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Abstract

The discontinuous structure of the solar wind is described with

emphasis on properti,,;j related to geomagnetic impulses. Some of the

discontinuities are clearly hydromagnetic shocks and tangential discontinuities,

and can produce a significant change in the momentum flux at the magnetosphere

boundary. Such a change generates an impulse which propagates through the

magnetosphere to the earth where it is observed world.-wide as an .impulse

in magnetograms. The propagation process is not reviewed here, but the

relation between the initial cause (discontinuity) and the final effect

(geomagnetic impulse) is reviewed in detail. The various types of impulses

are examined, and are related qualitatively to the various types of

discontinuities. The magnitude of an impulse is related to the change in

the momentum flux. The propagation time and the rise time depend on the

propagation process rather than on the initial state. Double shocks have

not been observed, but a reverse shock has been identified. Giant pairs

can be caused by a shock followed by a tangential discontinuity, and regular

pairs may be due to complementary tangential discontinuities.
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T. Introduction

Impulsive changes in the geomagnetic field have been extensively

studied for many years. Several types have been identified and much is

known about their morphology, but the results are somewhat obscured by the

' proliferation of different and sometimes conflicting notations. There are

also many speculations in the literature, some correct and some incorrect,

concerning the causes of the impulses.

The advent of space probes has led to the discovery of several kinds

of hydromagnetic discontinuities in the solar wind, some of which were

shown to cause geomagnetic impulses. In principle, it is now possible to

determine unambiguously the causes of geomagnetic impulses and the effects

of interplanetary discontinuities on the earth's field. Many correlations

have already been published.

The aim of this review is to present a synthesis of the published

observations which definitively shows the relations between interplanetary

discontinuities and geomagnetic impulses. The work necessarily falls short

of this goal because the observations are incomplete, but t%6 shortcomings

show where effort should be concentrated in future observational studies.

Section II presents a summary of work concerning the interplanetary

discontinuities with an emphasis on properties relevant to the study of

geomagnetic impulses. Section III gives a summary of the types of

geomagnetic impulses, and emphasizes the kinds of impulses that unambiguously

occur world-wide. Sections IV then reviews the simultaneous observations

of geomagnetic and interplanetary discontinuities. The geomagnetic impulse

is regarded as a final effect and the interplanetary discontinuity as an

initial cause and we aim at showing the relations between them,

I
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II. Tntemlanetar °Discontinuities

A. Existence of Hydromagnetic Discontinuities in the Solar Wind.

Direct measurements of the solar wind show that the magnetic field

and plasma parameters may change byy more than 50% over a distance of

..10-5 AU. Such a change is essentially discontinuous on a scale of 1 AU,

or even on a scale of .01 AU where it is seen most clearly (see

Figure 1). It is found that at least some of these changes have the

characteristics of hydromagnetic discontinuities. The mere existence

of such discontinuities is not surprising, for they were predicted long

ago from the equations of magnetohydrodynamics. However, it is of

fundamental significance that such discontinuities occur in the

interplanetary plasma, which is essentis^ly collisionless. This

shows de facto that theory of mabgnetohycrodynamics is applicable (at

least in some instances) to the solar wind at 1 AU, and reveals an

extension of the fluid concept.

Possible types of hydromagnetic discontinuities in an isotropic

plasma are as follows:

1) tangential discontinuities (T.D.'s)

2) contact surfaces

3) rotational discontinuities (R.D.)

4) fast shocks

5) slow shocks

These are discussed formally in various textbooks (Landau and

Lifshitz, 1960; Ferraro and Plumpton, 1966), and reviews (Colburn and

Sonett, 1966; Spreiter and Alksne, 1 969), so we need not go into the

P	 ^



l

- 4 -

mathematical details. We shall, however, discuss the qualitative

characteristics of the different types of discontinuities, their

significance with respect to geomagnetic impulses, and their existence

in the solar wind.

The concept of a tangential discontinuit y is illustrated in Figure 2.._.__^
It is an observable surface (a current sheet in fact) that separates 2

physically distinct plasmas. On both sides there is a magnetic field

which is p_ to the surface but otherwise arbitrary. The plasma,

and magnetic field on each side can have any value, subject to the

constraint that the pressure, 
J 
nikTi+B2/W)	 (the sum is over all

particle species), is the same on both sides of the discontinuity. A

T.D. does not propagate relative to the solar wind, i.e., there is no

mass flux through the surface. But the material on side 1 can move

relative to that on side 2 along the surface (hence the term "glide

plane" for the surface- Burlaga, 1963), Burlaga (1968) has classified

T.D.'s into 13 types,according to the sign of the change in B. proton

density (n), and proton temperature (T). The symbol (+,-,0) denotes
an increase in B. a decrease in n, no change in T; (0,+,-) means no

change in B, an increase in n, a decrease in T; etc. It should be

emphasized that such a signature is not a sufficient condition for

identification of a T.D. A change in momentum flux of the solar wind

relative to the earth,d(nmVw) ftmVwA n, occurs across T.D.'s-with

signatures (x, ±, y). Such T.D.'s can produce geomagnetic impulses if

n is sufficiently large; those with signatures (x,o,y) cannot. (A

small change in Vw may be observed across a T.D. due to motions along
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the glide plane, but they do not produce significant impulses).

