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ABSTRACT

The classic method of hodographic mapping and its modern develop-

ments are reviewed, and their applications to the analysis of trajec-

tory problems in space-flight are discussed. The bacis concepts and

principles of the hodographic mapping, as originated by Mobius and

Hamilton, are formulated on a broad basis in the language of differen-

tial geometry. Applications of these fundamental formulas to a general

force field, an arbitrary central force field, and an inverse-square

field are successively presented; and the Hamiltonian circular hodo-

graph and its polar version, briefly reviewed. The concepts and methods

of normalized hodographic mapping, and constraining hodograph, and the

osculating hodograph are introduced, and their applications in specific

classes of trajectory problems are concisely discussed. Hodographs

for Kepler orbits in rotating coordinates are introduced and illus-

trated with the view of aiding the comparison of the restricted three-

body orbits with the two-body orbits. While the main concern of this

survey is the velocity hodograph, a short introduction on its exten-

sion to other state spaces is included. As final remarks, the hodo-

graph method of trajectory analysis is briefly compared with the

classical analytic methods in Hamiltonian mechanics.

INTRODUCTION

The method of hodographic mapping, as originated by Mobius (ref.l)

and Hamilton (refs. 2,3) in the 1840's was primarily for the study of

the motion of celestial bodies. Such a mapping has later found its

applications in gasdyi^amics, especially in problems of supersonic flow;

but, ironically speaking, it has been practically ignored in Celestial

Mechanics, even in the realm of Kepler motion, where Hamilton's cir-

cular hodograph has its immediate and elegant applications. Recent
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studies show that the method of hodographic mapping not only proves

to be a powerful method in dealing with Kepler motion, but also helpful

in many problems of modern astrodynamics in connection with space fligat.

In the following, Mobius and Hamilton's original con::epts will be form-

ulated in modern terms on a broad basis so as to form she foundations

for later applications to Keplerian as well as non-Kepler=an motions.

The Hamiltonian hodograph and its polar version will be briefly re-

viewed, and several new concepts and methods of holographic maj:ping for

the analyses of various classes of current trajectory problems will be

introduced and discussed.

BASIC CONCEPTS AND FORMULATION IN HODOGRAPHIC MAPPING

Consider the motion of a mass particle of mass m in a general
+

force field. At each instant, there is a velocity vector V associated

with a position vector r. The path described by the tip of r in the

position space, or the r-space, is generally referred to as the tra-

jectory, and that described by the tip of V in the velocity space, or

the V- space, is the hodograph of the motion, as called by Mobius (ref.l)

and Hamilton (ref. 2). From a broader point of view, a hodograph, or,

more precisely, the velocity hodograph, may be regarded as the trajec-

tory in the V-space, or the V-trajectory, while that in the r-space,

the r-trajectory. Although a motion is usually represented by its r-

trajectory, it can be represented equally well, or even better, by its

V-trajectory, as the latter may possess a simpler geometry then its

counterpart in the r-space. This is particularly obvious, as it will

be seen later, in the case of Kepler motion.

+	 +
In a definitive motion, the correspondence between r and V is

one-to-one. Such a correspondence may be viewed as a mapping, and the

V-trajectory may be viewed as the hodograph image of the r-trajectory.
+

The latter is generally a space curve in the three-dimensional r-space,

uj
i

See, e.g., refs. 5-7, 9-12, 19-22, etc.
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and so is the former in the three-dimensional V-space (Fig. 1). The

geometries of the two curves are closely related through the dynamics

of the motion. Table I is a summary of the essential relations per-

taining to each of the two vector spaces, and their inter-relations

'	 which follow directly from the basic concepts, definitions, and stan-

dard formulas of differential geometry, and hold for any arbitrary

force field.

I TABLE I - BASIC FORMULAS

r-Trajectory V-Trajectory

Curvature
K =	 VxF	 (la) K m FxF (lb)

mV' F

Torsion -,
[V'F,F]

i -►
m[F,F,F]

T =	 (2a)

IVxFI`
=

IFxFI
(2b)

Frenet Triad

Unit Tangent et V	 (3a) e 	 = FF-, (3b)

UnitPrincipa en =	 (VxF)xV	 (4a) _ (FXF)xF (4b)Normal i +
IVxFIv IFxFIF

Unit Binormal eb =	 i	 (5a) e 	
= "_+ (5b)

IVxFI IFxFI

Angular Veloc w = V(Tet+Keb )(6a) = (^eT+KeB )M (6b)
ity of Rota-
tion

Inter-relations V = r, F = mV (7)

e 
	 = F (Vet+KV2en ) (8)

d^ _ F
as - V

(9)

(')= ddt )

This set of formulas is by no means comprehensive, but it shows

clearly that the intrinsic geometric properties of the trajectories in

^j	the r- and V-spaces are determined by the force field F, and, conversely,
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the nature of the force field and the dynamics of motion are manifested

through these intrinsic properties of the r- and V-trajectories.	 It

also shows how the trajectory geometries in the two vector spaces are

interlocked; and in particular, it reveals the following features char-

acterizing a hodographic mapping in general, as contained in Hamilton's

original exposition:2

(1)	 At corresponding points, the tangent vector of the r* -

trajectory is always parallel to the radius vector to the V-trajectory;
^

and the tangent vector to the V-trajectory is always parallel to the
?

resultant force vector 	 (Eqs.	 (3a,b)).

