MEMORANDUM #6

Thermoelectric Properties of 80 a/o Si - 20 a/o Ge Alloy as a Function of Time and Temperature

CASE FILE COPY

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
MEMORANDUM #6

THERMOELECTRIC PROPERTIES OF 80 a/o Si - 20 a/o Ge ALLOY AS A FUNCTION OF TIME AND TEMPERATURE

March 3, 1970

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

Prepared For:
Jet Propulsion Laboratory
Pasadena, California

JPL CONTRACT
952808

by
Valvo Raag
Resalab Scientific
Menlo Park, California
INTRODUCTION

Recent emphasis on the development of practical high performance thermoelectric power conversion systems capable of reliable long-term operation has brought silicon-germanium alloys and their associated technology into renewed focus. It is generally accepted that of all possible thermoelectric power conversion systems, it is those using silicon-germanium alloys that best combine the desirable qualities of high performance, good reliability and low weight when operated at hot side temperatures of the order of 1700 to 2000°F. Whereas limitations due to maximum heat source operating temperature capabilities have in the past restricted the operation of practical thermoelectric power conversion systems to somewhat lower temperatures, recent developments in high temperature heat source technology have alleviated this situation; as a result, active development work has started on high temperature silicon-germanium thermoelectric systems.

The accelerated emphasis on the practical utilization of silicon-germanium alloys in practical thermoelectric power conversion devices has necessitated a re-examination of the state of the technology. Most gaps still extant in the technology are as a result actively being filled or probably will be filled in the foreseeable future. Even before this is accomplished, however, there exists in some instances a need for interim information required in analytical and design efforts in the definition of a variety of power conversion systems. One area in which the need for such interim information exists is the one of long-term time and temperature dependence of silicon-germanium alloy thermoelectric properties. Although this need really applies to all silicon-germanium alloys, a special requirement, as discussed in greater detail below, has arisen for such material property information for the 80 a/o Si-20 a/o Ge alloy. It is the purpose of the present memorandum therefore to fill this requirement by presenting analytically derived thermoelectric property data as a function of time and temperature for the phosphorus doped n-type 80 a/o Si-20 a/o Ge alloy; the corresponding data for the p-type alloy are essentially independent of time and are available in the literature. Nevertheless, for completeness, a set of such data for the boron doped p-type alloy have been reproduced here.

1.
BACKGROUND DISCUSSION

The design of thermoelectric power conversion systems generally concerns itself with the performance of the system at the end of life because usually, especially in space applications, there exists a minimum performance requirement that the system must satisfy at that time. In designing for the end of life performance, it is necessary to have available information on the time and temperature behavior of various system components individually and in combination in order that a meaningful design may be formulated. Of all the components making up a thermoelectric power conversion system, obviously it is the thermoelectric material and its behavior that usually has the most important bearing on system performance. For this reason, detailed information on the time and temperature behavior of the thermoelectric properties of the active material used in a thermoelectric device is a necessary prerequisite to the practical design of such a device. Knowledge of the characteristics and behavior of other system components is of course also important, especially as concerns the thermal insulation and the extraneous electrical resistance of the circuit, including the hot and cold side contacts between the active thermoelectric material and the current carrying electrodes. Nevertheless, it is information on the thermoelectric properties of the thermocouple leg materials that probably forms the single most important basic piece of information needed in the design of thermoelectric power conversion systems.

A number of thermoelectric materials have been used in the practical conversion of heat to electricity in the recent past, including various lead and tellurium compounds and alloys and silicon-germanium alloys. Inasmuch as most applications to date have required system life-times of one or two years or less, the study, development and test efforts on thermoelectric materials and devices have been mostly limited to actual and/or projected operating times of that order. It is only relatively recently that work has been undertaken to develop thermoelectric systems for applications, primarily in long-term deep space missions, that possess significantly longer life-times. The so-called Grand
Tour of the outer planets now in the planning stages by NASA has a mission time in excess of ten years and exemplifies the recent trend in applications requiring long-term thermoelectric power production. In view of established reliability and attractive performance characteristics in long-term operation, it is primarily thermoelectric generators that use silicon-germanium alloys and associated technology that have come to be considered for applications requiring very long operating times.

