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’

The restriction to a stationary, conducting surface in the proof of
Birmingham and Jones (1968) is removed. When the conducting surface S is
moving and/or deforming, field lines are identified by the fixed material
point at which they pierce S, provided Ey 1s zero everywhere outeide S. We
illustrate the utility of this field line identification by examples in which

general results Collow from knowing the topology of the magnetic field.




Identification of Moving Magnetic Field Lines II;

Application to a Moving, Non-Rigid Conductor

Frank C. Jones and Thomas J. Birmingham

Introduction

In a previous paper (Birmingham and Jones, 1968) hereafter called I, we
condidered the identification of magnetic field lines, all of which at least
once pierce a staticnary, arbitrarily shaped, perfectly conducting surface.
(The motion of the field lines is due to time varying currents external to
and/or within the surface.) Provided that the entire region external to the
surface is filled with a conducting plasma so that no electric field
parallel to B existe, a magnetic field line is usefully identified by the
fixed point (or points) at which it crosses the surface: +the same fileld line
always intersects the surface at the same point. ,

This identification of magnetic field lines is useful in foilowing the
motion of low energy charged particles (for which megnetic gradient and
curvature drifts are unimportant). Such particles undergo ExB drifts which
keep them frozen to field lines identified in this manner. Thus, for
example, one can legitimately follow the motion of a low energy particle
during compressions and expansions of a model magnetosphere by merely tracing
the motion of the magnetic field line on which the particle is initially
located (Hones, 1963; references in I).'

We show in this paper that the restriction to a statibnary Surface in I is

unnecessary. When the conducting surface is moving and/or distorting, the
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useful field line identification 1s the one in which the same field line
always cuts the surface at the same material point. The identification of
Tield lines here, of course, reduces to that of I when the conducting surface
is stationary.

Use of the field line identification introduced in this paper permits
us to make general predictions about the motion of particles in the presence
of moving magnets or the combined effect on particles of both moving magnets

and external currents.

We stress that the results of this paper are general, untied to any
particular model of the electric and magnetic fields. We require only that
all magnﬁtic field lines pierce the perfectly conducting surface at least once
and that the parallel electric field be zero everywhere outside the surface.

The utility of our results is that the motion of low energy chérged
particles becomes evident from the mere topology of magnetic field lines.
The often cumbersome task éf calculating explicitly the electric field
(8chulz and Eviatar, 1969) is unnecessary.

To some readers our results will seem intuitively obvious on the basis -
of Cowling's Theorem (Lundquist, 1951; 1952). Cowling's Theorem, however,
applies to a medium in which the electrical conductivity is infinite in all
directions. We assume 6n1y that the conductivity parallel to B is infinite;

the perpendicular conductivity is unspecified and may even be zero.

Field Line Identification

As in I we introduce the notion of the Euler potentials o { 1, t)

and (5 (t}ﬁ) where §: Vo X Izi:tf and we may define the vector potential
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was shown in I to fulfill ‘he requirements of a valid flux preserving field
line velocity in which the field lines move in such a way as to preserve
their o, B  1avels. |

An electric field causes low energy trapped particles to drift with a

velocity

U= Egﬁ | (3)

vhich is itself a valid field line velocity if




VX[E + gﬂ"g]:o

The two velocities differ by .
Bx7(§+y)
Ye-W - C = 'L (k) '

In I we considered the case where all magnetic lines of force pass &t
least once through a perfectly conducting, stationary surface 8. We were
able to show that a given field line could be uniquely labeled with the values
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of A and B determined by the point (or points) where it crosses
the surface 8. This was possible because on & perfectly conducting surface

4 %
I ( W?.-.gm ) = const. where J is the Jacobian and X; and Xy are

cwilfgéa’.rxciordinates in the surface. From this condition it followed that
we could moke the time independent gauge choice 3ﬁ/‘;t = aa‘{/ ot = O
everywhere on the surface and the values of o and A on the surface
uniquely label a fiela line for all time. This gauge choice is equivalent
to the condition IQ/ = O on8.
Combining this condition with the fact that the tangential electric

field must vanish é.t the conducting surface we see from equation (1) that h

@ e tp is constant on the iurface 8. Filling the volume with a -
plasma such that E : ? = {3  forces é + ‘P to be constant along |
any field line and hence throughout all space. Equation (4) then says that
1['; = lA_/ and trapped pairticles'’ g X § drift motions cause
them to remain "frozen" to a particluar field line vhich is defined by the

fixed point where it crosses the surface 8.
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In the foregoing, which 1s a brief review of the argument presented in
I, 1t was assumed that the surface was rigid and fixed in space. It is the
purpose of this paper to show that this condition is not necessary; the
surface S may be allowed to move, bend, and even change its area vo long aa
the surface coordinates X and Xp refer to a fixed material point of the
surf.ce.

In I we shcwed that if £ is the (fixed) unit normal to the surface
at X:, Xa then 77 ' B o ~ T‘){ X ) and sirce A = const.
for a rigid, fixed conductor we wez.‘é ab‘:ile to infer " X:.) = const.