(2)	 The magnitude of the force is to the instantaneous

speed of motion as the line element dC of the V-trajectory is to the

corresponding element ds of the r-trajectory (Eq. 	 (9)).

As an additional observation, Eq. 	 (8) shows that the resultant

force vector is in the osculating plane of the r-trajectory.

So far, nothing has been specified for the force field.	 Now,

consider a central force field

F (r)	 =	 f (r)	 e 	 (10)

where f(r) is an arbitrary scalar function of r, and the origin is at

the force center. The motion in such a field is well known to be

characterized by the presence of a constant angular momentum vector,

h = r x V
	

(11)

Hence, the motion is planar, and the trajectories in r- and V-spaces

are both plane curves. For such a field, most relations in Table I

can be simplified. In particular, we note that Eqs. (1,2,5,6) reduce

to

K = hJfJmrV 3	(12a)

K = mh/r 2 1f	 (12b)

T = T = 0	 (13)

e = eb	 B = h/h - eh	(14)

W _ lflh/mrV2	(15a)

= 'h/r 2	(15b)
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In addition, the following inter-relations hold:

e 
	 = +er ,

e 
	 = +e e (16)

where the + sign is to be taken when the force is repulsive	 (f>0),	 and

the - sign, when it is attractive	 (f<0).	 Note here the unit vector

triad	 (e r ,e e ,eh ) is the usual polar reference frame for the r-trajec-

tort'.	 Eqs. (13,16)	 show that in any central force field the local

Frenet frame (eT , eN' eB )	 for the V-trajectory is identical to the local

polar frame (er ,e e ,eh )	 for the r-trajectory. Similarly, the local

Frenet frame for the r-trajectory is identical to the local polar frame

for the V-trajectory, both given by the triad (et ,en ,eh ).	 It follows

that we may identify w as the angular velocity of V; and	 as that of

r; and write in the usual notations,

w =	 s eh	(17a) =	 e eh	(17b)

The vector geometry of the trajectories in the r- and V-planes are

shown in Fig. 2.

A comparison of Eqs. (12a) and (12b) shows that the curvature

does not. By introducing the radii of curvature,

formula for the V-trajectory takes a simpler form than that for the

r-trajectory; the latter depends on the orbital speed, but the former 	 ^I

p =K,R= K 	 (18)^

Eqs. (12a,b) yield the simple relation

^I
pR = h sec 3 ^	 (19)

where ^ is the path angle with reference to the local horizontal.

Now, if we further specify the field to be an inverse square one,

i.e.,

f (r) _ +

	

	 (20)
r

where p is the gravitational constant, and the plus and minus signs in-

dicate a repulsive field and an attractive field, respectively. Eqs.

(12b,18) yield immediately

01
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R = W	 (21)

Thus, the V-trajectory is a circle, whose radius in a given inverse-

square field, depends on the scalar angular momentum h only. This is

Hamilton's Law of Circular Hodograph (ref. 2). It is interesting to

note here that this law was proved without any knowledge of the r-

trajectory. On the contrary, Hamilton showed that the orbit was a

conic by using his circular hodograph. Instead of his geometric proof, 	 ^I

it can be easily seen here from Eq. (21), together with Eq. (19) to

give

2
p = hU sec  m	 (22)^

which can be recognized at once as the radius of curvature of a conic.

No doubt the hodograph representation serves as a much simpler descrip-

tion of the motion than its r+-trajectory, the orbit, in the case of an

inverse-square field. The conclusions deduced so iaz hold for an

attractive field as well as a repulsive one. However, in the following,

particular attention will be focused on the attractive inverse-square

field, or the Newtonian gravity field, which is the main concern in

trajectory problems in space-flight, and it will be so assumed unless

otherwise stated.	 u

THE HAMILTONIAN CIRCULAR HODOGRAPH AND ITS POLAR VERSION	 n

It is understood that the Hamiltonian circular hodograph was de- 	 U
rived with .reference to a frame fixed in the inertial space, and that

it is to be expressed in any inertial velocity coordinate system. How-

ever, it has been proved later that in the non-inertial velocity co-

ordinates, V  and V e , in the local vertical and local hozizontal direc-

tions respectively, the hodograph is still a circle (ref. 7). That is, 	 !,

Hamilton's Law of Circular Hodograph may be extended to the (Vr , V6)

coordinate system. The hodograph of the absolute velocity described

in this coordinate system is known as the polar hodograph.* The

*
Formerly called "the special hodegraph" in ref. (7).

