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ABSTRACT

The classic method of hodographic mapping and its modern develop-
ments are reviewed, and their applications to the analysis of trajec-
tory problems in space-flight are discussed. The bacis concepts and
principles of the hodographic mapping, as originated by Moébius and
Hamilton, are formulated on a broad basis in the language of differen-
tial geometry. Applications of these fundamental formulas to a general
force field, an arbitrary central force field, and an inverse-square
field are successively presented; and the Hamiltonian circular hodo-
graph and its polar version, briefly reviewed. The concepts and methods
of normalized hodographic mapping, and constraining hodograph, and the
osculating hodograph are introduced, and their applications in specific
classes of trajectory problems are concisely discussed. Hodographs
for Kepler orbits in rotating coordinates are introduced and illus-
trated with the view of aiding the comparison of the restricted three-
body orbits with the two-body orbits. While the main concern of this
survey is the velocity hodograph, a short introduction on its exten-
sion to other state spaces is included. As final remarks, the hodo-
graph method of trajectory analysis is briefly compared with the
classical analytic methods in Hamiltonian mechanics.

INTRODUCTION

The method of hodographic mapping, as originated by Mobius (ref.l)
and Hamilton (refs. 2,3) in the 1840's was primarily for the study of
the motion of celestial bodies. Such a mapping has later found its
applications in gasdynamics, especially in problems of supersonic flow;
but, ironically speaking, it has been practically ignored in Celestial
Mechanics, even in the realm of Kepler motion, where Hamilton's cir-
cular hodograph has its immediate and elegant applications. Recent
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studics* show that the method of hodographic mapping not only proves

to be a powerful method in dealing with Kepler motion, but also helpful
in many problems of mcdern astrodynamics in connection with space fligat.
In the following, Mobius and Hamilton's original conzepts will be form-
ulated in modern terms on a broad basis so as to form the foundations
for later applications to Keplerian as well as non-Keplerian motions.
The Hamiltonian hodograph and its polar version will be briefly re-
viewed, and several new concepts and methods of hodographic mapving for
the analyses of various classes of current trajectory problems will be

introduced and discussed.
BASIC CONCEPTS AND FORMULATION IN HODOGRAPHIC MAPPING

Consider the motion of a mass particle of mass m in a general
force field. At each instant, there is a velocity vector V associated
with a position vector Y. The path described by the tip of T in the
position space, or the ;-space, is generally referred to as the tra-
jectory, and that described by the tip of V in the velocity space, or
the G-space, is the hodograph of the motion, as called by Mobius (ref.l)
and Hamilton (ref. 2). From a broader point of view, a hodograph, or,
more precisely, the velocity hodograph, may be regarded as the trajec-
tory in the $-space, or the $-trajectory, while that in the ;-space,
the ;-trajectory. Although a motion is usually represented by its -
trajectory, it can be represented equally well, or even better, by its
V-trajectory, as the latter may possess a simpler geometry then its
counterpart in the ;-space. This is particularly obvious, as it will
be seen later, in the case of Kepler motion.

In a definitive motion, the correspondence between T and 6 is
one-to-one. Such a correspondence may be viewed as a mapping, and the
ﬁ-trajectory may be viewed as the hodograph image of the ;-trajectory.
The latter is generally a space curve in the three-dimensional ;-space,

*
See, e.g., refs. 5-7, 9-12, 19-22, etc.
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and so is the former in the three-dimensional G-space (Fig. 1).

The

geometrics of the two curves are closely related through the dynamics

of the motion.

Table I is a summary of the essential relations per-

taining to each of the two vector spaces, and their inter-relations
which follow directly from the basic concepts, definitions, and stan-

dard formulas of differential geometry, and hold for any arbitrary

force field.

TABLE I - BASIC FORMULAS

;-Trajectory V—Trajectory
Curvature b e < >
K = l!!;L (1a) K = ElEgEL (1b)
mv* F
Torsion % B > + > >
_ [V,;F,F] m(F,F,F]
T = (2a) T = LA (2b)
. | UxF | 2 |fx§|2
Frenet Triad
> _V >+ _F
Unit Tangent e, = & (3a) e = F (3b)
Unit Principall»> (VxF) xV 4 > (FxF) xF (4b)
Normal ®n T T == (4a) N T % 3
| VxF | v | FxF | F
Vacb > _ Bxb
Unit Binormal |e, = —= (5a) eg = Tre (5b)
Vx| B
Angular Veloc-| = V(e +k&,) (6a) §==z (g8 +Kep) (6b)
ity of Rota-
tion
Inter-relations V= ;, F=mnv (7)
> _m,s> 2>
ep = g( e tkV en) (8)
df _ F
a§ =g (9)
Ll =_d
( )‘dt( )

This set of formulas is by no means comprehensive, but it shows

clearly that the intrinsic geometric properties of the trajectories in
the r- and ﬁ-spaces are determined by the force field F, and, conversely,
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the nature of the force field and the dynamics of motion are manifested
through these intrinsic properties of the r- and G-trajectories. It
also shows how the trajectory geometries in the two vector spaces are
interlocked; and in particular, it reveals the following features char-
acterizing a hodographic mapping in general, as contained in Hamilton's
original exposition:

(1) At corresponding points, the tangent vector of the T-
trajectory is always parallel to the radius vector to the V-trajectory;
and the tangent vector to the §-trajectory is always parallel to the
resultant force vector (Egs. (3a,b)).