Although extensive information exists on the operation of certain silicon-germanium alloys in various thermoelectric modules and devices for extended time periods, in some instances exceeding five years of continuous operation, the information is such that, although it demonstrates the overall reliability and the relatively high performance level obtained with devices of this type, it does not yield detailed thermoelectric property data on silicon-germanium alloys. Such data, needed in the design and the performance analysis of thermoelectric devices, have traditionally been obtained from thermoelectric material studies. Several such studies have been conducted since 1961, the time when silicon-germanium alloys were first suggested in this country as promising thermoelectric materials. Unfortunately, however, most studies concerned with the thermoelectric properties of silicon-germanium alloys have mainly involved the establishment of these properties in the "as-grown" state of the material as a function of alloy composition. Although initial thermoelectric properties are important in material optimization studies and the establishment of initial generator performance characteristics, they do not enable the end-of-life design of a thermoelectric generator because thermoelectric properties frequently change with time. Thus, the thermoelectric properties of silicon-germanium alloys, especially those of the n-type alloys, are well known to undergo changes with operating time as a result of dopant precipitation. Some effort has been devoted to the study of the time dependence of the thermoelectric properties of certain silicon-germanium alloys as a part of the just mentioned material studies. Most of this work has, however, only involved alloys with a
composition of 63 a/o Si - 37 a/o Ge and operating times up to 1500 hours.
No experimentally determined thermoelectric material property data thus exist
for any silicon-germanium alloys for operating times beyond 1500 hours; for
most alloys even these data are not available.

The bulk of the past design effort on silicon-germanium thermo-
electric generators has involved generator design life-times rarely exceeding one
or two years and the use of silicon-germanium alloys with an alloy composition
of 63 a/o Si - 37 a/o Ge. As just discussed, no experimentally determined
thermoelectric property data exist for this or any other silicon-germanium alloy
for operating times exceeding 1500 hours. It has been the practice therefore
to project the thermoelectric properties to any desired operating time by means
of analytical techniques. It has been possible to do this reasonably accurately
for relatively short operating times, of the order of a year or two, because the
mechanism of thermoelectric property change in silicon-germanium alloys is
qualitatively well understood. Although projections for longer operating times
have also been analytically made, it is not generally known how good such
projections are for lack of accurate device performance data at operating times
exceeding a few years.

Practically all projected long-term thermoelectric property data on
silicon-germanium alloys has involved the alloy with a composition of 63 a/o
Si - 37 a/o Ge. Of all silicon-germanium alloys, it is this alloy that up to
the present has received by far the most extensive use in practical thermoelectric
energy conversion devices because of the compatibility of its thermal expansion
characteristics with those of tungsten. Tungsten is commonly used as an
electrode material for silicon-germanium alloys. While it has been known for
years that of all silicon-germanium alloys, it is alloys with a composition of
some 80 a/o Si - 20 a/o Ge that possess the most optimum performance charac-
teristics (maximum figure-of-merit), it has been a question of electrode com-
patibility that has precluded the practical use of these alloys. In the past there
has not existed much impetus to develop bonding techniques for the higher silicon content silicon-germanium alloy because the performance gains in increasing the silicon content of the alloy from 63 a/o to 80 a/o, although quite distinct, are not especially great. Recently, however, active efforts have been initiated on an AEC technology program towards the optimization of all phases of silicon-germanium alloy technology. As a part of this optimization, attention has again been focused on the practical utilization of the 80 a/o Si - 20 a/o Ge alloy.

For completeness, it should be mentioned that in addition to possessing a higher figure-of-merit, the 80 a/o silicon content silicon-germanium alloy also possesses some other advantages over the commonly used 63 a/o Si - 37 a/o Ge alloy. Some of the more important of these are an approximately 100°C higher solidus temperature, a closer match between the thermoelectric properties of the n- and p- type alloys and a slightly higher tensile strength. The higher solidus temperature means that the 80 a/o silicon content silicon-germanium alloy can be operated at temperatures higher than those considered maximum for the 63 a/o Si content alloy. The more closely matched thermoelectric properties of the 80 a/o silicon content n- and p-type silicon-germanium alloys result in nearly equal-sized thermoelements for optimum thermocouple performance. For reasons of symmetry, equal sized thermoelements generally enable the construction of fairly rugged thermocouples. The 63 a/o silicon content silicon-germanium alloy requires n- and p-type thermoelement cross-sectional areas in the ratio of about 1.5 to 2.0 for optimum thermocouple performance. Some ruggedness is lost in this configuration. Finally, indications exist that the thermoelectric properties of the 80 a/o silicon content silicon-germanium alloy generally change less as a function of operating time than those of the 63 a/o silicon content alloy. This means that the performance of devices using the former alloy is more stable than of those that use the latter alloy.