D
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equation of the Hamiltonian circular hodograph in the inertial coordi-

nates (Vx , Vy ), where, the subscripts x and y refer to the apsidal and

lateral directions of the orbital conic respectively, and that of the

polar hodograph in the non-inertial coordinates (V r , V e ) may be put

into the following forms:

V2 + (Vy-C) 2 = R2	(23)

2	 2	 2Vr + (V e-R) = C2

with

R =	 , C = e	 (25)

where a is the numerical eccentricity of the conic orbit. Eqs (23,24)

show that either the Hamiltonian hodograph circle or its polar version

may be specified by the two parameters R and C. However, it is to be

noted that, in Hamiltonian hodograph, R is the radius of the hodograph

circle, and C is the distance between its center and the origin; while,

in the polar version, the roles of R and C are interchanged. For

either version, Eq. (25) show that the numerical eccentricity of the

orbital conic is given by

E = C/R	 (26)

Thus, we have

C < R:	 E < 1, elliptic orbit

C = R:	 E = 1, parabolic orbit

C > R:	 E > 1, hyperbolic orbit

P -ircular orbit is a particular case of the elliptic orbit with E = 0,

corresponding to C = 0. So far it has been tacitly assumed that the

angular momentum h is non-vanishing. In the limiting case of h = 0,

we have R	 C -+ os , and the r- and V-trajectories degenerate into the

Vx- and Vr axes, respectively. Such a degenerate case will be excluded

unless otherwise stated. The geometry of the three main types of conic

orbits and their corresponding Hamiltonian and polar hodographs are

shown in Fig. 3. Their general correlations are graphically depicted

in Fig. 4. Detailed corre^.ations for each of the three types of a

-9-
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conic orbit, the elliptic, the parabolic, and the hyperbolic, and the

pertinent formulas are found in refs. 7 and 10. It should be men-

tioned that, for elliptic motion, one complete circuit along the hodo-

graph circle corresponds to one complete circuit along the orbital

ellipse; however, for hyperbolic motion, the hodograph circle is divided

into two arcs, with the major arc corresponding to the motion along

the near (field center) branch of the orbital hyperbola, which is the

one realized in an attractive field, and the minor arc corresponding

to its far branch, the one realized in a repulsive field; their junc-

tions ( points I, I' in Fig. 3) being the images of the points at infin-

ity in the orbit plane. A parabolic orbit is the borderline between

the elliptic and hyperbolic cases, its point at infinity being mapped

into the origin of the hodograph. It should also be noted that all

equations presented in the preceding section were formulated with

reference to an inertial frame, and modifications or new interpreta-

tions are needed in applying them to the polar frame of reference. Such

changes have been implied in Eq. (24), and Fig. 4(C), and they will not

be elaborated here.

Based on these preliminaries, the main advantages of hodographic

mapping in an inverse-square field may be summarized as follows:

(1) A conic orbit is mapped onto a circle, regardless of

its numerical eccentricity, hence the mapping provides a unified

approach to the treatment of orbits of various conic types, a treat-

ment often sought by theoretical analysts.

(2) It also provides a unified approach to the dynamical

analysis for an attractive field and a repulsive field. Thus its appli-

cations are not confined to space dynamics.

(3) Hodog..aphic mapping enables one to replace the geometry

of orbital conics by the geometry of circles, thus greatly simplifying

the analysis. In particular, while it takes an infinite plane to des-

scribe a hyperbolic or parabolic orbit in the position space, it takes

only a finite portion of the velocity plane to describe its hodograph.

All the foregoing remarks apply to both the Hamiltonian hodograph

and its polar version. As noted earlier, the two versions of the

-12-



orbital hodograph may be converted to each other by merely interchanging

the radius of the hodograph circle and its center-to-origin distance.

Algebraically, in expressing orbital relations, the transformation from

the inertial coordinates (Vx , V y ) to the non-inertial polar coordinates

(Vr , V 0 ) and vice versa may be effected simply by interchanging the

two parameters R and C.

As a final remark, the mapping of orbital conics onto its hodo-

graph circle may be viewed purely geometrically as a pedal transforma-

tion followed by inversion and proper rotation, as shown by Altman

(ref. 20). It can be further proved that such an assertion not only 	 =

holds for the conic orbit in an inverse-square field, but also for the

orbits in any central force field.

Of the numerous applications of the circular hodograph, one ele-

mentary example will be cited. As the Hamiltonian (or the polar) hodo-

graph implies, at any point on a conic orbit, we may write

V= C e + R e e	(27)	 4
y

which shows that the velocity vector V may be resolved into the non-

orthoginal components

V  = C e 	 Ve = R e e	(28)

and the hodograph geometry indicates immediately that, as the point Q

moves along the orbit, V changes continuously, but its component Vy

remains fixed in magnitude as well as in direction in the inertial

space, and V  remains fixed in magnitude. They are the so-called in-

variant two-body velocity components (refs. 14, 15). A geometric

proof in the orbital plane is given in the classic work of Whittaker

(ref. 4). This remarkable theorem, as seen here, is a direct conse-

quence of the circular hodograph. Obviously, it holds for all elliptic,

parabolic, and hyperbolic orbits. This example illustrates clearly

the power of hodographic mapping in dealing with conic orbits. A for-

mal hodographic proof of this theorem is found in ref. (16). It will

be further discussed later in connection with orbital perturbation

problems. More examples of applications of the circular hodographs,

ranging from elementary ones to more sophisticated ones, are found in

-13-



refs. (6, 7, 9, 10, etc.). In the following, further applications to

advanced trajectory problems with extended and modified concepts and

techniques of hodographic mapping will be introduced.	
I1^

THE NORMALIZED HODOGRAPHIC MAPPING FOR FAMILIES OF
i

KEPLERIAN TRAJECTORIES 1

A recent development in line with the Hamiltonian circular hodo-

graph is the introduction of the non-dimensional velocity space, de-

fined by

V = u V	 (29)

for the motion in a Newtonian gravity field, h being the scalar angular,

momentum per unit orbiting mass. 	 Eqs.	 (23)	 and	 (29)	 show that thel!