However, if we consider a small area of the surface dX ' dx s ve have

(}E )421 dx, = dA(%,%.) 4B, ) - d¢(x,,)g;)

vwhich 1s the magnetic flux through the area defined by 4dX, and dXo
(Northrop, 1963; Stern, 1966). We now note that if the material of the
surface is a perfect conductor any motion of this material will be flux
presexving, i.e., any closed loop of mater':lal will move in such a way as to
keep the flux that it encircles constant. Thus 1f the coordinate system
X1, X2 1s fixed with respect to the material of the sﬁrfa.ce, an area of a
particular rna.teria;is loop will be characterized by dX; dXu whe‘re dX; and dXo
are constant. Flux preserving motion then implies J ( %, 8 ) dX, dXg
= const. and hence j(;(j g) - = comst. If (4, ), (to)

and ol (ts), é(t,) label & fixed material (X;, Xe) point at two

times T, and [, , 1t then follows that j(“ft')’ 8(t)

A(ts), B(t) -
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so that (as indicated in I) changes of of and @ with time at X3, X are

simply relsbeling or gauge trensformations. ké
We can now see that a unigue labeling of the lines of force is still

possible as long as the labeling is referred to the maverial point where the

field line crosses the surface., The boundary conditions on the surface are

no longer 3‘&' T gfé O but rather ;—2- + V. V,Z:'QB.;VV*"

~

= 0 where V» V(X,,X,) is the instantaneous velocity of the surface
point X;, Xz . Inserting this condition in equation (2) we obtain for the 1
boundary value of WV

w[sm—y-(w Vol — 7 Zﬁ)xﬁ/g*’* |
--(WxB)xEfgr= V- B B)er
A

The boundary value of W on 8 is then just equal to V:L « The boundary g

~ -
condition on the tangential electric field is now that I ¥YxE
o [ k]

A
s0 we see that we still have the condition _@ + LP = const. on the
surface. The conditiocn E ¢ 8 =2 () once again forces @-}» fP to be .

constant along any field line and hence constant everywhere g0 we are led

once more to the condition fg'é: Kl/ everywhere and in addition \
£ «¥
\’[rE: W = V1 on the surface 8.
~ ~ A

The reason that our result 1s the same as that obtained using Cowling's
Theorem is due to the presence of the conducting surface. In our mudel per-
pendicular electric fields in the moving frume are short-circuited by charge

¢ ‘
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motion along field lines together with charge redistribution between field

lines vie 8. This manney of short-circuiting depends on & global picture of
the plasma and les in contrast with the MHD (Cowling) picture where the

short-circulting is produced locally by charge motions perpendicular to B.

Examples
We distinguish between situations in which the source of B lies totaelly
within 8 (Case &) and those where there are external sources (Case b). y
For Case a magnetic fleld lines move rigidly with 8 (assuming that the
Alfven, propagation speed of B ies much faster than the speed at which 8 is
moving) and low energy particles drift with them. This conclusion is in-
dependent of the nature of B. In particular it bolds for wany of the familiar

models: B 18 the field of a centered dipole rotating about Lt: wmagnetization

fs T A T I S

axis (Davie, 1947, 1948); or B 1s the field of a dfpule, centered or
eccentric, whose megnetizaticn and rotation axes are non-parallel (Hones and

Bergeson, 1965); or B 1s the composite field of several multipole sources it

(e.g., Cain et al., 1967).

An example of Case a is the uniform rotation of 8. Pield lines then
rotate rligidly, whateyer the model. Low energy particles, frozen to fieid
lines, also co-rotate if one neglects gyration and hounce motion. (The
gyration and bounce mcotion produce»no net change in position or velocity when
averaged over a gyration and bounce period respectively.) It is clear then

that a particle's drift energy does not exceed the (constant) energy it at-

tains when its position on the rotating field line is farthest from the

rovation axis. Rotatihg magnets are thus useless for.ensrgizing‘low energy
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particles (Hones, 1963).

The rewults of the preceding two paragraphs are not surprising nor, as
applied to specific models, are they new. Our claim is that as derived in
this paper these results are general and rigorous.

In Cage b field lines also remain entrenched in S and their feet move
rigidly with 3. External to S the field lines move simply, though not
rigidly, with S provided that field lines are not rented in sny other con-
ducting body. (Rooting in an external conductor can lead to such irregular-
ities as winding of field lines sbout S.) If, for exsmple, S rotates
uniformly with period T , closed field lines, by symmetry, move periodically
(with period T). Since low energy particles are frozen to field lines,
their drifts are also T periodic. Net energization of such particles is
once again impossible.

The results of the preceding paragraph apply, %or example, to the eaﬁth
rotating beneath any magnetospheric model in which field lines are closed
(e.g., Mead, 1964). As the earth rotates, fields lines and the low energy
particles on them are carried around the earth with a 24 hour periodicity.
Schulz's (1970) result is thus clear without need of any mathematical

analysis.
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