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A FREQUENCY DOMAIN APPROACH TO THE DESIGN
AND ANALYSIS OF LINEAR MULTIVARIABLE SYSTEMS

By William A. Wolovich*
Office of Control Theory and Application
Electronics Research Center

SUMMARY - _
A new approach to the design and analysis of linear multivari-
able systems is given. Several applications of one rather simple

basic result, called the structure theorem, are presented. This
theorem allows us to combine time and frequency domain information
in a compact, concise expression for the transfer matrix of a
linear multivariable system. This expression and the definitions
required to formulate it are used to establish new results, which,
for the most part, can be classified as design algorithms that can
be implemented by using pencil and paper methods alone, if the
system order is relatively low, or by employing rather simple
computer programs. .

In particular, a new technique for obtaining realizations,
given the transfer matrix of a system, is introduced. A direct,
constructive technique for arbitrarily assigning all eigenvalues
(closed loop poles) of a controllable multivariable system by us-
ing linear state variable feedback is also given. A simplified
expression for the characteristic equation of a system compensated
by linear output feedback is discussed from the viewpoint of pole

assignment. Questions pertaining to linear optimal control are
considered, and improvements are made over prior work in the areas
of spectral factorization and the root-square locus. Specifically,

a solution to the output regulator problem is formulated in the
frequency domain, and spectral factorization is employed to obtain
the optimal control law solution. A simplified expression is given
for formulating and plotting the root-square locus. Various gues-
tions pertaining to the design of noninteracting control systems
are also considered, and a procedure is given for determining which
poles cannot be altered while decoupling a system using linear
feedback. A design algorithm for achieving naximum pole assign-
ment under linear decoupling feedback is presented. All systems
which can be decoupled by using input dynamics are characterized,
and an algorithm is outlined for achieving an asymptotically
stable decoupled design with arbitrary pole placement. Two design
algorithms for achieving a noninteractive design via linear state
variable feedback are given. The design of a helicopter stability
augmentation system based on desired handling qualities is pre-
sented. Many of the results are applied, and pencil and paper
methods are employed to achieve the final control system used.

*The research reported has been carried out under the supervision
of Prof. Peter L. Falb and has also been submitted to Brown Univer-
sity as a dissertation in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Electrical Sciences.



1. INTRODUCTION

We have witnessed a radical change in the methods used for
the design and analysis of control systems during the past decade.
Control systems engineers, who once relied almost entirely on
classical frequency domain techniques such as the root locus,
Bode plots, and Nyquist diagrams, are gradually adopting the
modern state space approach to system design. This is primarily
due to the rapid theoretical advances made over the past few
years, especially in the area of optimal control, and to the evo-
lution of the high speed, easily accessible digital computer.
Designs which once took weeks of effort involving excessive multi-
loop analysis and elaborate trial and error simulation can now be
obtained in a matter of minutes or even seconds. Today's control
literature is filled with applications of modern control theory,
via computational algorithms, to the design and analysis of dy-
namical systems and the end is not in sight. However, we cannot
be overly optimistic in evaluating the impact of modern control
theory on practical system design. Many systems are still too
complex for even the latest theory or computational algorithms to
handle, and trial and error simulation and evaluation appear to
be the only alternative in achieving a satisfactory design.
Furthermore, computational algorithms employing modern control
principles do not always lead to a satisfactory design or a de-
sign which can easily be altered. Frequency domain techniques
still retain certain advantages over state space methods, espe-
cially for single input, single output systems. In the case of
multivariable systems, however, time domain methods have thus far

been dominant.

The primary purpose of this report is to present new insight
into the design and analysis of linear multivariable systems.
This is accomplished by presenting a number of applications of
one rather simple basic result, called the structure theorem.

This theorem, which can easily be stated and established, allows



us to combine time domain and frequency domain information in one
concise expression for the transfer matrix of a linear multi-
variable system. We use this compact transfer matrix expression
to establish several new results, which represent the main con-
tribution of this report. These results, for the most part, can
be classified as design algorithms. An important feature of many
of these algorithms is that they can be implemented by using
pencil and paper methods alone, if the system order is relatively
low. For higher order systems, appropriate computer algorithms

can be employed to simplify the design process.

We introduce the structure theorem in Section 2. Sections
3, 4, and 5 are, for the most part, mutually independent, and
represent a variety of research areas where the structure theorem
has been successfully applied. Section 6, which deals with a
practical design problem, uses the results obtained in most of
the prior sections. Each section contains an introduction and
several examples to assist the reader in understanding the various
steps taken. A list of symbols and special notations are included

as Appendixes A and B respectively.
2. A STRUCTURE THEOREM FOR LINEAR MULTIVARIABLE SYSTEMS

The primary purpose of this section is to state and prove a
simple basic result which underlies the remainder of this report.
This result, which will be called the structure theorem, enables
one to express the transfer matrix of any linear, time-invariant
dynamical system in a concise and compact manner. This expression
for the transfer matrix is based on a canonical form for the
dynamical equations which characterize the system. The structure
theorem then provides a means for directly expressing the transfer
matrix of the system in terms of the canonical equations of motion.
The effect of linear state variable feedback on the transfer matrix
of the system is also clarified. All of these points are discussed
in reference 1 and will be covered in depth in Sections 2.1, 2.2,
and 2.3.



LV ot

In Section 2.1, we define the class of systems considered
and discuss linear state variable feedback and its implications.
Section 2.2 serves to introduce the structure theorem for the case
of systems which are completely controllable. The general struc-

ture theorem is presented in Section 2.3.

2.1 Transfer Matrices and Statequriab}e Feedback

The class of systems which will be considered in this report

can be defined in the following manner:

X =Ax + Bu, y=Cx (1)
where x is an n vector, called the state; u is an m vector, called
the input; y is a p vector, called the output; and A, B, and C are
constant matrices of the appropriate dimension. We assume that
the m inputs and p outputs are linearly independent, i.e., B and
C are of full rank.* Furthermore, assuming zero initial condi-
tions on the state X, we can determine and express the open loop
transfer matrix, @O(s), relating the Laplace transform of the
output y(s), to the Laplace transform of the input, u(s), of
Eq. (1), in terms of the triple {A, B, C} as

T (s) = C(sI - ) 'B (2)
We will be interested in the effect of linear state variable
feedback on the transfer matrix of the system. In particular,

suppose that
u =Fx + Gw (3)

where w is an m-dimensional external input, and F and G are con-

stant matrices of appropriate dimension. Substituting Eq. (3)

*This condition should hold in most cases. If it does not, we
merely reduce the dimension of B and/or C until it does.



for u into Eqg. (1), and solving for z(s) in terms of w(s), we
obtain;ﬁhe closed loop transfer matrix, ' ”
T (s) =cC(sI -A-BF) tBe (4
iF,G = \St £ 2L b
Paréméunf_to the development of the’stfuctﬁre theorem is the
obser&étioh that the transfer matrix of a linear system repre- _
senfs'an input/output relatiohship and, consequéhtly, shbuld be
indépendent of the choice of "state".for the system; -In particu?
lar, if we consider the effect of altering the state, X, of:thg
system (Eqg. (1)) wvia an (nxn) nonsingular similarity transforma-

tion Q, by setting

z = QX (5)

we obtain an "equivalent" system

5= 0a07'z + gBu , y = CO 'z (6)
or
z=Az + Bu , y=Cz (7)
where A = 0aQ™ %, B = OB, and C = gg'l. We now establish an im-

portant well known proposition (P1l):

Pl: Transfer matrices of equivalent systems are identical.

Proof: Simply noting that

c(sI - &) 1B = coto(sz - a)7To7ioB

= co (st - oag”h)7iom =

- == B

(sI - é)_lﬁ

(8;

10>

We can actually go one step further and establish the
equality of transfer matrices of equivalent systems after the

application of linear state variable feedback. 1In particular,



if u=Fx+Gw=FQ "z + Gw = fg + Gw, where F = %Q—l, then

1>
1

C(sI - A - BF) "1BG é(sI -

ﬁ/\/\ _/\A
BF)BG = Tg,g(S) (9)

3
1o
w
I

We note that Eg. (9) is a relatively simple expression for the
closed loop transfer matrix of the system in terms of its time
domain representation. However, the reduction of Eg. (9) to a
(pxm) matrix of transfer functions requlres the inversion of the
(nxn) matrix (sI - A - BF) or (sI - A - BF) Furthermore, the
effect of linear state variable feedback on the pm terms compris=
ing the closed loop transfer matrix is not at all apparent. The
structure theorem, which will be introduced in the next section,

significantly corrects these deficiencies.

In developing the structure theorem for multivariable systems,
we will first consider single input (m = 1) systems, sometimes
referred to as scalar systems. The discussion dealing with this
class of systems is not intended to be rigorous, since all of the
statements which will be made here either have been established
elsewhere or will be established for the more general (multi-

variable) class of systems in Section 2.2.

For scalar systems, it is well known (ref. 2) that (1) linear
state variable feedback (u = fx + w) affects only the closed loop
poles of the transfer function, and (2) any closed loop configura-
tion can be achieved via linear state variable feedback if the
pair {A,b} is completely controllable. In particular, if the pair
{a,b} is completely controllable, one can find a similarity trans-
formation Q, which transforms the pair {a,b} to a controllable
companion form (ref. 3), after which, the effect of state feed-
back is immediately apparent. This point can easily be illustrated
by example. Consider the following completely controllable pair

{5,9} representing a scalar system whose equations of motion are



given by Eg. (1), with

1 0 2 1
a=|2-27 b =|2
1 13 1

The output y (and hence c) can be chosen arbitrarily and plays no
important role at this point. Suppose we are required to study
the effects of linear state variable feedback on the closed loop
transfer function of this system. We note that the closed loop
poles (zeros of the denominator of the transfer function) of the
system are equal to the eigenvalues of (A + bf) (ref. 2). Further-
more, the numerator of the transfer function is unaffected by £,
the feedback vector (ref. 2). The effect on the closed loop poles
of the system (the eigenvalues of (A + bf)), due to variation of
£, is not at all apparent in terms of the given pair {A,b}. How-
ever, suppose we transform the pair {A,b} to controllable compan-

ion form using the similarity transformation Q, where

Techniques for finding a suitable Q are given in references 4, 5,
6, and 7, for completely controllable scalar systems. In terms
of the new state z = Qx, we obtain the differential equations

z = a0 'z + gbu = Az + bu, where

010 0
A=|o0o01 b=|o0
10 2 1

If one now deals with the new state z and the corresponding

. A A 0 [ 3
pair {a,g}, it is clear that linear state variable feedback,



A

u = fg + w, where f = [%l,f2,§3], yields the closed loop matrix

0 1 0
a+bE=f 0o 0o 1
£,+1, £,, £3+2

Clearly, one can select the feedback wvector f to achieve any de-
sired third (final) row of the companion matrix (é + ﬁﬁ). Since

the characteristic polynominal of a companion matrix is expressed
directly in terms of the elements comprising the final row (ref. 8),

that is,

it follows that all three eigenvalues of (é + EE) can be arbi-

trarily chosen. Furthermore, since (é + ﬁf) = Q(A + Qg)g_l,
where f = fg, the eigenvalues of (A + bf) are the same as those
of (A + Ef) (ref. 8). Therefore, we conclude that the effect of

linear state variable feedback on the eigenvalues of (A + bf),
actually on the coefficients of the characteristic equation of

the given scalar system, can easily be understood by considering
the equivalent companion form system. A similar result holds for

multivariable systems and, as we will show, forms the basis of

the structure theorem.

2.2 A Structure Theorem for Controllable Systems

In the case of multivariable systems, we are interested in
finding a similarity transformation Q, which transforms the given
system to a canonical form similar to the companion form for
scalar systems. As we will show, an appropriate Q always exists
and can be found if the pair {A,B} is completely controllable by
first considering the (nxnm) matrix K = [@,é@,...,gn lg].

Clearly, K has rank n if the pair {A,Bl is completely controllable,

and it is possible to define a "lexicographic" basis for R con-



sisting of the first n linearly independent columns of K possibly

7)0
elements of the "lexicographic" basis so that

reordered (ref.

2—1 om-l
éz""’é Em

ol—l o
L=|b Dy sBysee- B

S-SR

where b.,...,b_are the columns of B. Setting

k
d, =0, 4 = z:oi kK =1,2,...,m
i=1

K be the dk

matrix Q given by

and letting % -th row of Q_l, we can see that the

. -

(7) is

represents a similarity transformation for which Eqg.
7 and 9).

~

"companion" form (refs.

We let L be the matrix whose columns are the

(10)

(11)

(12)

in

More precisely, in terms of

the transformed state Egq. (7), A = (aij) is a block matrix of the
form
211 -0 B
N A,. ... A
a=| 7% - 2m (13)
21 00 B
9



with éii a (cixoi) companion matrix given by

- -
0 1 ... 0 0
0 0 0
éll-: o . . . (14)
0 0 0 1
a A A~ A
d;rdi gt 3y 9. 42 a3, ,d.-1 24.,d.
| i77i-1 i771 i’71
i
and A, . a (oixoj) matrix given by
[0 0 . cee 0 ]
PV :
=ij |0 0 (15)
a a
dl,dj_l+l . dl,d:J
. . . A A . .
for i # j and with B = (bij) an (nxm) matrix given by
0 o0 0 N ¢
1 6 b b
dl,2 dl,3 dl,m
0 0 0 0
B = . . . . (16)
0 1 b b
0 1
d2,3 d2,m
0 © 0 1
b L

A

Since B as given by Eq. (16) has zero rows except for the

dl—th, dz—th,...,dmth rows, we need only calculate the correspond-

ing columns of (sI - é - EE)_l in order to obtain the transfer
matrix To(s) = C(sI - A - gg)'lg = C(sI - A - BF) "!B. Moreover,
§E has zero rows except for the dl—th, dz—th,...,dm—th rows and

AN ~

so é + BF is again a block matrix of exactly the same form as A.

10



In other words, A+ BF = (¢ij) is a block matrix of the form

- —
211 ¢ Z1m
U -7 R
¢=A+BE=]. (17)
gml 2{zmm
b =
where gii is a(Oixoi) companion matrix given by
0 1 ce. O 0 7
0 0 ees O 0
.. =] . : . . (18)
it 0 0 .. 0 1
¢ ¢ ¢ _ ¢
| Yay,d; g+ Tdy,dg 42 d,,da,-1 di,diJ
and gij is a (oixoj) matrix given by
0 0 . 0
2i5 = 1o 0 ce. 0 (19)
¢ 0 9]
dj,d g+l Td;,d; +2 d; 4y
for i # j. These two simple observations are basic to the

structure theorem (T1):

Tl: Suppose that the pair (A,B)is controllable and

let Tn(s) = C(sI - A - gg)_lg be the transfer matrix
of the system g = (A + BF)X + Bw,y = Cx. Then

~ —1 A
Tp(s) = §§(S)§E (s)B (20)

11



N - . .
where C = CQ 1 r S(s) is the (nxm) matrix given by

1 0 .o, 0
S 0 e 0
ol‘l

S(s) = (21)
: . :
0 g 2 0
o -1

0 0 s

§F(s) is the (mxm) matrix (GF ij(s)) with entries given
-~ R ’ - —
by
GF,ii(s) = det(sgcjL - gi ) and 6F, j(s) =
o.-1
_(p _Scb — o -5 1 (1) .
di’dj—l+l di’dj—l+2 di’dj for i # 45, and
ém is the (mxm) matrix given by
(l bd 5 et b3 m
o 1t cee p Lt
~ d2m
Bn=: : (22)
LO 0 1
-
where E = QB = (g ) .

12



Proof: 1In view of the proposition (Pl), we need only show
i J— ~ AA l/\ ~ A

that C(sI - A - BF) "B = gg(s)égl(s)gm. To do this, it will be
sufficient to show that -

BF) '8 = s(s)8, (s)B_ (23)

[h=13
I

(sI -
or, eguivalently, that

~ AN _ AA__l
(s1 - & - BE)S(s) = BB 8y (s) (24)
But Eg. (24) is an immediate consequence of the definitions of
S(s) and QF(S). Thus the theorem is established.

This seemingly innocuous and esaily proved theorem has, as
we shall see, a number of significant consequences. For a begin-

ing, we have the corollary (Cl):

Cl: Let A (s) = det(sI - A - BF), and C*(s) = CS(s).
Then, AF(E) = det(8,(s)) and if p = m, then

det EE(S) = (det g*(s))/AF(s) (25)

where IF(s) = NF(S)/AF(S) (i.e. NE(S) is the numera-

tor of the transfer matrix).

Proof: By the definition of T_(s), we have gF(s) =

F
No(s)/bp(s). It follows from the theorem that
* A
Nn (s) C*(s)Dp(s) By

(26)

An(s) - det(QF(s))

where §;l(s) = Dn(s)/det (S, (s)). However, A (s) and det (S, (s))
(s)

are both monic polynomials of degree (n) and the entries in NL

13



are polynomials of, at most, degree (n-1). It follows that
AF(S) = det (§F(s)) and, hence, that Eg. (25) holds (since
det (87" (s)) = I/det(§,(s)) and det B_ = 1).