Hamiltonian hodograph becomes a unit circle regardless of the size and [l

shape of the conic orbit. 	 Such a mapping will be referred to as the

normalized hodographic mapping.	 It finds its special application in

the analysis of families of Keplerian trajectories, which arise fre-

quently in mission planning, orbit determination, trajectory optimiza-

tion, and many other space-flight problems. 	 Under such a mapping,

distinct members of the family will be mapped onto distinct unit circles, -^

if the origin of the v-space is fixed, as we ordinarily do in the

classical hodographic mapping. 	 However, to further simplify the hodo-

graph geometry, we will regard the center of the hodograph circle

fixed, and let the hodograph origin vary. In this way, different Kepler

orbits in the same plane will be mapped onto the same unit circle, but

with different origins in the plane of this circle. Thus, corresponding

to a family of Kepler orbits in the r-space, we will have a set of

origin points in the v-space, the totality of which constitute the locus

of origins, called the 0-locus.	 The unit circle together with the 0-

locus constitute the hodograph image of the entire family. Under proper u

constraints, the O-locus of a coplanar family is a plane curve.	 For a

spatial family, the unit hodograph circle generates a unit hodograph

sphere, and the O-locus is usually a surafce in the v-space. 	 To

further fix the idea, we will impose a condition that all members of D
the family to be treated pass through a common point fixed in the

-14-



i
r-space, whatever other constraints may be present.	 Such a family in

the r-space and its hodograph image in the v-space are graphically de-

picted in Fig. 5.	 At this point, several remarks are in order:

(1)	 The normalization of the velocity space as defined by Eq

(29) differs from the usual normalization or non-dimensionalization in

that the factor h/u introduced is not an absolute constant regarding the

whole family.	 While u is constant in a given Newtonian field, h is con-

stant only along each trajectory but it varies from one trajectory to j

another.	 (2)	 While the ordinary hodographic mapping is a point-to-

point transformation, the normalized one is essentially a curve-to-

point transformation in the sense that corresponding to each trajectory

in the _r" -space there is a definite point on the O-locus. The converse

is true under the present co-terminal condition, and the mapping is
t

thus one-to-one (except possibly at certain singular points).

(3)	 While the O-locus defines the non-dimensional velocity

vectors v for different trajectories on one hand, it also displays the

eccentricity vectors	 (E) on the other hand.	 It is in fact also the
J

locus of the tip of the eccentricity vector* of the family.

As a consequence of these features (especially item No. 2), the

normalized hodographic mapping enables one to deal with, instead of
ll11	

the infinitely many trajectories of the family, a unit circle and the

O-locus only.	 The global characteristics of the family may then beC	 Y	 g	 Y	 Y ^

observed from the geometry of the normalized hodograph image, and so

are the characteristics of any particular trajectories of the family.

Very often a trajectory family of complicated geometry in the r-space

has a strikingly simple image in the v-space, and the analysis becomes

a simple matter.

 concept of normalized hodographic mapping in an inertial velo-

city space was first introduced in ref. 10, and later applied in the

author's analysis of the two-terminal trajectory family (ref. 19) which

furnishes a typical example of such a mapping. The O-locus there was

Defined as the vector of magnitude equal to the numerical eccentricity,
and pointing in the direction of the lateral axis of the orbital conic
(y-axis in Fig. 3).

-15-
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found to be a straight line, as depicted in Fig. G and many interesting

characteristics of the two-terminal iamily were derived from such lin-

ear locus. The results are contained in ref. 19. Simple 0-loci have

also been found for other trajectory families. Furthermore, there are

cases where the normalized hodographic mapping not only simplifies the

analysis, but also leads directly to the solution of the problem by the

method of loci. A comprehensive presentation of the principles under-

lying such a mapping and its many applications cannot be incorporated

here; it will. be given in a separate report.

Finally, it should be mentioned that the normalized mapping may

also be applied to the polar hodograph wherein the reference frame is

non-inertial. The hodograph for all Keplerian orbits will their be

mapped onto concentric circles all located on the V e -axis at a unit

distance from the origin, each with a radius equal to its numerical

eccentricity. In fact, the normalized polar hodograph was introduced

prior to the normalized Hamiltonian hodograph outlined above. It

first appeared in Boksenbom's report ref. 6 although he did not refer

it as a hodographic representation. At about the same time, it was

introduced as the non-dimensional special hodograph in ref. (7).

Correlation between the Keplerian orbits and their normalized polar

hodographs is found in refs. (7) and (10). Many examples concerning

its applications are found in refs. (7) and (9). So far as the treat-

ment of trajectory families is concerned, the normalized mapping in

the inertial velocity space, as evolved from the Hamiltonian version

seems preferable. However, the normalized hodograph of the polar

version is found to be suitable for other classes of trajectory prob-

lems. Thus, further development of the method of normalized hodo-

graphic mapping in both versions may be desirable.