(2) The magnitude of the force is to the instantaneous
speed of motion as the line element df of the V-trajectory is to the
corresponding element ds of the ;-trajectory (Eq. (9)).

As an additional observation, Eq. (8) shows that the resultant
force vector is in the osculating plane of the ;-trajectory.

So far, nothing has been specified for the force field. Now,
consider a central force field

F(¥) = £(r) &, (10)

where f£(r) is an arbitrary scalar function of r, and the origin is at
the force center. The motion in such a field is well known to be
characterized by the presence of a constant angular momentum vector,

->

h=rxV (11)

Hence, the motion is planar, and the trajectories in - and V-spaces
are both plane curves. For such a field, most relations in Table I
can be simplified. In particular, we note that Egs. (1,2,5,6) reduce
to

k = h|£|mev> (12a)
K = mh/r’|f| (12b)
T=T=0 (13)
e, =¢é;=Hh/mz= ¢ (14)
o = |£|h/mev? (15a)
8 = h/r? (15b)




In addition, the following inter-relations hold:

=8, & = & (16)

-
° N 8

T
where the + sign is to be taken when the force is repulsive (£>0), and
the - sign, when it is attractive (£<0). Note here the unit vector
triad (Er,ée,éh) is the usual polar reference frame for the ;-trajec-
tory. Egs. (13,16) show that in any central force field the local
Frenet frame (;T';N';B) for the ﬁ-trajectory is identical to the local
polar frame (gr’ge'gh) for the ;-trajectory. Similarly, the local
Frenet frame for the ;-trajectory is identical to the local polar frame
for the ﬁ-trajectory, both given by the triad (;t'gn';h)' It follows
that we may identify w as the angular velocity of V; and & as that of
;; and write in the usual notations,

-> > -

w=8e (17a) d=0¢e - (17b)
. - >

The vector geometry of the trajectories in the r- and V-planes are

shown in Fig. 2.

A comparison of Egs. (l12a) and (12b) shows that the curvature
formula for the V-trajectory takes a simpler form than that for the
r-trajectory; the latter depends on the orbital speed, but the former
does not. By introducing the radii of curvature,

p=2,R=g% (18)
Egs. (l2a,b) yield the simple relation
- 3 (
PR = h sec™¢ (19)

where ¢ is the path angle with reference to the local horizontal.
Now, if we further specify the field to be an inverse square one,
i.e.,

f£(r) = + 5 (20)
r

where y is the gravitational constant, and the plus and minus signs in-
dicate a repulsive field and an attractive field, respectively. Egs.
(12b,18) yield immediately

| sossmmmsnsestss |
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R = E (21)

Thus, the ﬁ-trajectory is a circle, whose radius in a given inverse-
square field, depends on the scalar angular momentum h only. This is
Hamilton's Law of Circular Hodograph (ref. 2). It is interesting to
note here that this law was proved without any knowledge of the -
trajectory. On the contrary, Hamilton showed that the orbit was a
conic by using his circular hodograph. Instead of his geometric proof,
it can be easily seen here from Eq. (21), together with Egq. (19) to
give

p = E; sec3 ¢ (22)
which can be recognized at once as the radius of curvature of a conic.
No doubt the hodograph representation serves as a much simpler descrip-
tion of the motion than its ;-trajectory, the orbit, in the case of an
inverse-square field. The conclusions deduced so far hold for an
attractive field as well as a repulsive one. However, in the following,
particular attention will be focused on the attractive inverse-square
field, or the Newtonian gravity field, which is the main concern in
trajectory problems in space-flight, and it will be so assumed unless
otherwise stated.

THE HAMILTONIAN CIRCULAR HODOGRAPH AND ITS POLAR VERSION

It is understood that the Hamiltonian circular hodograph was de-
rived with reference to a frame fixed in the irertial space, and that
it is to be expressed in uny inertial velocity coordinate system. How-
ever, it has been proved later that in the non-inertial velocity co-
ordinates, Vr and Ve, in the local vertical and local horizontal direc-
tions respectively, the hodograph is still a circle (ref. 7). That is,
Hamilton's Law of Circular Hodograph may be extended to the (Vr, Ve)
coordinate system. The hodograph of the absolute velocity described
in this coordinate system is known as the polar hodograph.* The

TI"ox:melrly called "the special hodegraph" in ref. (7).
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equation of the Hamiltonian circular hodograph in the inertial coordi-
nates (Vx, Vy), where, the subscripts x and y refer to the apsidal and
lateral directions of the orbital conic respectively, and that of the
polar hodograph in the non-inertial coordinates (Vr, Ve) may be put
into the following forms:

2 2 _ .2
Ve + (V0% =R (23)
2 2 _ 2
Vi + (Vg-R)® = C (24)
with
R=f,c=c¢f (25)

where € is the numerical eccentricity of the conic orbit. Egs (23,24)
show that either the Hamiltonian hodograph circle or its polar version
may be specified by the two parameters R and C. However, it is to be
noted that, in Hamiltonian hodograph, R is the radius of the hodograph
circle, and C is the distance between its center and the origin; while,
in the polar version, the roles of R and C are interchanged. For
either version, Eq. (25) show that the numerical eccéntricity of the

orbital conic is given by
€ = C/R (26)

Thus, we have

C < R: € < 1, elliptic orbit
C = R: € = 1, parabolic orbit
C > R: € > 1, hyperbolic orbit

b ~ircular orbit is a particular case of the elliptic orbit with € = 0,
corresponding to C = 0. So far it has been tacitly assumed that the
angular momentum h is non-vanishing. In the limiting case of h = 0,

we have R + =, C + <, and the T- and ﬁ-trajectories degenerate into the
LSy and er axes, respectively. Such a degenerate case will be excluded
unless otherwise stated. The geometry of the three main types of conic
orbits and their corresponding Hamiltonian and polar hodographs are
shown in Fig. 3. Their general correlations are graphically depicted

in Fig. 4. Detailed correlations for each of the three types of a
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conic orbit, the elliptic, the parabolic, and the hyperbolic, and the
pertinent formulas are found in refs. 7 and 10. It should be men-
tioned that, for elliptic motion, one complete circuit along the hodo-
graph circle corresponds to one complete circuit along the orbital
ellipse; however, for hyperbolic motion, the hodograph circle is divided
into two arcs, with the major arc corresponding to the motion along

the near (field center) branch of the orbital hyperbola, which is the
one realized in an attractive field, and the minor arc corresponding

to its far branch, the one realized in a repulsive field; their junc-
tions (points I, I' in Fig. 3) being the images of the points at infin-
ity in the orbit plane. A parabolic orbit is the borderline between
the elliptic and hyperbolic cases, its point at infinity being mapped
into the origin of the hodograph. It should also be noted that all
equations presented in the preceding section were formulated with
reference to an inertial frame, and modifications or new interpreta-
tions are needed in applying them to the polar frame of reference. Such
changes have been implied in Eq. (24), and Fig. 4(C), and they will not
be elaborated here.

Based on these preliminaries, the main advantages of hodographic

mapping in an inverse-square field may be summarized as follows:

(1) A conic orbit is mapped onto a circle, regardless of
its numerical eccentricity, hence the mapping provides a unified
approach to the treatment of orbits of various conic types, a treat-
ment often sought by theoretical analysts.

(2) It also provides a unified approach to the dynamical
analysis for an attractive field and a repulsive field. Thus its appli-

cations are not confined to space dynamics.

(3) Hodog.aphic mapping enables one to replace the geometry
of orbital conics by the geometry of circles, thus greatly simplifying
the analysis. In particular, while it takes an infinite plane to des-
scribe a hyperbolic or parabolic orbit in the position space, it takes
only a finite portion of the velocity plane to describe its hodograph.

All the foregoing remarks apply to both the Hamiltonian hodograph
and its polar version. As noted earlier, the two versions of the
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orbital hodograph may be converted to each other by merely interchanging
the radius of the hodograph circle and its center-to-origin distance.
Algebraically, in expressing orbital relations, the transformation from
the inertial coordinates (Vx, Vy) to the non-inertial polar coordinates
(Vr, Ve) and vice versa may be effected simply by interchanging the

two parameters R and C.

As a final remark, the mapping of orbital conics onto its hodo-
graph circle may be viewed purely geometrically as a pedal transforma-
tion followed by inversion and proper rotation, as shown by Altman
(ref. 20). It can be further proved that such an assertion nct only
holds for the conic orbit in an inverse-square field, but also for the

orbits in any central force field.

Of the numerous applications of the circular hodograph, one ele-
mentary example will be cited. As the Hamiltonian (or the polar) hodo-
graph implies, at any point on a conic orbit, we may write

> > ->

vV=_CcC ey + R e - (27)
which shows that the velocity vector v may be resolved into the non-
orthoginal components '

> > > >

Vy—Cey, Vo = R g4 (28)

and the hodograph geometry indicates immediately that, as the point Q
moves along the orbit, v changes continuously, but its component §y
remains fixed in magnitude as well as in direction in the inertial
space, and Ve remains fixed in magnitude. They are the so-called in-
variant two-body velocity components (refs. 14, 15). A geometric
proof in the orbital plane is given in the classic work of Whittaker
(ref. 4). This remarkable theorem, as seen here, is a direct conse-
quence of the circular hodograph. Obviously, it holds for all elliptic,
parabolic, and hyperbolic orbits. This example illustrates clearly
the power of hodographic mapping in dealing with conic orbits. A for-
mal hodographic proof of this theorem is found in ref. (16). It will
be further discussed later in connection with orbital perturbation
problems. More examples of applications of the circﬁlar hodographs,
ranging from elementary ones to more sophisticated ones, are found in

-]3=




refs. (6, 7, 9, 10, etc.). In the following, further applications to
advanced trajectory problems with extended and modified concepts and
techniques of hodographic mapping will be introduced.