A A~ A

Now let (A + gg)m = ém + gmg be defined as the (mxn) matrix
consisting of the m-ordered d, -th (k =1,2,...m) rows of (é + EE),
and define diag[sci] as the (mxm) diagonal matrix whose ii entries

are s%i. We then have the following corollary (C2):
g, A AA

— T l -— 2 —
C2: §E(s) = diag[s 7] émg(s) @mgg(s)

This corollary can easily be established by direct substitution

by using the definitions given above.

Proof: It then follows that

g.

9 i, _
§O(s) = diag{s 7] émg(s) (27)
and consequently that
§n(s) = 6 (s) - B FS(s) (28)

We note, in particular, that these latter three relationships
hinge on the fact that only the m dk-th rows of é and é contain
the most pertinent information regarding the dynamics of the
system. The last equation (Eg. (28)) can be established directly
by using Eq. (24).

We observe that entirely analogous results can be obtained
for observable systems by a consideration of the dual system
(refs. 3 and 10)

1% e

=a'x+C'v,y=B'x (29)

which is controllable if and only if Eg. (1) is observable. While
we will not derive the results for observable systems here, we

will use them without further ado in the sequel.

14



2.3 A General Structure Theorem

‘Consider the system, Eg. (1), and again let K = [B,AB,...
én_lgl, However, we no longer assume that Eg. (1) is controllable
and so, the (nxnm) matrix K has rank r with r < n. To obtain a
structure theorem in this general context, we shall consider a
controllable extension of Egq. (1) and apply the theorem (Tl).

With this in mind, we let g = n-r and W be the r-dimensional sub-
space of Rn spanned by the columns of K. Denoting the orthogonal
complement of W by w' so that R =W @WL and letting B,... ’§q
be a basis of WL, we consider the system

x = Ax + Bv » ¥y =¢Cx (30)
where B is the (n x (mt+q)) matrix given by B_ = [§,§l,§q]. The
system, Eq. (7), is controllable and there is a Lyapunov trans-
formation Q0 which carries Eg. (7) into block companion form. We

note that Qe is a nonsingular (nxn) matrix. It follows that the

system

(31)

IN
Il
1> >
I~
+
1w>
s
<
1l
[{o R
1N

10>

A _l N - . .
where A = Q. RO, = Q.B, and ¢ = ggel is equivalent to Eqg. (1).

Moreover, the matrix é is in block companion form, the last n-r
rows of g are 0, and the lower left-hand block (n-rxr) of é is 0.
Thus, the last n-r rows of é cannot be altered by state variable
feedback of the form u = ﬁg + w. We now have the following

theorem (T2):

A - gg)—lg be the transfer
(A + BE)x + Bw, y = CX.

T2: Let T, (s) = C(sI
matrix of the system

IX e 1
|

15



Theh
Cs(s)h, (s)8t (s)B
== F,u =F,c -m
T (s) =
~F
z AEIU(S)
where C = gg;l ¢+ S(s) is the (nxm) matrix given by
r-l 0 ... O
s 0 0
.O' —l . .
] 1 0 0
0 1 0
S(s) ={. .02_1
0 S 0
) ’om—l
0 0 ]
0 0 0
. Ol-l g -1
(with b, Ab; 4 ... , A 91, ... , AN b a

"lexicographic" basis of the range of K so that

m
=1oi = 1)y bg (8) = det § . (s) , Sn(s)

X

is the (m+g) x (m+qg) matrix (6F

by 6E,ii(s) = det(sI - 2.

,ij(s)) with entries givgn

o1- . .
~...7s 1 l¢dirdj for i # j where

-
N )

k .
d, = o, , 0, =1
=1t 1

16
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33



——

so that

—

53,11(5) ot O, 1m

for i =m+l , ... , mtgq , and A + BF

5 (s) = GF,ml(s) .o GF’mm(s) () (s)
=F F,m+.,m+1l F,m+1l,m+qg
0 .
E,m+q,m+l(s) e E,m+q,m+q(s)
| +
Sp,c(3) | g ou(s)
I
= |- - (34)
|
01 gy (9
and where Em is the matrix (mxm) consisting of the
nonzero rows of E
Proof: Clearly, we now need only show that
Cs(s)A,, _(s)8.T(s)B
F,u "’ =F =m
C(sI - & - BE) "B =
AE’u(s)
where E = gg;l. We shall do this by considering the completely
controllable system
z = Az + §eY r Y Cz (35)
+§ (s) involves only constant terms and the off-diagonal terms

-F,cu
in § (s) are constant.
_E’u

17



with ﬁ = Q B and applying the theorem (Tl). .
—e =e=e " P
Let # = F o' where F_ =| | so that F =[—]. Since
-e —eZe -e T Te 0
B, = [§§1,...,§q], we have, by definition of Q_,
I 0
N DO
Be = |B p——- (36)
bz
I g
and geﬁe = éﬁ. It follows that (sI - é - EE) = (sI - é - Eeﬁe)
and, hence, that the transfer matrix of Eg. (35) under the feed-
back v = F_x + W is given by é(s; - é - EE)_lﬁe. However, the
system represented by Eg. (35) is controllable and thus by
theorem (T1),
~ ~ An =] A A -1 A
where §e(s) is given by
S(s) 0
= e
s, (s) | (38)
I Eq
| d
and §e,m+q is the (m+qg x m+qg) matrix given by
B I ¢
—-m l -
~ !
e i (39)
o | 1
| -q

By equating the appropriate blocks in Eg. (37) and noting that

: | : :
N (det §E,u(S))adj QEIC(S){ - (adj §EIC(S))§E,cu(S)(adJ §§,u(s)
8 (8) =|==-=—="=— -~ — -~ —— - —— - - I
= 0 | (det 8, _(s))adj 8, . (s) J
| L Zr
i
det & . (s) det & (s) (40)

18



where adj (.) denotes the adjoint of a martix, we deduce Eq. (32).
Thus, the theorem is established.

Corollary C3: An u(s) is independent of F and the uncontrol-
14

lable poles of the system % = (A + BF)X + Bw , y = Cx are
(s)]

the zeros of éE,u(s)[= A

0,u

C3: is simply a statement of the fact that the uncontrollable
poles cannot be altered by state variable feedback. We also note
that the factorization (Eg. (32)) involves the well-known pole-zero
cancellation of the uncontrolilable portion of the system (ref. 11).
Then now state corollaries (C4, C5, and C6):

A

C4: The matrices C , S(s) and B are invariant under

—

state variable feedback.

C5: Let p = m and C*(s) = CS(s). Then the inverse

system exists if and only if C*(s) is non-singu-

lar.

C6: Let p = m and let A, (s) = det QF(S). ?hen
det (T, (s)) = (det C*(s)) (bg u(s,))/Al;(s) where

bp(s)= dp,u ()8

F,c (s).

We again observe that entirely analogous results can be ob-
tained for systems which are not observable by a consideration of
the dual system (Eq. (29)). We use these results without further

ado in the sequel.

3. DIRECT APPLICATIONS OF THE STRUCTURE THEOREM

Now that the structure theorem has been established, we can
investigate its application to various questions concerning the

analysis and synthesis of linear multivariable systems. In parti-
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cular, in this section we will discuss three "direct" applications
of the structure theorem. We use the term "direct" to imply that
the applications are relatively straightforward and require only

minor modification of the relationships established in Section 2.

In Section 3.1, we consider the question of realization. 1In
Section 3.2, certain questions related to pole assignment via
linear state variable feedback are discussed. The final section
£3.3) deals with linear output feedback for pole assignment. An
example is given in the last section to clarify certain of the

statements made.

3.1 The Problem of Realization

The first application we will discuss involves the use of
the structure theorem to obtain an algorithm for solving the
problem of realization (refs. 3 and 12). More precisely, we con-

sider the following.

REALIZATION PROBLEM: Let T(s) be a (pxm) matrix whose

entries, Ti.(s), are rational functions of s. Suppose that
Tij(s) = n.j(s)/dij(s) where nij(s) and dij(s) are re%atlvelz.
prime and degree ni.(s) < degree dij(s)‘ Then determine a triple

{a,B,C} of matrices such that

T(s) = C(sI - &) 'B (41)

and {é,g} is controllable and {é,g} is observable. Such a triple

is called éfminimal realization of T(s) (refs. 3 and 12).

Ho and Kalman (ref. 12) proved that the realization problem
has a solution and provided a constructive procedure for determin-

ing a minimal realization. Here, we present an alternate con-
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structive algorithm for determining minimal realizations analogous
to a recent result of Mayne (ref. 13). A computer program has

been developed for applying the algorithm.
The basic steps in the algorithm are:

STEP 1: Calculation of the least common multiple of
the denominator polynomials {dl.(s),...d .(s)} in
each column of T(s). J PJ

STEP 2: Construction of a standard controllable
realization {A_,B_,C_ } (not necessarily minimal).

STEP 3: Construction of a minimal realization by
applying a suitable transformation to {éé,gé,gé}.
We shall examine each of these steps, in detail, paying particular

attention to step 2.

Now let gj(s) be the least common multiple of the denominator
polynomials {dlj(s),...,dpj(s)} (which are assumed, for conven-
ience, to be monic). Let hj denote the degree of gj(s) and let

T*(s) be the (pxm) matrix given by

nil(s)/gl(S) .. nim(S)/gm(s)

T*(s) = . . : (42)
n;l(S)/gl(S) ... ngm(s)/gm(S)
where an(s) = nij(s)gj(s)/dij(s). In other words, T*(s) is ob-

tained from T(s) by multiplying each numerator nij(s) by

gj(s)/dij(s) and replacing each denominator dij(s) by gj(s). The
construction of T*(s) completes step 1.
k

m
= ) = .. i . i 1 t
Let ny .2 hj and Py % hj Since g](s) is the leas

common multiple of {dlj(s),...,dpj(s)} and degree nij(s) < degree

dij(s) and the dij(s) are assumed monic, we have

h. h.-1

- ] J
g.(s) = s + Y..S + ... + oYL (43)
1 h.

J J J 3
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hj—l hj—2
* =
nij(s) vijls + vijzs + ... + vijhj (44)
for all i,j and suitable constants ij ’ vijk . Let éc, be a
companion matrix corresponding to gj(s) so that
0o - 0
a .= : : ' : 4
=C,J ( 5)
0 0 1
-Y. -y. .o -y.
h. h.-1 1
| 3 3 ] . JL]
and let éc be the (nlxnl) block diagonal matrix given by
éc,2
éc = - (46)
- -

If Ec is the (nlxm) matrix with zero entries in all but the pk—th

rows, each of which is zero except for a 1 in the k-th column,

then the pair {éc,gc} is controllable.

tion (P2):

P2:

Y
11h,

A%
2lhl

v
plhl

L

then {a

22

v
llhl—l

\Y)
Zlhl—l

-1

v
plhl

Let gc be the (mxn

1)

ce+ V111 Vlzhz

We

matrix given

now have the proposi-

by

Vi21 - Viml
|

Vool | Voml
| ] (47)
! :
|

Vp21 | melj

c’Ec’gc} is controllable realization of T(s).




Proof: Since {A_,B_ } is controllable, it follows from the

structure theorem (Tl) and the definitions of éc’gc’gc that

c (sI -a) 'B =ci(s)s t(s)B - (48)
=c 7= =c =c =c ~c =c,m
— -1 — A4 * -
whire Ec,m = Im ’ gc (s) = dlag[l/gl(s),...,l/gm(s)] , and gc(s) =
(nij(s)). ?ince nij(s)/gj(s) = nij(s)/dij(s) , we deduce t#a#
C.(sI - A.) "B, = (nij(s)/dij(s)) = T(s). Thus, the proposition

is established. This proposition completes the descriptioﬁ/of
step 2.
As regards step 3, we consider the triple {éé,gé,gé} and

apply a similarity transformation ge,of the type used in Section

ny-1
2.3, to it. TLetting n be the rank of [CIAIC'...AL 1 Cc.l and
. ~ _l ~ A~ _l
] — ' 1 — 1 ! —_ 1
setting éc = Qeécge ’ gc = gegc » B = BLQy r we have
c' B’ i
T = —_ e - - ' —_ e e e
(_JC - - ’ éc %* (49)
0 0 f
“n,-n,p ~n;-n,n,
and B' = [B'I* ] where C' is (nxp), A' is (nxn), and B' is
-c - tm,nj-n = -1 - =
(mxn). Since T(s) = C_(sI - A, ) "B,, it follows that T'(s) =
gé(sg - éé)_léé = B'(sI - A')~1lC' or, equivalently, that

T(s) = C(sI - é_lg. Thus, {A,B,C} is a realization of T(s). But

{a,g,g} is both controllable and observable and, hence, is a

minimal realization (ref. 12). The triple {Aa,B,C} is in "observ-
able canonical form." The actual available program also produces
a minimal realization in "controllable canonical form" as well as

all the relevant similarity transformations.

3.2 Pole Assignment via Linear State Variable Feedback

Several recent papers have dealt with the utilization of
state variable feedback for closed loop pole assignment in linear
multivariable systems (refs. 14, 15, and 16). The main result

established in all of these papers was first presented in
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reference 16 and is summarized below.

Let A = {Al,Az,...,Xn} be an arbitrary set of n complex
numbers Ai , which appear as conjugate pairs whenever Im(Ai)#O.

From theorem (T3),

T3: The pair {A,B} is controllable if and only if,
for every choice of the set A , there is a matrix

F such that A + BF has A for its set of eigenvaiaes.
3 =% o

The sufficiency portion of the proof was established in
reference 16 by using a result of Langenhop (ref. 17), However,
a simple constructive procedure for establishing necessity did
not appear until Heymann (ref. 15). The purpose of this section
will be to present an alternative constructive procedure for
arbitrarily assigning all n eigenvalues of (A + BF) based on the

structure theorem.

The constructive procedure we will employ involves two
relatively simple observations: (1) the eigenvalues of similar
matrices are identical (ref. 8), and (2) the m dk—th rows of
(A + BF) can be completely and arbitrarily specified via F. By
(1), we know that if an E can be found such that all n eigenvalues
of (é + EE) belong to the set A , then we are finished; i.e. by
(1), all n eigenvalues of (A + BF), where F = EQ, will also belong
to A. However, by (2), we note that E can be chosen such that
(é + EE) is a companion matrix with any arbitrary final (n-th)
row. In particular, we can choose the last row of (é + éﬁ) to
correspond to the coefficient of the polynominal whose zeros are

the numbers of A ; i.e., 1if

n
T (s - A,) =s® + a n-1 .. (50)
i=1 1 n-1 o

24



then we can select F so that

0 1 0 eee eee 0
0 0 1 0 ‘e
A + BF = . (51)
1
-ay —ag .o _an—lJ

because all nm terms comprising the m d; -th rows of é + éﬁ can be

completely and arbitrarily selected by using linear state wvariable
feedback. Clearly, the eigenvalues of é + EE are the members of

A and all that is required is an explicit expression for E. If

we define ém as the (mxn) matrix consisting of the m—ordered_dk—th

rows of A, and é% an (mxn) matrix consisting of the m-ordered

A AA

d, -th rows of A + BF, we observe that

k
~ N A — /\*
B+ BF - Ay (52)
or that
F o= B T[a* - A ] (53)
= =m “=m -m

Necessity in theorem T3 is thus constructively established.

We note at this point that, in general, Eg. (53) represents
only one of an infinite number of choices for E , and consequently
F , for pole assignment in multi-input systems. By altering or

linearly combining the column vectors of B before transforming

the system to canonical form via Q, we can achieve any number of
appropriate feedback matrices. While this might appear to present
the system designer with an impossible task of selecting the
"best" F for feedback compensation, we note that this is not
generally the case in practice for a number of reasons. In gen-

eral, practical system constraints are present which prevent
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arbitrary selection of the first feedback matrix F which produces
a desirable closed loop pole configuration. For example, two
different feedback matrices may yield the same pole configuration,
but one of these may be far superior from the point of view of
reducing system sensitivity to parameter variations. Along these
same lines, the feedback design which reduces sensitivity might

be optimal in the sense of a quadratic performance index, while
the other need not be, although both designs yield the same closed
loop poles. Constraints might also be placed on the allowable
magnitudes of feedback gains in order to conserve system power or
avoid noise amplification. A certain form for the closed loop
transfer matrix, such as being diagonal (decoupled), might be
desirable; in which case, the class of allowable feedback matrices
would be significantly reduced. If the entire state of the system
were not directly measurable, one might want to investigate the
feasibility of employing output rather than state feedback to
achieve a satisfactory closed loop design. Other constraints, or
a combination of constraints, can significantly reduce the allow-
able class of feedback matrices, perhaps to the point where linear
feedback alone would be unsatisfactory. Most of these points will

be discussed in more detail in the remainder of this report.