THE CONSTRAINING HODOGRAPH AND TRAJECTORY OPTIMIZATION

Problems of trajectory optimization by using impulsive thrust can

be most naturally analyzed in the velocity space, since the impulsive

velocity change is represented by a straight line segment there. In

particular, the minimal fuel impulsive maneuver, which requires the

-17-
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N
minimization of the characteristic velocity	 Vil always reduces to

i=1

a problem of minimum sum of distances in the V-space. In this coniTec-

tion, the concept of constraining hodograph is useful. For a family of

trajectories all passing through one common terminal point Q in the r-

space, a constraining hodograph is the locus of the tip of the velocity

vector at Q along various trajectorieu of the family. Such a hodograph

is in a slightly different sense as that visualized by Mobius and

Hamilton; and is especially useful in handling the minimal characteris-

tic velocity problem. The conditions under which the optimization is

made usually set certain constraints on the velocity vector at Q, and

such constraints will appear in the form of a constraining hodograph

in the V-space. Since, in general, a Keplerian trajectory is uniquely

determined by a position vector and the corresponding velocity vector,

associated with each point on the constraining hodograph there is a

unique Keplerian trajectory of the family, and vice versa. Thus, like

the normalized hcdographic mapping, it is again one-to-one, except

possibly at certain singular points. In fact, for the same coterminal

family under same constraints, the constraining hodograph in the V-

space is the counterpart of the normalized hodograph in the v-space.

The former usually has a more complicated geometry than the latter.

However, the constraining hodograph has the advantage of showing all

the velocity vectors in the same scale, while a normalized one does

not. This advantage makes it more suitable for the minimal charac-

teristic velocity problem wherein the magnitudes of various velocity-

increments are to be compared.

It is evident that, once the constrain- 	 00
ing hodograph is mapped, the velocity- incre -

` oanwNment required to change impulsively from a	
eV ^VO	 Moo

given orbit to a new orbit satisfying the con-	 o
straint of the problem is simply given by 	 V^

Qo = A7, where Q is a point on the constrain-

ing hodograph, and Q is defined by the ter- 7-The Constrainfnq Nodograohp	 and UPU1%JVe Change of Orbit

minal velocity on the initial orbit (Fig. 7).

Thus, in a single -impulse maneuver, the problem becomes the classical

geodesic problem with moving boundary; under fixed terminal conditions,

the minimization of AV implies the orthogonality condition

-19-



A • dV = 0	 (30)

where dV is to be taken along the constraining hodograph. 	 Equation (30)

provides the analytic condition for an internal extremuim of V if i%6

exists, and its solution gives the solution of the problem.	 Such an

approach was first adopted by Stark (ref. 8), and later by the author

(ref. 21)	 in the solution of the two-terminal, single impulse orbital

transfer problem, where the constraining hodograph is found to be a (]

hyperbola, and Eq (30) yields, in this case, a quartic polynomial equa-

tion in a single variable. 	 The solution can also be obtained by con- n

3tructing the normal to the constraining hodograph. 	 in a multi-

impulse maneuver, there is, in general, a constraining hodograph at

each point where the impulse is applied, and the orthogonality condi-

tion (30) is to be replaced by the more general condition
f

n	 AVi	dVi -

-	 0	 (31) II

1=1

The application of this condition to the problem of two-terminal, two-

impulse transfer yields an octic polynominal equation (18, 28).	 The

hodograph geometry becomes quite complicated, and solutions can no

longer be obtained by simple geometric construction except in special

cases; however, the geometric approach in the velocity space in the

light of the constraining hodograph is still profitable, as it not

only enables one to obtain some geometric insight into the analytic

condition expressed by Eq (31), but also helps to locate the realistic

optimal solution for the problem by avoiding all the extraneous roots,

the maximal solution, the unrealistic optima, etc., whatever may be

present in the solution of the octic equation, and thereby reducing

the time and labor of numerical computation. 	 Such details are found

in ref. 28.	 It is worth mentioning that, in the particular case of (^

1800 transfer, coplanar or non-coplanar, the hodograph analysis yields !'

a simple optimal law of equi-slope of velocity -increments for the two-

impulse maneuver, and thereby leads to an analytic solution in closed [^

form for the problem ( ref. 30).

inIn optimal maneuver problems using continuous thrust, analyses

the acceleration space are advisable, and the use of the acceleration

-20-
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hodograph in aO lition to the velocity hodograph may be needed. Initial

studies on this subject are found in Altman's work in which the poten-

tialities of the hodograph approach in the acceleration space are

explored (ref. 22). It seems that much analytic ground and practical

techniques are yet to be developed before such an approach can be

effectively applied to the solution of powered trajectory problems.