Direct evigence for hydromagnetic tangential discontinuities in the
i

solar w3;nd way, presented by Burlaga (1868) and Burlaga and Less (1969),
and current sheets characteristic of those at T.D.'s were identified

by Siscoe et al. (1968a).

i

A contact 	 is frequently confused with a T.D. since both

are non-propagating wil the pressure is continuous across both. But

there is a fundamental, difference: there is a component of B normal
ti

to a contact surface and 	 whereas at a T.D. B is parallel to

the surface and in general Bl# BThere can be no relative motions

of the 2 regions separated by a contact surface, so Vw l = Vw2 . Contact

surfaces could give rise to geomagnetic impulses, since n2 ^ ni (the

pressure is balanced by a corresponding change in the temperature),

but none has yet been identified in the solar wind. Two spacecraft

are needed to distinguish a contact surface from a T.D. with signature

( 0 .'±, +) and Bi - B2 .

Rotational discontinuities are so named because the component of

B tangent to the discontinuity surface,, appears to rotate across

the surface, without changing magnitude (sec Figure 3). There is a

corresponding change in the valocit 1 v t] = [ Bt] /(4i7	 but n B T

do not change across the surface. The discontinuity surface actually

moves at the Alfven speed V 1 = B1/4 rp in the direction of its normal.

Thus there is a mass flux through it. For this reason, it is sometimes

referred to as a kind of shock; this is misleading, however,,.since there

is no change in n. T and v as in a shock, and n, , 92 are not coplanar	 r

i MO
r,
'.,	

j
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as they are for a shock. It is better to picture a rotational

discontinuity as a non-linear Alfven wave, or a propagating kink in

the magnetic field. Since vt<< VW (the soleas wind speed), &nd since

An = 0, the change in momentum fluxlux across an R X . is small A (mn ti') K

Pav, pVw vVt] and is not likely to produce an oboe:v	 geomagneticgeomagnet^
w

impulse (see Section IV). Belcher et al. (1969) 	 presented solar

wind observations which are consistent with F.D.'s, but they could

also be .interpreted as T.D.'s. It is ;very difficult to distinguish

an R.D. from a T. D. of the type (0 ) 0,0), even if the solar wind direction

is accurately known. The relative number of R.D.'s and T.D.'s in

the solar wind is thus not known, but it is likely that most discontinuities

are tangential.

Fast shocks are analogous to ordinary gasdynamic shocks, the

difference; being that across a fast shock the magnetic field intensity

increases as well as the density and temperature. Relative to the

shock speed, the flow speed decreases across the shock, i.e., vb <vf

(b = behind the shock, f = ahead of it) . When a fast shock propagates

away from the sun, as is usually the case in the solar wind, v f= U-Vf

and vb= U-Vb , where U and V are the shock speed and the solar wind

speed, respectively, relative to the sun; thus vb < v f Vb > V f . In

other words the solar wind speed measured relative to a fixed frame

appears to increase across a fast shock moving away from the sun.

Now, it is also possible fora fast shock to propagate toward the sun,

yet move away from it, if it propagates slaver than the solar wind speed.

(It's like a man trying to walk slowly up,a "down" escalator).- In

1	 _,
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this case one first sees the flow behind the shock, so n, B and T appear

to decrease with tame. The speed always decreases behind the shock,

so v f = U+V f> vb= U+Vb implies V f > Vb . Since one first sees the flog

behind this shock (Vb), the solar wind speed wears to inc 	 with

time. A fast shock propagating toward the sun is called a "reverse

shock". Summarizing, a fast shock moving outward has the signature

(*, +, +) and V increases, while a "reverse fast shock" has the sigj,. , ,?Nture

(-, -, -) and V increases. The momentum flux relative to the earth

increases across a fast shock moving away from the sun, and decreases

across a "reverse fast shock". The existence of Fast shocks in the

solar wind has been established with increasing certainty by Sonett

et al. (1964), Ogilvie and Burla,ga (1969) and Chao (1970), respectively.

The existence of a reverse shock in the solar wind has recently been

established by Burlaga (1970).

SlowjY^c are characterized by an increase in n,T and V and a

decrease in B. Chao (1970) has reported evidence for 2 slow shocks

in the solar wind. They do not show the discontinuous changes character-

istic of fast shocks.

For a list of shocko and discontinuities that might be shocks

see Hundhausen (1969)•

B. General Properties of Interplanetary Discontinuities.

Usually one does not have enough information to ut;ambiguously

identify the tyt) of discontinuity. Certain general features of

interplanetary discontinuities can be studied nevertheless. The

statistical characteristics of discontinuities in the interplanetary

magnetic field hsve been studied by Siscoe et al. (1968a), Burlaga.
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and Ness (1968), Burlaga (1968, 1969). Two quantities are of special

interest with regard to geomagnetic impulses: 1) the distribution of

time intervals between successive discontinuities seen at a fixed

spacecraft, and 2) the distribution of the change, AB, in the

magnitude of 3 across discontinuities.

Letwbe the change in the direction of „^ across discontinuities.

wiscoe et al. (1968a) defined a discontinuity by the condition

LB (t ) - B (t,) I > 4Y, which implies w > 20° for I $	 B N 6y2	 _	 .,.	 ^-1

Burlaga studied "directional discontinuities" defined by w>309. Both

assume that the change occurs in < 1 minute. The 2 definitions are

equivalent if Bf—B 2 >0^ as is usually the case.