3.3 Pole Assignment via Output Feedback

At the conclusion of the previous section, we noted that the
entire state of a given system might not be directly measurable.
In particular, in many practical systems, various sensors must be
used to obtain the physical "state" of the system or some portion
of it. Feedback designs which involve the entire state of the
system are often difficult to achieve in practice unless addi-
tional sensors or state estimators (filters) are employed. This,
of course, involves additional costs which may be avoided if al-
ternative designs are used. The purpose of this section is to
discuss a procedure for specifying closed loop pole locations by

using linear output feedback. The technique we will employ in-
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volves a direct application of the structure theorem and, in
particular, corollaries Cl and C2. It should be noted that the
question we are considering here has a rather elegant solution in
the scalar case, namely the familiar root locus. Unfortunately,
there does not appear to be a simple pictorial solution to the
question of output feedback compensation in the multivariable

case due to the dimensionality of the problem; i.e. instead of
feedback from one output variable to one input terminal, we con-
sider feedback from p outputs to m inputs and, consequently, a
total of pm individual gains, instead of one. We remark here

that recent results pertaining to this gquestion have been obtained
by using a pictorial nested root locus approach (ref. 18). The
approach taken here, however, will not involve any graphs or
plots. 1In particular, consider the multivariable system, Eg. (1),
and suppose we wish to calculate the effect on the closed loop

eigenvalue if output feedback is used, i.e., if
u = HCx + Gw (54)

The choice of G does not affect the eigenvalue of (A + BHC) and

can be neglected. Also, as in the case of state feedback, we will
consider the canonical equations of motion (Egq. (7)) rather than
the actual system; i.e., the eigenvalue of (A + BHC). Note that

H, the (mxp) output feedback matrix is unaffected by a transforma-
tion of coordinates. The eigenvalue of (é + égé) and, consequent-
ly, of (A + BHC) can therefore be determined directly in terms of
the actual H which is employed. According to corollaries Cl and

C2, these eigenvalues are equal to the zeros of det(§HC(s)), where

Suc(s) = §,(s) - B HCs(s) (55)

The evaluation of the determinant of Eqg. (55) directly produces
the characteristic polynomial of the output feedback state matrix

(A + BHC) in terms of the pm elements comprising H.
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This point will now be demonstrated by example. In particu-
lar, consider the following triple {A,B,C} representing the system

(Eq. (1)).

_ - _ -
-1 0 0 -6 3 -1 0o 1
2 1 0 -1 -1 -1 -2
1 0 6 -2 1 o -1
=1 1 o o0 o0 0 B=1o
-1 2 -1 o0 1 1
-1 0 -1 0 1 0

o
o
o
o
P
o

=
(@]
(]
o
o
(]

If one transforms the above triple via the similarity transforma-

tion Q , where

o O O O o =
© O O+ H O

© O © o +H o
N O B O O ©
H o O O O ©

o H O O O -

the resulting triple {A,B,C} is in companion canonical form as

desired; i.e.

_ | - _ -
1 010 0 O 0 0

o 110 0o o 0 o0
R - 2 0 L;z 0 1 R 1 2
2= 17070 0 0 170 o B=170 "o
0 3 }-4 -1 1-1 0 1
0 0 0 0 -1 0 0

L P L i
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and

A 0 0 1 0 0 O
C =
0 0 0 0 1 O
We note that this system is not completely controllable; i.e.
AE,u(S) = Aﬂg,u(s) = (s + 1). Also,
3 ]
s - 2s + 1, 2
%) = 2 2
-3s7, s + s + 4 |
12 s? o0
B = Cs(s) =
0 1 0 ]
We can simplify the computations reqguired to compute the determin-
ant of §§§(S) = §,(s) - B HCS(s) still further by defining
~ h. h
= 3w o= | b2
) 374
i.e.
s® + h;s® - 2s + 1, hys + 2
Sucts) = 2 2
== (h3 - 3)s°, s + (h4 + 1) s + 4

Solving for the determinant of §HC(S) in terms of the unspecified

elements of H* , we obtain

det 8y (s) = s> + (b, + h, + 1)s”
# (hy + hh, + h,(3 = hy) + 2)s°
+ (4h) - 2hy - 2h, + 5)s? + (b, - 7)s + 4
By inspection, we note that h4, hl' and h3 can be chosen succes-

in order,

and sz.

sively,

4
S o

Furthermore, if h3 # 3, h

to arbitrarily specify the coefficients of s,

5 can then be chosen to
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specify the coefficient of the s3 term. We also note that the
constant term is 4, and it cannot be altered by H* ; i.e., the
product of the five controllable poles of the output feedback
system must equal -4. Let us carry the analysis to its conclusion
by assuming that we wish to choose closed loop poles (eigenvalues
of (A + BHC)) at s = -1, -2, -1/2, and -3. The fifth controllable
pole must be -4/3 in order to satisfy the requirement that the

product of the five controllable poles be -4. The desired closed
5 47 _4 68S3 18152 +

égop characteristic polynomial is thus s~ + g S t* 3 + ==
g—s +7g. Solvinglfgr h4, hl’ and h3 in succession, we obtain:

h, =3, h) =~ %=, 2gd h, = - %%2_. Since h, # 3é we can
solve for h, to choose 3 as the coefficient of the s~ term; i.e.
h2 = g%%é . The actual output feedback gain matrix, H, can now

be determined since gm is nonsingular; i.e. H = E% H*, and in
terms of the elements of H* which we have computed,

-81.33 41.07

49.92 -25.33

This choice for the output feedback gain matrix will yield closed
loop poles at s = -1, -2, -1/2, -3, and -4/3, in addition to the

uncontrollable pole at s = -1.

4., LINEAR OPTIMAL CONTROL

Over the past few years, optimal control theory has proven
to be a useful tool for designing linear feedback control systems.
In this section, we will discuss many of the implications of a
feedback design based on linear optimal control. We state here
that few new results will be presented. What we will emphasize
are éertain computational simplifications which can be made over
previous work, if one formulates this problem in the frequency

domain and then employs the structure theorem.

In Section 4.1, we state the optimal control problem consid-

ered. We then present a known time domain solution and discuss
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certain characteristics of an optimal feedback design. In the
next section (4.2) we employ the time domain solution of Section
(4.1) to derive a frequency domain solution based on the structure
theorem. We then employ this solution to establish certain fre-
guency domain relationships implied by an optimal design. In the
final section (4.3) we discuss a frequency domain solution to the
optimal control problem by using spectral factorization, and con-

clude with a discussion of the root-square locus.

4.1 Problem Formulation and Prior Results

The particular problem which we will consider in this section
is the so-called output regulator problem (ref. 19). That is,

given the linear multivariable system,

X = Ax + Bu, y = Cx (56)
find a control u* , which minimizes the gquadratic performance
index J, where

J = s (x7cTcx + uTRu)dt (57)
0

The assumptions are that (1) the pair {a,B} is controllable, (2)
the pair {A,C} is observable, (3) B is of full rank m<n, and (4)
R is a positive definite matrix; i.e. R = ITE for some nonsingu-
lar matrix T. The output regulator problem, thus formulated, is
a time domain (state space) problem. It was initially presented
and solved by Kalman (ref. 20) for scalar systems, and later ex-
tended, in part, to include multivariable systems by Anderson
(ref. 21), who generalized many of Kalman's original results. It
should be noted that the determination of u*, the optimal control
which minimizes J, was not the only factor discussed by Kalman
and Anderson. In particular, as we will show, a feedback design
based on linear optimal control theory exhibits certain desirable

properties which can easily be expressed in terms of a frequency
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domain representation for the system. For this reason, linear
optimal control theory provides an important link between the
classical (frequency domain) and modern (time domain) approaches

to linear system analysis and design.

We will now summarize the main contributions of Kalman and
Anderson relative to the stated output regulator problem, and
later offer an alternative approach and solution via the structure
theorem. In particular, we state, without proof, the following

theorem (T4) and two corollaries (C7 and C8).

T4 (ref. 20): Consider the system % = Ax + Bu , y =
Cx , where (1) the pair {A,B} is controllable, (2) the

pair {A,C} is observable, (3) B is of full rank m<n,

and (4) R is a positive definite matrix. The control

u*, which minimizes J =_€w{§Tng§ + ETBg}dt, exists

and is unique, and can be expressed as a linear

function of the state X ; i.e.

—— [

ur = -R B kx (58)

where K is the unique, positive definite solution to

* the matrix Riccati eguation,

KA + @Tg - KBR—lETK = —ch (59)

Furthermore, the closed loop (optimal) poles of the
system are the zeros of det(sI - A + gg—lng), and
lie in the half-plane Re(s) < 0 ; i.e. the optimal

system is asymptotically stable.

C7 (refs. 20 and 21): If R = I, then

[I + BT (-sI - &)

(60)
I + [BY(-sI - &)
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i.e., optimality implies that

[-1%[I + B'R(jwI - &) "B} - I > 0 (61)

for all real w .

[-1* is used here to denote the conjugate transpose of the
postmultiplying matrix [I + B K(ij - é) B], and > 0 is a short-

hand notation for nonnegative definite.

An additional frequency domain relationship implied by an
optimal design is the following:

C8 (ref. 20): Let A(s) = det(sI - A) and A* (s) =

det(sI - A + BR lBTK) denote the open and closed

loop (optlmal) transfer matrlx denomlnator poly-

nomlals respectlvely Then,

. 2 _ .
A% (Jw) _ A* (=dw) A* (Jw)
A(jw) } B {A(—jw)A(jw) }i 1 (62)

for all real w .

Equations (61) and (62) represent two important relation-
ships which all linear feedback designs satisfy. It should be
noted that Eg. (62) was established for the scalar case only in
reference 20 (when m = 1).

The quantity I + @Tg(sl - é)_lg represents the return differ-

ence in multivariable systems (refs. 20, 21, and 22). Furthermore,
Eg. (61), an expression involving the return difference, has been
shown to represent a necessary condition for optimality. We can
now give a heuristic interpretation of Eg. (6l); i.e., optimal
state variable feedback diminishes the effect of plant parameter
variations (sensitivity) on the closed loop performance of the
system. This point is covered in detail in reference 20 and will
not be dwelled on here. We point out, however, that Egq. (61),

with strict inequality sign, represents a sufficient condition for
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optimality of a linear feedback design (ref. 21). The theorem
and corollaries presented in this section summarize some important
aspects of linear optimal control. We can now use theorem T4 to
derive an alternative (frequency domain) solution to the output
regulator problem. This solution will then be used to extend
corollary C7 to include cases when R # I and to extend corollary

C8 to include multivariable as well as scalar systems.

4,2 Optimal Control via the Structure Theorem

In order to present a frequency domain solution to the out-
put regulator problem, we will formulate an "equivalent" optimi-
zation problem in terms of the canonical state z(t) (Section 2.2).
A frequency domain solution will then be given for the "equiva-
lent" problem. This solution will then be related to the original

output regulator problem, defined in terms of the state x(t).

In particular, if Eg. (7) is used to define the system dy-

namics, then

5= [(z°¢"¢z + uwTRwat (63)
0
where C = Qg—l and z = Qx. The optimal control, u*(z), which
minimizes (Eg. (63)), subject to the constraint (Eg. (7)) is
unique (ref. 20). Consequently, it must be related to u*(x),

as given by Eq. (58), since the two optimization problems are
"equivalent." This is indeed the case, as we will now show. In

particular, we use theorem T4, and note that in the case of mini-

mizing (Egq. (63)),

u* = u*(z) = -R'B'Kz (64)

~

where K is the unique positive definite solution to the matrix

Riccati eqguation

AN~

KA + A

Tk - xer718TK = -cTc (65)
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It can be shown (ref. 23) that E and K (given by Egq. (59)) are

related through the transformation matrix Q ; i.e.

K = Q'RQ (66)
s . AT T T
Substituting Eq. (66) in Eg. (64), and recalling that B® = B'Q",
establishes the desired relationship; i.e.
u* (x) = —g’lngg = - B 0 TQTﬁQQ lg = R"lﬁTﬁz = u*(z) (67)
. . _ o-l.T _ o-laTs .
For convenience, define F* R "B"K and F* R "B"K. Clearly, if
u*(z) = -F*z can be determined, then u*(x) =-F*x can easily be
obtained since F* = F*Q. With this in mind, the main result of

this section can now be stated and established, as follows in

theorem T5.

T5: Consider the completely cohtrollable and ob—

AN ey
servable canonlcal system, g = gg + Bu , y = Cz,
and performance index J —Jg (zT Cz + u Ru)dt,
where R is positive definite. Let u*(z) = —F*_

represent the optlmal feedback control vector

which minimizes J . (s) = 6(5) + B F*S(s)

and then satisfies the “relationship (note. §(s)
is shorthand for 6 (s))

T A Tra~1s _ T, a-T, a-1 AT A
Spx(~S)By"RE "8, (3) = 8 (~s)B 'RB "S(s) + sT(-s)C"cs (s) (68)

Proof: We will use theorem T4 to establish this frequency

domain characterization for the optimal system.

Rewrite Eg. (65) in a more convenient form--namely

“RA - AR = CTC - KBRTBTK (69)

Add and subtract Ks,

¢ - RBR7IBTK (70)

1=
w
1
[
o
+
N
0
S
!
1>
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Premultiply and postmultiply Eg. (70) by ET(—SI - éT)_l and

(sI - é)_lé, respectively;

8T (sz - A1) T'RB + BTR(s1 - )78 =
8T (-sz - A7) "1ETE - KBRTIBTRI (sI - 2) 7B (71)
Now use Eq. (23), noting that if E =0, (-sI - é)_lﬁ = S(-s)
§—l(—s)§m , and consequently, that
[(-sI - 2) 71817 = 8T (-s1 - A1) 7! = BYs T (-s)T (-s) (72)

Using Egs. (15) and (72), we can rewrite Eg. (71) as

BLsT (g)sT (-s)RB + BIRS(s)s T(s)B. =
-m- = -= = == - =m
57577 (-5)8" (~s) [CTC - KBRT'ETRIS(s)8 7T ()8 (73)

T

Premultiply and postmultiply Eg. (73) by §T(—s)§% and @A S(s),

respectively, to obtain

sT(—s)RBB 16 (s) + 87 (~s)B "B RE(s) =
sT(-s) [E7¢ - RBRTIBTRIS(s) (74)

Noting that
(8T (-s)B-TrT + sT(-s)RBr H1rTE ts(s) + 1T Rs(s)] =
6T (-s)BTRB 8 (5) + 6" (-s)B "BTKS () +

(-s)RBR™TBES (s) (75)
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substitute Eq. (74) into Eg. (75) to obatin

(8% (-s) B "r" + 5T (-s)KBT T11TB '8 (s) + TTTR'RS(s)] =
8T (-s)BTRB_ "8 (s) + 8T (=s)C ¢ (s) (76)
Now recall that
Spx(s) = 8(s) + Br T TBTRs (s) (77)
oxr
18 spa(9) = 2B 18 (s) + B Rs(s) . (78)

Substituting Eg. (78) into Eg. (76) yields Eg. (68) and thus

establishes the theorem.

Equation (68) represents a concise frequency domain solution
to the optimal output regulator problem. As we will show in the
next section, Eq. (68) can be used to directly solve for the opti-
mal feedback matrix E*, and consequently for E, via spectral fac-
torization. Furthermore, variations in the optimal closed loop
pole locations, as C and R are varied, can easily be determined by
using Eg. (68) without first solving the entire optimization pro-
blem. Before considering these applications of the theorem, how-
ever, we will present an alternative statement and proof of corol-
lary C7, and establish corollary C8 for the general multivariable
case. In terms of the structure theorem and the results derived
thus far, corollary C7 can be extended to include the case when

R # I. 1In particular, we have the corollary (C9):

C9: An optimal feedback design (output regulator

problem) implies that the followiﬁg ;glationgﬁié

—_ -

holds for aii”feél W .

[-1%[L + T "B'KS(jw) 8 " (jw)B T™11 - I > 0 (79)
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T

- Proof: We premultiply and postmultiply Eg. (71) by T ~ and
g_ , respectively. We then substitute the resulting expression
into the following relationship:
(1 + 7B (-s1 - AT) kBT Y (z + 7B R(sI - A) TlBT T =
T+ 1 "B (-s1 - AT) T'RBrt + rTETR(s1 - A)TMBr +
78T (-s1 - AT) T1RBR™I8TR (s - A) lBr7! (80)
We then employ Eg. (23), which yields the result
(1 + 7B s T (~s)sT(-s)RB M) (2 + T7B"Rs(s) 87 (s)B T =
(1 + T B s T (-s)sT (-s)ETCs(s) 8 (s) B T (81)
If we then let s = jw , we obtain
(1% + 7B RS (Gu) TP GW BTN - L = [.1%[C8 () 8T (Gw) BT
(82)
Clearly, the right side of Eg. (82) is a nonnegative definite
matrix. The corollary is thus established. When R = I and
T = TT = I, Eq. (82) exactly corresponds to the results given in

references 20 and 21.