THE NORMALIZED HODOGRAPHIC MAPPING FOR FAMILIES OF
KEPLERIAN TRAJECTORIES

A recent development in line with the Hamiltonian circular hodo-
graph is the introduction of the non-dimensional velocity space, de-

fined by

D=2V (29)

|

for the motion in a Newtonian gravity field, h being the scalar angular
momentum per unit orbiting mass. Egs. (23) and (29) show that the
Hamiltonian hodograph becomes a unit circle regardless of the size and
shape of the conic orbit. Such a mapping will be referred to as the
normalized hodographic mapping. It finds its special application in
the analysis of families of Keplerian trajectories, which arise fre-
quently in mission planning, orbit determination, trajectory optimiza-
tion, and many other space-flight problems. Under such a mapping,
distinct members of the family will be mapped onto distinct unit circles,
if the origin of the 3—space is fixed, as we ordinarily do in the
classical hodographic mapping. However, to further simplify the hodo-
graph geometry, we will regard the center of the hodograph circle
fixed, and let the hodograph origin vary. In this way, different Kepler
orbits in the same plane will be mapped onto the same unit circle, but
with different origiﬁs in the plane of this circle. Thus, corresponding
to a family of Kepler orbits in the ;-space, we will have a set of
origin points in the 3-space, the totality of which constitute the locus
of origins, called the O-locus. The unit circle together with the O-
locus constitute the hodograph image of the entire family. Under proper
constraints, the O-locus of a coplanar family is a plane curve. For a
spatial family, the unit hodograph circle generates a unit hodograph
sphere, and the O-locus is usually a surafce in the 3-space. To
further fix the idea, we will impose a condition that all members of
the family to be treated pass through a common point fixed in the
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;-space, whatever other constraints may be present. Such a fumily in
the ;-space and its hodograph image in the $-space are graphically de-
picted in Fig. 5. At this point, several remarks are in order:

(1) The normalization of the velocity space as defined by Eq
(29) differs from the usual normalization or non-dimensionalization in
that the factor h/u introduced is not an absolute constant regarding the
whole family. While p is constant in a given Newtonian field, h is con-
stant only along each trajectory but it varies from one trajectory to

another: 5y white the ordinary hodographic mapping is a point-to-

point transformation, the normalized one is essentially a curve-to-
point transformation in the sense that corresponding to each trajectory
in the ;-space there is a definite point on the O-locus. The converse
is true under the present co-terminal condition, and the mapping is
thus one-to-one (except possibly at certain singular points).

(3) While the O-locus defines the non-dimensional velocity
vectors » for different trajectories on one hand, it also displays the
eccentricity vectors (€) on the other hand. It is in fact also the
locus of the tip of the eccentricity vector* of the family.

As a consequence of these features (especially item No. 2), the
normalized hodographic mapping enables one to deal with, instead of
the infinitely many trajectories of the family, a unit circle and the
O-locus only. The global characteristics of the family may then be
observed from the geometry of the normalized hodograph image, and so
are the characteristics of any particular trajectories cf the family.
Very often a trajectory family of complicated geometry in the ;-space
has a strikingly simple image in the G-Space, and the analysis becomes

a simple matter.

The concept of normalized hodographic mapping in an inertial velo-
city space was first introduced in ref. 10, and later applied in the
author's analysis of the two-terminal trajectory family (ref. 19) which
furnishes a typical example of such a mapping. The O-locus there was

3

pefined as the vector of magnitude equal to the numerical eccentricity,
and pointing in the direction of the lateral axis of the orbital conic
(y-axis in Fig. 3).

-15-
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found to be a straight line, as depicted in Fig. 6 and many interesting
characteristics of the two-terminal family were derived from such lin-
ear locus. The results are contained in ref. 19. Simple O-loci have
also been found for other trajectory families. Furthermore, there are
cases where the normalized hodographic mapping not only simplifies the
analysis, but also leads directly to the solution of the problem by the
method of loci. A comprehensive presentation of the principles under-
lying such a mapping and its many applications cannot be incorporated
here; it will be given in a separate report.

Finally, it should be mentioned that the normalized mapping may
also be applied to the polar hodograph wherein the reference frame is
non-inertial. The hodograph for all Keplerian orbits will then be
mapped onto concentric circles all located on the Ve-axis at a unit
distance from the origin, each with a radius equal to its numerical
eccentricity. In fact, the normalized polar hodograph was introduced
prior to the normalized Hamiltonian hodograph outlined above. It
first appeared in Boksenbom's report ref. 6 although he did not refer
it as a hodographic representation. At about the same time, it was
introduced as the non-dimensional special hodograph in ref. (7).
Correlation between the Keplerian orbits and their normalized polar
hodographs is found in refs. (7) and (10). Many examples concerning
its applications are found in refs. (7) and (9). So far as the treat-
ment of trajectory families is concerned, the normalized mapping in
the inertial velocity space, as evolved from the Hamiltonian version
seems preferable. However, the normalized hodoéraph of the polar
version is found to be suitable for other classes of trajectory prob-
lems. Thus, further development of the method of normalized hodo-
graphic mapping in both versions may be desirable.