Figure 4a shows the distribution of B l/B 2 for 114 "planar"

discontinuities (i.e. discontinuities Vaich appear 4,o be tangential)

with thickness 10 se-. <T4100 sec from the Mariner data for the

period November 80 3 1964 to January 8, 1965. Figure 4b shows the

corresponding distribution of (B 1-B2 )/Max(Bl B2 ) for all the directional

discontinuities from Pioneer 6 data for the period December 15, 1965-
January. Although they are not strictly comparable, since Max (Bl,B2)=

B2 only half of the time, the 2 distributions do show the same results,

viz., a) the magnitude, B, usually does not change significantly

across a discontinuity, and b) increases and decreases of B across

the discontinuity are equally probable. The si ilarity between the

Mariner and Pioneer °.°esults suggests that they refer to basically

the same type of structures and indicates that the characteristics did

not change appreciably during the year between the two measurements. r

^t

r}
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Siscoe et al. (1968a) found that "discontinuities" (actually current

sheets) defined by IB	 B, ( : 4Y occur roughly at the rate of I per

hour at quiet times. This does not completely describe the time

distribution since there are many discontinuities withlB. - Bi i <4y which

occur even more frequently than 1/hour. Burlaga divided the

discontinuities into 4 classes aid obtained the distributions shown in

Figure 5 for the time inter9rals between successive discontinuities in

each class. The discontinuities with 300< w <600 occur with a mean

separation 2 hour. Smaller discontinuities (W < 300 ) occur more

often, but are more difficult to identify and measure-.

Unfortunately, there are as yet no distributions for the discontinuities

in plasma, parameters, n. V and T .9 corresponding to the magnetic field.

distributions described above. There are at least 2 reasons for this:

1) the plasma parameters are not measured as accurately as the magnetic

fielk',., and 2) the time. between successive measurements is relatively

long, usually I min-5 min, so that it is difficult to distinguish small

discontinuities from continuous changes. It may also be found that the

changes in plasma parameters are not as abrupt as changes in the

magnetic field direction. Since the desired distributions are not

likely to be forthcoming for sometime yet are of basic importance

for studying small impulses in the earth's magnetic field ., we shall

venture to make some order of magnitude estimates. Suppose that most

discontinuities are tangential discontinuities, so that B2/8,T+ nk(T
p +

Te)n

const.,and suppose that (T +T,.) ,r-constant for most discontinuities. Then,,p
assuming	 nk(Tp+Te)/(B /87T)	 1.9

VAR
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2 tom$ — An , and a 40^ change in n will be caused by a 20 change in B.
B	 n

Figwe 4 shows that B changes by ? 20 for — 25 of the directional

discontinuities. Since directional discontinuities occur at the rate

of--l/(2 hour we expect density changes to occur at the rate of —1/0 hr) ,

or 3/day, with increases and decreases being equally probable. There

are times when density discontinuities may occur more frequently.

For example, Siscoe et n1. (1968a) and Burlaga (1969) showed a series

of density discontinuities following a shock which was apparently

driven by a high speed stream (See Figure 6). Changes in the bulk

speed may occur, but will probably be small (< 5%) for most

discontinuities. A. study of large changes `in the bulk speed. by

Burlaga (1969) showed only 6 cases with AV>60 IM/sec in ^2500 hours

of data; thus, discontinuities with AV > 15% occur roughly at the
V

rate N1/15 days. Such discontinuities are not important as regards

geomagnetic impulses.

C. Filaments and Sector Boundaries.

The discovery of numerous discontinuities in the magnetic field

direction and magnitude- (Ness et al., 1964, 1966) and in the direction

of anisotropic cosmic ray fluxes (Bart rlisy, et al., 1966) led to the

suggestion that the interplanetary magnetic field could be pictured as

a bundle of corotati.ng, intertwa.ned., spaghetti -like "tubes" or filaments

with sharp boundaries which extended from the sun to the earth's orbit

w
and beyond (McCracken and Ness, 1966). The diameters of these tubes

was put at (.5 to 4) x 20	 Addtiona. sup_ port for this appealing

picture was given by Siscoe__et _al. (19648,A) -wbo suggested that the tubes

are actually elliptical as the result of latitudinal'solar. woaa shear.

^	 A
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Handhausen et al. (1967 a .,b) reported discontinuous changes in the

plasma, parameters and interpreted this as boundaries of filaments

with a scale size near a, hundredth of an AU.

This picture of filaments grew out of preliminary work based on

=all data samples, Burlaga (19 168) examined 500 hours of magnetic field

data from Pioneer 6 and pointed out that discontinuities were always

present and could be quantitatively defined and analyzed, but filaments

could not always be recognized or defined. For example, Figure 7

shows a quiet day with 11 clearly defined directional discontinuities,

but the identification of filaments would be very subjective. He also

noted that in general there is no obvious pairing of discontinuities.

Thus ., Burlaga suggested that the solar wind *shckuld be regarded as

discontinuous rather than filamentary and he pointed out that one

should not discard the possiblity that discontinuities are created

and destroyed in the interplanetary medium.

There are occasional times ., however, when filamentary forms can

be seen, particularly behind shocks (see Figures 1, 6), but these

forms are not always bounded by sharp discontinuities. The class of

"box-like" events discus- - by Siscoe et al. (1968a) and those of

Ness et al. (1966, Figure 8) might also be properly termed filaments.

The behavior of isolated filaments has been investigated analytically

by Siscoe (1970).

There is as yet no general,, quantitative definition of a filament.