In view of the renewed interest in the utilization of high silicon content silicon-germanium alloys in practical thermoelectric energy conversion

* Contract No. AT (29-2)-2510, RCA, Harrison, New Jersey
devices, the requirement has arisen for thermoelectric property data as a function of operating time for device design purposes. As mentioned, special interest exists in property data for very long-term operation because it is in applications of that type that silicon-germanium alloys are found to be especially attractive. As also mentioned, such data, either experimental or analytical, do not presently exist. It is the purpose of the present memorandum, therefore, to fill this void by presenting analytically derived thermoelectric property data for the 80 a/o Si - 20 a/o Ge alloy as a function of operating time for extended time periods.

It is recognized that analytically derived data are no better than the model on which they are based. Although a good qualitative understanding exists of the solid state model underlying the thermoelectric properties of silicon-germanium alloys and the dependence of these properties on time and temperature, considerable effort will still be necessary to formulate a complete quantitative understanding. The only way in which this is possible is through extensive experimental work. In the meantime, however, the analytically derived thermoelectric property data on the 80 a/o Si - 20 a/o Ge presented in this memorandum will temporarily fill a much needed requirement.

Finally, although probably more effort has in the past been devoted to the study of the time and temperature dependence of the thermoelectric properties of alloys with a silicon content of 63 a/o than any other silicon-germanium alloy, there exist practically no long-term thermoelectric property data that are generally available even in this case. Some such data have in the past been developed for specific requirements. In addition to not being especially comprehensive these data have invariably had very restricted distribution. Even though there is great interest presently in the higher silicon content alloy, it is envisioned that the 63 a/o Si - 37 a/o Ge alloy will nevertheless continue to occupy an important place in many practical thermoelectric energy conversion devices. For this reason, subsequent to the issuance of the present memorandum dealing with the thermoelectric properties of the 80 a/o Si - 20 a/o Ge alloy, it is planned in
the future to issue a similar document for the 63 a/o silicon content silicon-germanium alloy.

PRECIPITATION KINETICS

A fairly good qualitative understanding exists of the time and temperature dependence of the thermoelectric properties of silicon-germanium alloys. Inasmuch as much of this subject has already been covered in fair detail elsewhere*, there exists little reason for the repetition of a detailed discussion here. Nevertheless, in view of its applicability to the topic at hand and for purposes of completeness, a brief summary of the factors underlying the time dependence of the thermoelectric properties of silicon-germanium alloys is appropriate.

The worth of a material for thermoelectric energy conversion is approximately indicated by the so-called figure-of-merit which combines the three thermoelectric properties, the Seebeck coefficient S, the electrical resistivity \(\rho \) and the thermal conductivity \(k \) in the well known relationship

\[
Z = \frac{S^2}{\rho k}.
\]

It has generally been established that extrinsic semiconductors with carrier concentration values in the range \(10^{19} \) to \(10^{21} \) carriers per cubic centimeter possess values of figure-of-merit higher than those of any other grouping of materials; silicon-germanium alloys are semiconductors for which the figure-of-merit maximizes in the extrinsic range for carrier concentration values of the order of \(2 \times 10^{20} \) carriers per cubic centimeter. As with extrinsic semiconductors in general, the bulk of the indicated carrier concentration in silicon-germanium alloys is obtained through the addition of impurities during crystal growth. Each impurity atom, or dopant atom, as they frequently are called, in solid solution in the crystal donates one or more carriers to the lattice. Because of the high carrier concentration required for maximizing the figure-of-merit it is usually found that only a relatively few dopants exist for any given semiconductor that have solid solubilities sufficiently great

* See for example References 1 to 3.
for yielding the desired impurity carrier concentration. In silicon-germanium alloys only certain of the Group III and Group V elements satisfy this requirement.