We can now establish corollary C8 for the general multi-

variable case. In particular, we first write Eq. (77) in a more

convenient form, namely

a1 ~TATA -1, . a =1 ~-1
Spa(8) = BrTH (I + TTTBTRS ()87 () Br TR e (o) (83)

We then take the determinant of both sides of Eg. (83), obtaining

T

1+ TTERS () 8TT ()BT = |8 () [#]8 ()] (84)

If we now take the determinant of Eq. (81), substituting Eq. (84)

38



where appropriate and letting s = jw, the resulting expression

is
T . .
| 85 (=3w) | [ 8ps (G |
- = |1 + M(uw)]| (85)
|67 (=3w) |18 (3w) |
where M(w) = [-]*ég(jm)§_l(jw)§m§_l, a nonnegative definite
matrix. Since the determinant of the sum of I and a nonnegative

definite matrix is always greater than or equal to 1 (ref. 8),
Eg. (85) implies Eg. (62) directly, and thus establishes corollary

C8 for the general multivariable case.

A final point to be clarified in this section concerns cer-
tain erroneous statements made in reference 20 regarding strict
inequality of Egs. (61l) and (62) representing a necessary condi-

tion for optimality in the scalar case. In particular, Condition
‘ (IT) in reference 20 states that a stable control law may be
optimal only if the return difference is greater than 1 for all
real w . The following example refutes this claim as well as

other erroneous statements which were based on Condition (II).

Consider the scalar system, Xx = AXx + bu , y = ¢x, where

0 1 0
A = [ ], b = [ ], and ¢ = [0,2]. Suppose we now wish to find
-1 0 1

the optimal control u*(x), which minimizes J =.f(4x

[o2]

2 2
5 + uT)dt.

We note that the pair {A,b} is controllable and “that R=11is a
scalar. Theorem T4 can therefore be applied directly. The readerx
can easily verify that K, the solution to the matrix Riccati
equation, KA + ATK - KQQTE = —ng is equal to 2I. Hence,

u* (x) = —Qng = —2x2. According to corollary C7 and, in particu-
lar, Eq. (61), optimality implies that [-]*[I + ETK(ij - é)—lg]

- I > 0. For the example, this condition implies that
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21 _ 3:’—7}1 + %J_w_}
1-w
or
4w2
———— > 0 for all real w
2,2 =
(1-w™)
Clearly, ——595—5 is indeed > 0 for all real w . However, we note
(1-w?) N
4> 2s
that @ = 0 at w = 0, or the return difference {1 + =
2,2 2 .
(1-07) s“+1l)s=jw

1+ 319—§ is equal to 1 at w = 0. Hence, Condition (II), Egs.
1-w

(34) and (17) of reference 20 fail to hold in general.

4.3 Spectral Factorization and the Root-Square Locus

Perhaps the most significant aspect of theorem TS5 is that
u* (x) can be obtained directly from Eq. (68) via spectral factori-
zation (ref. 24). This fact had been noted previously by Chang
(ref. 25), Kalman (ref. 20), and Rynaski and Whitbeck (ref. 26).
However, their expressions, corresponding to Eg. (68) in this
feport, were not in as compact a form as Eq. (68) and, in the
multivariable case, included the unaltered term (sI - é)_lg. We

note that the right side of Egq. (68) represents the sum of two

{(mxm) matrices. Furthermore, the entries of each of these two
matrices are only polynomials in the Laplace operator s (no ratios
of polynomials appear, as in the term (sI - é)_lg). It would

therefore appear that a spectral factorization solution to Eg. (68)
would be easier to achieve than prior spectral factorization
solutions. Indeed, Rynaski and Whitbeck (ref. 26) dismiss spec-
tral factorization as a "tedious chore" and, instead, adopt a
"direct" method for obtaining u*(x). This "direct" method, later
refined by Whitbeck (ref. 27), involves some rather cumbersome
transfer matrix manipulations. The optimal control u*(s) , is

also expressed in terms of the initial state x(0) instead of F*x

Furthermore, their technigque involves an initial spectral factori-
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zation in order to determine the optimal closed loop poles of the
system. It appears that their "direct" method is not totally
amenable to automatic computation and involves more information
than necessary to obtain u*(x). Nevertheless, it has been demon-
strated that their method does produce the optimal feedback matrix,
F*, and the merits of their technique, relative to other solutions

to the output regulator problem, remain a debatable subject.

We observed earlier that Eg. (68) represents a compact fre-
quency domain solution to the output regulator problem. We will
now establish this fact by demonstrating that §F*(s) and, there-

fore, F* and F* = F*Q can be determined by a spectral factoriza-

tion of Eg. (68). Let us define the right side of Eg. (68) as
®(s);
2(s) = 87 (-s)B "I TB T8 (s) + 8T (-s)CTCs(s) (86)

We will now employ two results due to Youla (ref. 24).

(I) Consider the matrix ®(s). If (1) QT(—jw) = ¢(jw) and
(2) 2(jw) is nonnegative definite for all real w, then ¢(s) can
be written as the product of two matrices, WT(—s) and W((s); i.e.
T
2(s) = W (-s)W(s) (87)

where W(s) and its enverse are both analytic in the half-plane
Re s > 0, and WT(—S) and its inverse are both analytic in the

half-plane Re s > 0.

(IT) Consider that any two solutions, W, (s) and wz(s), of
the "spectral factorization" of ¢(s) which satisfy Eg. (87), are
orthogonally equivalent (ref. 8); i.e.

Wl(s) = QWZ(S) (88)
for some orthogonal matrix U (ref. 18), where QTQ = I. @&(s), the
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right side of Eg. (68), clearly satisfies (1) and (2) of (I).
Furthermore, since IQF*(S)[ = 0 only in the half-plane Re s < 0
(i.e., the closed loop optimal system is asymptotically stable
(refs. 19 and 20), it follows that §F*(s) and its inverse are
both analytic in the half-plane Re s > 0. The matrix Ig&léF*(S)
thus qualifies as a solution of the spectral factorization of
?(s); i.e., if one determines a solution W(s) of Eq. (87) via

spectral factorization, then by (II},

1

Spx(s) = B T UW(s) (89)
for some orthogonal matrix U. The problem of solving Eg. (68)
for §F*(S) and, consequently, F* and F* = F*Q, thus reduces to two

distinct steps: (1) the spectral factorization of &(s), the right
side of Eg. (68); and (2) the implementation of Eg. (89) once
W(s), a solution to (1), has been found. The first of these
steps is, by far, the more difficult. The spectral factorization
problem is important in other related research areas, such as
filtering (ref. 28) and network synthesis (ref. 29), and has

been the subject of a number of technical reports over the past
few years. Several investigators have proposed various solutions
to the spectral factorization problem (refs. 24, 30, and 39), and
we will not dwell on their relative merits in this report. It
should be noted, however, that computer programs which perform

the factorization have been developed (ref. 31).

Once W(s), a solution to the spectral factorization of ¢(s),

has been obtained, the task of implementing Eg. (89) to determine

Spx (8) remains. In other words, émz_lg must be determined in
order to solve Eq. (89) for ¢_,(s). F¥* can then be determined by
?mploying the relations, QF*(%) = 8(s) + émﬁ*s(s), or E*g(s) =
g;l(gF*(s) - §(s)), and E*_= F*Q. The determination of §m§-l_,

however, is surprisingly simple, and does not depend on the facts
that gm and E_l are already known, and U is an orthogonal matrix.

We simply recall that, by corollary C2 and Eq. (27),
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”~ ~ G’ : ~
= - — 34 i, _
QE*(S) = §,(s) + B E*S(s), where 8,(s) = 6(s) = diagls ~] a S(s).
Substituting these expressions for §F*(s) in Eg. (89) and solving
for W(s), we obtain

g

TA_l- i —/\ —/\f\*
TB_~diagl[s *] - (A - B _F*)S(s) (90)

W(s) = U
0; . .
We now note that the coeffecients of s 1 appearing in each of the
m i-th columns of W(s) are precisely the entries which appear in
each of the m i-th columns of Q*Tégl. Consequently, ngggl can
be determined directly from W(s) by inspection, since o is the

highest power of s which appears in each of the m i-th columns of

W(s). Once ngggl has been determined, its inverse ng—lg' can
then be used to obtain QF*(S) via Eq. (89). E*g(s) is then given
by -
E*S(s) = B_'[8_,(s) - §(s)] (91)
- = —-m _E* -
F* can then be obtained by inspection and F* = F*Q. An example
which demonstrates these procedures will now be presented. In
particular, consider the system x = AX + Bu , y = Cx, and per-

formance index 3 =.[(§T9Tg§ + ETBg)dt, where

o
0 1 0 0 0] [0 o]
0 -1 -1 2 =3 0 3
a=l1 1 1 -2 3 B=|-1 -3
0 0 0 1 0 0
-2 2 0 0] L o 1
2 0 0 O 2 0
C = 1 0 R =
0O 0 O 0 1
We must now find u*(x) = F*x which minimizes J, using spectral
factorization. The first step is to find a Q which transforms

this given system to controllable canonical form as represented
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by Egs. (7) and (13) through (16). Using the technique outlined

in Section 2.2 gives

[0 1 1 0 0]
1 0 0 0 0
9Q=]0 1 0 0 0
0 0 0 1 o0
(0 0 0 0 1]
and
i 1 010 0] [0 0]
0 o0 1 :o 0 0 0
org™ =2 -1 0 032 -3|  ge-B=-|31 3
0 0 :o 1 0 0
i -2 110 0| [0 1 ]
é = gg'l is given by Wl 0]
0 0 0 s 0
¢ = 1 0 0 S(s) =]s% o0
0 0 0 1
0 s
N i
since oy = 3, 0y = 2, dl = 3, and d2 =5 =n By inspection,
1 3 -1 0 0 2 =3
8, - Ay -
0 1 2 =2 1 0 0

§(s) is then determined by using Eq. (27);

s3+1, , 3s-2

(s)

I

1o

—52+Zs—2, 52

Using the above relationships, we can now also use Eg. (86) to

determine ?(s); i.e.
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—25%+445%4+8524102, 6s5°-25s%-16s3-2052+18s-28

®(s)

Il

-65°-255%+1653-20s%-185-28, 19s*+55%+8
¢ (s) can then be used as the input to Tuel's program (ref. 31),
modified to yield §F*(s) directly via spectral factorization of

?(s) and multiplication by gmg_lg; i.e.

$345.7485%+17.764s+31.018, 1.676s-8.370

Spu (8) =
= 2 2
.417s“+6.2035+9.6, s"+.82s-2.461

F*S(s) is determined next by using Egq. (91);

1.49752+5.1558—4.782, -3.784s+1.013

F*S(s) =

1.417s%+4.203s+11.6, .82s-2.461
and F*can then be determined by inspection since S(s) is known.

B =

-4.782 5.155 1.497 1.013 -3.784
11.6 4.203 1.417 -2.461 .82
*Q

1>

and since F* =

5.155 -3.285 -4.782 1.013 -3.784

4.203 13.017 11.6 -2.461 .82

Therefore, F* , the feedback gain matrix associated with the
optimal system has been determined via spectral factorization.
It should be clear that F* = B_lng, where K is the solution to

Eg. (59).
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The final topic we will discuss in this section is the "root-
square locus." In particular, it is desirable, in certain appli-
cations of linear optimal control theory, to readily determine
the effect on the closed loop optimal poles caused by changes in
the elements comprising the performance index weighting matrices
C and R (or T). A plot of optimal pole location changes caused
by weighting matrix changes is known as the root-square locus.

It was first introduced by Chang (ref. 25) to study optimal scalar

systems. The root-square locus was refined somewhat by Kalman
(ref. 20), and later extended to include multivariable systems by
Rynaski and Whitbeck (ref. 26). In all cases mentioned, the root-~

square locus was a frequency domain tool, and its implementation
depended on the ability to formulate a solution to the regulator
problem in the frequency domain and then to find the characteris-
tic polynomial representing the closed loop optimal system without
first determining u*(x) ; i.e. F*. Rynaski and Whitbeck (ref. 26)
appear to be the only investigators who have sought an expression
for the root-square locus in the general (multivariable)} case.

In particular, they show (Eq. (7-33) in reference 26) that if

W(s) = C(sI - A) lg, then

A, (s)A_ (=s)
det (R + WT(—S)W(S)) = FZ(S)AﬁiS) (92)

where AF*(S) is the characteristic polynomial associated with the
optimal system; i.e., note that A ,(s) = [§.,(s)[=[sI -~ A + BE*[,
and A(s) is the open loop characteristic polynomial. We point
out also that the evaluation of the determinant of R + WT(—S)W(S)
involves some rather cumbersome polynomial manipulations which
can be significantly reduced if the structure theorem is employed.
In particular, by simply taking the determinant of both sides of
Eg. (68), we obtain the following relationship:

/\T/\

ts(s) + sT(-s)CTCs(s))  (93)

(ol T N
|B|AE*(_S)AF*(S) = det(§ (_S)gm Blém
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Clearly, Eq. (93) also represents a means of obtaining the root-
square locus, since the characteristic polynomial of the optimal
system, AF*(s), is expressed directly in terms of known quantities
which include the performance index weighting matrices R and C =
ég. The latter expression, moreover, is significantly easier to
evaluate, as the reader can verify. Equation (93) thus represents
an alternative expression which can be employed to plot the root-
square locus in the general multivariable case. We finally note
that Eq. (93) directly reduces to the scalar root-square locus
expression given by Kalman (Eqg. (45) in reference 20) for the case

when m = 1,

We will now present an example to illustrate the application
of Eg. (93) in determining closed loop optimal pole variations
corresponding to variations in the weighting matrices C and R. In

particular, consider the system % = Ax + Bu , y = Cx, and per-

formance index I =.[(§T9Tg§ + ETBg)dt, where
o}

01:0 0 0 1 0 0
=10 010 B = Cc =
A= 10 010 B 1l o C
1 0 1 0 0 1
and
r O
B:
0 1

It has been shown that if r > 0, the optimal control law, u*(x),

which minimizes J, is given by u*(x) = -3_1§T5§ = -F*xX, where K

is the unique positive definite solution to the matrix Riccati

equation (Egq. (59)). The closed loop poles associated with the
optimal system are therefore equal to the zero of lSI - A+
gg-lBTgl = A*(s). However, Eg. (93) can be used to determine the

closed loop optimal poles without first solving for u*(x); i.e.
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F* need not be known. For this example, an expression for the
optimal poles, in terms of the positive scalar r, will now be

obtained,.

We first note that the system is already in controllable

companion form (no transformation of state is required). There-~

fore, by inspection,

1
S(s) =|s
0
52 0
§(s) = cs(s) = I B =1
-1 S
If we now use Eg. (93), we obtain
s -1flr off % o 1 0
rA* (-s)A*(s) = det +
0 -s {0 1}]-1 s 0 1
or
A* (=-s)A*(s) = s4 - s + % (—52 + 2)

This expression can now be used to plot the root-square locus by

using the conventional root locus (ref. 32). 1In particular, con-

sider the following block diagram:

INPUT + S—2 QUTPUT
NPY 6.4 = EQUIVALENT BLOCK

I DIAGRAM -
|

The root locus (ref. 32) can be employed to plot the variation of
the closed loop poles of this system with respect to %. Further-
more, note that the poles of this closed loop system are equal to
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4 + %_;(s2 - 2)) which, in turn, equal the 2zeros

the zeros of (s6 - s
of A*(-s)A*(s). For the example, the optimal poles and their
mirror images are thus equal to poles of the system shown in the
block diagram. An approximate root-locus plot of this system is
given in Figure 1. The arrows indicate the direction of increas-
ing r; i.e., as r » ®» , A¥(s) ~» 52(s + 1). Note further, that the
optimal poles display a Butterworth configuration, as noted pre-

viously in reference 20.

Figure 1l.- Root-square locus plot of the example

5. TRANSFER MATRIX FORMS AND NONINTERACTION

In this section, we apply the structure theorem to obtain
some results pertaining to transfer matrix forms. We provide
answers to certain questions dealing with the noninteraction of
various input/output pairs. The motivation for this work should
be rather obvious to those who have dealt with the analysis and

design of linear multivariable systems. It is almost always



desirable to isolate various segments of a multivariable system
in order to deal with the smaller and less complex subsystems
individually. Furthermore, a noninteractive or decoupled system
is usually easier to control. The control literature of the past
several years contains a rather significant number of articles
dealing with noninteractive design and additional results still

appear quite frequently.