Until one is given ., it might be better not to spe-ak*of the radius of

filaments or the topology of filamentary magnetic tubes,

77771"

M
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The boundary between sectors (Mess et al. 1969, Wilcox and Mess,

1965) is sometimes discontinuous. Several authors have given special

geophysical significance to these boundaries but their importance is

probably overestimated.. Sector boundaries are not always discontinuous

or well defined, particularly during the more active parts of the solar

cycle (Burlaga and Mess, 1967, Ness and Wilcox, 1967); but neither

are they "turbulent". When they are discontinuous, it is usually a

directional discontinuity with no change in the magnitude of 	 so

there is generally no corresponding geomagnetic impulse. Nishida

(1966a) discusses a positive "sudden impulse" (not reported by

geomagnetic observatories) associated with a sector boundary. This

directional discontinuity was -associated with a dip in the magnetic

field intensity, and thus has the character of a "D-sheet". Such

structures were studied by Burlaga and Ness (1968) and Burlaga (1968)

who find that they do not always occur at sector boundaries, and	 -A.

that they are accompanied by an increase in density; thus, they could

produce a geomagnetic impulse as suggested by Nishida (1966a), but not

all sector boundaries would give such an impulse, and such impulses

may occur in the absence of sector boundaries.

it
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III, Types of Geomagnetic Impulses

Several types of impulses are seen in ordinary magnetograms, usually

most clearly in the H component of the earth's magnetic field. 1:ne Provisional

Atlas of Rapid 'Variations (1957) classifies the impulses as si+, ssc± , and

ssc	 These are illustrated in Figure 8 and defined as follows:

1) sib' (a) An abrupt increase (+) or decrease (-) in the magnetic field

which is not followed by an appreciable increase in activity, (b) a

small reversed impulse, not followed by an increase in activity, and

(c) a large, distinctive impulse similar to (a) above except that

it occurs during a storm.

2) s= (a) a sudden impulse (positive +, or negative -), followed

by an increase in activity lasting at least one hour. The intense

activity of the storm may appear immediately or it may be delayed

a few hours, (b) a reverse impulse followed by an increase in

Activity.

3) ssc* (a) an ssc which is preceded by one reversed small impulse

or (b) preceded by many small oscillations.

These are the principal types of impulses reported by observatories

following the IAGA Symposium on Rapid Magnetic Variations in April 1957.

See the Provisional Atlas for further details and additional examples.

Observatories were asked to evaluate their dentfi.eation of an impulse by the

letters A (very, distinct), B (fair, ordinary, but unmistakable) and C

(doubtful). This is useful when deciding how-to classify an event using all

of the world-wide data.
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The distinction between ssc and si was first suggested by Chapman

(see Ferraro et al., 1951).

Other classifications of geomagnetic impulses have been proposed

(see Matsushita 1960, p. 1+25 for references). Of special interest is that

of Matsushita (1962) who distinguishes 3 types of sudden commencements

("SC, SC, and SC - ) and 3 completely analogous types of sudden impulses

( -SI, SI, SI-). The superscripts refer to small impulses preceding or

following the main impulse which are found to be dependent on latitude

and time, the dependence being the same for sudden commencements and sudden

impulses. In the literature concerning spacecraft data these secondary

pulses are often ignored since they are due to ionospheric currents, and one

frequently finds the symbols SSC or SC and SI denoting the 2 general classes

of impulses distinguished by Matsushita. Matsushita distinguishes a fourth

type of sudden impulse SI ® which differs from SI- in that it occurs

simultaneously in the same form at all points on the earth. He points out

that there is no analogous SCO, an important point which is discussed in

Section IV. The currents which give rise to the various types of sudden

commencements are discussed. by Sato (1961) and by Sastri and Jagakar (1967).

Clearly, the Atlas classifications depend on local time and latitude,

and are also subjective, so not all stations will report the same result.

Thus, one cannot in general simply characterize the world-wide observations

simply and unambiguously by any one of the symbols above. Burlaga and

€	 Ogilvie (1969) introduced the sya^ol 	
rah 

I

A _ N(ssc)-N(si)

N(ssc) +Y^=(s.)

3

.max
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where N(ssc) and p(si)are, respectively, the number of stations that report

an event as a type of sudden commencement, and the number reporting it as

a sudden impulse. For events which according to Solar Geophysical Data were

classified as a sudden commencement or sudden impulse by 10 or more observatories

and occurred in the interval June-December 1967, Burlaga and Ogilvie (1969)

found the distribution shown in Figure 9. Clearly, there are 2 classes

corresponding to sudden commencements (A 2- .8) and sudden impulses (A s .8),

but there Are also many events that do not fall into these classes. A further

complication has been pointed out by Oguti (1968) who notes that several

discontinuities may occur between the iritial impulse of a storm and the

main phase and the largest of these will be selected as the ssc, thus possibly

giving A > .8 when the event might more appropriately be denoted as si.

Thus, when space observations are related to a ground impulse,, care should

be used in characterizing the impulse.

Bowling and Wilson (1965) presented a collection of observations results,

showing that ssc's and si's have 10 characteristics in common. They infer,

as did others previously, that ssc and si are essentially the same phenomenon,

both being caused by a sudden compression of the magnetosphere as the result

of a discontinuous change of the energy density in the solar wind.

Nishida and Jacobs (1962) showed that there are other. rapid "world-wide

changes" in the geomagnetic field which are not reported as sudden

commencements or sudden impulses yet have the same form, manner of spreading

f over the earth, and distribution of magnitude as sse's and s !s. They are

more similar to si's than ssc's in that they are usually not followed by

}	 rt	 ^p TWI n^r
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increased magnetic activity. Nishida and Jacobs suggested that si t s are

nothing more than world-wide changes that are widely recognized because

of their large size. Both positive and negative world-wide changes are

observed with essentially the same probability. At least 90% of the days

and at least 20% of ,all 1-hour periods %hat they examined contained one

or more world-wide changes.
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IV. RelationsBetweer. 	 s of Geomagnetic Impulses and
DiscontinuiTies.