ORBITAL HODOGRAPHS IN ROTATING COORDINATES

As we noted earlier, Hamilton's Law of Circular Hodograph does not

hold in general in a non-inertial reference frame. However, the funda-

mental concepts and formulas in Table I, Section II may apply to a non-

inertial frame with proper re-interpretation of the sympols r, v, and F.
In the following, the hodographic mapping of Kepler orbits in a rotating

coordinate system will be introduced. The system (XR ,YR ) is assumed to

be rotating at a uniform angular speed no in the plane of motion, with

its origin at the field center. For convenience, we use the complex var-

iables

z = reie	(32)

w = veiB	(33)

to represent the position and velocity of the moving particle in the

apsidal coordinate system, which is fixed in the inertial space (side-

real), and similarly,

Z = re le R	 (34)

W = VRe iSR	 (35)

in the rotating (synodic) coordinate system, where the symbols 6,6R

etc. are defined in Fig. 8. The orbits in the z- and Z- planes are

the absolute (or sidereal) and the relative (or synodic) orbits res-

pectively; and the corresponding ones in the w- and W-planes are the

absolute (or sidereal) and relative (or synodic) hodographs respec-

tively. Assuming the two coordinate systems coinciding at t = 0, the

transformation equation between these two systems are

Z = ze-inot
	

(36)

-21-
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W = (w-i	
iA	 -inn0re) eot	

(37)

For a Kepler orbit of angular momentum h and eccentricity e we m ayP	 g	 Y ► 	 Y

show that

2	
2	 11/2

V2 -2noh V2+ u2 (1-E2 )J	
+ 

4u2no__	 J[C h	
(38)VP

 V2 + P2 (1-e2)
h2

rn h3ll	 n h3
L sin N + 1- z cos 8 c sin	 1 -c cos ` Ei - 2 c0s 2

6 + 1 -	

J
sin(0-not t ^ i cos nit

HR = tan-1 IL

	

nh	 n h3
sin It +%F1 -c 2 cos t ,t c in	 1-c cos B - r 2 cos 2 0 + 1 - —°^- cos rli-not) + uZ 1 sin not

\	 (39)

where h is consideredP ositive if the rotational sense of the orbit_

agrees with that of the rotating coordinate system, as viewed from a

fixed system; otherwise, it is considered negative. These transforma-

tion formulas (38, 39) look cumbersome; however, the hodographic mapp-

ing may be effected by simple geometrical constructions, which follow

directly from Eq (37), as follows:

(1) Choose units such that n 0 = 1, and superimpose the orbit

diagram on the circular hodograph (Hamiltonian version) such that the

occupied focus coincides with the center of the hodograph circle, and

its apsidal axis coincides with the y-axis (see Fig. 9).

(2) Attach a time scale to the circumference of the hodo-

graph circle in accordance with the appropriate Kepler equation.

(3) Consider an arbitrary orbital point Q on the hodograph

r
circle, and connect Q and C, intersecting the orbital conic at Q'.

(4) On CQ or its extension, according as h is positive or

negative lay off QQ' = CQ", to obtain the vector QQ'.

(5) Rotating QQ' through an angle -t (the time corresponding

to Q) to transfer the point Q' to Q R , then we have QQR = VR , thus com-

pleting the mapping for the orbital point 0 (see Fig. 9). The entire

orbit may thus be mapped point-wise.

-23=



It is important to note that an essential difference between an

absolute hodograph and a relative hodograph is that while the tangent

to the former points the direction of the external force, that to the

latter poi-its t'ie direction of the apparent force, which is the vector

differen.e between the external force and the Coriolis and centrifugal

force;. '^hus on the absolute and relative hodographs, one finds readily

the directional deviation of the apparent force from the local gravity

force.

'	 The foregoing transformation formulas 	 (38, 39), and geometric con-

structions apply regardless of the eccentricity of the orbital conics,
II11

except that, in step 2 under geometric construction, the Kepler equation

pertinent to the particular type of the conic has to be used. 	 As an

example, a typical Kepler elipse and its hodcgraph in both the sidereal

system and the synodic system are shown in Fig. 10.	 It is seen that

the orbital hodograph in the synodic system is much more complicated

than the circular hodograph in the sidereal system. 	 The introduction

of such seemingly unnecessary complications is motivated by the fact

that Kepler problem is the limiting case of a restricted three-body

problem when one of the primaries approaches zero mass, and in treating
I

the restricted three-body problem, the use of the synodic system is

'	 superior and prevailing.	 Thus, by referring to such a coordinate sys-

1tem, the information obtained for the two-body problem may be directly

compared with that for a three-body problem.	 Literature on synodic

Kepler orbits is rather scarce. 	 An inclusive treatment of this subject

is found in Hoelker and Winston's recent work 	 (ref. 27), in which ex-

tensive comparisons of a class of Earth-Moon orbits with a class of

Rotating Kepler orbits, both in the position space, were made. The pre-

sent section briefly illustrates what can be done in the velocity space.

It is hoped that such a synodic hodograph may provide additional basis

for such comparitive studies.