The addition of Group III elements to silicon-germanium alloys yields material with p-type characteristics because Group III elements possess three valence electrons, one less than is required to form complete bonds with the four nearest-neighbor silicon and germanium atoms. The deficiency of an electron manifests itself exactly as if an electron were neutralized by a positive carrier; hence, the p-type behavior of the crystal. Of all Group III elements, it is boron that has the highest solid solubility in silicon-germanium alloys. In fact, the solid solubility of boron in silicon-germanium alloys is sufficient to enable doping of the alloys to carrier concentration values of the order of 10^{21} carriers per cubic centimeter, far in excess of those required for maximizing the figure-of-merit. Silicon-germanium alloys doped with boron for maximum figure-of-merit are therefore doped considerable below the solid solubility limit of boron in these alloys. The result is that the system of dopant and lattice is in equilibrium and the properties of boron doped p-type silicon-germanium alloys are stable with time and temperature. Although other Group III elements could also be used as dopants, it is boron that because of its high solid solubility is usually used as the p-type dopant for silicon-germanium alloys. The solid solubilities of other Group III elements in silicon-germanium alloys, although relatively great, are smaller than that of boron, and, in fact, in most cases are marginal for the attainment of maximum figure-of-merit values.

The addition of Group V elements to silicon-germanium alloys yields material with n-type characteristics. Group V elements possess five valence electrons, one more than is needed to form complete bonds with the four nearest neighbor silicon and germanium atoms. The excess electron is consequently very weakly bound to its parent atom and thermal energy, even at room temperature is sufficient to unbind it and make it a free carrier. Each Group V dopant atom therefore contributes one n-type carrier to silicon-germanium alloys. In order to obtain a carrier concentration of the order of 2×10^{20} carriers per cubic
centimeter required for maximizing the figure-of-merit of silicon-germanium alloys, it is consequently necessary to dope the alloys to impurity concentrations of the same order. Unfortunately, none of the Group V elements possesses a solid solubility in silicon-germanium alloys sufficient at all temperatures for accomplishing this. Because it comes closest, however, to satisfying the solid solubility requirement, it is phosphorus that is commonly used as the n-type dopant in silicon-germanium alloys.

Phosphorus exhibits a so-called retrograde solid solubility in silicon-germanium alloys. The solid solubility attains a maximum at temperatures of the order of 900 to 1100°C and decreases at both higher and lower temperatures. In order to maximize the figure-of-merit of phosphorus doped silicon-germanium alloys, it is therefore necessary to dope the alloys to impurity concentrations consistent with the maximum solid solubility of dopant at temperatures in the range of 900 to 1100°C. When this is done, however, there exists an excess of dopant at both higher and lower temperatures; silicon-germanium alloys doped in this manner are super-saturated with dopant. Because of the resultant instability, the system of dopant and lattice tends to equilibrium by precipitating any dopant in excess of its solid solubility at any given temperature. This effect of a decreasing dopant, and hence carrier concentration, manifests itself in changed electrical properties as a function of time; both the electrical resistivity and Seebeck coefficient increase with time in such a manner that the quantity S^2/ρ slightly decreases. Inasmuch as the thermal conductivity remains nearly unchanged, the figure-of-merit of n-type silicon-germanium alloys slightly decreases with time.

The rate and extent to which the thermoelectric properties of n-type silicon-germanium alloys change with time is obviously temperature dependent. At the temperatures of maximum solid solubility of phosphorus, the material is in equilibrium and thus little change takes place. At temperatures exceeding those of maximum dopant solid solubility, the precipitation process goes to completion extremely fast because of the high temperatures in question. It is at temperatures
below those of maximum dopant solid solubility that observable long-term changes in the electrical properties of n-type silicon-germanium alloys occur. Because the solid solubility of phosphorus decreases with temperature at temperatures below the solid solubility maximum, the "driving force" for precipitation increases with decreasing temperatures. The diffusion rate of phosphorus in the silicon-germanium matrix, diffusion preceding precipitation at a nucleation site, however decreases with decreasing temperatures. The net result of the opposing temperature dependences of these two mechanisms is that it is at intermediate temperatures in the range of 300 to 700°C that the biggest changes occur in the electrical properties of n-type silicon-germanium alloys as a result of dopant precipitation. At very low temperatures, such as room temperature, precipitation proceeds so slowly as to be practically unobservable.