In this section, we will combine certain prior results with
the structure theorem in order to obtain answers to a number of
questions dealing with noninteraction which have, thus far, re-
mained unresolved. In Section 5.1, we will consider various
questions pertaining to decoupling multivariable systems through
the use of linear state variable feedback. In terms of the trans-
fer matrix of the system, decoupling will be used to denote com-
plete noninteraction of off-diagonal input/output pairs; i.e.
the transfer matrix of a decoupled system is strictly diagonal
and nonsingular. In Section 5.2, we extend the results of Section
5.1 and discuss decoupling via "input dynamics" as well as state
variable feedback. Roughly speaking, "input dynamics" involves
the addition of a dynamical system to the input of the system we

wish to decouple.

In Section 5.3, a more general type of noninteraction is
discussed. Here, we are not necessarily interested in complete
off-diagonal noninteraction, but rather, in achieving a closed
loop transfer matrix which displays a significant number of zero
entries. We will present a simple example here and carry it
throughout the remainder of this section. In particular, consider

the system é = Ax + Bu , y = Cx, where

1 : 0 0 0

- 0 l 0 1 0

2= 7o 0T 0o 1 2= {0 o
1 :—l -2 0 1
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I
—
I
N
T
N
o o
—_—

Clearly, the pair {A,B} is in multi-input companion form (Section
2.1) and, consequently, the structure theorem can be employed

directly (without) transformation of coordinates); i.e.,

0‘1=02=2’Em=£'
11 s+1,1
s(s) =% ° cs(s) =
0 1 s-2,2
0 s
%
det(CS(s)) = s + 4 8(s) = diagls 7] - A _S(s)
or
2 1 0
S 0 -3 0 0 0 s™+3, 0
s 0
8(s) = _ _
0 1
0 s 1 1 -1 -2 —s-1 , (s+1)?
0 SJ
Consequently,
3 7
2 ' 0
1 s +3
§ T (s) =
1 1
4
(s+1) (s%+3)  (s+1)2
The open loop transfer matrix of this system, C(sI - é)_lg =
§§(s)§_l(s)§m, is given by
sz+25+2 1

(s+1) (s243) = (s+1)°2

sz—s 2

| (s+1) (s%+3) | (s+1) 2]
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Note that the open loop transfer matrix of this system displays
complete interaction of all input/output terms; i.e., no elements,

tij(s), of T(s) are zero.

5.1 Decoupling via Linear State Variable Feedback

We now apply the structure theorem to obtain some results
related to the problem of decoupling using linear state variable
feedback. This problem has been examined previously by a number
of authors (refs. 33 through 36) and a number of relevant gques-

tions have been resolved. More precisely, consider the following.

DECOUPLING PROBLEM: Let X = AX + Bu , y = Cx be an m input,

m output system. Does there exist a pair of matrices {F,G} such

that the transfer matrix

c(sI -a-BR) 'BG =T, (s (94)

is diagonal and nonsingular? (In other words, does the state

variable feedback u = Fx + Gw "decouple" the system?)

A necessary and sufficient condition for the existence of a
decoupling pair was first given in reference 34. 1In particular,

it has been shown that the system
x = Ax + Bu , y = Cx (95)

can be decoupled by using linear state variable feedback if and

only if B* is nonsingular, where B* is the (mxm) matrix given by

f
1
c,A

B* = L (96)
c_ A Tg
—m— —

{Ivo]

with ¢, the i-th row of C, and £, = min[{j: giajg # 0}, n - 1],
B* and the fi can also be characterized in the following way
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(ref. 35): let EF G i(s) be the i-th row of the transfer matrix

r 4 0
. ~-T=" <7 Jj+1 _
EE,Q(S), then fi = mln[{j,%&g s IE,Q,i(S) # 0}, n 1]
and B*G = lg';mA(s)TF G(s) where A(s) is a diagonal matrix with
27s 530 :F, a
fi+l
entries s . It can be shown (refs. 34 and 35) that B* and the

fi are invariant under state variable feedback.

Here, we shall use the structure theorem to answer the

following questions:

1. Assuming that the system represented by Eqg. (95)
can be decoupled, what is the maximum number of
closed loop poles which can be arbitrarily speci-
fied while simultaneously decoupling the system?

2. Assuming that the system represented by Eg. (95)

can be decoupled, which closed loop poles are invariant

under decoupling state variable feedback?

3. How can a decoupling pair which specifies the

maximum number of closed loop poles be implemented?

While these questions are to some degree resolved in refer-
ences 34, 35, and 36, we provide a complete and elementary answer

to them here.

Let T(s) be the transfer matrix of Eg. (95). Then T(s)=

A (s) 4

C*(s) KETET § (s)ém where C*(s) = ég(s) by the structure
u

_g’c

theorem T2. We recall that C*(s) and Au(s) are invariant under
state variable feedback. Now we let pi(s) be the greatest common
divisor of the polynomials which are the entries in the i-th row
gg(s) of C*(s). We note that pi(s) is invariant under state
variable feedback. We let ry be the degree of pi(s) and we use
the notation Bp to denote the degree of a polynomial (thus,

r, = ap ). We now have the theorem (T6):
i
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T6: Suppose that the system (Egq. (95)) can be de-

-——

coupled. Then (l) the maximum number Vv of the closed-

loop poles which can be arbitrarily spe01f1ed whlle

decoupilng 1s glven by

m
= zzz(ri + fi + 1) (97)
i=1

and (2) the invariant poles under decoup%ing feedback
are the Zeros of A (s) and {det C*(s)}/_nl(pi(s).
- i

Proof: Let {F,G} be any decoupled pair. Then T (s) =
C(sI - A - BF) lBG is a diagonal matrix with entries 5 (s)/d s)
where nii(s) and dii( s) are relatively prime. We note that,
. s C j+1 * _ _ _
since fi min{j:1lim s IF,G,i(S) # 0}, Bn.l ad" fi 1.
Sro == ii ii

It follows from corollary C6 and the definition of the pi(s) that

m nii(s) m Au(s)
I 757 = 1T p;(s)det CF (s) gy det G (98)
i=1 ll(S) j=p II AE(S)
. . . 1 .
* * = — *
where Cj.(s) is the matrix with rows Ci;(s) pi(s) gi(s). Since
AE(S) = u(s)AE,C(s), we have
m
= *
aF,c E (ri + fi + 1) + 311 (99)
i=1
where BEI is the degree of det QEI(S) and BF . is the degree of
L
AF c(s). Now, it is clear from theorem T2 that
=17
T (s)cTTBTls . (s) = cx(s) (100)
=F,G,1 -m -F,c =1

and, hence, that nii(s) is a common divisor of the entries in

*Note that B* is nonsingular.
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gz(s) (since nii(s) and dii(s) are relatively prime). In other

words, nii(s) must divide pi(s) and so an < ri. Since no more
ii
m m
than E 34 Ppoles are assignable through {F,G} and Z 3q. . =
i=1 "ii i=1 Tii
m m
2:(an + fi + 1), we deduce that at most v = z:(ri + £. + 1)
i1 P4 i=1 1

poles are assignable while decoupling.

Writing T (s) as a diagonal matrix with entries qii(s)/AF(s)=

F,G
nii(s)/dii(s), we deduce that qii(s) must divide pi(s)AE(s) or,

equivalently, that

= (101)
Bg(s) ; (3)
for i = 1,...,m and polynomials qi(s) with aq =r, + fi + 1. It
m m 1
follows that det T (s) = T (p.,(s))/ I (g,(s)) and, hence, from
=F,G . i . 1
== i=1 i=1
Eg. (98) that
m
= *
AF(S) det QII(S)Au(s)det Q-E qi(s)
- i=1
det C* (s) m
= g Au(s)det g'g qi(s) (102)
I p.(s) i=1
i=1"*

Since gfl(s) is invariant under decoupling feedback, it follows
that the zeros of Au(s) and det QEI(S) are invariant poles under

decoupling feedback.

Thus, to complete the proof we need only construct a de-
coupling pair {F,G} such that the resulting polynomials q; (s) are
arbitrary polynomials of degree r, + fi + 1. To begin with, we

note that transfer matrix
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A (s) Ay (s)

T(s) = C*(s) ——T_— 0 c(s)B = P(s)CII(s) —~T—— 0 C(s)B

where P(s) is a diagonal matrix with entries p; (s). Setting

A (s)

_ -1 4
T (s) = CE_(s) '—<—sT 59, c(8)By (103)

we can easily see that r, + £, = min{j:1im sj+lT . (s) # 0} and
1 1 S0 =IT,1

¥ = 14 ~ nx . . .
that BII liméII(s)EII(s) B* where éII(s) is a diagonal matrix

r.+f.+1
with entries s * % (note that the P; (s) are monic). Moreover,

as C*(s) is given by CS(s) and P; (s) is the greatest common divi-
sor of the entries in C*( ), we can write CII( s) in the form

I(s) for some constant matrix C (where S(s) is given by Eq.

-IT
(33)). In other words, T, ;(s) is the transfer matrix of the
system X = Ax + Bu , y;; = C;;X where Cip = €17Q and Q is the
Lyapunov transformation corresponding to Eq. (95). Since P(s) is
diagonal it will be sufficient to construct a decoupling pair

{F,G} for the system

v ¥r7 = Err¥ (104)

X .

= Ax + Bu

such that the closed loop poles are arbitrarily placed. However,
letting di =r, + fi and applying the synthesis procedure of
reference 34 (p. 655), we find that Eq. (104) can be decoupled

and all its closed loop poles assigned. a

d,+1 i, L o*
To be more explicit, if qi(s) =g T - 2:1n§sj, then the de-
coupling pair is given by =
d k -1
_ — A%k = RB*

0

where d = max di’ the Mk are diagonal matrices with entries mi

*Clearly, it is enough to consider the case of a monic qi(s).
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d.+1

A1l ) (i.e. the i-th

. a1 m _
(i.e. M = diaglm,...,m7]) and A* = (Cry ;A

di+l
A

11,12 ). This completes the proof.

row of A* is given by C

We are now in a position to determine whether or not the
system presented at the beginning of this section can be decoupled
via linear state variable feedback. If the answer is yes, several
related questions can also be resolved. We first note that B*,
as defined by Eg. (96), for the example is[l 0

1 0
is singular. Hence the system cannot be decoupled by using linear

]and, consequently,

state variable feedback alone. This provides some motivation

for the next section.

5.2 Decoupling via Input Dynamics

In the previous section, we considered the question of de-
coupling, using linear state variable feedback. We may now raise
some pertinent questions related to decoupling via state variable
feedback. 1In particular, suppose B* were singular. Would it
still be possible to decouple the system by using some alternative
technique? Also, suppose that certain of the poles which could
not be altered by decoupling state variable feedback were unstable.
Could the system still be decoupled and simultaneously stabilized
by using an alternative decoupling technique? The purpose of this

section is to provide answers to these two questions.

Thus far, we have defined decoupling in a somewhat restricted
sense, namely decoupling via linear state variable feedback.
Recently, it has been shown that it is possible to decouple a
larger class of systems than those which can be decoupled via
state variable feedback alone, through the use of "input dynamics"
(ref. 37). Roughly speaking, we will now permit the addition of
dynamics to the input of the system (replace G in the closed loop

transfer matrix by G(s), a k-th order dynamical system). It will
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be shown that certain systems which cannot be decoupled via state
variable feedback can be decoupled by appropriate selection of
G(s). In particular, the example presented at the beginning of
this section falls into this category. Furthermore, in certain
cases, poles which are invariant under decoupling state variable
feedback can be altered if an appropriate G(s) is employed. It
should be stressed that decoupling via input dynamics involves
state variable feedback as well as G(s) in the most general case.

This point will be clarified in the remainder of this section.

We start by defining the class of systems we will consider
and exactly what we mean by "input dynamics." In particular, we
will consider systems whose dynamics can be expressed by Eg. (95).

B and C are assumed to be of full rank m, where m < n.

We next define "input dynamics" as the k-dimensional linear
system whose dynamical equations can be expressed in the time

domain as

g = Kg + Ly

= Mg + Nv (106)

u
~-e

where g is a k vector called the state, v an m vector called the
input, and u, an m vector called the output. K, L, M, and N are

constant matrices of the appropriate dimensions. The transfer

matrix relating the Laplace transform of the output, ge(s), to
the Laplace transform of the input, v(s), of Eg. (106) will be
defined as G(s), the input dynamics; i.e.

G(s) = M(sI - K) 1L +N (107)

We can now define a composite system by combining systems (Egs.

(95) and (107)) via the relationship

u=Fx + u, (108)
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The composite system of total order (nt+tk) can now be expressed in

time domain as

-
il
&
+

Ax + Bu
Y = €x
u = Fx + g, (109)
g = Kg + Ly
u_ = Mz + Nv
—e —— ——
If we define gc =[§]as the composite state, Eq. (109) may be
written more succinctly as
X A+BE, BM BN
= = X + v
g e ., K L

Pictorially, we have the following block diagram representation

(Figure 2) for the composite system.

Y

[le}

X

e

+

~

<

k-
'+
e
m___
i+

(B

i3>

|

+

10

=
1>
Y

[
l|~<

Figure 2.- Block diagram of composite system
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Clearly, the composite transfer matrix Ec(s) relating the output,

y(s), to the new input, v(s), can be written as

~ - ~ A (s)
T (s) = Cs(s)8-" (s)B _G(s) z%(s—,r (111)

where G(s) is given by Eq. (107).

We can now define the concept of "decoupling via input dy-
namics" as follows. Consider the composite system, Eg. (110).
We will say that the system (Eqg. (95)) can be decoupled via input
dynamics if there exists a pair of matrices {F,G(s)}, where G(s)

is given by Eq. (107), such that the composite system, Egq. (110),

can be decoupled via linear state variable feedback.

Some observations will now be made. First, it should be
noted that if system, Eg. (95), can be decoupled by using linear
state variable feedback (if B* is nonsingular), then input dynamics
are not required to decouple the system. However, we recall that
certain eigenvalues of (A + BF) are invariant under decoupling
state variable feedback, namely the zeros of Au(s) and det(gfl(s)).
These eigenvalues (poles) appear in "cancelled" pole-zero pairs
in the final decoupled transfer matrix. If one or more of these
poles lie in the half-plane Re s>0, the resulting decoupled system
will be unstable. Therefore, although B* is nonsingular, decoupl-
ing via linear state variable feedback may produce an unstable
system. One might therefore ask if it is possible to employ in-
put dynamics in these situations in order to decouple the system
and also ensure stability. The answer to this question is yes,
provided Au(s) is Hurwitz (i.e., the unstable roots are zeros
of det (QEI(S)) only). Clearly, if Au(s) is non-Hurwitz, any
linear feedback system will fail to achieve stability. These

points will be covered in more detail in the remainder of this

section.

A pictorial representation of the definition of decoupling

via input dynamics is now in order. In particular, according to
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the definition, linear state variable feedback may be employed
twice in order to achieve decoupling via input dynamics. First,
we seek a pair {F,G(s)}, which defines the open loop composite
system (Eq. (110)), a system which can then be decoupled via
linear state variable feedback. Once the pair {F,G(s)} is chosen,
an additional pair {gc,gc} can then be used to actually decouple
the system (Eq. (110)). The employment of the second pair,
{Ec,gc}, is not always required, as we will show. Figure 3 is a
pictorial representation for decoupling via input dynamics by
modifying Figure 2 to include the additional pair {EC,QC}. The

subscript ¢ denotes composite feedback and feedforward for the

(n+k) dimensional system (Eg. (110)).
N L
w + . =i ++ U u X
—>| S > g=Kgrlv M= 2 +®' x=Ax+Bu
+ T+
Fe |=<
y <&
Figure 3.- Decoupled composite system

Summarizing, we note that decoupling via input dynamics
involves two steps: (1) selection of a pair {F,G(s)}! which in-
creases the dimension of the state, resulting in a composite
system of dimension (n+k), which can then be decoupled via compo-
site linear state variable feedback, and (2) selection of the
constant decoupling pair {gc,gc} which then decouples the compo-
site system. We also remark that once step (1) has been accom-
plished, the techniques outlined in Section 5.1 can be employed
to accomplish step (2).
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We will now characterize the class of systems (Eg. (95))
which can be decoupled via input dynamics. Clearly, this class
must include those systems which can be decoupled by using linear
state variable feedback. Fortunately, this class can be charac-
terized readily by using the structure theorem. Furthermore, we
can also say something about the stability of systems which can be
decoupled via input dynamics. In particular, we can now state and

prove the following theorem (T7):

T7: Let % = AX + Bu , y = Cx denote an m-input, m-output

———

system whose transfer matrix is (in terms of the struc-
ture theorem) g§(s)§—l(s)§mAu(s)+Au(s). There exists a

Pair of matrices {F,G(s)} such that this_system cggube

decoupled via input dynamics if and only if §§(s) is
nonsingular; i.e. if and only if the system is invertible.

Furthermore, if A (s) is Hurwitz, the pair {F,G(s)} can

always be chosen to ensure the existence of a pair {F_,G_}

which decouples the éomposite system and'éimultaneously
ensures that all (n+k) closed loop poles lie in the half-

plane Re s<0.