THE OSCULATING HODOGRAPH AND ORBITAL PERTURBATION (^

In a gravity field with the presence of perturbing forces, the

Hamiltonian circular hodograph can no longer apply, even in an inertial j!

r^

reference frame, and the analysis may proceed on the basis of the

-24- ^^
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fl

n

0
0

general formulas presented in Section II. However, in many perturba-

tion problems, the classical concept of osculating conics is profitable,

and it can be extended to the velocity space. Following such a concept,

the instantaneous vectors r and V define an osculating conic in the r-

space, and a corresponding osculating circular hodograph in the V- space,

characterized by the two parameters,

R= 17 ,	 C= V - R S x 
r
	(40)

where h = (rxV) is the angular momentum vector as defined before. Elimi-

nating h between Eqs. (40) by introducing the vector R, defined by

R -_ h	 (41)F

reduces the second of Eqs. (40) to

V=C+Rxr	 (42)

which is the form used by Altman (ref. 29) with slightly different nota-

tions. Without perturbation, the motion is Keplerian, and both vectors

C and R are constants, in accordance with the invariant velocity com-

ponents theorem (see Section III). When perturbations are present, C

and R may then be regarded as two osculating elements (see Fig. 11). In

contrast with the usual scalar Keplerian elements, they are vectors, and

have the dimension of velocity. They will be referred to as the kine-

matic osculating elements. It is important to note that C and R are

related by

C • R = 0	 (43)

u
0
0
0
0

Thus, of the six components of C and R, only five

dent. In other words, the two vectorial elements

independent scalar elements, which, together with

mine completely a set of six osculating elements

The usual Keplerian, Jacobi, and Delaunay sets of

related to this vector pair C and R as summarized

of them are indepen-

C and R provide five

the epoch t, deter-

for the perturbed orbit.

elliptic elements are

in Table 2. Similar

0
fl
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relations may be written for the modified Delaunay set of elements and

the Poincare and his modified sets.

11

TABLE II
ELLIPTIC ELEMENTS IN TERMS OF THE KINEMATIC PARAMETERS 6 AND ^ (R>C)

Keplerian Jacobi Delaunay

q 
1

a .
R2 C 2

k	 I	 ( R2_C 2 ) ya =	 P_
R27C2

q 2 C
c	 I

h
1 F

q 3 1  ̂cos - 1 R Z
Rr

ha - N 1^

p l _T = I sin-1 ^C	 C - l	 - R ) J - A

ll

C2 - (	 -R) 2 I- t
r 1n (t-T)	 •1n-11	 C^- (	 -R) JrT

—13/2rR2

L	 !

LLLC— F	 =—('I —R)2

P2 W ° tan-
^" a

R
-1P3 U = tan

-Ry

Note: q, and p1 ( L-1,2,3) are canonical conjugates except for Keplerian elements

Explicit expressions for the rates of change of the kinematic os-

culating elements in terms of the disturbing forces are found as follows:
2

R = - ru (Fhee+F eeh )	 (44)

= Frer + 1 + rR2 F ee e + 
(
1 - rR2/Fheh	 (45)

where F r , F e and F  are the disturbing force components in the local

orbital polar frame of reference. The rates of change of other ele-

ments may be readily related to ^ and R through the equations of

Table 2. A glance at Eqs. (44, 45) enables one to infer immediately

that:
The osculating hodograph circle will remain fixed in size,

and the plane of motion will be fixed in the inertial space,

if the perturbing force is purely radial; however, the loca-

tion af the center of the hodograph circle as given by the

vector element 6 will vary under the presence of any disturb-
ing force component.

v
[I

n

it

^I

^I

fl
n
0
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No extensive analysis nor discussions can be elaborated within the

limited scope here. The significance of these kinematic elements have

been noticed by Cronin, 
14 

Schwartz, 
14 

Pohle,
15
 Altman, 

29 
and others,

but literature on their practical applications to trajectory analysis

is scarce. Preliminary studies in this direction are found in Ref. 14,

15, and 29. It seems much analytical work is yet to be done in order

to use these kinematic osculating elements as the principal parameters

in the analysis and predication of perturbed orbits or trajectories.

Finally, as a word of caution, the concept of the osculating cir-

cular hodograph should not be confused with that of the osculating

circle of the hodograph.	 The former is in the instantaneous plane of

r and V, while the latter is in the osculating plane of the V- trajectory,

defined by e  and e  (see Section II.) These two planes do not coin-

cide unless the motion is planar; and even when they do, the radius of

the hodograph circle and that of the osculating circle of the hodograph,

which is the radius of curvature of the V-trajectory will not be equal

unless the field is Newtonian and free from perturbations. The concepts

of the osculating conic and its corresponding osculating hodograph '!if-
cle are most useful when the field is Newtonian, and the perturbation

is small; while the concept of the osculating circle of the hodograph

and the related formulas in Section II, with reference to the Frenet

frames in the r- and V-spaces are generally applicable in any non-

inverse-square or non-central force field.

Mathematically speaking, "osculating" implies contact of order at
least 2. While the term "osculating circle of the hodograph" is correct
in this sense, the terms "osculating conic" and "osculating circular

i

	

	 hodograph" are generally not. However, to conform to the classic
literature on orbital purturbation, the conventional term "osculating
conic" is retained here, and the term "osculating circular hodograph"
is understood to mean the hodograph corresponding to the osculating
conic.

-29-



n

EXTENSION OF HODOGRAPHIC MAPPING TO HIGHER ORDER VECTOR SPACES

So far the discussions have been confined to velocity hodographs.