Although no all-encompassing model exists for quantitatively describing the precipitation of phosphorus in silicon-germanium alloys for all times, Ekstrom and Dismukes have suggested that a model due to Slyozov and Lifshitz reasonably accounts for at least a part of the process. In this model the precipitate phase consists of particles of nearly continuously varying radii. The surface energy of the particle-solution interface determines this critical radius. Particles having radii smaller than the critical value tend to redissolve in the matrix whereas particles with radii exceeding the critical radius tend to grow as the precipitation proceeds. The two competing processes initially decrease the precipitation rate to values less than expected from a diffusion limited precipitation process by itself. At long times, after complete dissolution of the small particles, the precipitation rate in silicon-germanium alloys approaches that solely due to a diffusion limited precipitation process. The initial distribution of precipitated particles with nearly continuously varying radii is introduced into the alloys during crystal growth and related high temperature treatments. It should be noted that in materials that exhibit a retrograde dopant solid solubility, nearly invariably there coexist a precipitate phase and a solute phase, even when the overall doping level is purposely kept below the maximum dopant solid solubility level.
According to the model of Slyozov and Lifshitz, a diffusion-limited precipitation process which accounts for the re-solution of small precipitate particles due to surface energy may be represented by

\[
\left[\frac{C_i - C_e}{C_t - C_e} \right]^3 = \left[\frac{4}{3} \left(\frac{C_e}{C_p} \right)^{\frac{1}{3}} \right] \left(\frac{D}{\beta} \right) \frac{1}{t} + B,
\]

where \(B \) is a constant and \(\beta \) is defined as

\[
\beta = \frac{2M\sigma}{\delta RT}
\]

In the above equations, \(C_i \) is the initial solute concentration, \(C_t \) is the solute concentration at time \(t \), \(C_p \) is the concentration of solute in the precipitate phase and \(C_e \) is the equilibrium dopant solid solubility. \(D \) is dopant diffusion coefficient at temperature \(T \), \(M \) is the mean atomic weight of the matrix, \(\sigma \) is the interphase surface energy, \(\delta \) is the density of the matrix, \(R \) is the gas constant and \(t \) represents time. It may appear that the constant \(B \) in Eq. (2) should assume the value of unity. Ekstrom and Dismukes, however, point out that \(B=1 \) is not physically meaningful if the characteristic precipitate particle size distribution is not present at the start of the precipitation process. The model represented by Eqs. (2) and (3) reasonably accounts for the precipitation of phosphorus in silicon-germanium alloys after the first few hours of the precipitation process. The processes extant during the first few hours appear to be closely related to the previous thermal history of the alloys; it is not uncommon for the carrier concentration to remain constant or even increase initially. Although Ekstrom and Dismukes, obtained good agreement between theory and experiment for precipitation times exceeding a few hours, most of their work involved only the first 1000 hours of the precipitation process. It is therefore not precisely known how good the agreement between theory and experiment is at much longer precipitation times. An approximate indication of the validity of the theory at longer times, however, has been obtained by attempts to apply it to thermoelectric property data derived from device characteristics in long-term
operation. Although device data have thus indicated some validity of the theory at longer operating times, it must be remembered, as already discussed above, that thermoelectric property data derived from device performance are typically quite imprecise; at best, therefore, a comparison of this type can only point out gross discrepancies between theory and experiment. On the other hand, although not fully established, there is no special reason at this time to not believe in the applicability of the theory and thus not make use of it in predicting the long-term behavior of the thermoelectric properties of silicon-germanium alloys.

THERMOELECTRIC PROPERTIES OF 80 a/o Si - 20 a/o Ge ALLOY

Although most of the work on phosphorus precipitation in silicon-germanium alloys reported by Ekstrom and Dismukes pertains to alloys with a silicon content of 70 a/o, they did extend it in a preliminary manner also to alloys with silicon contents of 80 a/o and 85 a/o. Most of this latter work, however, remains unreported. It has been necessary, therefore, to re-apply the theory to the 80 a/o Si - 20 a/o Ge phosphorus doped alloy in an effort to determine the long-term behavior of its thermoelectric properties.