Proof: In order to establish necessity of the first state-
ment, we will assume that a suitable pair {F,G(s)} exists. The

transfer matrix of the open loop composite system is then given
by Eg. (111); i.e.

~ - ~ Au(s)
T, (s) = CS(s)8, " (s)B G(s) E_(5)

gc(s) represents the transfer matrix of a system which can now

be decoupled via linear state variable feedback. Consequently,
gc(s) is nonsingular and invertible. Clearly, this implies that
CS(s) is also nonsingular and invertible. In order to establish
the fact that the nonsingularity of ég(s) is sufficient to achieve
an asymptotically stable decoupled system via input dynamics, a

constructive algorithm will be employed. Since the algorithm is
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rather involved, no interpretation of the various steps taken will
be given until the theorem has been established. At that time,

we will demonstrate its application by example and comment on the
more important steps which were employed. The steps will be num-

bered for convenience and later interpretation.

STEP (1): We begin by considering T _(s), the transfer matrix
of the composite system. We then factor CS(s) as in Section 5.1;

i.e.

CS(s) = P(s)C*_(s) (112)

*
gII
where P(s) is a diagonal matrix consisting of the ordered greatest
common divisors, pi(s), of each row of éS(s). We now consider the
altered transfer matrix, ICII(S)' obtained by factoring P(s) out

of Ic(s) or, equivalently, premultiplying Ic(s) by E_l(s); i.e.

_l ~ Au(s)

= * e
Lo (8) = CIp (SIS (S)IBLG(s) 5, (113)

-IT - u
STEP (2): We will now obtain a pair {F,G(s)} which diagon-
alizes Eg. (113). Solving Eg. (113) for @mg(s), we obtain

B x -1 fu (o) 114
1§m§(s) = §E(S) (QII(S)) I(_:II(S) ZF)_ ( )

-1 . .
* - * = * .
Now, (QII(S)) adj(gII(s) |§II(s)l, where adj(-) denotes the

adjoint, and the determinant of a square matrix. Note that

this step is possible since CS(s) was assumed to be nonsingular.
STEP (3): Next, we factor |[C%*.(s)| as the product of two

monic polynomials, ps(s) and pu(s), and some constant c, where

ps(s) and pu(s) represent the stable and unstable (or conditionally

stable) zeros of |QEI(S)| respectively; i.e.

|cx (s)| = cp_(s)p,(s) (115)
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Substituting this expression into Eg. (114), we obtain

é;IQE(s)adj<g;I<s))gc (s)A(s)

_ =1I
G(s) = cpS(S)pu(S)Au(S) (116)

STEP (4): We now set d,(s) equal to a diagonal matrix whose

G
entries are (s+X) t; i.e.

a.
8p(s) = diag [(s + A) 7] (117)

where A is a positive constant equal to one of the zeros of ps(s),
if possible. This choice for §F(s) ensures the asymptotic stabi-
lity of the original portion of the composite system, provided
Au(s) is Hurwitz. Simultaneously, a certain amount of pole-zero
cancellation will be possible in reducing Eq. (116) to simplest
terms. Pole-zero cancellation is desirable if we expect to keep

k, the dimension of G(s), as low as possible.

STEP (5): Since G(s) must also represent the transfer matrix
of a stable system, ICII(S) will now be set equal to a diagonal

matrix which cancels the unstable polynomial, pu(s), now appearing

in the denominator of G(s); i.e., we let
0pu(S)
TC (s) = diag | ——— (118)
=11 (s+1) 1

The integers, q; i=1,2,...,m, have yet to be determined.

STEP (6): Equations (117) and (118) are now substituted into
Eg. (116) in order to obtain G(s) in terms of the unspecified

integers, gq; - G(s) can then be written as

O.
_oaml s+ T , _ cp,, (s) ']Au(s)
C_;(S) = lém dia W—— adj (g;I(S)) diag qi JAu(s)
(s+1 “ep,(s) (119)
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STEP (7): The qi's are chosen as small as possible, consis-
tent with the requirement that G(s) represent the transfer matrix
of a physically realizable system, namely Eq. (106). The actual
input dynamics we use to decouple the system can now be chosen to
be a minimal realization of the transfer matrix (Eq. (119)). The
algorithm has now been carried far enough to establish the theorem.
In particular, we note that after all pole-zero cancellations are
made in Eqg. (119), the only poles remaining are either egual to
-A, or are zeros of the Hurwitz polynomials ps(s). Since !§F(s)|
and Au(s) are Hurwitz polynomials, the latter by assumption, the
composite system (Eg. (110)) defined by Eg. (117) and a minimal
realization (Section 3.1) of Eqg. (l119) is asymptotically stable.
Furthermore, the transfer matrix, Ic(s)’ of the open loop com-

posite system is given by

T _ . Cpu(S)
T (s) = P(s)diag | ——— (120)

C .
(s+2) *

a diagonal matrix (a decoupled system) with poles in the half-

plane Re s<0. The theroem is thus established.

In general, we do not want a multiple root at s = -A.
Rather, we would like to arbitrarily specify as many closed loop
poles of the decoupled composite system as possible. This is
where the composite state variable feedback, {Ec,gc}, enters into
consideration. The open loop system, obtained by selecting F and
G(s) according to the algorithm just outlined, is already decoupil-
ed. Therefore, comﬁosite state variable feedback, {Ec,gc} can now
be used to adjust (%qi) of the closed loop poles of the composite

system (see Section 5.1).

The example presented at the beginning of this section can
now be used to illustrate this point and the various steps em-
ployved in outlining the algorithm. In particular, we noted at
the_conclusion of Section 5.1 that the example represented a
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system which could not be decoupled by using linear state variable
feedback alone. However, for the example, we note that |é§(s)l =
|cs(s)] = (s + 4); i.e., since CS(s) is nonsingular, input dynamics
can be employed to decouple the system. We will now go through the
seven steps outlined in the algorithm in order to derive a feedback
pair, {F,G(s)}, which decouples the given system.

STEP (1): No further factorization of CS(s) is possible;
i.e. P(s) = I and Ci;(s) = Cs(s).

STEP (2): Here, we calculate the inverse of C}¥. (s), or CS(s)

in the case of the example under consideration: i.e.

2 ;, —1
1 liss+2, se1] adj(cs(s))

Furthermore, note that in the example Au(s) = 1 and Em = I.

Hence, according to Eq. (114),

-1
G(s) = 8_(s)[CS(s)] T (s)
219 = St ERe i

STEP (3): For example, ps(s) = (s + 4) and pu(s) = c = 1.
This step is necessary so that any unstable roots of lg;l(s)]

can be isolated and later cancelled by T, (s).

=II
STEP (4): For the example, the choice of A is obvious; i.e.,
since ps(s) = (s + 4), X should be chosen equal to 4 and
(s+4)2, 0
Sn(s) =
E 0 , (s+4)2
This particular choice for §F(s) accomplishes two things. First,

it partially assures us of a stable composite system. It also
results in eventual pole-zero cancellations in the computation of

G(s), the added dynamics. This maintains k, the dimension of
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G(s), at a relatively low value.

STEP (5): We now employ Eg. (118); i.e.
r’ -
1
q 0
(s+4) T
T (s) =
Si1 1
0 q
I (s+4) 2

If pu(s) # 1, this step would have resulted in pole-zero can-
cellation of unstable roots which otherwise would have appeared

in the denominator polynomial of G(s).

STEP (6): We now employ Eq. (119) to obtain a frequency-
domain description of G(s); i.e.
r ar 1r 1 B
s+4 01]2 -1 0
41
(s+4)
G(s) = 1
0 s+4 |{-s+2 s+l 0 3
2
i L 1 L (s+4) =
or B 7
2 -1
q,-1 q,-1
G(s) = (s+4) (s+4)
-s+2 s+1
g, -1 g,-1
(s+4) T (s+4) 2
2 .

STEP (7): We now select the qi's as small as possible, con-

sistent with the requirement that G(s) represent a physically

realizable system. By inspection, this implies that 4, =4, < 2
or that
2 -1
s+4 s+4 [2 _l] 0 0
G(s) = = - +
-s+2 s+l 6 3 -1 1
s+4 s+4 s+4
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Note that with G(s) equal to the above asymptotically stable

system and

(s+4)2 0 s+l 1
Sp(s) = ; i.e. g§(s)§_l(s)§m = s (s+4)2
- 0 (s+4)2 F s-2 2

another asymptotically stable system, the open loop transfer

matrix of the composite system, gg(s)ggl(s)gmg(s), is

[— - h
1 . 0

(s+4)

N = 0 1
(s+4) 2

=N -

a result which can be obtained either by performing the multi-

plication indicated above or simply employing Eq. (118).

We will now continue our analysis of this example by comput-
ing k, the dimension of a minimal realization of G(s) and then
describe how composite state variable feedback can be used to
arbitrarily reassign certain of the closed loop poles of this

decoupled system.

Employing the results of Section 3.1, we can readily obtain

a minimal realization of G(s); i.e.
-1
G(s) = M(sI -~ K) 'L + X

where

1

M = , K= -4

3

a scalar

[2 -1]

1
il
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and

as noted previously. G(s) thus represents the transfer matrix of
a first order system; i.e. k = 1. A time domain representation

for the composite decoupled fifth order system can now be written

directly:
0 1 I 0 0 0
_ _al
A+BF, BM -6 o0 o0 1
= =lo0 ol o 11 o0
-C I I
Q. K 0 0, -16 -81 3
______ .i_._._.
0 0 0 0ol -4
[0 0
BN 0 0
-C
L -1 1
and
1 1 1 o: 0
C. = € 0l = |
-2 1 2 o0 { 0

Using the results of the previous section (5.1), we can
easily verify that this composite fifth order system can be de-

coupled via linear state variable feedback; i.e.

*
B =CAB =1
-c =c-c-=c =
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Consequently, four of the five closed loop poles of the decoupled
system can be arbitrarily specified via the algorithm given in
reference 34 and repeated in Section 5.1 (Eg. (105)). It can also
be shown that the single pole which cannot be altered while de-
coupling is s = -4. However, this pole will not appear in the

final closed loop transfer matrix because of pole-zero cancella-

tion.

5.3 Two Noninteraction Algorithms

In this section, we will outline two algorithms which can be
used to achieve a degree of noninteraction in linear multivariable
systems. We have just presented a fairly comprehensive review of
decoupling (complete off-diagonal noninteraction). In certain
systems, however, we might not be willing to add dynamics in order
to achieve decoupling or to stabilize a system which can be de-
coupled via linear state variable feedback. However, we might
want to zero certain closed loop inout-output pairs, if possible,
using linear state variable feedback. The structure theorem can
be used to provide partial answers to guestions involving the non-
interaction of various input-output pairs. The reader will note
that this section lacks the formalism of previous sections. We
will merely present two design algorithms for noninteraction and
demonstrate them via the example presented earlier in Section 5.
Both of the algorithms employ the structure theorem and, conse-
quently, depend on the ability to express the closed loop trans-
fer matrix of a system as
-1 ~ A, (s)

We still assume that the system has m linearly independent inputs

and m outputs.

The purpose of the first algorithm (single row altered) is

to demonstrate a technique which can be employed to achieve almost
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diagonal noninteraction (decoupling). The exception is that a
certain row of the closed loop transfer matrix will not contain
just one nonzero entry but could, in general, contain all nonzero
entries. To demonstrate Ehis algorithm, we observe the effect of

altering a single row of C; i.e., we let
C =C+R (122)

where R is an (mxn) constant matrix with (m-1) zero rows and only
one nonzero row (the g-th row). We would like to choose R in such
a way that éqg(s) has certain desirable properties from the point
of view of the decoupling Section 5.1. In particular, we would
like to choose R such that (1) the polynomial |§q§(s)| is Hurwitz,
and (2) the matrix B* (defined in the same way as B* (Section 5.1),
but with gq replacing C) is nonsingular. If this i1s possible, the
system x = Ax + Bu , Yq = gqg, where gq = ng, can be decoupled
via linear state variable feedback; i.e., by appropriate choice of
the pair {F,G}, é §(s)§;l(s)§m§ will be diagonal and nonsingular,
and all zeros of §F(S)T will lie in the half-plane Re s<0.

Now, by Eqg. (122), the closed loop transfer matrix of the

actual system we are dealing with can be expressed as

~ -1 ~ ~ -1 ~ -1 2
Cs ()81 (s)B,G = C8(s) 87  (s)B G ~ RS (s) 8 (s)B G (123)

where B§(S)§;l(s)ém§ is an (mxm) matrix of transfer functions
with zero entries everywhere but the g-th row. Conseguently,
the closed loop transfer matrix of the given system displays
complete off-diagonal noninteraction with the exception of the
g-th row. Our design objective has thus been met provided R can

be suitably chosen.

We will now demonstrate this algorithm, using the example
given at the beginning of Section 5. In parituclar, in the ex-

ample,
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If we now alter the first row (g = 1) of C by setting

-1 5/4 -1/2 -1

B:
0 0 0 0
then
0 9/4 1/2 -1
C =¢C =
-q g
-2 1 2 0
In other words,
9/4s -s + 1/2
C S(s) =
C,S(s)
s-2 2
and
2
C S(s)| = (s+1)

a Hurwitz polynomial. Furthermore, @é = ng and, in this case,

[9/4 -1]
1 0

a nonsingular matrix. The altered system can therefore be de-

is egual to

coupled via linear state variable feedback. Two of the four

closed loop poles of the decoupled system can be arbitrarily
2
). If

selected (the other two are s = -1 since ngg(s)i = (s+1)
we select both of these poles at s = -2, Eg. (105) can then be
used to find the required feedback pair {E,g}; for this example,

F = B*_l[M C - A*], where
= -qd -0-q
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7 0 -4 =2
E =
8 7/8 =7 -4
Therefore,
s2-4 25+4
§E(S) = 6(s) - B FS(s) = ,
- 9/2 s~9 s“+6s5+8
2 2 . . _ -1
and |§F(s)| = (s+1) " (s+2)” as required. Since G = @é , We can

write the closed loop transfer matrix of the altered system;

1

s+2 0
c §(S)§;l(5)§m§*—l _ (s+l;
9 2 d 1 (s+1

s+2

2

We now use Eg. (123) to determine the closed loop transfer

matrix of the actual system we are dealing with;

s®+s-3, =-s? - 11/4 s + 1/2

0 .0
-1 2 s+2

RS (s) 821 (5)B G = -
E m (s+1) 2 (s+2) s+2

and

[s+4, s2 + 11/4 s - 1/2]
2 .
0 , (s+1) S+2

x~1 =

q (s+1) 2 (s+2)

-1
C8 (31 85" ()83

F s+2
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We have thus succeeded in obtaining noninteraction in all
off-diagonal elements of the closed loop transfer matrix with the

exception of those in the first row.
ALGORITHM 2 (Row Combination)

The second algorithm is a modification of the first. It
also relies on an alteration of é and utilization of the results
in Section 5.1. To demonstrate this algorithm, we observe the
effect of premultiplymnng é by a nonfingular matrix P; i.e.,

linearly combining various rows of C. 1In particular, we let

(124)

10>

C_ =P
—p —

where P is a nonsingular (mxm) matrix. We would like to choose

P in sEch a way that the system g = AX + Bu, Yp = gps, where

gp = Qgp, can be decoupled via linear state variable feedback.

In other words, we would like the matrix g; (defined as in

Section 5.1, but with gp replacing C) to be nonsingular. Suppose
we can decouple the altered system via linear state variable feed-
back. This means that the closed loop transfer matrix of the
altered system, Eég(s)le(s)Emg, will be diagonal and nonsingular.
We obtain the closed loop transfer matrix of t?e actual sysfem

under consideration by premultiplying E§§(S)§; (S)Emg by E_ .

Lowila produce corresponding

Note that the nonzero entries of P~
nonzero entries in the closed loop transfer matrix of the actual
system, since E_l premultiplies the diagonal transfer matrix.
Hence the choice of P, and therefore E_l, directly determines

whether the various entries of T, .(s) will be zero or nonzero.
—,—

We will now demonstrate this algorithm, using the example

given at the beginning of Section 5. We recall again that B* is

[s+l 1]
s=-2 2

singular and that

10D
1]
W
Il
@]
192}
0n
il
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0 1 0 1

3 0 -1 © N N 3 -1
= . Consequently, PCS(s) = C_S(s) = .
-2 1 2 0 P s-2 2

Note that P cannot alter the zeros associated with |§§(s)| i.e.