Theoretically, there is no limitation on the concept of hodograph as

to its applicability to the vector spaces higher than the velocity

space. In general, we may define an nth order hodograph as the tra-

jectory in the r (n) - space, where the superscript (n) denotes the nth

time derivative of r. In particular, we have

n = O: r - space (position)

n - 1: r - space (velocity)

n = 2: r - space (acceleration)

n = 3: r - space (jerk)

These are the state-spaces as called by Altman, and his poineer work

in this direction is found in Ref. 29. The fundamental concepts and

formulation presented in Section II provide a logical basis for such

extensions, and all formulas presented therein for the position and

velocity spaces may be applied to the nth order space by replacing the

vectors r, V, and F/m by r (n-1) , r (n) and _r* 	 respectively. In

principle, n is not necessarily restricted to a positive integer. For

example, with the understanding that the symbol r (-1) stands for

ftr(t)dt, we may define an inverse hodograph as the trajectory in the

r (-1) - space; and, more generally, we may speak of a r (n-1) - tra-

jectory as the inverse hodograph of the r (n) - trajectory. The possi-

ble application of the acceleration hodograph has been mentioned in

Section V in connection with trajectory optimization. The orbital

acceleration hodograph for Kepler motion has been found by Altman to

be a form of Pascal's limacon. 17 So far it seems no analytical work

has been done beyond the acceleration hodograph in an inverse-square

field. A rigorous treatment for the general nth order hodograph, in-

cluiing all position, velocity, acceleration, jerk spaces, etc., as

its special cases, from both analytic and geometric points of view,

would put the hodograph theory on a firm foundation, and thereby en-

large its field of application to a great variety of problems in

space-flight.

-30-
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FINAL REMARKS

As contrasted with the classical methods in Hamiltonian Mechanics,

including the canonical transformation and the Hamilton-Jacobi equation,

which deals with a 2n-dimensional phase space in the n pairs of the

generalized conjugate coordinates, the hodograph method is a direct

approach in the velocity space, with possible inclusion of the ac-

celeration space and other higher order spaces as required. In fact,

the velocity space may be regarded as the linear momentum space for a

constant mass, and, together with the position space, it provides an

initial set of canonical coordinates for the basic Hamiltonian formu-

lation. In as much as the result of a formalistic solution of the

Hamilton-Jacobi equation must be finally interpreted in terms of the

position, velocity, and possibly acceleration spaces, etc., the direct

approach in these spaces by the hodograph method is advisable whenever

it is feasible.

It is generally recognized that the methodF of classical Haniltonian

mechanics are highly analytic, while the hodographic mapping is highly

geometric. However, it is worth noting that, in classic calculus of

variation, which is the basis of the celebrated Hamilton's principle,

the Euler-Lagrange equation defines essentially the curvature of the

extremal; and that ma:cy standard problems in calculus of variations are

geometric in nature, notably the geodesic problem and the isoperimetrical

problem. Thus, it would be no surprise to see that a trajectory problem,

governed by the Hamiltonian equations of motion, reduces to a standard
geometrical problem through hodographic mapping, and that an optimal law

deduced from such hodograph analysis resembles the Fermat's lace in

optics, as both are the law of shortest path from the geometric point

of view (see Section V and Ref. 28, 30). However, while the reduction

of a dynamic problem to a geometric problem by such a mapping may give

a new look of the problem, and may provide some geometrical insiqht into

the situation from the geometry of the hodograph image of the dynamic

system, it does not usually yield the solution directly; and to find the

solution of the problem one often needs to solve the Eular-Lagrange

equation or the Hamilton-Jacobi equation. Thus the analytic approach

of the classic methods and the geometric approach of the hodographic

-31-
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mapping are complementary to each other, and an ingenious combination

of them may be needed in a complicated trajectory problem.

As we know, the classic methods in Hamiltonian Mechanics have been

well developed over the past hundred years, and found vast applications

in many branches of physics, from the classic 6ynamics to modern space

flight. The recent work by Miner, Tapley, Powers, and Andrus 25,26

fully illustrates how the classic techniques of calculus of variation,

canonical transformation, the Hamilton-Jacobi equation, and the varia-

tion of orbital parameters could be combined to apply to the current

problems of space flight, like the low-thrust trajectory and the optimal

lunar trajectories. On tine other hand, the hodograph method, also

originated by Hamilton, has been virtually unnoticed, until a decade

ago, despite Hamilton's brilliant pioneer work, as mentioned in the

Introduction; hence only :limited applications have been effected, and

many possibilities are untried. The joint use of the hodograp'.,f.c mapp-

ing with the classic methods is even rarer, though Contensou's work on

optimal trajectories 13 appears to be in this direction. At the present

stage the Hamiltonian hodograph and its many modern developments as

introduced in Sections III through VII, seem best suited in the area of

two-body problem, the global analysis of families of Kepler orbits, and

the impulsive orbital maneuver, with possible applications in the per-

turbation problem, the restricted three-body problem, and others. To

further develop the art of hodogzaphic mapping, to build its theoretical

foundation, to perfect its techniques, and to enlarge its field of

application in order that it may become a true partner of the classical

methods in coping with the challenge of the new trajectory problems as

well as many other dynamic problems encountered in modern space-flight,

much theoretical and practical work has yet to be done.
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