Underlying the present application of the precipitation model are experimental data on the time dependence of the electrical resistivity of the 80 a/o Si - 20 a/o Ge phosphorus doped alloy in the temperature range 400 to 800 °C for operating times up to 1200 hours. Some of these experimental data have been reported in Reference 1. The application of Eq. (2) to the experimental data has enabled the evaluation of constants in the equation. Maintaining the constants at fixed values, it has been possible to calculate the time dependence of the carrier concentration in the phosphorus doped 80 a/o Si - 20 a/o Ge alloy. The carrier concentration values thus derived have been converted to electrical resistivity through the inclusion of electronic charge and carrier mobility, the dependence of the latter on carrier concentration being taken into account. Known relationships between electrical resistivity and Seebeck coefficient for n-type
silicon-germanium alloys have been used to determine the time dependence of the Seebeck coefficient from the electrical resistivity data. The thermal conductivity of the alloy has been assumed to remain constant with time; experimental findings\(^1\) give validity to this assumption.

In critically evaluating the applicability of the above quantitative model to the precipitation of phosphorus in n-type silicon-germanium alloys it should be recognized that of all precipitation models this particular model probably best describes the observed time and temperature behavior of the thermoelectric properties. Even though this is the case, questions on the validity of the model naturally rise as a result of the fact that it does not accurately apply to very short precipitation times and the fact that its applicability to long time behavior is experimentally unverified. Probably the most disturbing aspect of the use of the model, as indeed is the case with nearly all precipitation models, is the need for knowledge of dopant solid solubility as a function of temperature. This information is generally not available for silicon-germanium alloys and must be estimated such that best agreement between theory and experiment obtains for time periods for which experimental data exist. Values for other adjustable constants must be similarly estimated. Probably the most serious criticism of the use of the model for predicting silicon-germanium alloy thermoelectric properties is the fact that because of the number of unknown variables in the model as used, the model does not necessarily lead to unique solutions. To obtain uniqueness, it has been necessary to assume temperature and time independence of some of these variables.

In view of the points raised in regards to the precipitation model, it will be realized that the long-term thermoelectric properties of silicon-germanium alloys derived by means of it are subject to some uncertainty; obviously, the longer is the time period over which projections are made, the greater is the uncertainty in derived thermoelectric properties. Nevertheless, it is believed that even at very long operating times, twelve years in the present instance, the uncertainty in the electrical resistivity values of the 80 a/o Si - 20 a/o Ge alloy
is no more than ± 5 to 10 percent. Because Seebeck coefficient values have been independently estimated on the basis of the electrical resistivity data, it is believed that even with the indicated uncertainty in electrical resistivity, the uncertainty in values of S^2/ρ and figure-of-merit are considerably smaller, probably no more than a few percent. Inasmuch as S^2/ρ and the figure-of-merit are directly proportional to the power output and conversion efficiency of a thermoelectric device, it is believed therefore that the presently derived thermoelectric property data enable a reasonably accurate accounting of device performance, even at very long operating times.

Although interest has recently developed in the use of the 80 a/o Si - 20 a/o Ge alloy at operating temperatures up to 1100°C, the present memorandum only reports thermoelectric property data to 1000°C because practically no experimental basis exists for such data at higher temperatures. There are indications, however, that the figure-of-merit of the alloy decreases at higher temperatures because of a rapidly increasing thermal conductivity.

Figure 1 shows plots of electrical resistivity of the phosphorus doped 80 a/o Si - 20 a/o Ge alloy as a function of temperature for a variety of operating times in the range of zero hours to 12 years. It is to be recognized that the zero-hour data, the so-called initial data, are dependent on the details of crystal growth and related thermal history of the material and thus are not completely unique; samples with different thermal histories will have slightly different initial properties. Because slight changes in the electrical resistivity result in similar changes in the Seebeck coefficient, such that the quantity S^2/ρ is nearly unchanged, the effect of small differences in thermoelectric properties has little effect on device performance. Figure 2 shows the corresponding plots of the Seebeck coefficient, referenced to absolute.