THE CONSTRAINING HODOGRAPH AND TRAJECTORY OPTIMIZATION

Problems of trajectory optimization by using impulsive thrust can
be most naturally analyzed in the velocity space, since the impulsive
velocity change is represented by a straight line segment there. In
particular, the minimal fuel impulsive maneuver, which requires the

=17-
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minimization of the characteristic velocity 2: |A§i| always reduces to
i=1

a problem of minimum sum of distances in the ﬁ-space. In this connec-
tion, the concept of constraining hodograph is useful. For a family of
trajectories all passing through one common terminal point Q in the r-
space, a constraining hodograph is the locus of the tip of the velocity
vactor at Q along various trajectories of the family. Such a hodograph i
is in a slightly different sense as that visualized by Mobius and :

posmens SN < T . Y

Hamilton; and is especially useful in handling the minimal characteris-
tic velocity problem. The conditions under which the optimization is

made usually set certain constraints on the velocity vector at Q, and é
such constraints will appear in the form of 2 constraining hodograph

—_ B

in the §-space. Since, in general, a Keplerian trajectory is uniquely

M eb-digd i

determined by a position vector and the corresponding velocity vector,

.
| 68

associated with each point on the constraining hodograph there is a
unique Keplerian trajectory of the family, and vice versa. Thus, like

s

the normalized hcdographic mapping, it is again one-to-one, except
possibly at certain singular points. In fact, for the same coterminal
family under same constraints, the constraining hodograph in the V-

O

space is the counterpart of the normalized hodograph in the 5-space.
The former usually has a more complicated geometry than the latter.
However, the constraining hodograph has the advantage of showing all
the velocity vectors in the same scale, while a normalized one does
not. This advantage makes it more suitable for the minimal charac-
teristic velocity problem wherein the magnitudes of various velocity-
increments are to be compared.

It is evident that, once the constrain-

1 i i ! l Pr— )

ing hodograph is mapped, the velocity-incre-
ment required to change impulsively from a
given orbit to a new orbit satisfying the con-
straint of the problem is simply given by
6;5 = _V} where Q is a point on the constrain-
ing hodograph, and Q, is defined by the ter- bt b BB ot
minal velocity on the initial orbit (Fig. 7).
Thus, in a single-impulse maneuver, the problem becomes the classical
geodesic problem with moving boundary; under fixed terminal conditions,
the minimization of AV implies the orthogonality condition
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- av =0 (30) ij

where dV is to be taken along the constraining hodograph. Equation (30) =
provides the analytic condition for an internal extremuim of V if it 3 !
exists, and its solution gives the solution of the problem. Such an
approach was first adopted by Stark (ref. 8), and later by the author
(ref. 21) in the solution of the two~-terminal, single impulse orbital
transfer problem, where the constraining hodograph is found to be a
hyperbola, and Eq (30) yields, in this case, a quartic polynomial equa-
tion in a single variable. The solution can also be obtained by con-
structing the normal to the constraining hodograph. 1In a multi-
impulse maneuver, there is, in general, a constraining hodograph at
each point where the impulse is applied, and the orthogonality condi-
tion (30) is to be replaced by the more general condition

n AV . dV
P i i .9 (31)
=1 |a¥,| _
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The application of this condition to the problem of two-terminal, two-
impulse transfer yields an octic polynominal equation (18, 28). The
hodograph geometry becomes quite complicated, and solutions can no
longer be obtained by simple geometric construction except in special ;
cases; however, the geometric approach in the velocity space in the
light of the constraining hcdograph is still profitable, as it not
only enables one to obtain some geometric insight into the analytic
condition expressed by Eq (31), but also helps to locate the realistic
optimal solution for the problem by avoiding all the extraneous roots,
the maximal solution, the unrealistic optima, etc., whatever may be
present in the solution of the octic equation, and thereby reducing
the time and labor of numerical computation. Such details are found
in ref. 28. It is worth mentioning that, in the particular case of
180° transfer, coplanar or non-coplanar, the hodograph analysis yields
a simple optimal law of equi-slope of velocity-increments for the two-
impulse maneuver, and thereby leads to an analytic solution in closed
form for the problem (ref. 30).

In optimal maneuver problems using continuous thrust, analyses in
the acceleration space are advisable, and the use of the acceleration
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hodograph in addition to the velocity hodograph may be needed. Initial
studies on this subject are found in Altman's work in which the poten-
tialities of the hodograph approach in the acceleration space are
explored (ref. 22)., It seems that much analytic ground and practical
techniques are yet to be developed before such an approach can be
effectively applied to the solution of powered trajectory problems.