A. Relations Between Types. Let us define ssc by A > .8 and si by

A < -.8, and ask whether there is a relation between the type of impulse

(ss^:, sit) and a particular type of discontinuity.

ssc+ - shock. Evidence for l..rdromagnetic shocks that caused an ssc+

was presented by Sonett et al. (1964) ,Dryer and Jones (196$), Burlaga
and Ogilvie (19'69) and Chao ,, (1970). Conversely, BurAl%ga and Ogilvie

(1968) showed that ssc + is a fairly reliable indication of a hydromagnetic

shock. Taylor (1968), using only interplanetary magnetic field data,

examined the causes of 36 events reported by ssc by most stations

(A > .5) during 1965, 1966 and 1967- He found, that a) 26 of these

were likely to be caused by shocks, and b) 10 were not caused by

shocks, and 5 of these had A > .8. Thus a sudden commencement is a very

good indication of a shock, but there are exceptions.

ssc+ - T.D. An example of a sudden commencement that was not caused

by a shock is given by Taylor (1968) - an event classified as ssc and

si by 42 and 3 stations, respectively. It was associated with a large

decrease in B and a >900 change in the direction of B, and the positive

geomagnetic impulse implies an increase in density; thus, the

discontinuity must be tangential, with signature (-, +, 4)`; such

events are relatively rare, however. It should be noted that in this

case the main phase immediately followed the impulse, thus it rep-resents

the type of storm which Oguti (1968) attributes to a,"bubble" (driver
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Gosling et al. (1967x) reported that a world-wide "sudden

commencement" at 1223 UT on April 6, 1965 was associated with a

discontinuity whose signature was (?, ?, -); they note that this could

be a tangential discontinuity, and is not a fast shock. Lincoln

(1966) shows that 26 stations identified the event as ssc (A:4, B:14,

C:8) , and 14 identified it as si (A:4, B:5, C:5) , giving A = .3; the

event is not clearly a sudden commencement.

ssc	 As discussed above, it is not clear that there is such a

thing as a world-wide ssc - . In any case, as Oguti (1968) pointed out,

it would be very difficult to distinguish it from an si - that just

happens to occur during a storm, particularly if the negative impulse

happens to be larger than any associated positive impulse. Gosling

..e	
et al. (1968) showed that an interplanetary discontinuity with

signature (?, -, +) caused a negative impulse which they identified

as a " relatively rare negative SC". However, this event was classified

.as ssc - by 16 stations and as si - by 15 stations (Lincoln 1965) which

gives A -.03, so that we would not call it a sudden commencement.

Akasofu (1964) discusses an event at 0718 UT on 10 January 1960 that

was classified ssc - by 44 stations and si - by 12 stations, which gives

A = .39. This is a case in which 2 world-wide impulses occurred. The

positive impulse at 0610 UT was not reported, but the larger negative

impulse was identified and associated with the geomagnetic activity

that followed. Most reported ssc - are probably in this class, and

could equally well be described as a si . which occurred after the

positive impulse of an ssc 	 There appear to be no ssc analogous
	

P
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to $sc+, with A> .8. In any case, there is no evidence for a sse

even with A >.5 ) that is caused by a- "reverse fast shod". The reverse

shock identified by Burlaga (1970) was not associated with a geomagnetic

impulse.

I

	

	
si :^. There are few reported observations of interplanetary

observations associated with sudden impulses. Burlaga and Ogilvie

(1969) show cases in which si- was caused by a tangential discontinuity

across which the density decreased. There is no evidence supporting

the suggestion of Sonett and Colburn (1965) that si - is caused by a

reverse shock. Gosling et a1. (1967b) show a (?, +, +) discontinuity

at an si+.

"world-wide impulses". The causes of these have not been extensively

studied, but they are probably due to tangential ddiscontinu Aes.

Gosling et al. (1967a) showed plasma data for 2 world-wide impulses,

one negative, which were not reported as si (see, Figure 10). The 	 i

signatures, (?, +, _) and (?, -, 0) for the positive and negative

impulse, respectively clearly exclude shocks and suggest T.D.'s as

the causes. Since a density change is usually opposite to the magnetic

field change across a T.D. and since positive and negative changes in

B are equally probable (see Section II), one should observe equal

numbers of positive and negative world-wide impulses, in agreement with

the observations (see Section. III). From (1) below and Figure 11, we

see that a change Wp > 10 -4 (dynes km2)i which corresponds to

0 n/n N 2f n p fn/n > .4. will. p oduce an observable impulse (4H ? 10y) . 	 a

This in turn implies AB s Qn > .2 , and it was shown that such
B 2n

v_	 .
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discontinuities occur at the rate of —3/day, which is on the order

of the rate of occurrence of world-wide impulses (Section 111). Thus,

it seems likely that world-wide impules are due to T . D . ' s . This supports

the suggestion of Nishid.a, and Jacobs (1962.) that world-wide impulses

are the same as sp.'s.

