the

surface 8 trasy be allowed to move, bend, and even change its area vo long as

the surface coordinates Xa, and X2 refer to a fixed matte point of the

surface.

A
In I we showed that if n is the (fixed) unit normal to the surface

at X.-, X2 them	 t4,
	

and since	 consteX')

for a rigid, fixed conductor we were able to infer J -^'--	 const.
17X

However, if we consider a small area of the surface dX # d,X; we have

IX)

R

S.'

which is the magnetic flux through the area defined by dXj and dX2

(Northrop, 1963; Stern, 1966). We now note that if the material of the

surface is a perfect conductor any motion of this material will be fluor

Preservi 	 i.e., any closed loop of material will move in such a way as to

keep the flux that it encircles constant. Thus if the coordinate system

X10 X2 is fixed with respect to the material of the surface, an area of a

particuL3x materiai loop will be characterized by dX l Ug where dXl and dX2

are constant. Flux prgserving motion then implies J - ) 9	 dX1 dX2

kX>xi_
= const . and hence J(	 = coast. If	 { r ' 6 lXI
and v^ t p ^ (tj	 label a fixed material ( X1, X2 ) point at two

7times t, and t.2 , it then follows that	 ^ 	 ^ t ^ !	 ^ I ^	 - 10
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so that (as indicated in T) changes of +( and g with time at Xx, .X,a are

simply relabeling or gauge transformations.

We can now see that a unique labeling of the lines of force is still

possible as long as the labeling is referred to the material point where the
f

field line crosses the surface. The boundary conditions on the surface are

no longer	 ^ =^+"^	 but rather Vol^ Vdt	 -V
0 where V::	 ^,	 is the instantaneous velocity of the surface

point X L , Xg	 Inserting this condition in equation (2) we Obtain for th&

boundary value of 1/1^

W s
	 V	 17 ve Vv^ V^) x F/tz

ONO

Die boundary value of W on S is then just equal to	 The boundary
0%0	 WV

condition on the tangential electric field is now that ^ - _ Y X '.^
. ?ah	 .'.

so we see that we still have the condition f + T 	 const. on the

surface. The condition E 	 =	 once again forces	 4. P to be

constant along any field line and hence constant everywhere so we are led

once: more to the condition 	 everywhere and in addition

f'  eW = w 1	 on the surface S.
-^E

The reason that our result is the ,same as that obtained using Cowling's

Theorem is due to the presence of the conducting surface. In our mudel per-

pendicular electric fields in the moving_ fraw are short-circuited by charge

,1;.
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motion along field lines together with charge redistribution between field

lines vJa S. This manneiv of short -circuiting depends on a global picture of

the plasm, and is in contrast with the MM (Cowling) picture where the

short-circuiting is produced loci by charge motions perpendicular to B.

Rxanples

We distinguish between situations in which the source of B lies totally

within 8 (Case a) and those where there are external sources (Case b).

For Case a magnetic field lines move rigidly with g (assuming that the

Alfven, propagation speed of B is much faster than the speed at which g is

moving) and low energy particles drift with them. This conclusion is in-

dependent of the nature of B. In particular it holds for m y of the familiar

models: B is the field of a centered dipole rotatit,g about ',"!:; magnetization

axis	 (Davis, 19^+ s 1948), or B is the field of a c^.i:pol, centered or

eccentric, whose magnetization and _rotation axes are non- parallel (Hones and

Bergeson, 196 ); or B is the compoel.te field of several multipole sources

(e.g.. Cain et al.., 1967) .

An example of Case a is the uniform rotation of S. Field lines then

rotate :rigidly, whatever the Model. Low energy particles, frozen to field

lines, also co-rotate if one neglects gyration and bounce motion. (Me

gyration and bounce motion produce no net change in position or velocity when
t

averaged over a gyration and bounce period respectively.) It is clear then

that a particle's drift energy does not exceed the (constant) energy it at-

tains when its position on the rotating field line is farthest from the

rotation axis. Rotating magnets are tlus useless for energizing law energy



particles (Hones, 1963).

The results of the preceding two paragraphs are not surprising nor ., as

applied to specific models, are they new. Our claim is that as derived in

this paper these results are general and rigorous.

In Case b field lines also remain entrenched in S and their feet move

rigidly with S. External to 8 the field lines move simply, though not

rigidly, with S provided that field lines are not rooted in aV,. other con-

ducting body. (Rooting in an external conductor can lead to such irregular-

ities as winding of field lines about S.) If ., for example, S rotates

uniformly with period T , closed field lines ., by symmetry, move periodically

(with period T). Since low energy particles are frozen to field linesl

their drift's are also T periodic. Net  energization of such particles is

once again impossible.

The results of the preceding paragraph apply, for example, to the earth

rotating beneath any magnetospheric model in which field lines are closed

(e.g... Mead, 1964). As the earth rotates, fields lines and the low energy

particles on them are carried around the earth with a 24 hour periodicity.

Schulz's (1970) result is thus clear without need of any mathematical

analysis.

q
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