It should be noted that inasmuch as the bulk of the experimental data underlying the calculated long-term electrical properties of the phosphorus doped 80 a/o Si - 20 a/o Ge alloy shown in Figures 1 and 2 pertain to temperatures of 400°C and higher, there is some question as to the precise temperature dependence of these properties at lower temperatures. The property curves for times exceeding
the initial time have been estimated on the basis that at very low temperatures, between room temperature and 100 to 200°C, the thermoelectric properties of silicon-germanium alloys undergo practically no change with time. The electrical properties between 100 to 200°C and 400°C have thus been interpolated; any uncertainty in these properties has little effect on the calculated performance of devices that operate over extended temperature ranges.

The thermal conductivity of the phosphorus doped 80 a/o Si - 20 a/o Ge alloy is shown as a function of temperature in Figure 3. It is noted that only one set of data is given for the thermal conductivity; it has been demonstrated in Reference 1 that the thermal conductivity of silicon-germanium alloys is essentially independent of time. Figure 4 combines the data of Figures 1 to 3 into the figure-of-merit as a function of temperature and time. From Figure 4 it is seen that the biggest changes in the performance characteristics of the phosphorus doped 80 a/o Si - 20 a/o Ge alloy occur as a function of time at temperatures of 350 to 600°C.

As indicated in the Introduction, the present work primarily pertains to the thermoelectric properties of the phosphorus doped n-type 80 a/o Si - 20 a/o Ge alloy. The properties of the corresponding boron doped p-type alloy are essentially unchanging in time and have been reported in Reference 1. For completeness, these data are reproduced in Figures 5 to 8. Figure 5 shows the electrical resistivity of the boron doped alloy as a function of temperature. The Seebeck coefficient and thermal conductivity are plotted in Figures 6 and 7. Figure 8 combines the data of Figures 5 to 7 into the figure-of-merit of the p-type alloy. It should be noted that the data in Figures 5 to 8, although nominally for the boron doped 80 a/o Si - 20 a/o Ge alloy, was actually obtained on material with a detailed composition of 81 a/o Si - 19 a/o Ge. The composition difference of one atomic percent may be considered to have an insignificant effect on the thermoelectric properties; material composition variations of this order are practically inherent to most semiconductor preparation methods.
The thermoelectric property data for the p-type silicon-germanium alloy in Figures 5 to 8 pertain to a specific level of boron doping. It should be realized that doping variations, either purposely incorporated or due to natural fluctuations, usually exist between different lots of any given material. As long as these variations are relatively minor, of the order of 20 to 30 percent or less, the effect of doping variations on the figure-of-merit and consequently on the performance obtainable with silicon-germanium alloys is nearly negligible. Changes in the electrical resistivity and the Seebeck coefficient are nearly self-compensating such that the quantity S^2/ρ is practically independent of small doping variations; the thermal conductivity is similarly nearly unaffected.

Although all of the thermoelectric property data underlying the present memorandum are those measured for melt grown (zone levelled) silicon-germanium alloys, it is believed that they equally pertain to hot pressed and even vacuum cast alloys. Unlike some other semiconductor materials, the thermoelectric properties of silicon-germanium alloys are practically independent of the method of preparation. While it remains to be experimentally proved that the long-term time behavior of these properties is also independent of the method of material preparation, there is no special reason at this time for it to be doubted.

The thermal conductivity data of the 80 a/o Si - 20 a/o Ge alloy, both n- and p-type, presented in this memorandum have been obtained from measured values of thermal diffusivity and calculated values of specific heat. The specific heat values used were those calculated by Steigmeier and Kudman and later experimentally confirmed by Gerlich, Abeles and Miller. A question has subsequently arisen on the experimental technique used by the latter investigators. While this question remains essentially unresolved, it is believed that the specific heat data of Steigmeier and Kudman are reasonable. Nevertheless, because of its importance to the accuracy of thermal conductivity determinations of silicon-germanium alloys, further experimental efforts on the measurement of the specific heat of these alloys is probably warranted; alternatively, direct thermal conductivity measurements may be justified.
Finally, the thermoelectric property data depicted in Figures 1 to 8 are tabularized for convenience in Tables I and II. Table I shows the thermoelectric property data of the phosphorus doped 80 a/o Si - 20 a/o Ge alloy. The corresponding data for the p-type alloy are shown in Table II.
REFERENCES