ORBITAL HODOGRAPHS IN ROTATING COORDINATES

As we noted earlier, Hamilton's Law of Circular Hodograph does not
hold in general in a non-inertial reference frame. However, the funda-
mental concepts and formulas in Table I, Section II may apply to a non-
inertial frame with proper re-interpretation of the sympols ;, 3, and F.
In the following, the hodographic mapping of Kepler orbits in a rotating
coordinate system will be introduced. The system (XR,YR) is assumed to
be rotating at a uniform angular speed n, in the plane of motion, with
its origin at the field center. For convenience, we use the complex var-

iables
z = reie ' (32)
w = ve18 (33)

to represent the position and velocity of the moving particle in the
apsidal coordinate system, which is fixed in the inertial space (side-

real), and similarly,

z 16 (34)

]
H
o
o)

W=V eiBR (35)

in the rotating (synodic) coordinate system, where the symbols B,OR
etc. are defined in Fig. 8. The orbits in the z- and Z- planes are
the absolute (or sidereal) and the relative (or synodic) orbits res-
pectively; and the corresponding ones in the w- and W-planes are the
absolute (or sidereal) and relative (or synodic) hodographs respec-
tively. Assuming the two coordinate systems coinciding at t = 0, the
transformation equation between these two systems are

7 = ze 1Pt (36)

.




(a) ORBITAL PLANE

(b) HODOGRAPH PLANE

Figure 8.- Fixed and Rotating Coordinate
Systems for Orbital Motion

ABSOLUTE
HODOGRAPH

RELATIVE ?R
HODOGRAPH 4

>X

ORBIT
DIAGRAM

Figure 9.- Graphic Mapping of the Orbital Hodograph:
From Sidereal System to Synodic System
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W= (w-inorele) o i, (37)

For a Kepler orbit of angular momentum h and eccentricity e, we may
show that

, 2 1/2
{[VZ-Znoh][V2+ %2- (1-52)] + 4u2n§}

vV, = (38)
R 2
V2 + 'Lz (1-82)
h

1

n h'f n h3
v sin B +Jl-| cos” B |Je sin BJI—( cos“g - r2 coszﬂ + 1——0-2— sin(ﬂ-not)+ %— ¢ Ccos nut
M
3

v sin R +Jl—x2 coszli € sin Nl-' co!B- 2c028+1-n°h - tonoh i t
€ 8 [ s —3—|cos B no u2 t Sin n, (39)

= tan_

L"vR

where h is considered positive if the rotational sense of the orbit
agrees with that of the rotating coordinate system, as viewed from a
fixed system; otherwise, it is considered negative. These transforma-
tion formulas (38, 39) look cumbersome; however, the hodographic mapp-
ing may be effected by simple geometrical constructions, which follow

directly from Eq (37), as follows:

(1) Choose units such that n, = 1, and superimpose the orbit
diagram on the circular hodograph (Hamiltonian version) such that the
occupied focus coincides with the center of the hodograph circle, and
its apsidal axis coincides with the y-axis (see Fig. 9).

(2) Attach a time scale to the circumference of the hodo-
graph circle in accordance with the appropriate Kepler equation.

(3) Consider an arbitrary orbital point Q on the hodograph

circle, and connect Q and C, intersecting the orbital conic at Q'.

(4) On CQ or its extension, according as h is positive or
negative lay off QQ' = CQ", to obtain the vector QQ°'.

(5) Rotating QQ' through an angle -t (the time corresponding
to Q) to transfer the point Q' to-QR, then we have QQR = *R' thus com-
pleting the mapping for the orbital point 0 (see Fig. 9). The entire
orbit may thus be mapped point-wise.
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It is important to note that an essential difference between an
absolute hodecgraph and a relative hodograph is that while the tangent
to the former points the direction of the external force, that to the
latter points the direction of the apparent force, which is the vector
differer..e between the external force and the Coriolis and centrifugal
forces. T™hus on the absolute and relative hodographs, one finds readily
the directional deviation of the apparent force from the local gravity
focce.

The foregoing transformation formulas (38, 39), and geometric con-
structions apply regardless of the eccentricity of the orbital conics,
except that, in step 2 under geometric construction, the Kepler equation
pertinant to the particular type of the conic has to be used. As an
example, a typical Kepler elipse and its hodcgraph in both the sidereal
system and the synodic system are shown in Fig. 10. It is seen that
the orbital hodograph in the synodic system is much more complicated
than the circular hodograph in the sidereal system. The introduction
of such seemingly unnecessary complications is motivated by the fact
that Kepler problem is the limiting case of a restricted three-body
problem when one of the primaries approaches zero mass, and in treating
the restricted three-body problem, the use of the synodic system is
superior and prevailing. Thus, by referring to such a coordinate sys-
tem, the information obtained for the two-body problem may be directly
compared with that for a three-body problem. Literature on synodic
Kepler orbits is rather scarce. An inclusive treatment of this subject
is found in Hoelker and Winston's recent work (ref. 27), in which ex-
tensive comparisons of a class of Earth-Moon orbits with a class of
Rotating Kepler orbits, both in the position space, were made. The pre-
sent section briefly illustrates what can be done in the velocity space.
It is hoped that such a synodic hodograph may provide additional basis
for such comparitive studies.