B. Relation Between the Size of the I ulses and the Inter_ anetar
Discontinuity. Parker 195 pointed ou ha a discontinuous

4

increase in the momentum flux of the solar wind would cause a compression

of the earth's magnetic field which gives an increase in the field

intensity at the earth's surface. The induced field has the same

magnitude, AB, and occurs nearly simultaneously at all points of the

i
earth (see Williams, 196 and Sato, 1961). To zeroth approximation,

it is oriented along the dipole axis, so the corresponding change in

the horizontal component of the earth's field., AHobsX= OBcov X where

X is the latitude of the observer. It is generated primarily by

currents flowing on the surf-ace of the magnetosphere and enhanced by

the diamagnetic earth (See the review of Parker (1962), the recent

analysis of Siscoe (1966) and the pioneering paper by Chapman and

Ferraro (1931))• Siscoe et al. (1968b) give the following expression

for AB, from the magnetosphere model of Mead (1969):

where A = 26.1 x 10 Y- /(dyne/cm2)
l 	

2 and, P - bxl.16 mop VW

.F

z.
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where b ranges from .88 for Y = 5/3 to .955 for = 1.2 (Yff adiabatic

exponent)., np a proton density, w 0 bulk speed, and the helium density

is taken to be 16 of the proton density to give 1.5 mpn p for the total

density. Using Mariner plasma data for 13 discontinuities associated

with si t s and world-wide impulses in the period December 1965-February

1966, Siscoe et al. (1968b) found that AB — Ap fP where A ^ (9.0 + 2.) x

104 Y /(dynes/cm2 ) 12 . Similarly, Ogilvie et al. (1968) used plasma

data from Explorer 34 for discontinuities associated with si t s and sscts

during June 1967 to show that pB — A 4j j where A = (11.4 +1.5) x 104.

Thus the linear relation given by (1) is confirmed. But the experimental

value of A is less than j the theoretical value; Siscoe (1970) suggests

that this may be due in pant to the presence of magnetospheric particles.

The difference between the 2 experimental values of A is small (< 200)

but might be real.

Ogilvie et al. did not consider that the size of the ssc impulse

is enhanced on the day side of the earth at geomagnetic latitudes

<20o by ionospheric currents ( see Sugiura, 3,953, Jacobs and Watanabe

(1963), Rast,ogi et al., 1966, Srinivasmorthy (1960), and Maeda and

Yamamoto (1960). Correcting their work - for this effect gl.ves no

significant change in the results in Figure 11.

Typically, AH is on the order of 30Y or 40Y for ssc, but Bhargava

and Natarajan (1967) describe an event on November 13, 1960 with

AH-368 at Trivandrum, 2 ,20Y at Kakioka and 21ly at Alibag. Using the

lower values and (l) we find A( nVw) -1.5 x 109. For a strong shock,

with n2 = 4n1, and for the extreme cane V2 o 3V1— 900 krn/sec thir

implies nl —102cm 2 , which is a-very high density. They also note the

71	 7_7
*7
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events of 17 July 1959 and 11 July 1959 for which &f , — 127Y and 102Y,

respectively, seen at night at Trivandrum.

Further studies of the relation (1) should be undertaken to better

understand the currents which relate the surface effect to the

intexp lanetary cause. 	 Once the earth's field is thus calibrated, one

can analyze the interplanetary discontinuities which left their imprint

on magnetograms in the pre-satellite era.

Rise Time.	 The change, dH, in a geomegnetic impulse occurs over

a relatively long time interval, — 1-5 min, which is called the rise

time.	 There are at least 3 explanations for this: 1) Nish.ida (1964,
z

2966b) suggested that the rise time for ssa is determined by the nature

of the interplanetary discontinuity, 2) Dessler et al., (1960) and

Francis et al. (1959) suggested that it is determined by the time it

takes hydromagnetic waves to propagate through the magnetosphere from

the various parts on the surface of the magnetosphere, 3) Sugiura ,.

suggested that it is determined by the transition from the initial

s°Late to the final state in the outermost region of the magnetosphere.

Nishida (1.964) related rise time of ssc to an indirect determination

of Vr=V- w, the discontinuity's mean speed 'between the sun and the

earth relative to the solar wind speed.	 He distinguished between 2

Ivinds of ssc, - those with Vr> 600 k_g/sec, which were associated with

short rase times (< 2 min) and those with r< 600 km/sec, which were

associated with larger.. rise times (> 2 min).	 He attributed the forMer

to shocks, the latter to non-s.'hock"mode discontinuities. 	 If we assume

that his ssc t s correspond to A >8	 there is clearly a dUagreement

NO -	 Mi 106M
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between his inference and the conclusion in Section TV concerning the

general cause of ssc. There is another problem: there is no hydromagnetic

discontinuity other than a shock which propagates with speeds (100-500)

km/sec relative to the solar wind., as does Nishida's non-shock mode.

Finally, Nishida assumed that the rise time is determined primarily

by the thickness of the interplanetary discontinuity, but some evidence

by Burlaga and Ogilvie (1968) argues against this.

The quantitative theory of Dessler et al. (1960) is 2-dimensional

and based an the geometrical ray approximation. Stengelman and

Kenschitzki (1964) extended the theory using a 3-dimensional model and

found that it could not explain the shape of the impulse, because of

the inadequacy of the ray approximation.

Sugiura's explanation implies that the rise time should be

essentially the same everywhere in the magnetosphere, in agreement with

the Explorer 12 results of Nishida and Cahill (1964). The faster the

shock, the shorter the transition time (see the illustrative calculation

of Spreiter and Summers, 1965) and thus the shorter the rise time. A

faster shock is also a stronger shock fora given solar wind speed,

which implies a larger momentum change &P and thus a larger impulse

AH. One concludes, then, that the theoryimples an inverse relation

between the rise time and H for ssc. Pisharoty qnd Srivastava (1962)

showed that such a relation does exist for the ssc's'at Alibag between

1949 and 1960 (Figure 12). Chapman and Bartels (1962, p. 297) suggest

no such relation,-however., on the basis of the points shown as X's

in Figure 12.
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To really understand the rise time a good mo del of the propagation

of an impulsive disturbance through the magnetosphere is needed. There

are many models (e.g. Hines and Storey, 1958; Hines, 1958, Ferraro et

et al., 1956, Wallis, 1964) but we shall not .pursue the subject.