1 -1 -1 1 1
Suppose we choose P = so that P = . By Eg. (124),

103>

c =rp
_p =

lgpg(s)! = lgllég(s)[, where |P| is, of course, a scalar. g; is

thus equal to

C AB 3 -1
c B
P2 1 0
a nonsingular matrix. The altered system can therefore be de-

coupled via linear state variable feedback, and three of the four
closed loop poles of the decoupled system can be arbitrarily
specified (Section 5.1). We will choose these poles at s = -1,
-2, and -3 in order to demonstrate an alternate method ot determ-

ining F, the feedback matrix. If

we can write the final closed loop transfer matrix of the altered

system directly;

2
s +3s+2
-1 +—1 _ s+4

1
s+3
Since all quantities are known with the exception of §F(s), we

solve the above equation for §,(s);
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-1 sz+3s+2, 0
— *
0, s+3]
or
2 -
0 1l}s™+3s+2, ©O© 3 -1
Spis) =
- -1 31}}0, S+3J s-2 2
which yields
52+s—6 2s+6
§.(s) =
E ~65-24  $%+9s5+20
Since 8_(s) = §(s) - B FS(s) = §(s) - B _FS(s), in this example,
and B_ = I, ES(s) = 8(s) - §.(s), or

-s+9 ~-2s-6
FS(s) =
58+23, =~7s-19

9 -1 -6 -2
:E:
23 5 =19 =7

The closed loop transfer matrix of the altered system can be

or

premultiplied by E_l to yield the closed loop transfer matrix of

the given system;

1 1
(s+1) (s+2 s+3
-1 1 _ s+4
§§(S)§E (S)Emgp - 0 1 s+4
s+3

We have therefore succeeded in obtaining a transfer matrix whose
nonzero entries correspond to those of E_l.

The two algorithms we have now presented do not, of course,
represent the totality of structure theorem algorithms which can
be employed to achieve closed loop noninteraction. The
reader will undoubtedly note that certain basic modifications can
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be made. For example, two rows of é can be altered instead of one
and P can be replaced by P(s) in certain cases. The two algorithms
can also be combined, and the combination modified in a number of
ways. Space limitations, however, prevent us from covering these

points in more detail.

6. A HELICOPTER STABILITY AUGMENTATION SYSTEM

In this section of the report, we will apply several of the
results presented earlier in order to design a stability augmen-
tation system, for a hovering helicopter, based on desired handl-
ing qualities. In particular, we consider the linearized equa-
tions of motion (ninth order) of a hovering helicopter, and pro-
ceed to design a linear, state variable feedback control system
which satisfies certain conditions. These conditions are express-
ed in terms of the transfer matrix of the system; i.e., in terms
of the desired closed loop transfer functions which comprise the
(6x4) transfer matrix of the system. The steps taken to achieve
the final feedback design are enumerated here in order to facili-

tate the review of the design method employed.

1. A brief discussion of the vehicle which will be
considered is given and our overall design objective

is compared with an alternative design.

2. A corollary to the structure theorem is presented,
which enables us to deal directly with the physical
state of the system throughout the entire design pro-
cess. In this way, our engineering insight can be
employed at various stages in the design to motivate

the various mathematical steps taken.

3. The linearized equations of motion of the wvehicle
are presented, and the physical state of the system

is defined.

4. A qualitative discussion of the properties which

we desire in the final closed loop system is presented
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and a quantitative interpretation of these properties
is given in terms of a desired closed loop transfer

matrix.

5. The practical considerations which constrain our

design are presented--first qualitatively and then

quantitatively.

6. A design of an initial feedback control system,
based on the corollary to the structure theorem, is
presented. Use 1is made of certain characteristics

of the particular vehicle considered.

7. The deficiencies of this initial design are dis-
cussed and corrected in order to satisfy the con-

straints imposed.

8. A final design is then obtained. This design is
discussed on its own merits, and then compared with

the feedback system we were hoping to achieve.

The helicopter we consider is the Sikorsky SH-3D Sea King,
whose primary mission is to detect submerged submarines through
the use of a sonar ball, which is lowered into the water while
the helicopter is hovering at an altitude of approximately 40 ft.
The linearized equations of motion of this vehicle, as well as an
alternate feedback stabilization system, are given in reference
38. We point out that the stabilization system obtained in refer-
ence 38 is based on linear optimal control, the objective there
being to maintain the vehicle about a fixed point in the presence
of disturbances. Our design objective, however, is based on de-
sired handling qualities; i.e., the ability to design a feedback
control system which ensures "acceptable manual control"” of the
helicopter awr~uc the equilibrium point (the hovering position).
The primary design tool we employ is the structure theorem. As
we will show, however, certain practical constraints, such as

limited feedback gains and the inability to combine mechanical
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inputs, prevent the direct application of the structure theorem.
Furthermore, when dealing with practical systems, it is desirable
to avoid any transformation of coordinates (linear combinations
of state variables). It is usually preferable to work with the
actual state variables which define the system. For this reason,
we will introduce a corollary to the structure theorem. The
corollary is most useful when a significant number of state vari-
ables are derivatives of other state variables, a condition which
occurs quite frequently in practice. In particular, we have the

following corollary (C1l0):

Cl0: Consider the system % = Ax + Bu , y = Cx.

Suppose A, an (nxn) matrix, is in multi-input companion
form as defined by Egs. (13), (14), and (15); i.e., A

can be partitioned into m diagonal blocks, each a com-

panion matrix of dimension Os where i = 1, 2, ... m.

Furthermore, suppose that B, an (nxq) matrix, has zero

éntries everywhere but the m dk YOows, Where dK =

K
%Oi' K=1, 2, ... m. If S(s) is now defined by Eg. (21);

1 0 . 0

s . .

o,-1 )

1 0 0

1 .o .

S{s) =1 . s .
02—1

om—l
LO 0 S
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and §(s) = diagl[s'i] - & _S(s), where A_ is the (mxn)

— —_—

matrix con51st1ng of the m- ordered d th rows of A, and

§m as the (qu) matrlx con51st1ng of the m-ordered d -th

rows of B, then

T(s) = C(sI - &) "B = ¢c5(s)8 ™ (s)B_
Furthermore, if u = Fx + Gw, then
T (s) = C(sI - A - BF)—lBG = CS(S)G_l(s)B G
~F,G R T R R
where
Sp(s) = §(s) - B FS(s)

Proof: The proof is a direct consequence of theorem T1 and

corollary C2.

We now present the linearized equations of motion of the
SH-3D helicopter. The state variables defining the system have
been reordered and numbered differently than in reference 38 in
order to allow direct application of the above corollary. 1In

particular, we consider the system x = Ax + Bu , y = Cx, where

-.016 -.05 .0025 0 0 =-.0001 0 O ~.004
0 0 1 0 0 0 0 0 0
1.97 0 -.542 1 0 .548 0 © .736
0 0 .00018 =-.3242 0 O 0 0 0
A=]|0 0 0 0 0 0 0 0
2.61 0 -1.94 -.163 0 -1.96 0 .01 -7.25
0 0 0 0 0 0 1 0
.016 0 -.0083 -.193 0 =-.0043 0 ~-.303 5.59
.0047 0 -.0024  -.0007 .05 -.0025 0  .0009 -.033
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and

The normalized state x and control u

X -

[~ .os .005 0
0 0 0
-6.15 .69 0
0 -.424 0
B = 0 0 0
0 -2.13 21
0 0 0
0 5.12
0 .01
1 0 0 o0 o
0O 1 0 0 o0
0 0 0 1 0
S=lo0 0 0 o0 1
0 0 0 0 0
0 0 0 0 0

longitudinal velocity
pitch

pitch rate

vertical velocity

roll

roll rate

yaw

vaw rate

lateral velocity
longitudinal cyclic pitch

main rotor collective

0 —
0
0
0
0
.81 .3475
0
.174 -7.48
.05 .022_

o O © O o o
O B O O O O
O O O o o o
= O O O O ©
l J

are defined as

follows:
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u,y - lateral cyclic pitch

u, - tall rotor collective

Given this open loop system, our objective is to design a
linear feedback control system based on certain desired handling
qualities and constrained by certain practical considerations.

We first discuss the desired handling gualities.

In particular, we would like to achieve a final "decoupled"
feedback design where longitudinal velocity and pitch (Xl’ Xy
and x3) are affected by longitudinal cyclic pitch (ul) alone.
Simultaneously, it would be desirable if vertical velocity (x4)
were affected by main rotor collective input (u2) alone, roll and
lateral velocity (x5, Xo s and x9) were affected by lateral cyclic
pitch input (u3) alone, and yaw (x7 and x8) were affected by tail
rotor collective (u4) alone, In addition to these requirements,
we would also like to select the poles associated with various
input/output transfer functions as follows. Longitudinal velo-
city (yl), lateral velocity (y6), and yaw (y5) should be affected
by Uy Vg and u, via pure integration. Furthermore, the transfer
functions relating pitch (y2) and roll (y4) to longitudinal cyclic
pitch (ul) and lateral cyclic pitch (u3) should represent second
order systems with critical damping (ref. 32) (£ = .707) and an
undamped natural frequency (ref. 32) of 3 rad/sec (wn = 3). All
other specified poles should lie in the half-plane Re s<0. These
conditions represent the handling qualities which we hope to a-
chieve, using a linear feedback control system. In terms of the
closed loop transfer matrix, C(sI - A - EE)_lEQ, relating the six
outputs to the four inputs, these conditions would be satisfied

if
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n (s)
211 0 0 0
s(s“+4.24s+9)
n (s)
> 21 0 0 0
s“+4.24s+9
N 0 t32(s) 0 0
C(sI - A - BE) BG = o (s)
43
0 0 > 0
s +4.24s+9
n
54
0 0 0 =
n,_.,(s)
0 0 263 0
s(s“+4.24s+9)

where the poles associated with t32(s) lie in the half-plane
Re s<0 and the numerator polynomials nll(s), n21(s), n43(s), and
n63(s) contain no roots at s = 0.

As stated earlier, we also have some constraints associated
with the problem. Actually, there are two constraints, both of
which are given in reference 38 and repeated here for convenience.
As stated in reference 38, the amplitude of the controller output
(feedback gains) is limited to *10% of the total available range
of the mechanical input (external input w). Furthermore, physical
coupling of the mechanical inputs is not permitted (G must equal
I). The first of these two constraints will ensure that the pilot
can recover successfully from a hardover failure in the augmenta-
tion system. The second, although not explicitly stated as a con-
straint in reference 38, ensures a consistent open loop mechanical
system throughout the entire range of operation of the helicopter.
The requirement for additional hardware design is also eliminated.
Mathematically stated, these two constraints imply that u must be
of the form, u = FXx + w, and all elements comprising the feedback

matrix F must be less than or equal to 2 in absolute values. This
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latter mathematical constraint is the author's own interpretation

of the *10% controller output constraint and is based on the final

feedback design given in reference 38.

The problem has now been completely formulated, and our task
is to design a feedback control system which matches the desired
closed loop transfer matrix as closely as possible. We note here

that an exact match in impossible, as we will later show.

We now recall corollary C1l0; i.e. IF(S) = Q§(S)§;l(s)Bm,
where §_(s) = §(s) - B FS(s). For this example, CS(s) = I and
.05 .005 0 0 7
-6.15 .69 0 0
0 -.424 0 0
—m =
0] -2.13 21.81 .3475
0 5.12 174 -7.48
0 01 .05 022
b o

Note that the elements comprising the first and last rows of B
are considerably smaller than those contained in the remaining
rows. Also recall that F, the feedback matrix, is constrained
in magnitude. Consequently, we conclude that the effect of feed-
back will be considerably more significant on the middle four
rows of §F(s) than on the first and last rows. Our design will
therefore be based on properly altering these middle four rows
of §F(s). The effect on the other two rows should be relatively
insignificant.

Previously, we stated that in view of the constraints, the
desired transfer matrix could not be achieved via the feedback

u=Fx + w. We will now be more specific regarding this fact.

In particular, since CS(s) = I, the closed loop transfer matrix,
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C(sI - A - @E)—lg = §;l(s)§m. If we now recall the definition of

B* given in Section 5.1, i.e.

=3 f T

¢, 2 B
i

C Az B

pr = | 7% ~ -
e

c. 2™ B

where f, = min[{jzgiéjg # 0} , n-1], we note that for this ex-
ample, B* = B . Furthermore, B* is invariant under linear state
variable feedback (refs. 34 and 35). Since G is constrained to
equal I, every nonzero entry of B* or B represents a nonzero
entry in the closed loop transfer matrix, C(sI - A - gE)_lg, of
the system. However, we can achieve a certain number of zeros in
the closed loop transfer matrix (partial decoupling) by judicious
choice of the feedback matrix F. In particular, if we select F
in such a way that the middle four rows of §F(s) are diagonal,
then seven entries in IF(S) will be zero--namely, those entries
corresponding to the zero entries in the middle four rows of B .

In particular, suppose F were chosen so that

Fﬁ v v v v v v v Vv
o o0 1 o 0 0 0 0 0
0 -9 =-4.24 0 0 O 0 0 0
o 0 o -1 0 o0 0 0 0
A+BF={0 0 O o o 1 0 0 0
o 0 0 0 -9 -4.24 0 0 0
o 0 0 o 0 0 0 1 0
o 0 O 0o 0 o0 0 -10 ©
v v v v v v v v V_—‘

where the v's denote unimportant (for the moment) entries cor-

responding to the F selected. This (A + BF) is possible to
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achieve since the middle four rows of B, constitute a nonsingular

matrix. The corresponding §F(s) would then be

(v v v v v A
0 s2+4.24s549 0 O
éF(S) _ 0 s+1
- 0 s%+4.24549 0
0 0 s(s+10) O
v v \% A v '
If we now compute the closed loop transfer matrix EF(S): Q;l(s)gm,

it is clear that the (2,3), (2,4), (3,1), (3,3), (374), (471), and
(5,1) entries of @F(s) will be zero. There are two things wrong
with this choice of F, however. First, if we actually compute

F, the feedback matrix corresponding to this choice of §F(s), we
would discover that certain entries of F have an absolute value
greater than 2, a violation of one of the two design constraints.
Secondly, this choice of §F(s) would produce a closed loop trans-
fer matrix with s(s+10) as the denominator polynomial of the (5,2),
(5,3), and (5,4) transfer functions; i.e., the transfer functions
relating yaw to main rotor collective and lateral cyclic pitch
would contain pure integrators with relatively high gain. This
would be an undesirable condition, since the helicopter would yaw
at constant rate if either of these two controls were displaced
from their equilibrium positions. At this point in the design,
the structure theorem proves most useful. We first reduce the
entries of F by altering the initial requirement that the transfer
functions relating Yo and y, to ug and Uy, respectively, contain
the denominator polynomial s2 + 4.24s + 9. We still maintain
critical damping (£ = .707), but reduce the undamped natural fre-
qguency to 2.5 instead of 3 rad/sec. This still represents an
acceptable frequency for the human operator to control. We now

concentrate on that portion of the §F(s) block which produces the
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undesirable integrator transfer functions relating yaw to main

rotor collective and lateral cyclic pitch. In particular, suppose
that
v v v v v v
0 52+3.53s+6.25 0 0 0 0
QT T T T T —
0 O I s+1 O 0 10
= 0 0 I 0 s“+3.53s5+6.25 0 = 0
0 0 l ¢ as+b s2+10s | 0
e oo |
|l v Vv v v v v ]
where a, b, and c are, as yet, unspecified constants. The in-

verse of the dotted (3x3) submatrix of §,(s) is now determined;

l —
s+1 0 0

I

s ()"t =]o I 0

= 2

CE s%+3.535+6.25
(3,3)-(5,5) -c -as-b 1

LS(S+1)(S+10) s (s4+10) (s2+3.53s+6.25) S(s+¥10)

Postmultiply this expression by the appropriate portion of B

nanmely
~.424 0 0
B 1= |-2.13 21.81 .3475
L
(3,2)-(5,4) 5.12 174 -7.48

yields the appropriate block (submatrix) of the closed loop

transfer matrix, IF(S);
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[ _.424 7
s+1 0 0
5 -2.13 21.81 .3475
| Ip(s)| =1 — 7 p)
CE s°+3.535+6.25 s°+3.535+6.25 s°+3.535+6.25
(3,2)~(5,4) T (s) T (s) T (s)
Fs o Fs 3 Fs5,4
= -
where
. (s) = (.424c+5.125+5.12) (s2+3.535+6.25) + 2.13(s+1) (as+b)
5 s (5+1) (s+10) (s2+3.5355+6.25)

The constant term in the numerator of IFS 2(s) is egual to 2.65c +
-7

2.13b + 32. If this guantity is set equal to zero we will achieve

a pole-zero cancellation at s = 0 and, hence, eliminate the pure

integrator in this transfer function. Similarly,

r (s) = —21.81(as+b) + .174(s°+3.535+6.25)
“E5,3 s (s+10) (S%+3.535+6.25)

and the integrator can be cancelled by selecting -21.81b +
1.0875 = 0. Therefore, to avoid pure integration in the transfer

matrix elements relating yaw to both main rotor collective and

lateral cyclic pitch, we set b = .0499 and ¢ =-12.115. Further-
. . _ =7.48 .
more, if a 1s set equal to zero, IES,4 = s(s¥10)"’ a desirable

transfer function (includes pure integration) relating yaw to
tail rotor collective. In summary, thus far we have concentrated
on the middle four rows of the closed loop transfer matrix

1

T.(s) = §. (s)B . We have shown that if
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_V v v v v v v v V—
0 1 0 0 0 0 0 0
0 -6.25 =3.535 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0
A+BF= 0 O 0 0 0 1 0 0 0
0 O 0 0 -6.25 -3.535 0 0 0
0 O 0 0 0 0 0 1 0
0 0 0 12.115 -.0499 0 0 -10 ©
LV v A\ v v v v v V—

then the resulting closed loop transfer matrix will possess cer-
tain desirable features. Before discussing this point any further,
we will calculate F, the feedback matrix in order to ensure that
all elements have an absolute value less than or equal to 2 and
also to evaluate the effect of F on the first and last rows of
IF(S). To obtain F, we note that the third, fourth, sixth, and
eighth rows of both A and (A + BF) are known. Denoting these

rows of A, (A + BE), and B as &, (A + Eg)r, and B_, respectively,

we note that (A + BF) = A + B F; i.e. (A + BF) - A = B_F,
- -='r =r -r="_3 - -='r -r -r-
and since B_ is nonsingualr, F = B_"[(A + BF) - A 1. Now,
-r - -r - -='r -r
(A + BF) - A =
= -='r -r
- .
-1.97 -6.25 -2.993 -1 0 -.548 0 O -.736
0 0 -.00018 -.6758 0 0 00 0
-2.61 0 1.94 .163 -6.25 -1.575 0 -.01 7.25
-.01l6 O .0083 12.308 -.0499 .0043 0 9.607 -5.59
L -

and
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Therefore,

[[.3203 1.016
0 0

-.1195 0

| -.0005 0 .

and we note that all elements of F satisfy

|£..] < 2. 1In fact,
17 =

the largest is 1.594.