THE OSCULATING HODOGRAPH AND ORBITAL PERTURBATION
In a gravity field with the presence of perturbing forces, the

Hamiltonian circular hodograph can no longer apply, even in an inertial
reference frame, and the analysis may proceed on the basis of the
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general formulas presented in Section II. However, in many perturba-
tion problems, the classical concept of osculating conics is profitable,
and it can be extended to the velocity space. Following such a concept,
the instantaneous vectors r and V define an osculating conic in the r-
space, and a corresponding osculating circular hodograph in the V-space,
characterized by the two parameters,

(40)

Lal e £

R = E ' E = V - R E X

where h = (rxV) is the angular momentum vector as defined before. Elimi-
nating h between Egs. (40) by introducing the vector i, defined by

->

h
Tl (41)
reduces the second of Egs. (40) to

V=2¢+Rx

L a2

(42)

which is the form used by Altman (ref. 29) with slightly different nota-
tions. Without perturbation, the motion is Keplerian, and both vectors
¢ and R are constants, in accordance with the invariant velocity com-
ponents theorem (see Section III). When perturbations are present, ¢
and R may then be regarded as two osculating elements (see Fig. 1l1). In
contrast with the usual scalar Keplerian elements, they are vectors, and
have the dimension of velocity. They will be referred to as the kine-
matic osculating elements. It is important to note that ¢ and R are
related by

E-R=0 (43)

Thus, of the six components of ¢ and R, only five of them are indepen-
dent. In other words, the two vectorial elements ¢ and R provide five
independent scalar elements, which, together with the epoch t, deter-
mine completely a set of six osculating elements for the perturbed orbit.
The usual Keplerian, Jacobi, and Delaunay sets of elliptic elements are
related to this vector pair ¢ and R as summarized in Table 2. Similar
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relations may be written for the modified Delaunay set of elements and
the Poincare and his modified sets.

TABLS II

ELLIPTIC ELEMENTS IN TERMS OF THE KINEMATIC PARAMETERS & anp R (R>C)
Keplerian Jacobi Delaunay
1 2_.2
qQ, "'F%? k= 3 (R%-c) ﬁﬁ--;L;
- Jl -C
q, t-ﬁ h=f
R 2
9y l-eo-'lr'- h, g

sin~}|l c?- (& ol 1 iy -0 -t | ne-m) = sin"Y Rqct-dy v
” -r-Fl‘_c—zlv,,t [CF(;, )J pNc-dy ), (t-1) -1} Eg-{‘:T!:z—)’]

C R -CR
-1 x
w = tan _Li_'_l_
Py =
R
-1 'x
0 = tan = —
Py 2

Note: Y and 2% (i=1,2,3) are canonical conjugates except for Keplerian elements

Explicit expressions for the rates of change of the kinematic os-
culating elements in terms of the disturbing forces are found as follows:

2
> rR > >
R T (Fhee+Feeh) (44)
E=F2_ + 1+——r“2 e +[1 R’ ) 2 (45)
rér n ) Feo *\! = =7 /Fnen

where Fr’ Fe and Fh are the disturbing force components in the local
orbital polar frame of reference. The rates of change of other ele-
ments may be readily related to ¢ and R through the equations of
Table 2. A glance at Egs. (44, 45) enables one to infer immediately
that:
The 'osculating hodograph circle will remain fixed in size,
and the plane of motion will be fixed in the inertial space,
if the perturbing force is purely radial; however, the loca-
tion of the center of the hodograph circle as given by the
vector element ¢ will vary under the presence of any disturb-
ing force component.
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No extensive analysis nor discussions can be elaborated within the
limited scope here. The significance of these kinematic elements have
been noticed by Cronin,14 Schwartz,14 Pohle,15 Altman,29 and others,
but literature on their practical applications to trajectory analysis
is scarce. Preliminary studies in this direction are found in Ref. 14,
15, and 29. It seems much analytical work is yet to be done in order
to use these kinematic osculating elements as the principal parameters

in the analysis and predication of perturbed orbits or trajectories.

Finally, as a word of caution, the concept of the osculating cir-
cular hodograph should not be confused with that of the osculating
circle of the hodograph.* The former is in the instantaneous plane of
r and 3, while the latter is in the osculating plane of the ﬁ-trajectory,
defined by ;T and ;N (see Section II.) These two planes do not coin-
cide unless the motion is planar; and even when they do, the radius of
the hodograph circle and that of the osculating circle of the hodograph,
which is the radius of curvature of the §-trajectory will not be equal
unless the field is Newtonian and free from perturbations. The concepts
of the osculating conic and its corresponding osculating hodograph ~ir-
cle are most useful when the field is Newtonian, and the perturbation
is small; while the concept of the osculating circle of the hodograph
and the related formulas in Section II, with reference to the Frenet
frames in the r- and V-spaces are generally applicable in any non-
inverse-square or non-central force field.