C. "SI+ - SI Pairs".

Geomagnetic Observations. Sugiura et al. (1963) pointed out that

world-wide impulses often occur in pairs consisting of a small positive

impulse with AH-5Y followed approximately 1 hour later by a similar

negative impulse. Figure 13 shows an example of such a pair.

Akasofu (196+) pointed out the existence of another type of pair

of impulses characterized by a large (— 40Y) positive impulse (not

necessarily si +) followed several hours later by a similar negative

impulse. He showed 4 such pairs, each of which was followed by

geomagnetic activity.

A typical giant pair is shown in Figure 14. Sonett and Colburn

(1965) introduced the term "SI+ -SI - Pair" to describe both kinds of

impulse pairs, but they distinguished between "giant pairs" and"regulox

pairs". The term SI+-SI- pair is quite misleading and is best not used

at all. The distinction between giant and regular pairs is, however,

sound and useful.	 -- -

Causes of Giant Pairs. Sonett and Colburn (1965) suggested that

giant pairs are caused by a pair of convected shocks. One of these

is an ordinary fast shock moving away from the sun and causes -the

positive impulse; the other, which causes the negative impulse-, is

a reverse fast shock. The theory of such shock pairs was developed

r F^
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by several authors (Simon and Axford, 1966; Sturrock and Spreiter,

1965; Schubert and Cummings, 1967, 1969). The most extensive model

is that of Hundhausen and Gentry, 1969 who concluded that flare-

associated forward-reverse shock pairs at 1 AU are not likely. Dessler

and Fejer (1963) speculated that such shock pairs might appear at

corotating streams in the solar vi nd. Razdan et al. (1965) noted the

apparent -27 day recurrence of giant pairs in magnetograms and

extended the Dessler-Fejer speculation to explain them.

Despite the extensive theoretkal work, there is no direct evidence

for a shock pair in the solar wind. Schubert and Cummings (1967, 1969)

suggested that the shock seen on October 8, 1962 was one of a pair, but

the contact discontinuity and trailing shock were not seen, and the

features which they somewhat arbitrarily fit to the shock pair model

are very similar to those that are commonly seen at high speed streams

even when no shock is present (Burlaga and Ogilvie, 1969; Ogilvie et al.

1968).

Ogilvie et al. (1968) presented plasma and magnetic field data

associated with a giant pair, which showed that the positive :impulse

was due to a shock and the negative impulse was due to a tangential

4

discontinuity across which the density decreased. (see Figure 14).

Such a combination-a shock followed several hours later by an abrupt

decrease in density - is- frequently seen proceeding high speed streams

(for examples,les, s^'pe Burlaga and Ogilviei.lvie 1 	 Ogilvie	 1.v e et al.	 8-	 ^	 ^ (969)	 g ^	 (96 )

and Lazarus et al. (1970) . Th i.s suggests that giant pairs are generally

caused by such .driven shocks, the positive ampUse being dve to the
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shock as in an ordinary sudden comaencement and the negative impulse

being due to the discontinuity which sometimes separates the driver

gas from the high density material that is piled up by the advancing

stream.* This discontinuity ., then, would be analogous to that
postulated by Parker (1963). The variety of possible giant pairs

is reflected in the storm classification scheme of -Oguti (1968).

The flow behind shock is usually not so simple ., howevero as

evidenced by Figure 6, for example. Thus, the giant pair is just one

of many types of geomagnetic signatures that can be produced by driven

shocks ., and the identification of the transition to driver gas is not

always possible. The existence of several'discontinuities behind

certain shocks would be expected to be seen as si activity in the

magnetograms. Yoshida and Akasofu (1966) have studied such events

and related then to Forbush decreases. There are available many

unpublished observations of the flow behind shocks. Because of their

complexity, an analysis of them should be based on a collection which

is as complete as possible.

Causes of Regular Pairs. The relation between regular pairs and

interplanetary observations has not been studied. Burlaga and Ogilvie

(1968) showed 2 dense spots in the solar wind associated with geomagnetic

pulses for which they suggested the symbol pl. Such pulses may simply

be closely separated pairs.. Figure 1 (from Burlaga,, 19168) shows a

complementary pair of tangential di scontinui ties between when- the

density is high; such a feature mfr be ex-pected to produce- a regular

pair. This is clearly an area of special interest, which requires

further study.

I?
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Summary

The existence of fast shocks and tangential discontinuities in the

solar wind is now fairly well established. Evidence for slow, shocks and

rotational discontinuities has been found, but needs to be corroborated.

Double shocks have not been found, but a reverse shocks has been identified.

While much remains to be learned about the topology, distribution and

origin of the various discontinuity surfaces, there is a substantial

observational base for the study of the geomagnetic impulses which are

generated by hydromagnetic discontinuities.