Figure 1
Phosphorus Doped
80 a/o Si - 20 a/o Ge

Electrical Resistivity - mQ cm

Temperature - °C

12 years
5 years
1 year
1500 hours
100 hours
Initial
Figure 2
Phosphorus Doped
80 a/o Si - 20 a/o Ge

* Referenced to absolute
Figure 3
Phosphorus Doped
80 a/o So - 20 a/o Ge
Figure 4
Phosphorus Doped
80 a/o Si - 20 a/o Ge
Figure 5
Boron Doped
80 a/o Si - 20 a/o Ge
Figure 6
Boron Doped
80 a/o Si - 20 a/o Ge

* Referenced to absolute
Figure 7
Boron Doped
80 a/o Si - 20 a/o Ge
Figure 8
Boron Doped
80 2/o Si - 20 a/o Ge
TABLE I

THERMOELECTRIC PROPERTIES OF PHOSPHORUS DOPED
80 a/o Si - 20 a/o Ge ALLOY

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Electrical Resistivity mΩ - cm</th>
<th>Seebeck Coefficient μV/°C</th>
<th>Thermal Cond. watts/°C - cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>1500 hrs.</td>
<td>1 year</td>
</tr>
<tr>
<td>0</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>100</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>200</td>
<td>1.29</td>
<td>1.35</td>
<td>1.45</td>
</tr>
<tr>
<td>300</td>
<td>1.51</td>
<td>1.98</td>
<td>2.30</td>
</tr>
<tr>
<td>400</td>
<td>1.75</td>
<td>2.99</td>
<td>3.74</td>
</tr>
<tr>
<td>500</td>
<td>1.97</td>
<td>3.25</td>
<td>3.63</td>
</tr>
<tr>
<td>600</td>
<td>2.04</td>
<td>2.79</td>
<td>3.10</td>
</tr>
<tr>
<td>700</td>
<td>1.88</td>
<td>2.28</td>
<td>2.54</td>
</tr>
<tr>
<td>800</td>
<td>1.61</td>
<td>1.84</td>
<td>2.03</td>
</tr>
<tr>
<td>900</td>
<td>1.40</td>
<td>1.49</td>
<td>1.61</td>
</tr>
<tr>
<td>1000</td>
<td>1.22</td>
<td>1.26</td>
<td>1.30</td>
</tr>
</tbody>
</table>

* Referenced to absolute
TABLE II

THERMOELECTRIC PROPERTIES OF BORON DOPED
80 a/o Si - 20 Ge

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Electrical Resistivity mΩ - cm</th>
<th>Seebeck Coefficient* μV/°C</th>
<th>Thermal Conductivity watts/°C - cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.19</td>
<td>121</td>
<td>0.0638</td>
</tr>
<tr>
<td>100</td>
<td>1.32</td>
<td>156</td>
<td>0.0610</td>
</tr>
<tr>
<td>200</td>
<td>1.48</td>
<td>179</td>
<td>0.0585</td>
</tr>
<tr>
<td>300</td>
<td>1.66</td>
<td>200</td>
<td>0.0561</td>
</tr>
<tr>
<td>400</td>
<td>1.86</td>
<td>219</td>
<td>0.0540</td>
</tr>
<tr>
<td>500</td>
<td>2.06</td>
<td>238</td>
<td>0.0521</td>
</tr>
<tr>
<td>600</td>
<td>2.28</td>
<td>255</td>
<td>0.0506</td>
</tr>
<tr>
<td>700</td>
<td>2.50</td>
<td>271</td>
<td>0.0497</td>
</tr>
<tr>
<td>800</td>
<td>2.72</td>
<td>288</td>
<td>0.0495</td>
</tr>
<tr>
<td>900</td>
<td>2.95</td>
<td>304</td>
<td>0.0502</td>
</tr>
<tr>
<td>1000</td>
<td>3.19</td>
<td>320</td>
<td>0.0545</td>
</tr>
</tbody>
</table>

* Referenced to absolute