*

Mathematically speaking, "osculating" implies contact of order at

least 2. While the term "osculating circle of the hodograph" is correct
in this sense, the terms "osculating conic" and "osculating circular
hodograph" are generally not. However, to conform to the classic
literature on orbital purturbation, the conventional term "osculating
conic" is retained here, and the term "osculating circular hodograph"

is understood to mean the hodograph corresponding to the osculating
conic.
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EXTENSION OF HODOGRAPHIC MAPPING TO HIGHER ORDER VECTOR SPACES

So far the discussions have been confined to velocity hodographs.
Theoretically, there is no limitation on the concept of hodograph as
to its applicability to the vector spaces higher than the velocity
space. In general, we may define an nth order hodograph as the tra-
jectory in the ;(n) - space, where the superscript (n) denotes the nth

time derivative of ¥, In particular, we have

&

n=0: r - space (position)
n=1: é - space (velocity)
n=2: % - space (acceleration)
n= 3: ? - space (jerk)

These are the state-spaces as called by Altman, and his poineer work
in this direction is found in Ref. 29. The fundamental concepts and
formulation preseanted in Section II provide a logical basis for such
extensions, and all formulas presented therein for the position and

velocity spaces may be applied to the nth order space by replacing the

(n-l)' ;(n) (n+l)

vectors ;, V, and f/m by T and r respectively. 1In

principle, n is not necessarily restricted to a positive integer. For

example, with the understanding that the symbol r('l)
t'f(t)dt, we may define an inverse hodograph as the trajectory in the

~(=1) (n-1)

stands for

- space; and, more gencrally, we may speak of a r - tra-

jectory as the inverse hodograph of the r(n)

- trajectory. The possi-
ble application of the acceleration hodograph has been mentioned in
Section V in connection with trajectory optimization. The orbital
acceleration hodograph for Kepler motion has been found by Altman to

be a form of Pascal's limacon.17

So far it seems no analytical work
has been done beyond the acceleration hodograph in an inverse-square
field. A rigorous treatment for the general nth order hodograph, in-
cluding all position, velocity, acceleration, jerk spaces, etc., as
its special cases, from both analytic and geometric points of view,
would put the hodograph theory on a firm foundation, and thereby en-
large its field of application to a great variety of problems in

space-flight.
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FINAL REMARKS .

As contrasted with the classical methods in Hamiltonian Mechanics,
including the canonical transformation and the Hamilton-Jacobi equation,
which deals with a 2n-dimensional phase space in the n pairs of the
generalized conjugate coordinates, the hodograph method is a direct
approach in the velocity space, with possible inclusion of the ac-
celeration space and other higher order spaces as required. 1In fact,
the velocity space may be regarded as the linear momentum space for a
constant mass, and, together with the position space, it provides an
initial set of canonical coordinates for the basic Hamiltonian formu-
lation. In as much as the result of a formalistic solution of the
Hamilton-Jacobi equation must be finally interpreted in terms of the
position, velocity, and possibly acceleration spaces, etc., the direct
approach in these spaces by the hodograph method is advisable whenever
it is feasible.

It is generally recognized that the methods of classical Haniltonian
mechanics are highly analytic, while the hodographic mapping is highly
geometric. However, it is worth noting that, in classic calculus of
variation, which is the basis of the celebrated Hamilton's principle,
the Euler-Lagrange evuation defines essentially the curvature of the
extremal; and that many standavd problems in calculus of variations are
geometric in nature, notably the geodesic problem and the isoperimetrical
problem. Thus, it would be no surprise to see that a trajectory problem,
governed by the Hamiltonian equations of motion, reduces to a standard
geometrical problem through hodographic mapping, and that an optimal law
deduced from such hodograph analysis resembles the Fermat's lawv in
optics, as both are the law of shortest path from the geometric point
of view (see Section V and Ref. 28, 30). However, while the reduction
of a dynamic problem to a geometric problem hy such a mapping may give
a new look of the problem, and may provicde some geometrical insight into
the situation from the geometry of the hodograph image of the dynamic
system, it does not usually yield the solution directly; and to find the
solution of the problem one often needs to solve the Eular-Lagrange
equation or the Hamilton-Jacobi equation. Thus the analytic approach
of the classic methods and the geometric approach of the hodographic

=



mapping are complementary to each other, and an ingenious combiration
of them may be needed in a complicated trajectory problem.

As we know, the classic methods in Hamiltonian Mechanics have been
well developed over the past hundred years, and found vast applications
in many branches of physics, from the classic dynamics to modern space
flight. The recent work by Miner, Tapley, Powers, and Andru325'26
fully illustrates how the classic techniques of calculus of variation,
canonical transformation, the Hamilton-Jacobi equation, and the varia-
tion of orbital parameters could be combined to apply to the current
problems of space flight, like the low-thrust trajectory and the optimal
lunar trajectories. On the other hand, the hodograph method, also
originated by Hamilton, has been virtually unnoticed, until a decade
ago, despite Hamilton's brilliant pioneer work, as mentioned in the
Introduction; hence only limited applications have been effected, and
many possibilities are untried. The joint use of the hodographic mapp-
ing with the classic methods is even rarer, though Contensou's work on
optimal trajectoriel13 appears to be in this direction. At the present
stage the Hamiltonian hodograph and its many modern developments as
introduced in Sections IIXI through VII, seem best suited in the area of
two-body problem, the global analysis of families of Kepler orbits, and
the impulsive orbital maneuver, with possible applications in the per-
turbation problem, the restricted three-body problem, and others. To
further develop the art of hodographic mapping, to build its theoretical
foundation, to perfect its technigues, and to enlarge its field of
application in order that it may become a true partner of the classical
methods in coping with the challenge of the new trajectory problems as
well as many other dynamic problems encountered in modern space-flight,
much theoretical and practical work has yet to be done.
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