Although there is some confusion in the literature as to the types of

geomagnetic impulses there are basically three types - sit , ssc+ and those

which are not clearly si or ssc. World-wide impulses, are probably identical

in essence to small si, and require no special classification; they deserve

further study because they are an important means of moni-coring density

discontinuities on the ,solar wind. In general, ssc + is caused by a shock,

although in some cases the most prominent discontinuity preceding a storm

is caused by a tangential discontinuity. The relatively rare ssc - are

caused by.such tangential discontinuities and may generally be accompanied

by a smaller positive impulse caused by a shock; thus, they may be better	 {

described as si - . The si - 's and world-wide impulses are probably usually

,caused by tangential discontinuities. Further studies of si's are needed..

The change in the H component of the earth'sg	 p	 magnetic field is related _ 	 .

to the change in the momentum flux in the solar wind. Further observations

are needed to better define this relation, and a discrepancy with the existing

theory needs to be resolved. The rise time of geo gnet c pulses seems

to be determined by the propagation of the disturbance through the
;:.

r
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i

magnetosphere rather than by the characteristics of the interplanetary

discontinuity; this is a particularly interesting area for further study.

The subject of pairs of discontinuities("si+-si- pairs" is extensive

but confused. It is suggested that giant pairs are usually caused by a

shock followed by a tangential discontinuity, while regular pairs are

usually due.to complementary tangential discontinuities.
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t FIGURE CAPTION'S

Figure 1	 Two discontinuities in the interplanetary magnetic field. 	 The

abcissa is universal time. 	 The ordinate gives the magnetic field

intensity and direction in solar ecliptic coordinates, the plasma
r

density, the thermal speed and the bulk speed.	 In this case

the 2 discontinuities appear to define a "filament", but usually

discontinuities are not paired.

Figure 2	 A tangential discontinuity.	 The plane is a thin current sheet

which separates 2 regions.	 The magnetic field vectors in the

w
2 regions are parallel to this plane, but otherwise arbitrary.

The temperature and density of the particles may differ on side
K

1 and side 2, but the pressure must be the same in both regions.

The material on side 1 may move along the plane relative to the-

material on side 1 • hence	 the term "	 "glide plane	 is used for the

n boundary.

Figure 3	 AA rotational discontinuity.	 The plane is an element of a real

surface which can be measured in space. 	 There is a component

of B normal to the surface. 	 The field intensity does not change-

across the surface; thus, the tangential component of B appears to

rotate in the plane through the angle a.	 The density and

temperature do not change across the plane.	 The plane of the-

discontinuity propagates reX Live to the plasma- with the Alfven

speed..

2	
^^ 

	 4	
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Figure 4 The distribution of the change in magnitude of D, across

discontinuities in the solar wind. The distribution on the left

is based. on Mariner 4 data and that on the right is based on

Pioneer 6 data obtained a year later. The 2 distributions are

essentially the same. The field intensity usually does not

change across a discontinuity, and the change is seldom '^!20%-

Figure 5 Distribution of time intervals between successive discontinuities.

Discontinuities with small changes in the magnetic field direction,

W, occur most frequently.

Figure 6 This shows a series of discontinuities in the density in the flow

behind a shock at 0610. The magnetic field data shows a corres-

ponding pattern. Filamentary forms can be seen, but they are not

unambiguous and are not all bounded by directional discontinuities.

This figure shows the material that is piled up by an advancing

stream of fresh, hot plasma.

Figure 7 The interplanetary magnetic field during a quiet period. Dote

that numerous discontinuities can be seen (marked by arrows), but

it is not possible to describe the field by a unique series of

step functions. Thus, the term "discontinuous" is appropriate,

but it is an oversimplification to think of the field as a

superposition of distinct filaments, however, some filamentary

forms can be seen. The plot is b-aced on 30 sec averages of the-

magnetic field; cis the standard deviation for each of the averages.

Figure 8 Definition of geomagnetic i, , - ulaes in the H component of the

earth's field.. Events of type a) are positive lases.

Corresponding events with a de-cresase in H, rat ha than the

at
increase shoe L _ in a) axe negat3 it ul.so6. Othxav ty-pea of nega.t .ve

impulses, shown by (b), are less freqpently seems.
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Figure 9 Not all observatories classify an event in the same way. The

number A describes the relative number of stations that identify

an event as a sudden commencement or a sudden impulse. There

are 2 classes of events, corresponding to s (A = - 1) and ssc

(A = + 1), but many events cannot be unambiguously classified as

ssc or si. Appaxently ssc's axe more easily recognized than si's.

Figure 10 The magnetogram traces show impulses that occurred world-wide,

but were not identified as si or ssc by geomagnetic observatories.

The corresponding plasma data suggests that these "world-wide

impulses" were caused by the density changes at tangential

discontinuities.

Figure 11 This shows that the change  in the horizontal component of the

earth's field. (divided by cos X ) is proportional to the change

in the momentum flux across a discontinuity ., as predicted. The

difference between the 2 sets of observations might be a seasonal:

effect; this requires further study.

Figure 12 The rise time versus the change OH for ssc for data from Alibag

(circles)and, Batavia (crosses). Both an inverse relation and

no relation have been suggested.

Figure 13 Pairs of impulses, such as that shown here, occur,  frequently.

They have not been adequately studied in relation to solar wind

observatio-rG_, _but are probably due to structures such as that in
, i

Figure 1:.
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Figure 14 The magnetograx trace shows a "giant pair". The corresponding

plasma and magnetic field data show that the giant pair was caused

by a shock followed by a tangential discontinuity. Such pairs may

frequently appear with shocks driven by fresh, hot plasma from the sun.

The high density material is probably compressed by the advancing

stream; hence the second discontinuity of the pair may represent

the transition between the driven and the driving gases.
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