~.1626 -.2646 O 0

0 -2.3585 O 0

0 ~.2045 .0458 .0021
0 -1.62 .001 —.1336J
.4867 .3414 O .0891 0
.0004 1.594 O 0 0
.0888 .1719 -.2863 -.0721 O
0012 -.5495 .0004 -.0011 O

termined, we can compute A + BF explicitly; i.e.

—

0 0
0 0
0 -6.
0 0
A+ BF=|0 0
0 0
0 0
0 0
-.0013 ©

and, by inspection,
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.0275

25 -3.535

.002

.017

0

12.115

.012

0

-6.25
0
-.0499

.04

.12 ]

0
-.02 .3202
1.28 .754 ]

.0044 0
0 0
0 0
0 0
1 0
-3.535 0
0 0
0 0
-.006 O

the constraint that

Once F has been de-

0 .001l3

0 0
0 o
0 O
0 o0
0 O
1 0
-10 O
.0281 0




S -.0275s -.017 -.0044s 0 -.0013
0 s243.53554+6.25 0 0 0 0
0 0 s+1 0 0 0
§_.(s) = .
—E 0 0 0 s243.5355+6.25 0 0
0 0 ~12.115 .0499  s(s+10) 0
.0013 -.002s -.012 .006s-.04 -.0281s s
and
M1 .0275 .017 .0044 .0013 |
s s2+3.535s+6.25 S(st1) s2+3.5355+6.25 0 s2
1
0 S U 0
s%+3.5355+6.25 0 0
1
0 0 s+T 0 0 0
g;l(s) = 1
E 0 0 0 ————— 0 0
s“+3.5358+6.25
o o 12.115 -.0499 1 .
s(s+1) (s+10) [ oi10) (s2+3.535s46.25 ©(5t10)
~.0013 .002 .012s+.46 -.006s+.04 .0281 1
s2  s243.535s5+46.25 S(SFLIIsHL0) 2.5 535446.25 s (s+10) s

Once §;l(s) has been calculated, the overall (6x4) closed loop

L _ -1 .
transfer matrix TF(S) = éF (s)Bm can be determined, as follows:
[ 0ss%+.00775+.3175 .096
2 0 5 o} LONG.
s(s%+3.5355+6.25) $°+3.5355+6.25 VEL.
] -6.15 - .69 o 0 PITCH
s“+3.535s+6.25 5°+3.5355+6.25
-.424
0 S+1 0 0 VERT .
IF(S) = VEL.
0 , -2.13 _ 21.81 if"3475 ROLL
s +3.535s+6.25 s“+3.535s+6.25 s"+3.5358+6.25
5.1252+28.365+68.37 .174s+.615 -7.48
° 2 2 5(s+10) YAW
(s+1) (s+10) (s“+3.5355+6.25) (s+10) (s“+3.535s5+6.25)
4 3 2 2
-.0123 .01s%+.2975%+1,055%+.8045-.55 .055°+.046s5+1.19 .0225+.01 LAT
s2+3.5355+6.25 s (s+1) (s+10) (s%+3.5358+6.25 s(s2+3.5355+6.25) s{s+10) VEL.
LONG.CYCLIC MAIN ROTOR COLLECTIVE LATERAL CYCLIC PITCH TAIL ROTOR
PITCH COLLECTIVE
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This IF(s) is proposed as the final closed loop transfer
matrix. If we compare this transfer matrix with the original
desired closed loop transfer matrix, we can make several observa-
tions. First, the requirement that pure integrations appear in
the transfer functions relating longitudinal velocity to longi-
tudinal cyclic pitch, lateral velocity to lateral cyclic pitch,
and yaw to tail rotor collective has been met. Furthermore, by
appropriate selection of the feedback matrix F, we have elimin-
ated pure integrations in almost all of the other transfer func-
tions. The only exceptions are the transfer functions relating
lateral velocity to the main rotor and tail rotor collective in-
puts. We note, however, that the gains associated with the in-
tegrator portion of these two transfer functions are quite low,
relative to the lateral cyclic pitch input. We were unable to
achieve the undamped natural frequency of 3 rad/sec relating pitch
and roll to longitudinal cyclic pitch and lateral cyclic pitch,
respectively, because of the constraint placed on the magnitude
of the elements comprising the feedback matrix F. A reduction of
this desired frequency to 2.5 rad/sec, however, was found to be
obtainable without excessive feedback gains. Continuing our
analysis, we note that we have achieved as much decoupling as
possible, consistent with the constraint that G = I. (This point
was discussed in considerable detail earlier.) We also note that
longitudinal cyclic pitch affects pitch and longitudinal velocity
almost exclusively. Vertical velocity is affected by main rotor
collective only. Lateral cyclic pitch affects lateral velocity
and roll, as desired, with some unavoidable cross-coupling into

yvaw. The main input affecting yaw is tail rotor collective, as
desired,.

Although not all design objectives were met, it appears that
this design is about as close to the desired design as possible,
consistent with the constraints on F and G. If there were no

constraints on F or G, we could have achieved almost a perfect
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match between desired and actual closed loop transfer matrices.
The only exceptions would be nonzero entries appearing in all
elements of the first and last rows of the closed loop transfer

matrix, in general.
7. CONCLUDING REMARKS

We have introduced the structure theorem, a new and rather
basic idea which was shown to have broad implications in the anal-
vsis and design of linear multivariable control systems. The
underlying idea behind the structure theorem is the ability to
combine time and frequency domain information in a compact and
concise expression through a transformation (restructuring) of

the dynamical equations of motion which characterize the system.

A significant number of new results were obtained, and cer-
tain prior results were given a new interpretation. 1In particular,
in Section 3 we presented a new method for obtaining realizations,
given the transfer matrix of a linear multivariable system. We
also derived a direct, constructive technique for arbitrarily
assigning all n eigenvalues of a controllable multivariable system
using linear state variable feedback. The question of pole place-
ment via output feedback was then considered. We presented a
compact expression for the closed loop characteristic equation
(closed under linear output feedback) of a multivariable system,
and then demonstrated how this result could be used to obtain

certain desired closed loop poles.

In Section 4, various questions pertaining to linear optimal
control were considered. Few new ideas were presented here, but
a number of improvements were made over previous work. In par-
ticular, we demonstrated how a solution to the output regulator
problem could be formulated in the frequency domain. This result
led to two new expressions for characterizing an optimal feedback
design. We then demonstrated how spectral factorization could be

used to obtain a solution to the regulator problem, and concluded
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by discussing a new technique for formulating the root-square

locus.

We considered the design of noninteracting control systems
in Section 5. A number of new results and design algorithms were
presented. We gave a procedure for determining what poles could
not be altered while decoupling via linear state variable feed-
back. We also presented a design algorithm for achieving maximum
pole assignment under linear decoupling feedback. We then char-
acterized those systems which can be decoupled via input dynamics,
and presented an algorithm for achieving an asymptotically stable
decoupled design with arbitrary pole placement. Two design algo-
rithms for achieving a noninteractive design via linear state

variable feedback were then given and demonstrated by example.

In Section 6, we considered the design of a helicopter
stability augmentation system based on desired handling qualities.
Many of the results obtained in the earlier sections were applied.
Here, it was shown that pencil and paper methods can be employed

to achieve an acceptable feedback control system.

Preliminary computer programs have been devised to implement
much of the theory developed in this report. Some of these pro-
grams were mentioned briefly. Currently, there is an effort
underway to combine these preliminary programs in a highly inter-
active man-computer system which will facilitate the analysis and

design of complex multivariable systems.

Although a significant amount of work has been accomplished,
much remains to be done. Answers to additional guestions are re-
quired in most of the areas already mentioned as well as in re-
lated research areas such as model matching, state estimation,
sensitivity reduction, and nondeterministic systems. The struc-
ture theorem, which we have introduced in this report, appears to
offer a valuable design and analysis technique for achieving

further results in these areas and others.
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Appendix A
LIST OF SYMBOLS

Symbol Page Definition

X 4 The n-dimensional state of a linear system

A 4 The constant (nxn) state matrix

B 4 The constant (nxm) input matrix

c 4 The constant (pxn) output matrix

N 4 The p-dimensional output of a linear system

u 4 The m~dimensional input of a linear system

T, (s) 4 The open loop transfer matrix

y(s) 4 The Laplace transform of the output y

u(s) 4 The Laplace transform of the input u

S 4 The Laplace operator s = o+jw

w 4 An m-dimensional external input

F 4 A constant (mxn) state variable feedback matrix

G 4 A constant (mxm) feedforward matrix

EF’G(S) 5 The closed loop transfer matrix

Q 5 An (nxn) nonsingular similarity transformation
matrix

z 5 The altered state under Q, Qx

A 5 The altered state matrix under Q, QaQ™t

§ 5 The altered input matrix under Q, QB

é 5 The altered output matrix under Q, gg—l

ﬁ 6 The altered feedback matrix under Q, Eg_l

@EIG 6 The altered closed loop transfer matrix under Q
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11

11

12

12

12

13

13

13

13

14

14

Definition

The (anm) controllability matrix (see K,
pp. 32 and 58 also)

The (nxn) nonsingular matrix obtained by a
"lexicographic" ordering of the first (n)

independent columns of K

The (nxn) "companion" form closed loop state

matrix
The closed loop transfer matrix when G = I

An (nxm) matrix of monic single term polynomials
in s used in defining the closed loop transfer
matrix via the structure theorem.

An (mxm) matrix of polynomials in s used in
defining the closed loop transfer matrix via the
structure theorem.

An (mxm) upper-triangular matrix obtained from

B and used in defining the transfer matrix via

the structure theorem

The characteristic polynomial of the closed loop

system
Shorthand notation for ég(s)

A (pxm) matrix of polynomials in s--the

numerator of the closed loop transfer matrix

An (mxm) matrix of polynomials in s equal to the
adjoint of §F(s)
An (nxm) matrix obtained from A and used in

obtaining S, (s)

An (mxm) matrix of polynomials in s used in

defining the open loop transfer matrix via the



Symbol

=

2

W 1™ =
0] - b

L @]

Page

15
15
15
15

15

15

16

17

18
18
18

20

24

25

Definition

structure theorem; i.e. § (s) = 8, (s) when FE = 0
An r-dimensional subspace of Ry
The n-dimensional Euclidean space

The orthogonal complement of W

One of the basis vectors of Wl

An extension of B which includes the basis

vectors, @i, of Wl

An (nxn) similarity transformation matrix
defined in terms of the extended input matrix

B
-e

The characteristic polynomial associated with
the "uncontrollable" part of the closed loop

state matrix

An {(mxm) matrix of polynomials in s associated
with the "controllable" part of the closed loop
state matrix

An (m+gxn) extension of the feedback matrix F
An (m+qg)x(m+qg) extension of the input matrix ém

An nx(m+qg) extension of S(s)

A given (pxm) transfer matrix--also shorthand

notation for Io(s)

A controllable realization of the transfer matrix
A modified version of T(s) used in obtaining a
controllable realization

An arbitrary set of (n) complex numbers

A AA

A special form of A +B F used for arbitrary

pole placement via state variable feedback
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Symbol Page
H 27
J 31
R 31
T 31
u* 31
K 32
w 33
A(s) 33
A* (s) 33
F* (s) 35
8 (s) 35
®(s) 41
W(s) 41
U 41
B* 52
)

p 53
Vv 54

*

gII(s) 54

102

Definition

An (mxp) constant output feedback matrix
A quadratic performance index

An (mxm) positive definite input weighting

matrix (see p. 71 also)

The "square root" of R; i.e. R = ETT

The optimal control which minimizes J

The positive definite solution to the matrix

Riccati equation (see K, pp. 8 and 58 also)
A frequency in radians/second

The characteristic polynomial of the open loop

system

The characteristic polynomial of the closed loop
optimal system

The optimal state variable feedback matrix
Shorthand notation for QO(S)

A symmetric (mxm) matrix of polynomials in s

A "spectral factorization" of ¢(s); i.e. @(s) =
W' (-s)W(s)

An orthogonal matrix ng =1

An (mxm) matrix used in decoupling multivariable

systems
The degree of the polynomial p(s)

The maximum number of specifiable poles under

decoupling state variable feedback

An (mxm) matrix of polynomials in s obtained by

factoring C* (s)



<

1=
[yl
=
12

56

56

56
56

56

57

58

58

58

59

59

59

a

Definition

An (mxm) diagonal matrix of polynomials in s
obtained by factoring C*(s); i.e. C*(s) =

*
P(s)Ci;(s)

The open loop transfer matrix of the system

X = é§+§El - gII§

L11

A modified output matrix gIIg_l§(s) = C*.(s)

The output QII§

A diagonal matrix used in obtaining a decoupling
state variable feedback matrix for arbitrary

pole placement

An (mxn) matrix used in obtaining a decoupling
state variable feedback matrix

The (mxm) transfer matrix of a dynamical system

used for decoupling via "input dynamics"

The k-dimensional state of the system whose

transfer matrix is G(s)

The output of the system whose transfer matrix
is G(s)

The input to the system whose transfer matrix
is G(s)

The state of the composite system consisting of

G(s) in series with the given system

The quadruple of constant matrices defining the
k-th order system whose transfer matrix is
G(s); i.e. G(s) = M(s;—g)_lg+§ (see K, pp. 8
and 32 also)

The output of the composite system--equivalent

to y
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B*

1>

1

B*

104

63

63

63

69

71

71

71

74

74

74

82

82

Definition

" .The transfer matrix of the composite.system

'A constant composite feedback pair used to

decouple and specify poles

The transfer matrix associated with a factored

version of the composite system
The "stable" polynomial factor of lgfl(s)]

The "unstable" polynomial factor pu(s) of

| C* . * =

|cx (s)|; [cx (s)| = Cp_(s)p,(s)

The matrix B* (see p. 52) associated with the

composite system

An alteration of the matrix C used in achieving

noninteraction

A

An (mxn) matrix added to é to yield éq; i.e. gq
C+R (see p. 31 also) '

The matrix B* (see p. 52) defined in terms of

gq rather than é

An alteration of the matrix C used in achieving

noninteraction

An (mxm) matrix which premultiplies C to produce
C; i.e. C_ = BC
The matrix B* (see p. 52) defined in terms of

gp rather than é

‘The damping ratio associated with a second order

linear system

The undamped natural frequency associated with a

second order linear system



NOTE:

é—
é—

adj (a)

det(a) or [A|
diag[ai]

[-1*A(s)

L-_I
(l,j)"'(kll)

NASA-Langley, 1970 —— 10

Appendix B
SPECIAL: NOTATION

Underlined letters refer to vectors or matrices

The (pxp) identity matrix

The derivative of x with respect to time
The i-th row of the matrix A

The ij-th element of the matrix A

The ij-th block of a portioned matrix A
The transpose of the matrix A

The inverse of the matrix A

The transpose of é_l or the inverse of éT

The adjoint of the matrix A: i.e.
2" = adj(a)+|a

The determinant of the matrix A

A diagonal matrix whose entries are a;

The product éT(—s)é(s)

The real part of s; i.e. 0 if s = o+jw

The imaginary part of the complex number A

A nonnegative definite matrix A

The (k~i+l1l)x(1-j+1) submatrix of A consisting of

those elements common to the i through k-th

rows and j through 1-th columns of A
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